1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29/* Portions Copyright 2007 Jeremy Teo */
30/* Portions Copyright 2010 Robert Milkowski */
31
32#include <sys/types.h>
33#include <sys/param.h>
34#include <sys/time.h>
35#include <sys/sysmacros.h>
36#include <sys/vfs.h>
37#include <sys/uio_impl.h>
38#include <sys/file.h>
39#include <sys/stat.h>
40#include <sys/kmem.h>
41#include <sys/cmn_err.h>
42#include <sys/errno.h>
43#include <sys/zfs_dir.h>
44#include <sys/zfs_acl.h>
45#include <sys/zfs_ioctl.h>
46#include <sys/fs/zfs.h>
47#include <sys/dmu.h>
48#include <sys/dmu_objset.h>
49#include <sys/spa.h>
50#include <sys/txg.h>
51#include <sys/dbuf.h>
52#include <sys/policy.h>
53#include <sys/zfs_vnops.h>
54#include <sys/zfs_quota.h>
55#include <sys/zfs_vfsops.h>
56#include <sys/zfs_znode.h>
57
58
59static ulong_t zfs_fsync_sync_cnt = 4;
60
61int
62zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
63{
64	zfsvfs_t *zfsvfs = ZTOZSB(zp);
65
66	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
67
68	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
69		ZFS_ENTER(zfsvfs);
70		ZFS_VERIFY_ZP(zp);
71		zil_commit(zfsvfs->z_log, zp->z_id);
72		ZFS_EXIT(zfsvfs);
73	}
74	tsd_set(zfs_fsyncer_key, NULL);
75
76	return (0);
77}
78
79
80#if defined(SEEK_HOLE) && defined(SEEK_DATA)
81/*
82 * Lseek support for finding holes (cmd == SEEK_HOLE) and
83 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
84 */
85static int
86zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
87{
88	uint64_t noff = (uint64_t)*off; /* new offset */
89	uint64_t file_sz;
90	int error;
91	boolean_t hole;
92
93	file_sz = zp->z_size;
94	if (noff >= file_sz)  {
95		return (SET_ERROR(ENXIO));
96	}
97
98	if (cmd == F_SEEK_HOLE)
99		hole = B_TRUE;
100	else
101		hole = B_FALSE;
102
103	error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
104
105	if (error == ESRCH)
106		return (SET_ERROR(ENXIO));
107
108	/* file was dirty, so fall back to using generic logic */
109	if (error == EBUSY) {
110		if (hole)
111			*off = file_sz;
112
113		return (0);
114	}
115
116	/*
117	 * We could find a hole that begins after the logical end-of-file,
118	 * because dmu_offset_next() only works on whole blocks.  If the
119	 * EOF falls mid-block, then indicate that the "virtual hole"
120	 * at the end of the file begins at the logical EOF, rather than
121	 * at the end of the last block.
122	 */
123	if (noff > file_sz) {
124		ASSERT(hole);
125		noff = file_sz;
126	}
127
128	if (noff < *off)
129		return (error);
130	*off = noff;
131	return (error);
132}
133
134int
135zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
136{
137	zfsvfs_t *zfsvfs = ZTOZSB(zp);
138	int error;
139
140	ZFS_ENTER(zfsvfs);
141	ZFS_VERIFY_ZP(zp);
142
143	error = zfs_holey_common(zp, cmd, off);
144
145	ZFS_EXIT(zfsvfs);
146	return (error);
147}
148#endif /* SEEK_HOLE && SEEK_DATA */
149
150/*ARGSUSED*/
151int
152zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
153{
154	zfsvfs_t *zfsvfs = ZTOZSB(zp);
155	int error;
156
157	ZFS_ENTER(zfsvfs);
158	ZFS_VERIFY_ZP(zp);
159
160	if (flag & V_ACE_MASK)
161		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
162	else
163		error = zfs_zaccess_rwx(zp, mode, flag, cr);
164
165	ZFS_EXIT(zfsvfs);
166	return (error);
167}
168
169static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
170
171/*
172 * Read bytes from specified file into supplied buffer.
173 *
174 *	IN:	zp	- inode of file to be read from.
175 *		uio	- structure supplying read location, range info,
176 *			  and return buffer.
177 *		ioflag	- O_SYNC flags; used to provide FRSYNC semantics.
178 *			  O_DIRECT flag; used to bypass page cache.
179 *		cr	- credentials of caller.
180 *
181 *	OUT:	uio	- updated offset and range, buffer filled.
182 *
183 *	RETURN:	0 on success, error code on failure.
184 *
185 * Side Effects:
186 *	inode - atime updated if byte count > 0
187 */
188/* ARGSUSED */
189int
190zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
191{
192	int error = 0;
193	boolean_t frsync = B_FALSE;
194
195	zfsvfs_t *zfsvfs = ZTOZSB(zp);
196	ZFS_ENTER(zfsvfs);
197	ZFS_VERIFY_ZP(zp);
198
199	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
200		ZFS_EXIT(zfsvfs);
201		return (SET_ERROR(EACCES));
202	}
203
204	/* We don't copy out anything useful for directories. */
205	if (Z_ISDIR(ZTOTYPE(zp))) {
206		ZFS_EXIT(zfsvfs);
207		return (SET_ERROR(EISDIR));
208	}
209
210	/*
211	 * Validate file offset
212	 */
213	if (zfs_uio_offset(uio) < (offset_t)0) {
214		ZFS_EXIT(zfsvfs);
215		return (SET_ERROR(EINVAL));
216	}
217
218	/*
219	 * Fasttrack empty reads
220	 */
221	if (zfs_uio_resid(uio) == 0) {
222		ZFS_EXIT(zfsvfs);
223		return (0);
224	}
225
226#ifdef FRSYNC
227	/*
228	 * If we're in FRSYNC mode, sync out this znode before reading it.
229	 * Only do this for non-snapshots.
230	 *
231	 * Some platforms do not support FRSYNC and instead map it
232	 * to O_SYNC, which results in unnecessary calls to zil_commit. We
233	 * only honor FRSYNC requests on platforms which support it.
234	 */
235	frsync = !!(ioflag & FRSYNC);
236#endif
237	if (zfsvfs->z_log &&
238	    (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
239		zil_commit(zfsvfs->z_log, zp->z_id);
240
241	/*
242	 * Lock the range against changes.
243	 */
244	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
245	    zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
246
247	/*
248	 * If we are reading past end-of-file we can skip
249	 * to the end; but we might still need to set atime.
250	 */
251	if (zfs_uio_offset(uio) >= zp->z_size) {
252		error = 0;
253		goto out;
254	}
255
256	ASSERT(zfs_uio_offset(uio) < zp->z_size);
257	ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
258	ssize_t start_resid = n;
259
260	while (n > 0) {
261		ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
262		    P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
263#ifdef UIO_NOCOPY
264		if (zfs_uio_segflg(uio) == UIO_NOCOPY)
265			error = mappedread_sf(zp, nbytes, uio);
266		else
267#endif
268		if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
269			error = mappedread(zp, nbytes, uio);
270		} else {
271			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
272			    uio, nbytes);
273		}
274
275		if (error) {
276			/* convert checksum errors into IO errors */
277			if (error == ECKSUM)
278				error = SET_ERROR(EIO);
279			break;
280		}
281
282		n -= nbytes;
283	}
284
285	int64_t nread = start_resid - n;
286	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
287	task_io_account_read(nread);
288out:
289	zfs_rangelock_exit(lr);
290
291	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
292	ZFS_EXIT(zfsvfs);
293	return (error);
294}
295
296/*
297 * Write the bytes to a file.
298 *
299 *	IN:	zp	- znode of file to be written to.
300 *		uio	- structure supplying write location, range info,
301 *			  and data buffer.
302 *		ioflag	- O_APPEND flag set if in append mode.
303 *			  O_DIRECT flag; used to bypass page cache.
304 *		cr	- credentials of caller.
305 *
306 *	OUT:	uio	- updated offset and range.
307 *
308 *	RETURN:	0 if success
309 *		error code if failure
310 *
311 * Timestamps:
312 *	ip - ctime|mtime updated if byte count > 0
313 */
314
315/* ARGSUSED */
316int
317zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
318{
319	int error = 0;
320	ssize_t start_resid = zfs_uio_resid(uio);
321
322	/*
323	 * Fasttrack empty write
324	 */
325	ssize_t n = start_resid;
326	if (n == 0)
327		return (0);
328
329	zfsvfs_t *zfsvfs = ZTOZSB(zp);
330	ZFS_ENTER(zfsvfs);
331	ZFS_VERIFY_ZP(zp);
332
333	sa_bulk_attr_t bulk[4];
334	int count = 0;
335	uint64_t mtime[2], ctime[2];
336	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
337	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
338	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
339	    &zp->z_size, 8);
340	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
341	    &zp->z_pflags, 8);
342
343	/*
344	 * Callers might not be able to detect properly that we are read-only,
345	 * so check it explicitly here.
346	 */
347	if (zfs_is_readonly(zfsvfs)) {
348		ZFS_EXIT(zfsvfs);
349		return (SET_ERROR(EROFS));
350	}
351
352	/*
353	 * If immutable or not appending then return EPERM.
354	 * Intentionally allow ZFS_READONLY through here.
355	 * See zfs_zaccess_common()
356	 */
357	if ((zp->z_pflags & ZFS_IMMUTABLE) ||
358	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
359	    (zfs_uio_offset(uio) < zp->z_size))) {
360		ZFS_EXIT(zfsvfs);
361		return (SET_ERROR(EPERM));
362	}
363
364	/*
365	 * Validate file offset
366	 */
367	offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
368	if (woff < 0) {
369		ZFS_EXIT(zfsvfs);
370		return (SET_ERROR(EINVAL));
371	}
372
373	const uint64_t max_blksz = zfsvfs->z_max_blksz;
374
375	/*
376	 * Pre-fault the pages to ensure slow (eg NFS) pages
377	 * don't hold up txg.
378	 * Skip this if uio contains loaned arc_buf.
379	 */
380	if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
381		ZFS_EXIT(zfsvfs);
382		return (SET_ERROR(EFAULT));
383	}
384
385	/*
386	 * If in append mode, set the io offset pointer to eof.
387	 */
388	zfs_locked_range_t *lr;
389	if (ioflag & O_APPEND) {
390		/*
391		 * Obtain an appending range lock to guarantee file append
392		 * semantics.  We reset the write offset once we have the lock.
393		 */
394		lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
395		woff = lr->lr_offset;
396		if (lr->lr_length == UINT64_MAX) {
397			/*
398			 * We overlocked the file because this write will cause
399			 * the file block size to increase.
400			 * Note that zp_size cannot change with this lock held.
401			 */
402			woff = zp->z_size;
403		}
404		zfs_uio_setoffset(uio, woff);
405	} else {
406		/*
407		 * Note that if the file block size will change as a result of
408		 * this write, then this range lock will lock the entire file
409		 * so that we can re-write the block safely.
410		 */
411		lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
412	}
413
414	if (zn_rlimit_fsize(zp, uio)) {
415		zfs_rangelock_exit(lr);
416		ZFS_EXIT(zfsvfs);
417		return (SET_ERROR(EFBIG));
418	}
419
420	const rlim64_t limit = MAXOFFSET_T;
421
422	if (woff >= limit) {
423		zfs_rangelock_exit(lr);
424		ZFS_EXIT(zfsvfs);
425		return (SET_ERROR(EFBIG));
426	}
427
428	if (n > limit - woff)
429		n = limit - woff;
430
431	uint64_t end_size = MAX(zp->z_size, woff + n);
432	zilog_t *zilog = zfsvfs->z_log;
433
434	const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
435	const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
436	const uint64_t projid = zp->z_projid;
437
438	/*
439	 * Write the file in reasonable size chunks.  Each chunk is written
440	 * in a separate transaction; this keeps the intent log records small
441	 * and allows us to do more fine-grained space accounting.
442	 */
443	while (n > 0) {
444		woff = zfs_uio_offset(uio);
445
446		if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
447		    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
448		    (projid != ZFS_DEFAULT_PROJID &&
449		    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
450		    projid))) {
451			error = SET_ERROR(EDQUOT);
452			break;
453		}
454
455		arc_buf_t *abuf = NULL;
456		if (n >= max_blksz && woff >= zp->z_size &&
457		    P2PHASE(woff, max_blksz) == 0 &&
458		    zp->z_blksz == max_blksz) {
459			/*
460			 * This write covers a full block.  "Borrow" a buffer
461			 * from the dmu so that we can fill it before we enter
462			 * a transaction.  This avoids the possibility of
463			 * holding up the transaction if the data copy hangs
464			 * up on a pagefault (e.g., from an NFS server mapping).
465			 */
466			size_t cbytes;
467
468			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
469			    max_blksz);
470			ASSERT(abuf != NULL);
471			ASSERT(arc_buf_size(abuf) == max_blksz);
472			if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
473			    UIO_WRITE, uio, &cbytes))) {
474				dmu_return_arcbuf(abuf);
475				break;
476			}
477			ASSERT3S(cbytes, ==, max_blksz);
478		}
479
480		/*
481		 * Start a transaction.
482		 */
483		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
484		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
485		dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
486		DB_DNODE_ENTER(db);
487		dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
488		    MIN(n, max_blksz));
489		DB_DNODE_EXIT(db);
490		zfs_sa_upgrade_txholds(tx, zp);
491		error = dmu_tx_assign(tx, TXG_WAIT);
492		if (error) {
493			dmu_tx_abort(tx);
494			if (abuf != NULL)
495				dmu_return_arcbuf(abuf);
496			break;
497		}
498
499		/*
500		 * If rangelock_enter() over-locked we grow the blocksize
501		 * and then reduce the lock range.  This will only happen
502		 * on the first iteration since rangelock_reduce() will
503		 * shrink down lr_length to the appropriate size.
504		 */
505		if (lr->lr_length == UINT64_MAX) {
506			uint64_t new_blksz;
507
508			if (zp->z_blksz > max_blksz) {
509				/*
510				 * File's blocksize is already larger than the
511				 * "recordsize" property.  Only let it grow to
512				 * the next power of 2.
513				 */
514				ASSERT(!ISP2(zp->z_blksz));
515				new_blksz = MIN(end_size,
516				    1 << highbit64(zp->z_blksz));
517			} else {
518				new_blksz = MIN(end_size, max_blksz);
519			}
520			zfs_grow_blocksize(zp, new_blksz, tx);
521			zfs_rangelock_reduce(lr, woff, n);
522		}
523
524		/*
525		 * XXX - should we really limit each write to z_max_blksz?
526		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
527		 */
528		const ssize_t nbytes =
529		    MIN(n, max_blksz - P2PHASE(woff, max_blksz));
530
531		ssize_t tx_bytes;
532		if (abuf == NULL) {
533			tx_bytes = zfs_uio_resid(uio);
534			zfs_uio_fault_disable(uio, B_TRUE);
535			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
536			    uio, nbytes, tx);
537			zfs_uio_fault_disable(uio, B_FALSE);
538#ifdef __linux__
539			if (error == EFAULT) {
540				dmu_tx_commit(tx);
541				/*
542				 * Account for partial writes before
543				 * continuing the loop.
544				 * Update needs to occur before the next
545				 * zfs_uio_prefaultpages, or prefaultpages may
546				 * error, and we may break the loop early.
547				 */
548				if (tx_bytes != zfs_uio_resid(uio))
549					n -= tx_bytes - zfs_uio_resid(uio);
550				if (zfs_uio_prefaultpages(MIN(n, max_blksz),
551				    uio)) {
552					break;
553				}
554				continue;
555			}
556#endif
557			if (error != 0) {
558				dmu_tx_commit(tx);
559				break;
560			}
561			tx_bytes -= zfs_uio_resid(uio);
562		} else {
563			/* Implied by abuf != NULL: */
564			ASSERT3S(n, >=, max_blksz);
565			ASSERT0(P2PHASE(woff, max_blksz));
566			/*
567			 * We can simplify nbytes to MIN(n, max_blksz) since
568			 * P2PHASE(woff, max_blksz) is 0, and knowing
569			 * n >= max_blksz lets us simplify further:
570			 */
571			ASSERT3S(nbytes, ==, max_blksz);
572			/*
573			 * Thus, we're writing a full block at a block-aligned
574			 * offset and extending the file past EOF.
575			 *
576			 * dmu_assign_arcbuf_by_dbuf() will directly assign the
577			 * arc buffer to a dbuf.
578			 */
579			error = dmu_assign_arcbuf_by_dbuf(
580			    sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
581			if (error != 0) {
582				dmu_return_arcbuf(abuf);
583				dmu_tx_commit(tx);
584				break;
585			}
586			ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
587			zfs_uioskip(uio, nbytes);
588			tx_bytes = nbytes;
589		}
590		if (tx_bytes && zn_has_cached_data(zp) &&
591		    !(ioflag & O_DIRECT)) {
592			update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
593		}
594
595		/*
596		 * If we made no progress, we're done.  If we made even
597		 * partial progress, update the znode and ZIL accordingly.
598		 */
599		if (tx_bytes == 0) {
600			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
601			    (void *)&zp->z_size, sizeof (uint64_t), tx);
602			dmu_tx_commit(tx);
603			ASSERT(error != 0);
604			break;
605		}
606
607		/*
608		 * Clear Set-UID/Set-GID bits on successful write if not
609		 * privileged and at least one of the execute bits is set.
610		 *
611		 * It would be nice to do this after all writes have
612		 * been done, but that would still expose the ISUID/ISGID
613		 * to another app after the partial write is committed.
614		 *
615		 * Note: we don't call zfs_fuid_map_id() here because
616		 * user 0 is not an ephemeral uid.
617		 */
618		mutex_enter(&zp->z_acl_lock);
619		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
620		    (S_IXUSR >> 6))) != 0 &&
621		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
622		    secpolicy_vnode_setid_retain(zp, cr,
623		    ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
624			uint64_t newmode;
625			zp->z_mode &= ~(S_ISUID | S_ISGID);
626			newmode = zp->z_mode;
627			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
628			    (void *)&newmode, sizeof (uint64_t), tx);
629		}
630		mutex_exit(&zp->z_acl_lock);
631
632		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
633
634		/*
635		 * Update the file size (zp_size) if it has changed;
636		 * account for possible concurrent updates.
637		 */
638		while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
639			(void) atomic_cas_64(&zp->z_size, end_size,
640			    zfs_uio_offset(uio));
641			ASSERT(error == 0);
642		}
643		/*
644		 * If we are replaying and eof is non zero then force
645		 * the file size to the specified eof. Note, there's no
646		 * concurrency during replay.
647		 */
648		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
649			zp->z_size = zfsvfs->z_replay_eof;
650
651		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
652
653		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
654		    NULL, NULL);
655		dmu_tx_commit(tx);
656
657		if (error != 0)
658			break;
659		ASSERT3S(tx_bytes, ==, nbytes);
660		n -= nbytes;
661
662		if (n > 0) {
663			if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
664				error = SET_ERROR(EFAULT);
665				break;
666			}
667		}
668	}
669
670	zfs_znode_update_vfs(zp);
671	zfs_rangelock_exit(lr);
672
673	/*
674	 * If we're in replay mode, or we made no progress, or the
675	 * uio data is inaccessible return an error.  Otherwise, it's
676	 * at least a partial write, so it's successful.
677	 */
678	if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
679	    error == EFAULT) {
680		ZFS_EXIT(zfsvfs);
681		return (error);
682	}
683
684	if (ioflag & (O_SYNC | O_DSYNC) ||
685	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
686		zil_commit(zilog, zp->z_id);
687
688	const int64_t nwritten = start_resid - zfs_uio_resid(uio);
689	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
690	task_io_account_write(nwritten);
691
692	ZFS_EXIT(zfsvfs);
693	return (0);
694}
695
696/*ARGSUSED*/
697int
698zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
699{
700	zfsvfs_t *zfsvfs = ZTOZSB(zp);
701	int error;
702	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
703
704	ZFS_ENTER(zfsvfs);
705	ZFS_VERIFY_ZP(zp);
706	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
707	ZFS_EXIT(zfsvfs);
708
709	return (error);
710}
711
712/*ARGSUSED*/
713int
714zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
715{
716	zfsvfs_t *zfsvfs = ZTOZSB(zp);
717	int error;
718	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
719	zilog_t	*zilog = zfsvfs->z_log;
720
721	ZFS_ENTER(zfsvfs);
722	ZFS_VERIFY_ZP(zp);
723
724	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
725
726	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
727		zil_commit(zilog, 0);
728
729	ZFS_EXIT(zfsvfs);
730	return (error);
731}
732
733#ifdef ZFS_DEBUG
734static int zil_fault_io = 0;
735#endif
736
737static void zfs_get_done(zgd_t *zgd, int error);
738
739/*
740 * Get data to generate a TX_WRITE intent log record.
741 */
742int
743zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
744    struct lwb *lwb, zio_t *zio)
745{
746	zfsvfs_t *zfsvfs = arg;
747	objset_t *os = zfsvfs->z_os;
748	znode_t *zp;
749	uint64_t object = lr->lr_foid;
750	uint64_t offset = lr->lr_offset;
751	uint64_t size = lr->lr_length;
752	dmu_buf_t *db;
753	zgd_t *zgd;
754	int error = 0;
755	uint64_t zp_gen;
756
757	ASSERT3P(lwb, !=, NULL);
758	ASSERT3P(zio, !=, NULL);
759	ASSERT3U(size, !=, 0);
760
761	/*
762	 * Nothing to do if the file has been removed
763	 */
764	if (zfs_zget(zfsvfs, object, &zp) != 0)
765		return (SET_ERROR(ENOENT));
766	if (zp->z_unlinked) {
767		/*
768		 * Release the vnode asynchronously as we currently have the
769		 * txg stopped from syncing.
770		 */
771		zfs_zrele_async(zp);
772		return (SET_ERROR(ENOENT));
773	}
774	/* check if generation number matches */
775	if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
776	    sizeof (zp_gen)) != 0) {
777		zfs_zrele_async(zp);
778		return (SET_ERROR(EIO));
779	}
780	if (zp_gen != gen) {
781		zfs_zrele_async(zp);
782		return (SET_ERROR(ENOENT));
783	}
784
785	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
786	zgd->zgd_lwb = lwb;
787	zgd->zgd_private = zp;
788
789	/*
790	 * Write records come in two flavors: immediate and indirect.
791	 * For small writes it's cheaper to store the data with the
792	 * log record (immediate); for large writes it's cheaper to
793	 * sync the data and get a pointer to it (indirect) so that
794	 * we don't have to write the data twice.
795	 */
796	if (buf != NULL) { /* immediate write */
797		zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
798		    offset, size, RL_READER);
799		/* test for truncation needs to be done while range locked */
800		if (offset >= zp->z_size) {
801			error = SET_ERROR(ENOENT);
802		} else {
803			error = dmu_read(os, object, offset, size, buf,
804			    DMU_READ_NO_PREFETCH);
805		}
806		ASSERT(error == 0 || error == ENOENT);
807	} else { /* indirect write */
808		/*
809		 * Have to lock the whole block to ensure when it's
810		 * written out and its checksum is being calculated
811		 * that no one can change the data. We need to re-check
812		 * blocksize after we get the lock in case it's changed!
813		 */
814		for (;;) {
815			uint64_t blkoff;
816			size = zp->z_blksz;
817			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
818			offset -= blkoff;
819			zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
820			    offset, size, RL_READER);
821			if (zp->z_blksz == size)
822				break;
823			offset += blkoff;
824			zfs_rangelock_exit(zgd->zgd_lr);
825		}
826		/* test for truncation needs to be done while range locked */
827		if (lr->lr_offset >= zp->z_size)
828			error = SET_ERROR(ENOENT);
829#ifdef ZFS_DEBUG
830		if (zil_fault_io) {
831			error = SET_ERROR(EIO);
832			zil_fault_io = 0;
833		}
834#endif
835		if (error == 0)
836			error = dmu_buf_hold(os, object, offset, zgd, &db,
837			    DMU_READ_NO_PREFETCH);
838
839		if (error == 0) {
840			blkptr_t *bp = &lr->lr_blkptr;
841
842			zgd->zgd_db = db;
843			zgd->zgd_bp = bp;
844
845			ASSERT(db->db_offset == offset);
846			ASSERT(db->db_size == size);
847
848			error = dmu_sync(zio, lr->lr_common.lrc_txg,
849			    zfs_get_done, zgd);
850			ASSERT(error || lr->lr_length <= size);
851
852			/*
853			 * On success, we need to wait for the write I/O
854			 * initiated by dmu_sync() to complete before we can
855			 * release this dbuf.  We will finish everything up
856			 * in the zfs_get_done() callback.
857			 */
858			if (error == 0)
859				return (0);
860
861			if (error == EALREADY) {
862				lr->lr_common.lrc_txtype = TX_WRITE2;
863				/*
864				 * TX_WRITE2 relies on the data previously
865				 * written by the TX_WRITE that caused
866				 * EALREADY.  We zero out the BP because
867				 * it is the old, currently-on-disk BP.
868				 */
869				zgd->zgd_bp = NULL;
870				BP_ZERO(bp);
871				error = 0;
872			}
873		}
874	}
875
876	zfs_get_done(zgd, error);
877
878	return (error);
879}
880
881
882/* ARGSUSED */
883static void
884zfs_get_done(zgd_t *zgd, int error)
885{
886	znode_t *zp = zgd->zgd_private;
887
888	if (zgd->zgd_db)
889		dmu_buf_rele(zgd->zgd_db, zgd);
890
891	zfs_rangelock_exit(zgd->zgd_lr);
892
893	/*
894	 * Release the vnode asynchronously as we currently have the
895	 * txg stopped from syncing.
896	 */
897	zfs_zrele_async(zp);
898
899	kmem_free(zgd, sizeof (zgd_t));
900}
901
902EXPORT_SYMBOL(zfs_access);
903EXPORT_SYMBOL(zfs_fsync);
904EXPORT_SYMBOL(zfs_holey);
905EXPORT_SYMBOL(zfs_read);
906EXPORT_SYMBOL(zfs_write);
907EXPORT_SYMBOL(zfs_getsecattr);
908EXPORT_SYMBOL(zfs_setsecattr);
909
910ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
911	"Bytes to read per chunk");
912