1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25#include <sys/zfs_context.h>
26#include <sys/dmu.h>
27#include <sys/avl.h>
28#include <sys/zap.h>
29#include <sys/nvpair.h>
30#ifdef _KERNEL
31#include <sys/sid.h>
32#include <sys/zfs_vfsops.h>
33#include <sys/zfs_znode.h>
34#endif
35#include <sys/zfs_fuid.h>
36
37/*
38 * FUID Domain table(s).
39 *
40 * The FUID table is stored as a packed nvlist of an array
41 * of nvlists which contain an index, domain string and offset
42 *
43 * During file system initialization the nvlist(s) are read and
44 * two AVL trees are created.  One tree is keyed by the index number
45 * and the other by the domain string.  Nodes are never removed from
46 * trees, but new entries may be added.  If a new entry is added then
47 * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
48 * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
49 *
50 */
51
52#define	FUID_IDX	"fuid_idx"
53#define	FUID_DOMAIN	"fuid_domain"
54#define	FUID_OFFSET	"fuid_offset"
55#define	FUID_NVP_ARRAY	"fuid_nvlist"
56
57typedef struct fuid_domain {
58	avl_node_t	f_domnode;
59	avl_node_t	f_idxnode;
60	ksiddomain_t	*f_ksid;
61	uint64_t	f_idx;
62} fuid_domain_t;
63
64static char *nulldomain = "";
65
66/*
67 * Compare two indexes.
68 */
69static int
70idx_compare(const void *arg1, const void *arg2)
71{
72	const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
73	const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
74
75	return (TREE_CMP(node1->f_idx, node2->f_idx));
76}
77
78/*
79 * Compare two domain strings.
80 */
81static int
82domain_compare(const void *arg1, const void *arg2)
83{
84	const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
85	const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
86	int val;
87
88	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
89
90	return (TREE_ISIGN(val));
91}
92
93void
94zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
95{
96	avl_create(idx_tree, idx_compare,
97	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
98	avl_create(domain_tree, domain_compare,
99	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
100}
101
102/*
103 * load initial fuid domain and idx trees.  This function is used by
104 * both the kernel and zdb.
105 */
106uint64_t
107zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
108    avl_tree_t *domain_tree)
109{
110	dmu_buf_t *db;
111	uint64_t fuid_size;
112
113	ASSERT(fuid_obj != 0);
114	VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
115	    FTAG, &db));
116	fuid_size = *(uint64_t *)db->db_data;
117	dmu_buf_rele(db, FTAG);
118
119	if (fuid_size)  {
120		nvlist_t **fuidnvp;
121		nvlist_t *nvp = NULL;
122		uint_t count;
123		char *packed;
124		int i;
125
126		packed = kmem_alloc(fuid_size, KM_SLEEP);
127		VERIFY(dmu_read(os, fuid_obj, 0,
128		    fuid_size, packed, DMU_READ_PREFETCH) == 0);
129		VERIFY(nvlist_unpack(packed, fuid_size,
130		    &nvp, 0) == 0);
131		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
132		    &fuidnvp, &count) == 0);
133
134		for (i = 0; i != count; i++) {
135			fuid_domain_t *domnode;
136			char *domain;
137			uint64_t idx;
138
139			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
140			    &domain) == 0);
141			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
142			    &idx) == 0);
143
144			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
145
146			domnode->f_idx = idx;
147			domnode->f_ksid = ksid_lookupdomain(domain);
148			avl_add(idx_tree, domnode);
149			avl_add(domain_tree, domnode);
150		}
151		nvlist_free(nvp);
152		kmem_free(packed, fuid_size);
153	}
154	return (fuid_size);
155}
156
157void
158zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
159{
160	fuid_domain_t *domnode;
161	void *cookie;
162
163	cookie = NULL;
164	while ((domnode = avl_destroy_nodes(domain_tree, &cookie)))
165		ksiddomain_rele(domnode->f_ksid);
166
167	avl_destroy(domain_tree);
168	cookie = NULL;
169	while ((domnode = avl_destroy_nodes(idx_tree, &cookie)))
170		kmem_free(domnode, sizeof (fuid_domain_t));
171	avl_destroy(idx_tree);
172}
173
174char *
175zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
176{
177	fuid_domain_t searchnode, *findnode;
178	avl_index_t loc;
179
180	searchnode.f_idx = idx;
181
182	findnode = avl_find(idx_tree, &searchnode, &loc);
183
184	return (findnode ? findnode->f_ksid->kd_name : nulldomain);
185}
186
187#ifdef _KERNEL
188/*
189 * Load the fuid table(s) into memory.
190 */
191static void
192zfs_fuid_init(zfsvfs_t *zfsvfs)
193{
194	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
195
196	if (zfsvfs->z_fuid_loaded) {
197		rw_exit(&zfsvfs->z_fuid_lock);
198		return;
199	}
200
201	zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
202
203	(void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
204	    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
205	if (zfsvfs->z_fuid_obj != 0) {
206		zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
207		    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
208		    &zfsvfs->z_fuid_domain);
209	}
210
211	zfsvfs->z_fuid_loaded = B_TRUE;
212	rw_exit(&zfsvfs->z_fuid_lock);
213}
214
215/*
216 * sync out AVL trees to persistent storage.
217 */
218void
219zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
220{
221	nvlist_t *nvp;
222	nvlist_t **fuids;
223	size_t nvsize = 0;
224	char *packed;
225	dmu_buf_t *db;
226	fuid_domain_t *domnode;
227	int numnodes;
228	int i;
229
230	if (!zfsvfs->z_fuid_dirty) {
231		return;
232	}
233
234	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
235
236	/*
237	 * First see if table needs to be created?
238	 */
239	if (zfsvfs->z_fuid_obj == 0) {
240		zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
241		    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
242		    sizeof (uint64_t), tx);
243		VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
244		    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
245		    &zfsvfs->z_fuid_obj, tx) == 0);
246	}
247
248	VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
249
250	numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
251	fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
252	for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
253	    domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
254		VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
255		VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
256		    domnode->f_idx) == 0);
257		VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
258		VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
259		    domnode->f_ksid->kd_name) == 0);
260	}
261	VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
262	    fuids, numnodes) == 0);
263	for (i = 0; i != numnodes; i++)
264		nvlist_free(fuids[i]);
265	kmem_free(fuids, numnodes * sizeof (void *));
266	VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
267	packed = kmem_alloc(nvsize, KM_SLEEP);
268	VERIFY(nvlist_pack(nvp, &packed, &nvsize,
269	    NV_ENCODE_XDR, KM_SLEEP) == 0);
270	nvlist_free(nvp);
271	zfsvfs->z_fuid_size = nvsize;
272	dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
273	    zfsvfs->z_fuid_size, packed, tx);
274	kmem_free(packed, zfsvfs->z_fuid_size);
275	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
276	    FTAG, &db));
277	dmu_buf_will_dirty(db, tx);
278	*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
279	dmu_buf_rele(db, FTAG);
280
281	zfsvfs->z_fuid_dirty = B_FALSE;
282	rw_exit(&zfsvfs->z_fuid_lock);
283}
284
285/*
286 * Query domain table for a given domain.
287 *
288 * If domain isn't found and addok is set, it is added to AVL trees and
289 * the zfsvfs->z_fuid_dirty flag will be set to TRUE.  It will then be
290 * necessary for the caller or another thread to detect the dirty table
291 * and sync out the changes.
292 */
293int
294zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
295    char **retdomain, boolean_t addok)
296{
297	fuid_domain_t searchnode, *findnode;
298	avl_index_t loc;
299	krw_t rw = RW_READER;
300
301	/*
302	 * If the dummy "nobody" domain then return an index of 0
303	 * to cause the created FUID to be a standard POSIX id
304	 * for the user nobody.
305	 */
306	if (domain[0] == '\0') {
307		if (retdomain)
308			*retdomain = nulldomain;
309		return (0);
310	}
311
312	searchnode.f_ksid = ksid_lookupdomain(domain);
313	if (retdomain)
314		*retdomain = searchnode.f_ksid->kd_name;
315	if (!zfsvfs->z_fuid_loaded)
316		zfs_fuid_init(zfsvfs);
317
318retry:
319	rw_enter(&zfsvfs->z_fuid_lock, rw);
320	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
321
322	if (findnode) {
323		rw_exit(&zfsvfs->z_fuid_lock);
324		ksiddomain_rele(searchnode.f_ksid);
325		return (findnode->f_idx);
326	} else if (addok) {
327		fuid_domain_t *domnode;
328		uint64_t retidx;
329
330		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
331			rw_exit(&zfsvfs->z_fuid_lock);
332			rw = RW_WRITER;
333			goto retry;
334		}
335
336		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
337		domnode->f_ksid = searchnode.f_ksid;
338
339		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
340
341		avl_add(&zfsvfs->z_fuid_domain, domnode);
342		avl_add(&zfsvfs->z_fuid_idx, domnode);
343		zfsvfs->z_fuid_dirty = B_TRUE;
344		rw_exit(&zfsvfs->z_fuid_lock);
345		return (retidx);
346	} else {
347		rw_exit(&zfsvfs->z_fuid_lock);
348		return (-1);
349	}
350}
351
352/*
353 * Query domain table by index, returning domain string
354 *
355 * Returns a pointer from an avl node of the domain string.
356 *
357 */
358const char *
359zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
360{
361	char *domain;
362
363	if (idx == 0 || !zfsvfs->z_use_fuids)
364		return (NULL);
365
366	if (!zfsvfs->z_fuid_loaded)
367		zfs_fuid_init(zfsvfs);
368
369	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
370
371	if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
372		domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
373	else
374		domain = nulldomain;
375	rw_exit(&zfsvfs->z_fuid_lock);
376
377	ASSERT(domain);
378	return (domain);
379}
380
381void
382zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
383{
384	*uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOUID(zp)),
385	    cr, ZFS_OWNER);
386	*gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOGID(zp)),
387	    cr, ZFS_GROUP);
388}
389
390#ifdef __FreeBSD__
391uid_t
392zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
393    cred_t *cr, zfs_fuid_type_t type)
394{
395	uint32_t index = FUID_INDEX(fuid);
396
397	if (index == 0)
398		return (fuid);
399
400	return (UID_NOBODY);
401}
402#elif defined(__linux__)
403uid_t
404zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
405    cred_t *cr, zfs_fuid_type_t type)
406{
407	/*
408	 * The Linux port only supports POSIX IDs, use the passed id.
409	 */
410	return (fuid);
411}
412
413#else
414uid_t
415zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
416    cred_t *cr, zfs_fuid_type_t type)
417{
418	uint32_t index = FUID_INDEX(fuid);
419	const char *domain;
420	uid_t id;
421
422	if (index == 0)
423		return (fuid);
424
425	domain = zfs_fuid_find_by_idx(zfsvfs, index);
426	ASSERT(domain != NULL);
427
428	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
429		(void) kidmap_getuidbysid(crgetzone(cr), domain,
430		    FUID_RID(fuid), &id);
431	} else {
432		(void) kidmap_getgidbysid(crgetzone(cr), domain,
433		    FUID_RID(fuid), &id);
434	}
435	return (id);
436}
437#endif
438
439/*
440 * Add a FUID node to the list of fuid's being created for this
441 * ACL
442 *
443 * If ACL has multiple domains, then keep only one copy of each unique
444 * domain.
445 */
446void
447zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
448    uint64_t idx, uint64_t id, zfs_fuid_type_t type)
449{
450	zfs_fuid_t *fuid;
451	zfs_fuid_domain_t *fuid_domain;
452	zfs_fuid_info_t *fuidp;
453	uint64_t fuididx;
454	boolean_t found = B_FALSE;
455
456	if (*fuidpp == NULL)
457		*fuidpp = zfs_fuid_info_alloc();
458
459	fuidp = *fuidpp;
460	/*
461	 * First find fuid domain index in linked list
462	 *
463	 * If one isn't found then create an entry.
464	 */
465
466	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
467	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
468	    fuid_domain), fuididx++) {
469		if (idx == fuid_domain->z_domidx) {
470			found = B_TRUE;
471			break;
472		}
473	}
474
475	if (!found) {
476		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
477		fuid_domain->z_domain = domain;
478		fuid_domain->z_domidx = idx;
479		list_insert_tail(&fuidp->z_domains, fuid_domain);
480		fuidp->z_domain_str_sz += strlen(domain) + 1;
481		fuidp->z_domain_cnt++;
482	}
483
484	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
485
486		/*
487		 * Now allocate fuid entry and add it on the end of the list
488		 */
489
490		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
491		fuid->z_id = id;
492		fuid->z_domidx = idx;
493		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
494
495		list_insert_tail(&fuidp->z_fuids, fuid);
496		fuidp->z_fuid_cnt++;
497	} else {
498		if (type == ZFS_OWNER)
499			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
500		else
501			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
502	}
503}
504
505#ifdef HAVE_KSID
506/*
507 * Create a file system FUID, based on information in the users cred
508 *
509 * If cred contains KSID_OWNER then it should be used to determine
510 * the uid otherwise cred's uid will be used. By default cred's gid
511 * is used unless it's an ephemeral ID in which case KSID_GROUP will
512 * be used if it exists.
513 */
514uint64_t
515zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
516    cred_t *cr, zfs_fuid_info_t **fuidp)
517{
518	uint64_t	idx;
519	ksid_t		*ksid;
520	uint32_t	rid;
521	char		*kdomain;
522	const char	*domain;
523	uid_t		id;
524
525	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
526
527	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
528
529	if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
530		id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
531
532		if (IS_EPHEMERAL(id))
533			return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
534
535		return ((uint64_t)id);
536	}
537
538	/*
539	 * ksid is present and FUID is supported
540	 */
541	id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
542
543	if (!IS_EPHEMERAL(id))
544		return ((uint64_t)id);
545
546	if (type == ZFS_GROUP)
547		id = ksid_getid(ksid);
548
549	rid = ksid_getrid(ksid);
550	domain = ksid_getdomain(ksid);
551
552	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
553
554	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
555
556	return (FUID_ENCODE(idx, rid));
557}
558#endif /* HAVE_KSID */
559
560/*
561 * Create a file system FUID for an ACL ace
562 * or a chown/chgrp of the file.
563 * This is similar to zfs_fuid_create_cred, except that
564 * we can't find the domain + rid information in the
565 * cred.  Instead we have to query Winchester for the
566 * domain and rid.
567 *
568 * During replay operations the domain+rid information is
569 * found in the zfs_fuid_info_t that the replay code has
570 * attached to the zfsvfs of the file system.
571 */
572uint64_t
573zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
574    zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
575{
576#ifdef HAVE_KSID
577	const char *domain;
578	char *kdomain;
579	uint32_t fuid_idx = FUID_INDEX(id);
580	uint32_t rid = 0;
581	idmap_stat status;
582	uint64_t idx = UID_NOBODY;
583	zfs_fuid_t *zfuid = NULL;
584	zfs_fuid_info_t *fuidp = NULL;
585
586	/*
587	 * If POSIX ID, or entry is already a FUID then
588	 * just return the id
589	 *
590	 * We may also be handed an already FUID'ized id via
591	 * chmod.
592	 */
593
594	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
595		return (id);
596
597	if (zfsvfs->z_replay) {
598		fuidp = zfsvfs->z_fuid_replay;
599
600		/*
601		 * If we are passed an ephemeral id, but no
602		 * fuid_info was logged then return NOBODY.
603		 * This is most likely a result of idmap service
604		 * not being available.
605		 */
606		if (fuidp == NULL)
607			return (UID_NOBODY);
608
609		VERIFY3U(type, >=, ZFS_OWNER);
610		VERIFY3U(type, <=, ZFS_ACE_GROUP);
611
612		switch (type) {
613		case ZFS_ACE_USER:
614		case ZFS_ACE_GROUP:
615			zfuid = list_head(&fuidp->z_fuids);
616			rid = FUID_RID(zfuid->z_logfuid);
617			idx = FUID_INDEX(zfuid->z_logfuid);
618			break;
619		case ZFS_OWNER:
620			rid = FUID_RID(fuidp->z_fuid_owner);
621			idx = FUID_INDEX(fuidp->z_fuid_owner);
622			break;
623		case ZFS_GROUP:
624			rid = FUID_RID(fuidp->z_fuid_group);
625			idx = FUID_INDEX(fuidp->z_fuid_group);
626			break;
627		};
628		domain = fuidp->z_domain_table[idx - 1];
629	} else {
630		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
631			status = kidmap_getsidbyuid(crgetzone(cr), id,
632			    &domain, &rid);
633		else
634			status = kidmap_getsidbygid(crgetzone(cr), id,
635			    &domain, &rid);
636
637		if (status != 0) {
638			/*
639			 * When returning nobody we will need to
640			 * make a dummy fuid table entry for logging
641			 * purposes.
642			 */
643			rid = UID_NOBODY;
644			domain = nulldomain;
645		}
646	}
647
648	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
649
650	if (!zfsvfs->z_replay)
651		zfs_fuid_node_add(fuidpp, kdomain,
652		    rid, idx, id, type);
653	else if (zfuid != NULL) {
654		list_remove(&fuidp->z_fuids, zfuid);
655		kmem_free(zfuid, sizeof (zfs_fuid_t));
656	}
657	return (FUID_ENCODE(idx, rid));
658#else
659	/*
660	 * The Linux port only supports POSIX IDs, use the passed id.
661	 */
662	return (id);
663#endif
664}
665
666void
667zfs_fuid_destroy(zfsvfs_t *zfsvfs)
668{
669	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
670	if (!zfsvfs->z_fuid_loaded) {
671		rw_exit(&zfsvfs->z_fuid_lock);
672		return;
673	}
674	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
675	rw_exit(&zfsvfs->z_fuid_lock);
676}
677
678/*
679 * Allocate zfs_fuid_info for tracking FUIDs created during
680 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
681 */
682zfs_fuid_info_t *
683zfs_fuid_info_alloc(void)
684{
685	zfs_fuid_info_t *fuidp;
686
687	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
688	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
689	    offsetof(zfs_fuid_domain_t, z_next));
690	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
691	    offsetof(zfs_fuid_t, z_next));
692	return (fuidp);
693}
694
695/*
696 * Release all memory associated with zfs_fuid_info_t
697 */
698void
699zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
700{
701	zfs_fuid_t *zfuid;
702	zfs_fuid_domain_t *zdomain;
703
704	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
705		list_remove(&fuidp->z_fuids, zfuid);
706		kmem_free(zfuid, sizeof (zfs_fuid_t));
707	}
708
709	if (fuidp->z_domain_table != NULL)
710		kmem_free(fuidp->z_domain_table,
711		    (sizeof (char *)) * fuidp->z_domain_cnt);
712
713	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
714		list_remove(&fuidp->z_domains, zdomain);
715		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
716	}
717
718	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
719}
720
721/*
722 * Check to see if id is a groupmember.  If cred
723 * has ksid info then sidlist is checked first
724 * and if still not found then POSIX groups are checked
725 *
726 * Will use a straight FUID compare when possible.
727 */
728boolean_t
729zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
730{
731	uid_t		gid;
732
733#ifdef illumos
734	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
735	ksidlist_t	*ksidlist = crgetsidlist(cr);
736
737	if (ksid && ksidlist) {
738		int		i;
739		ksid_t		*ksid_groups;
740		uint32_t	idx = FUID_INDEX(id);
741		uint32_t	rid = FUID_RID(id);
742
743		ksid_groups = ksidlist->ksl_sids;
744
745		for (i = 0; i != ksidlist->ksl_nsid; i++) {
746			if (idx == 0) {
747				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
748				    id == ksid_groups[i].ks_id) {
749					return (B_TRUE);
750				}
751			} else {
752				const char *domain;
753
754				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
755				ASSERT(domain != NULL);
756
757				if (strcmp(domain,
758				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
759					return (B_FALSE);
760
761				if ((strcmp(domain,
762				    ksid_groups[i].ks_domain->kd_name) == 0) &&
763				    rid == ksid_groups[i].ks_rid)
764					return (B_TRUE);
765			}
766		}
767	}
768#endif /* illumos */
769
770	/*
771	 * Not found in ksidlist, check posix groups
772	 */
773	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
774	return (groupmember(gid, cr));
775}
776
777void
778zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
779{
780	if (zfsvfs->z_fuid_obj == 0) {
781		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
782		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
783		    FUID_SIZE_ESTIMATE(zfsvfs));
784		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
785	} else {
786		dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
787		dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
788		    FUID_SIZE_ESTIMATE(zfsvfs));
789	}
790}
791
792/*
793 * buf must be big enough (eg, 32 bytes)
794 */
795int
796zfs_id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
797    char *buf, size_t len, boolean_t addok)
798{
799	uint64_t fuid;
800	int domainid = 0;
801
802	if (domain && domain[0]) {
803		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
804		if (domainid == -1)
805			return (SET_ERROR(ENOENT));
806	}
807	fuid = FUID_ENCODE(domainid, rid);
808	(void) snprintf(buf, len, "%llx", (longlong_t)fuid);
809	return (0);
810}
811#endif
812