1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 */
27
28/*
29 * Virtual Device Labels
30 * ---------------------
31 *
32 * The vdev label serves several distinct purposes:
33 *
34 *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35 *	   identity within the pool.
36 *
37 *	2. Verify that all the devices given in a configuration are present
38 *         within the pool.
39 *
40 *	3. Determine the uberblock for the pool.
41 *
42 *	4. In case of an import operation, determine the configuration of the
43 *         toplevel vdev of which it is a part.
44 *
45 *	5. If an import operation cannot find all the devices in the pool,
46 *         provide enough information to the administrator to determine which
47 *         devices are missing.
48 *
49 * It is important to note that while the kernel is responsible for writing the
50 * label, it only consumes the information in the first three cases.  The
51 * latter information is only consumed in userland when determining the
52 * configuration to import a pool.
53 *
54 *
55 * Label Organization
56 * ------------------
57 *
58 * Before describing the contents of the label, it's important to understand how
59 * the labels are written and updated with respect to the uberblock.
60 *
61 * When the pool configuration is altered, either because it was newly created
62 * or a device was added, we want to update all the labels such that we can deal
63 * with fatal failure at any point.  To this end, each disk has two labels which
64 * are updated before and after the uberblock is synced.  Assuming we have
65 * labels and an uberblock with the following transaction groups:
66 *
67 *              L1          UB          L2
68 *           +------+    +------+    +------+
69 *           |      |    |      |    |      |
70 *           | t10  |    | t10  |    | t10  |
71 *           |      |    |      |    |      |
72 *           +------+    +------+    +------+
73 *
74 * In this stable state, the labels and the uberblock were all updated within
75 * the same transaction group (10).  Each label is mirrored and checksummed, so
76 * that we can detect when we fail partway through writing the label.
77 *
78 * In order to identify which labels are valid, the labels are written in the
79 * following manner:
80 *
81 *	1. For each vdev, update 'L1' to the new label
82 *	2. Update the uberblock
83 *	3. For each vdev, update 'L2' to the new label
84 *
85 * Given arbitrary failure, we can determine the correct label to use based on
86 * the transaction group.  If we fail after updating L1 but before updating the
87 * UB, we will notice that L1's transaction group is greater than the uberblock,
88 * so L2 must be valid.  If we fail after writing the uberblock but before
89 * writing L2, we will notice that L2's transaction group is less than L1, and
90 * therefore L1 is valid.
91 *
92 * Another added complexity is that not every label is updated when the config
93 * is synced.  If we add a single device, we do not want to have to re-write
94 * every label for every device in the pool.  This means that both L1 and L2 may
95 * be older than the pool uberblock, because the necessary information is stored
96 * on another vdev.
97 *
98 *
99 * On-disk Format
100 * --------------
101 *
102 * The vdev label consists of two distinct parts, and is wrapped within the
103 * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104 * VTOC disk labels, but is otherwise ignored.
105 *
106 * The first half of the label is a packed nvlist which contains pool wide
107 * properties, per-vdev properties, and configuration information.  It is
108 * described in more detail below.
109 *
110 * The latter half of the label consists of a redundant array of uberblocks.
111 * These uberblocks are updated whenever a transaction group is committed,
112 * or when the configuration is updated.  When a pool is loaded, we scan each
113 * vdev for the 'best' uberblock.
114 *
115 *
116 * Configuration Information
117 * -------------------------
118 *
119 * The nvlist describing the pool and vdev contains the following elements:
120 *
121 *	version		ZFS on-disk version
122 *	name		Pool name
123 *	state		Pool state
124 *	txg		Transaction group in which this label was written
125 *	pool_guid	Unique identifier for this pool
126 *	vdev_tree	An nvlist describing vdev tree.
127 *	features_for_read
128 *			An nvlist of the features necessary for reading the MOS.
129 *
130 * Each leaf device label also contains the following:
131 *
132 *	top_guid	Unique ID for top-level vdev in which this is contained
133 *	guid		Unique ID for the leaf vdev
134 *
135 * The 'vs' configuration follows the format described in 'spa_config.c'.
136 */
137
138#include <sys/zfs_context.h>
139#include <sys/spa.h>
140#include <sys/spa_impl.h>
141#include <sys/dmu.h>
142#include <sys/zap.h>
143#include <sys/vdev.h>
144#include <sys/vdev_impl.h>
145#include <sys/vdev_draid.h>
146#include <sys/uberblock_impl.h>
147#include <sys/metaslab.h>
148#include <sys/metaslab_impl.h>
149#include <sys/zio.h>
150#include <sys/dsl_scan.h>
151#include <sys/abd.h>
152#include <sys/fs/zfs.h>
153#include <sys/byteorder.h>
154#include <sys/zfs_bootenv.h>
155
156/*
157 * Basic routines to read and write from a vdev label.
158 * Used throughout the rest of this file.
159 */
160uint64_t
161vdev_label_offset(uint64_t psize, int l, uint64_t offset)
162{
163	ASSERT(offset < sizeof (vdev_label_t));
164	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
165
166	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
167	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
168}
169
170/*
171 * Returns back the vdev label associated with the passed in offset.
172 */
173int
174vdev_label_number(uint64_t psize, uint64_t offset)
175{
176	int l;
177
178	if (offset >= psize - VDEV_LABEL_END_SIZE) {
179		offset -= psize - VDEV_LABEL_END_SIZE;
180		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
181	}
182	l = offset / sizeof (vdev_label_t);
183	return (l < VDEV_LABELS ? l : -1);
184}
185
186static void
187vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
188    uint64_t size, zio_done_func_t *done, void *private, int flags)
189{
190	ASSERT(
191	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
192	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
193	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
194
195	zio_nowait(zio_read_phys(zio, vd,
196	    vdev_label_offset(vd->vdev_psize, l, offset),
197	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
198	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
199}
200
201void
202vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
203    uint64_t size, zio_done_func_t *done, void *private, int flags)
204{
205	ASSERT(
206	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
207	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
208	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
209
210	zio_nowait(zio_write_phys(zio, vd,
211	    vdev_label_offset(vd->vdev_psize, l, offset),
212	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
213	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
214}
215
216/*
217 * Generate the nvlist representing this vdev's stats
218 */
219void
220vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
221{
222	nvlist_t *nvx;
223	vdev_stat_t *vs;
224	vdev_stat_ex_t *vsx;
225
226	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
227	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
228
229	vdev_get_stats_ex(vd, vs, vsx);
230	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
231	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
232
233	/*
234	 * Add extended stats into a special extended stats nvlist.  This keeps
235	 * all the extended stats nicely grouped together.  The extended stats
236	 * nvlist is then added to the main nvlist.
237	 */
238	nvx = fnvlist_alloc();
239
240	/* ZIOs in flight to disk */
241	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
242	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
243
244	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
245	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
246
247	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
248	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
249
250	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
251	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
252
253	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
254	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
255
256	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
257	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
258
259	/* ZIOs pending */
260	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
261	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
262
263	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
264	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
265
266	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
267	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
268
269	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
270	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
271
272	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
273	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
274
275	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
276	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
277
278	/* Histograms */
279	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
280	    vsx->vsx_total_histo[ZIO_TYPE_READ],
281	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
282
283	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
284	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
285	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
286
287	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
288	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
289	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
290
291	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
292	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
293	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
294
295	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
296	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
297	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
298
299	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
300	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
301	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
302
303	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
304	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
305	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
306
307	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
308	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
309	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
310
311	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
312	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
313	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
314
315	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
316	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
317	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
318
319	/* Request sizes */
320	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
321	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
322	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
323
324	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
325	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
326	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
327
328	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
329	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
330	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
331
332	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
333	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
334	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
335
336	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
337	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
338	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
339
340	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
341	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
342	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
343
344	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
345	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
346	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
347
348	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
349	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
350	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
351
352	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
353	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
354	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
355
356	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
357	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
358	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
359
360	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
361	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
362	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
363
364	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
365	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
366	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
367
368	/* IO delays */
369	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
370
371	/* Add extended stats nvlist to main nvlist */
372	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
373
374	fnvlist_free(nvx);
375	kmem_free(vs, sizeof (*vs));
376	kmem_free(vsx, sizeof (*vsx));
377}
378
379static void
380root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
381{
382	spa_t *spa = vd->vdev_spa;
383
384	if (vd != spa->spa_root_vdev)
385		return;
386
387	/* provide either current or previous scan information */
388	pool_scan_stat_t ps;
389	if (spa_scan_get_stats(spa, &ps) == 0) {
390		fnvlist_add_uint64_array(nvl,
391		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
392		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
393	}
394
395	pool_removal_stat_t prs;
396	if (spa_removal_get_stats(spa, &prs) == 0) {
397		fnvlist_add_uint64_array(nvl,
398		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
399		    sizeof (prs) / sizeof (uint64_t));
400	}
401
402	pool_checkpoint_stat_t pcs;
403	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
404		fnvlist_add_uint64_array(nvl,
405		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
406		    sizeof (pcs) / sizeof (uint64_t));
407	}
408}
409
410static void
411top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
412{
413	if (vd == vd->vdev_top) {
414		vdev_rebuild_stat_t vrs;
415		if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
416			fnvlist_add_uint64_array(nvl,
417			    ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
418			    sizeof (vrs) / sizeof (uint64_t));
419		}
420	}
421}
422
423/*
424 * Generate the nvlist representing this vdev's config.
425 */
426nvlist_t *
427vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
428    vdev_config_flag_t flags)
429{
430	nvlist_t *nv = NULL;
431	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
432
433	nv = fnvlist_alloc();
434
435	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
436	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
437		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
438	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
439
440	if (vd->vdev_path != NULL)
441		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
442
443	if (vd->vdev_devid != NULL)
444		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
445
446	if (vd->vdev_physpath != NULL)
447		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
448		    vd->vdev_physpath);
449
450	if (vd->vdev_enc_sysfs_path != NULL)
451		fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
452		    vd->vdev_enc_sysfs_path);
453
454	if (vd->vdev_fru != NULL)
455		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
456
457	if (vd->vdev_ops->vdev_op_config_generate != NULL)
458		vd->vdev_ops->vdev_op_config_generate(vd, nv);
459
460	if (vd->vdev_wholedisk != -1ULL) {
461		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
462		    vd->vdev_wholedisk);
463	}
464
465	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
466		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
467
468	if (vd->vdev_isspare)
469		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
470
471	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
472	    vd == vd->vdev_top) {
473		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
474		    vd->vdev_ms_array);
475		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
476		    vd->vdev_ms_shift);
477		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
478		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
479		    vd->vdev_asize);
480		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
481		if (vd->vdev_removing) {
482			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
483			    vd->vdev_removing);
484		}
485
486		/* zpool command expects alloc class data */
487		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
488			const char *bias = NULL;
489
490			switch (vd->vdev_alloc_bias) {
491			case VDEV_BIAS_LOG:
492				bias = VDEV_ALLOC_BIAS_LOG;
493				break;
494			case VDEV_BIAS_SPECIAL:
495				bias = VDEV_ALLOC_BIAS_SPECIAL;
496				break;
497			case VDEV_BIAS_DEDUP:
498				bias = VDEV_ALLOC_BIAS_DEDUP;
499				break;
500			default:
501				ASSERT3U(vd->vdev_alloc_bias, ==,
502				    VDEV_BIAS_NONE);
503			}
504			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
505			    bias);
506		}
507	}
508
509	if (vd->vdev_dtl_sm != NULL) {
510		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
511		    space_map_object(vd->vdev_dtl_sm));
512	}
513
514	if (vic->vic_mapping_object != 0) {
515		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
516		    vic->vic_mapping_object);
517	}
518
519	if (vic->vic_births_object != 0) {
520		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
521		    vic->vic_births_object);
522	}
523
524	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
525		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
526		    vic->vic_prev_indirect_vdev);
527	}
528
529	if (vd->vdev_crtxg)
530		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
531
532	if (vd->vdev_expansion_time)
533		fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
534		    vd->vdev_expansion_time);
535
536	if (flags & VDEV_CONFIG_MOS) {
537		if (vd->vdev_leaf_zap != 0) {
538			ASSERT(vd->vdev_ops->vdev_op_leaf);
539			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
540			    vd->vdev_leaf_zap);
541		}
542
543		if (vd->vdev_top_zap != 0) {
544			ASSERT(vd == vd->vdev_top);
545			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
546			    vd->vdev_top_zap);
547		}
548
549		if (vd->vdev_resilver_deferred) {
550			ASSERT(vd->vdev_ops->vdev_op_leaf);
551			ASSERT(spa->spa_resilver_deferred);
552			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
553		}
554	}
555
556	if (getstats) {
557		vdev_config_generate_stats(vd, nv);
558
559		root_vdev_actions_getprogress(vd, nv);
560		top_vdev_actions_getprogress(vd, nv);
561
562		/*
563		 * Note: this can be called from open context
564		 * (spa_get_stats()), so we need the rwlock to prevent
565		 * the mapping from being changed by condensing.
566		 */
567		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
568		if (vd->vdev_indirect_mapping != NULL) {
569			ASSERT(vd->vdev_indirect_births != NULL);
570			vdev_indirect_mapping_t *vim =
571			    vd->vdev_indirect_mapping;
572			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
573			    vdev_indirect_mapping_size(vim));
574		}
575		rw_exit(&vd->vdev_indirect_rwlock);
576		if (vd->vdev_mg != NULL &&
577		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
578			/*
579			 * Compute approximately how much memory would be used
580			 * for the indirect mapping if this device were to
581			 * be removed.
582			 *
583			 * Note: If the frag metric is invalid, then not
584			 * enough metaslabs have been converted to have
585			 * histograms.
586			 */
587			uint64_t seg_count = 0;
588			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
589
590			/*
591			 * There are the same number of allocated segments
592			 * as free segments, so we will have at least one
593			 * entry per free segment.  However, small free
594			 * segments (smaller than vdev_removal_max_span)
595			 * will be combined with adjacent allocated segments
596			 * as a single mapping.
597			 */
598			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
599				if (i + 1 < highbit64(vdev_removal_max_span)
600				    - 1) {
601					to_alloc +=
602					    vd->vdev_mg->mg_histogram[i] <<
603					    (i + 1);
604				} else {
605					seg_count +=
606					    vd->vdev_mg->mg_histogram[i];
607				}
608			}
609
610			/*
611			 * The maximum length of a mapping is
612			 * zfs_remove_max_segment, so we need at least one entry
613			 * per zfs_remove_max_segment of allocated data.
614			 */
615			seg_count += to_alloc / spa_remove_max_segment(spa);
616
617			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
618			    seg_count *
619			    sizeof (vdev_indirect_mapping_entry_phys_t));
620		}
621	}
622
623	if (!vd->vdev_ops->vdev_op_leaf) {
624		nvlist_t **child;
625		int c, idx;
626
627		ASSERT(!vd->vdev_ishole);
628
629		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
630		    KM_SLEEP);
631
632		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
633			vdev_t *cvd = vd->vdev_child[c];
634
635			/*
636			 * If we're generating an nvlist of removing
637			 * vdevs then skip over any device which is
638			 * not being removed.
639			 */
640			if ((flags & VDEV_CONFIG_REMOVING) &&
641			    !cvd->vdev_removing)
642				continue;
643
644			child[idx++] = vdev_config_generate(spa, cvd,
645			    getstats, flags);
646		}
647
648		if (idx) {
649			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
650			    child, idx);
651		}
652
653		for (c = 0; c < idx; c++)
654			nvlist_free(child[c]);
655
656		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
657
658	} else {
659		const char *aux = NULL;
660
661		if (vd->vdev_offline && !vd->vdev_tmpoffline)
662			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
663		if (vd->vdev_resilver_txg != 0)
664			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
665			    vd->vdev_resilver_txg);
666		if (vd->vdev_rebuild_txg != 0)
667			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
668			    vd->vdev_rebuild_txg);
669		if (vd->vdev_faulted)
670			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
671		if (vd->vdev_degraded)
672			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
673		if (vd->vdev_removed)
674			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
675		if (vd->vdev_unspare)
676			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
677		if (vd->vdev_ishole)
678			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
679
680		/* Set the reason why we're FAULTED/DEGRADED. */
681		switch (vd->vdev_stat.vs_aux) {
682		case VDEV_AUX_ERR_EXCEEDED:
683			aux = "err_exceeded";
684			break;
685
686		case VDEV_AUX_EXTERNAL:
687			aux = "external";
688			break;
689		}
690
691		if (aux != NULL && !vd->vdev_tmpoffline) {
692			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
693		} else {
694			/*
695			 * We're healthy - clear any previous AUX_STATE values.
696			 */
697			if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
698				nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
699		}
700
701		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
702			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
703			    vd->vdev_orig_guid);
704		}
705	}
706
707	return (nv);
708}
709
710/*
711 * Generate a view of the top-level vdevs.  If we currently have holes
712 * in the namespace, then generate an array which contains a list of holey
713 * vdevs.  Additionally, add the number of top-level children that currently
714 * exist.
715 */
716void
717vdev_top_config_generate(spa_t *spa, nvlist_t *config)
718{
719	vdev_t *rvd = spa->spa_root_vdev;
720	uint64_t *array;
721	uint_t c, idx;
722
723	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
724
725	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
726		vdev_t *tvd = rvd->vdev_child[c];
727
728		if (tvd->vdev_ishole) {
729			array[idx++] = c;
730		}
731	}
732
733	if (idx) {
734		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
735		    array, idx) == 0);
736	}
737
738	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
739	    rvd->vdev_children) == 0);
740
741	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
742}
743
744/*
745 * Returns the configuration from the label of the given vdev. For vdevs
746 * which don't have a txg value stored on their label (i.e. spares/cache)
747 * or have not been completely initialized (txg = 0) just return
748 * the configuration from the first valid label we find. Otherwise,
749 * find the most up-to-date label that does not exceed the specified
750 * 'txg' value.
751 */
752nvlist_t *
753vdev_label_read_config(vdev_t *vd, uint64_t txg)
754{
755	spa_t *spa = vd->vdev_spa;
756	nvlist_t *config = NULL;
757	vdev_phys_t *vp[VDEV_LABELS];
758	abd_t *vp_abd[VDEV_LABELS];
759	zio_t *zio[VDEV_LABELS];
760	uint64_t best_txg = 0;
761	uint64_t label_txg = 0;
762	int error = 0;
763	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
764	    ZIO_FLAG_SPECULATIVE;
765
766	ASSERT(vd->vdev_validate_thread == curthread ||
767	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
768
769	if (!vdev_readable(vd))
770		return (NULL);
771
772	/*
773	 * The label for a dRAID distributed spare is not stored on disk.
774	 * Instead it is generated when needed which allows us to bypass
775	 * the pipeline when reading the config from the label.
776	 */
777	if (vd->vdev_ops == &vdev_draid_spare_ops)
778		return (vdev_draid_read_config_spare(vd));
779
780	for (int l = 0; l < VDEV_LABELS; l++) {
781		vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
782		vp[l] = abd_to_buf(vp_abd[l]);
783	}
784
785retry:
786	for (int l = 0; l < VDEV_LABELS; l++) {
787		zio[l] = zio_root(spa, NULL, NULL, flags);
788
789		vdev_label_read(zio[l], vd, l, vp_abd[l],
790		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
791		    NULL, NULL, flags);
792	}
793	for (int l = 0; l < VDEV_LABELS; l++) {
794		nvlist_t *label = NULL;
795
796		if (zio_wait(zio[l]) == 0 &&
797		    nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist),
798		    &label, 0) == 0) {
799			/*
800			 * Auxiliary vdevs won't have txg values in their
801			 * labels and newly added vdevs may not have been
802			 * completely initialized so just return the
803			 * configuration from the first valid label we
804			 * encounter.
805			 */
806			error = nvlist_lookup_uint64(label,
807			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
808			if ((error || label_txg == 0) && !config) {
809				config = label;
810				for (l++; l < VDEV_LABELS; l++)
811					zio_wait(zio[l]);
812				break;
813			} else if (label_txg <= txg && label_txg > best_txg) {
814				best_txg = label_txg;
815				nvlist_free(config);
816				config = fnvlist_dup(label);
817			}
818		}
819
820		if (label != NULL) {
821			nvlist_free(label);
822			label = NULL;
823		}
824	}
825
826	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
827		flags |= ZIO_FLAG_TRYHARD;
828		goto retry;
829	}
830
831	/*
832	 * We found a valid label but it didn't pass txg restrictions.
833	 */
834	if (config == NULL && label_txg != 0) {
835		vdev_dbgmsg(vd, "label discarded as txg is too large "
836		    "(%llu > %llu)", (u_longlong_t)label_txg,
837		    (u_longlong_t)txg);
838	}
839
840	for (int l = 0; l < VDEV_LABELS; l++) {
841		abd_free(vp_abd[l]);
842	}
843
844	return (config);
845}
846
847/*
848 * Determine if a device is in use.  The 'spare_guid' parameter will be filled
849 * in with the device guid if this spare is active elsewhere on the system.
850 */
851static boolean_t
852vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
853    uint64_t *spare_guid, uint64_t *l2cache_guid)
854{
855	spa_t *spa = vd->vdev_spa;
856	uint64_t state, pool_guid, device_guid, txg, spare_pool;
857	uint64_t vdtxg = 0;
858	nvlist_t *label;
859
860	if (spare_guid)
861		*spare_guid = 0ULL;
862	if (l2cache_guid)
863		*l2cache_guid = 0ULL;
864
865	/*
866	 * Read the label, if any, and perform some basic sanity checks.
867	 */
868	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
869		return (B_FALSE);
870
871	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
872	    &vdtxg);
873
874	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
875	    &state) != 0 ||
876	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
877	    &device_guid) != 0) {
878		nvlist_free(label);
879		return (B_FALSE);
880	}
881
882	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
883	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
884	    &pool_guid) != 0 ||
885	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
886	    &txg) != 0)) {
887		nvlist_free(label);
888		return (B_FALSE);
889	}
890
891	nvlist_free(label);
892
893	/*
894	 * Check to see if this device indeed belongs to the pool it claims to
895	 * be a part of.  The only way this is allowed is if the device is a hot
896	 * spare (which we check for later on).
897	 */
898	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
899	    !spa_guid_exists(pool_guid, device_guid) &&
900	    !spa_spare_exists(device_guid, NULL, NULL) &&
901	    !spa_l2cache_exists(device_guid, NULL))
902		return (B_FALSE);
903
904	/*
905	 * If the transaction group is zero, then this an initialized (but
906	 * unused) label.  This is only an error if the create transaction
907	 * on-disk is the same as the one we're using now, in which case the
908	 * user has attempted to add the same vdev multiple times in the same
909	 * transaction.
910	 */
911	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
912	    txg == 0 && vdtxg == crtxg)
913		return (B_TRUE);
914
915	/*
916	 * Check to see if this is a spare device.  We do an explicit check for
917	 * spa_has_spare() here because it may be on our pending list of spares
918	 * to add.  We also check if it is an l2cache device.
919	 */
920	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
921	    spa_has_spare(spa, device_guid)) {
922		if (spare_guid)
923			*spare_guid = device_guid;
924
925		switch (reason) {
926		case VDEV_LABEL_CREATE:
927		case VDEV_LABEL_L2CACHE:
928			return (B_TRUE);
929
930		case VDEV_LABEL_REPLACE:
931			return (!spa_has_spare(spa, device_guid) ||
932			    spare_pool != 0ULL);
933
934		case VDEV_LABEL_SPARE:
935			return (spa_has_spare(spa, device_guid));
936		default:
937			break;
938		}
939	}
940
941	/*
942	 * Check to see if this is an l2cache device.
943	 */
944	if (spa_l2cache_exists(device_guid, NULL))
945		return (B_TRUE);
946
947	/*
948	 * We can't rely on a pool's state if it's been imported
949	 * read-only.  Instead we look to see if the pools is marked
950	 * read-only in the namespace and set the state to active.
951	 */
952	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
953	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
954	    spa_mode(spa) == SPA_MODE_READ)
955		state = POOL_STATE_ACTIVE;
956
957	/*
958	 * If the device is marked ACTIVE, then this device is in use by another
959	 * pool on the system.
960	 */
961	return (state == POOL_STATE_ACTIVE);
962}
963
964/*
965 * Initialize a vdev label.  We check to make sure each leaf device is not in
966 * use, and writable.  We put down an initial label which we will later
967 * overwrite with a complete label.  Note that it's important to do this
968 * sequentially, not in parallel, so that we catch cases of multiple use of the
969 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
970 * itself.
971 */
972int
973vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
974{
975	spa_t *spa = vd->vdev_spa;
976	nvlist_t *label;
977	vdev_phys_t *vp;
978	abd_t *vp_abd;
979	abd_t *bootenv;
980	uberblock_t *ub;
981	abd_t *ub_abd;
982	zio_t *zio;
983	char *buf;
984	size_t buflen;
985	int error;
986	uint64_t spare_guid = 0, l2cache_guid = 0;
987	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
988
989	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
990
991	for (int c = 0; c < vd->vdev_children; c++)
992		if ((error = vdev_label_init(vd->vdev_child[c],
993		    crtxg, reason)) != 0)
994			return (error);
995
996	/* Track the creation time for this vdev */
997	vd->vdev_crtxg = crtxg;
998
999	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
1000		return (0);
1001
1002	/*
1003	 * Dead vdevs cannot be initialized.
1004	 */
1005	if (vdev_is_dead(vd))
1006		return (SET_ERROR(EIO));
1007
1008	/*
1009	 * Determine if the vdev is in use.
1010	 */
1011	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
1012	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
1013		return (SET_ERROR(EBUSY));
1014
1015	/*
1016	 * If this is a request to add or replace a spare or l2cache device
1017	 * that is in use elsewhere on the system, then we must update the
1018	 * guid (which was initialized to a random value) to reflect the
1019	 * actual GUID (which is shared between multiple pools).
1020	 */
1021	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1022	    spare_guid != 0ULL) {
1023		uint64_t guid_delta = spare_guid - vd->vdev_guid;
1024
1025		vd->vdev_guid += guid_delta;
1026
1027		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1028			pvd->vdev_guid_sum += guid_delta;
1029
1030		/*
1031		 * If this is a replacement, then we want to fallthrough to the
1032		 * rest of the code.  If we're adding a spare, then it's already
1033		 * labeled appropriately and we can just return.
1034		 */
1035		if (reason == VDEV_LABEL_SPARE)
1036			return (0);
1037		ASSERT(reason == VDEV_LABEL_REPLACE ||
1038		    reason == VDEV_LABEL_SPLIT);
1039	}
1040
1041	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1042	    l2cache_guid != 0ULL) {
1043		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1044
1045		vd->vdev_guid += guid_delta;
1046
1047		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1048			pvd->vdev_guid_sum += guid_delta;
1049
1050		/*
1051		 * If this is a replacement, then we want to fallthrough to the
1052		 * rest of the code.  If we're adding an l2cache, then it's
1053		 * already labeled appropriately and we can just return.
1054		 */
1055		if (reason == VDEV_LABEL_L2CACHE)
1056			return (0);
1057		ASSERT(reason == VDEV_LABEL_REPLACE);
1058	}
1059
1060	/*
1061	 * Initialize its label.
1062	 */
1063	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1064	abd_zero(vp_abd, sizeof (vdev_phys_t));
1065	vp = abd_to_buf(vp_abd);
1066
1067	/*
1068	 * Generate a label describing the pool and our top-level vdev.
1069	 * We mark it as being from txg 0 to indicate that it's not
1070	 * really part of an active pool just yet.  The labels will
1071	 * be written again with a meaningful txg by spa_sync().
1072	 */
1073	if (reason == VDEV_LABEL_SPARE ||
1074	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1075		/*
1076		 * For inactive hot spares, we generate a special label that
1077		 * identifies as a mutually shared hot spare.  We write the
1078		 * label if we are adding a hot spare, or if we are removing an
1079		 * active hot spare (in which case we want to revert the
1080		 * labels).
1081		 */
1082		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1083
1084		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1085		    spa_version(spa)) == 0);
1086		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1087		    POOL_STATE_SPARE) == 0);
1088		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1089		    vd->vdev_guid) == 0);
1090	} else if (reason == VDEV_LABEL_L2CACHE ||
1091	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1092		/*
1093		 * For level 2 ARC devices, add a special label.
1094		 */
1095		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1096
1097		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1098		    spa_version(spa)) == 0);
1099		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1100		    POOL_STATE_L2CACHE) == 0);
1101		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1102		    vd->vdev_guid) == 0);
1103	} else {
1104		uint64_t txg = 0ULL;
1105
1106		if (reason == VDEV_LABEL_SPLIT)
1107			txg = spa->spa_uberblock.ub_txg;
1108		label = spa_config_generate(spa, vd, txg, B_FALSE);
1109
1110		/*
1111		 * Add our creation time.  This allows us to detect multiple
1112		 * vdev uses as described above, and automatically expires if we
1113		 * fail.
1114		 */
1115		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1116		    crtxg) == 0);
1117	}
1118
1119	buf = vp->vp_nvlist;
1120	buflen = sizeof (vp->vp_nvlist);
1121
1122	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1123	if (error != 0) {
1124		nvlist_free(label);
1125		abd_free(vp_abd);
1126		/* EFAULT means nvlist_pack ran out of room */
1127		return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1128	}
1129
1130	/*
1131	 * Initialize uberblock template.
1132	 */
1133	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1134	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1135	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1136	ub = abd_to_buf(ub_abd);
1137	ub->ub_txg = 0;
1138
1139	/* Initialize the 2nd padding area. */
1140	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1141	abd_zero(bootenv, VDEV_PAD_SIZE);
1142
1143	/*
1144	 * Write everything in parallel.
1145	 */
1146retry:
1147	zio = zio_root(spa, NULL, NULL, flags);
1148
1149	for (int l = 0; l < VDEV_LABELS; l++) {
1150
1151		vdev_label_write(zio, vd, l, vp_abd,
1152		    offsetof(vdev_label_t, vl_vdev_phys),
1153		    sizeof (vdev_phys_t), NULL, NULL, flags);
1154
1155		/*
1156		 * Skip the 1st padding area.
1157		 * Zero out the 2nd padding area where it might have
1158		 * left over data from previous filesystem format.
1159		 */
1160		vdev_label_write(zio, vd, l, bootenv,
1161		    offsetof(vdev_label_t, vl_be),
1162		    VDEV_PAD_SIZE, NULL, NULL, flags);
1163
1164		vdev_label_write(zio, vd, l, ub_abd,
1165		    offsetof(vdev_label_t, vl_uberblock),
1166		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1167	}
1168
1169	error = zio_wait(zio);
1170
1171	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1172		flags |= ZIO_FLAG_TRYHARD;
1173		goto retry;
1174	}
1175
1176	nvlist_free(label);
1177	abd_free(bootenv);
1178	abd_free(ub_abd);
1179	abd_free(vp_abd);
1180
1181	/*
1182	 * If this vdev hasn't been previously identified as a spare, then we
1183	 * mark it as such only if a) we are labeling it as a spare, or b) it
1184	 * exists as a spare elsewhere in the system.  Do the same for
1185	 * level 2 ARC devices.
1186	 */
1187	if (error == 0 && !vd->vdev_isspare &&
1188	    (reason == VDEV_LABEL_SPARE ||
1189	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1190		spa_spare_add(vd);
1191
1192	if (error == 0 && !vd->vdev_isl2cache &&
1193	    (reason == VDEV_LABEL_L2CACHE ||
1194	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1195		spa_l2cache_add(vd);
1196
1197	return (error);
1198}
1199
1200/*
1201 * Done callback for vdev_label_read_bootenv_impl. If this is the first
1202 * callback to finish, store our abd in the callback pointer. Otherwise, we
1203 * just free our abd and return.
1204 */
1205static void
1206vdev_label_read_bootenv_done(zio_t *zio)
1207{
1208	zio_t *rio = zio->io_private;
1209	abd_t **cbp = rio->io_private;
1210
1211	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1212
1213	if (zio->io_error == 0) {
1214		mutex_enter(&rio->io_lock);
1215		if (*cbp == NULL) {
1216			/* Will free this buffer in vdev_label_read_bootenv. */
1217			*cbp = zio->io_abd;
1218		} else {
1219			abd_free(zio->io_abd);
1220		}
1221		mutex_exit(&rio->io_lock);
1222	} else {
1223		abd_free(zio->io_abd);
1224	}
1225}
1226
1227static void
1228vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1229{
1230	for (int c = 0; c < vd->vdev_children; c++)
1231		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1232
1233	/*
1234	 * We just use the first label that has a correct checksum; the
1235	 * bootloader should have rewritten them all to be the same on boot,
1236	 * and any changes we made since boot have been the same across all
1237	 * labels.
1238	 */
1239	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1240		for (int l = 0; l < VDEV_LABELS; l++) {
1241			vdev_label_read(zio, vd, l,
1242			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1243			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1244			    vdev_label_read_bootenv_done, zio, flags);
1245		}
1246	}
1247}
1248
1249int
1250vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1251{
1252	nvlist_t *config;
1253	spa_t *spa = rvd->vdev_spa;
1254	abd_t *abd = NULL;
1255	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1256	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1257
1258	ASSERT(bootenv);
1259	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1260
1261	zio_t *zio = zio_root(spa, NULL, &abd, flags);
1262	vdev_label_read_bootenv_impl(zio, rvd, flags);
1263	int err = zio_wait(zio);
1264
1265	if (abd != NULL) {
1266		char *buf;
1267		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1268
1269		vbe->vbe_version = ntohll(vbe->vbe_version);
1270		switch (vbe->vbe_version) {
1271		case VB_RAW:
1272			/*
1273			 * if we have textual data in vbe_bootenv, create nvlist
1274			 * with key "envmap".
1275			 */
1276			fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1277			vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1278			fnvlist_add_string(bootenv, GRUB_ENVMAP,
1279			    vbe->vbe_bootenv);
1280			break;
1281
1282		case VB_NVLIST:
1283			err = nvlist_unpack(vbe->vbe_bootenv,
1284			    sizeof (vbe->vbe_bootenv), &config, 0);
1285			if (err == 0) {
1286				fnvlist_merge(bootenv, config);
1287				nvlist_free(config);
1288				break;
1289			}
1290			/* FALLTHROUGH */
1291		default:
1292			/* Check for FreeBSD zfs bootonce command string */
1293			buf = abd_to_buf(abd);
1294			if (*buf == '\0') {
1295				fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1296				    VB_NVLIST);
1297				break;
1298			}
1299			fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1300		}
1301
1302		/*
1303		 * abd was allocated in vdev_label_read_bootenv_impl()
1304		 */
1305		abd_free(abd);
1306		/*
1307		 * If we managed to read any successfully,
1308		 * return success.
1309		 */
1310		return (0);
1311	}
1312	return (err);
1313}
1314
1315int
1316vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1317{
1318	zio_t *zio;
1319	spa_t *spa = vd->vdev_spa;
1320	vdev_boot_envblock_t *bootenv;
1321	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1322	int error;
1323	size_t nvsize;
1324	char *nvbuf;
1325
1326	error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1327	if (error != 0)
1328		return (SET_ERROR(error));
1329
1330	if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1331		return (SET_ERROR(E2BIG));
1332	}
1333
1334	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1335
1336	error = ENXIO;
1337	for (int c = 0; c < vd->vdev_children; c++) {
1338		int child_err;
1339
1340		child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1341		/*
1342		 * As long as any of the disks managed to write all of their
1343		 * labels successfully, return success.
1344		 */
1345		if (child_err == 0)
1346			error = child_err;
1347	}
1348
1349	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1350	    !vdev_writeable(vd)) {
1351		return (error);
1352	}
1353	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1354	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1355	abd_zero(abd, VDEV_PAD_SIZE);
1356
1357	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1358	nvbuf = bootenv->vbe_bootenv;
1359	nvsize = sizeof (bootenv->vbe_bootenv);
1360
1361	bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1362	switch (bootenv->vbe_version) {
1363	case VB_RAW:
1364		if (nvlist_lookup_string(env, GRUB_ENVMAP, &nvbuf) == 0) {
1365			(void) strlcpy(bootenv->vbe_bootenv, nvbuf, nvsize);
1366		}
1367		error = 0;
1368		break;
1369
1370	case VB_NVLIST:
1371		error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1372		    KM_SLEEP);
1373		break;
1374
1375	default:
1376		error = EINVAL;
1377		break;
1378	}
1379
1380	if (error == 0) {
1381		bootenv->vbe_version = htonll(bootenv->vbe_version);
1382		abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1383	} else {
1384		abd_free(abd);
1385		return (SET_ERROR(error));
1386	}
1387
1388retry:
1389	zio = zio_root(spa, NULL, NULL, flags);
1390	for (int l = 0; l < VDEV_LABELS; l++) {
1391		vdev_label_write(zio, vd, l, abd,
1392		    offsetof(vdev_label_t, vl_be),
1393		    VDEV_PAD_SIZE, NULL, NULL, flags);
1394	}
1395
1396	error = zio_wait(zio);
1397	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1398		flags |= ZIO_FLAG_TRYHARD;
1399		goto retry;
1400	}
1401
1402	abd_free(abd);
1403	return (error);
1404}
1405
1406/*
1407 * ==========================================================================
1408 * uberblock load/sync
1409 * ==========================================================================
1410 */
1411
1412/*
1413 * Consider the following situation: txg is safely synced to disk.  We've
1414 * written the first uberblock for txg + 1, and then we lose power.  When we
1415 * come back up, we fail to see the uberblock for txg + 1 because, say,
1416 * it was on a mirrored device and the replica to which we wrote txg + 1
1417 * is now offline.  If we then make some changes and sync txg + 1, and then
1418 * the missing replica comes back, then for a few seconds we'll have two
1419 * conflicting uberblocks on disk with the same txg.  The solution is simple:
1420 * among uberblocks with equal txg, choose the one with the latest timestamp.
1421 */
1422static int
1423vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1424{
1425	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1426
1427	if (likely(cmp))
1428		return (cmp);
1429
1430	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1431	if (likely(cmp))
1432		return (cmp);
1433
1434	/*
1435	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1436	 * ZFS, e.g. OpenZFS >= 0.7.
1437	 *
1438	 * If one ub has MMP and the other does not, they were written by
1439	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1440	 * a 0 value.
1441	 *
1442	 * Since timestamp and txg are the same if we get this far, either is
1443	 * acceptable for importing the pool.
1444	 */
1445	unsigned int seq1 = 0;
1446	unsigned int seq2 = 0;
1447
1448	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1449		seq1 = MMP_SEQ(ub1);
1450
1451	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1452		seq2 = MMP_SEQ(ub2);
1453
1454	return (TREE_CMP(seq1, seq2));
1455}
1456
1457struct ubl_cbdata {
1458	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1459	vdev_t		*ubl_vd;	/* vdev associated with the above */
1460};
1461
1462static void
1463vdev_uberblock_load_done(zio_t *zio)
1464{
1465	vdev_t *vd = zio->io_vd;
1466	spa_t *spa = zio->io_spa;
1467	zio_t *rio = zio->io_private;
1468	uberblock_t *ub = abd_to_buf(zio->io_abd);
1469	struct ubl_cbdata *cbp = rio->io_private;
1470
1471	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1472
1473	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1474		mutex_enter(&rio->io_lock);
1475		if (ub->ub_txg <= spa->spa_load_max_txg &&
1476		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1477			/*
1478			 * Keep track of the vdev in which this uberblock
1479			 * was found. We will use this information later
1480			 * to obtain the config nvlist associated with
1481			 * this uberblock.
1482			 */
1483			*cbp->ubl_ubbest = *ub;
1484			cbp->ubl_vd = vd;
1485		}
1486		mutex_exit(&rio->io_lock);
1487	}
1488
1489	abd_free(zio->io_abd);
1490}
1491
1492static void
1493vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1494    struct ubl_cbdata *cbp)
1495{
1496	for (int c = 0; c < vd->vdev_children; c++)
1497		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1498
1499	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
1500	    vd->vdev_ops != &vdev_draid_spare_ops) {
1501		for (int l = 0; l < VDEV_LABELS; l++) {
1502			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1503				vdev_label_read(zio, vd, l,
1504				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1505				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1506				    VDEV_UBERBLOCK_SIZE(vd),
1507				    vdev_uberblock_load_done, zio, flags);
1508			}
1509		}
1510	}
1511}
1512
1513/*
1514 * Reads the 'best' uberblock from disk along with its associated
1515 * configuration. First, we read the uberblock array of each label of each
1516 * vdev, keeping track of the uberblock with the highest txg in each array.
1517 * Then, we read the configuration from the same vdev as the best uberblock.
1518 */
1519void
1520vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1521{
1522	zio_t *zio;
1523	spa_t *spa = rvd->vdev_spa;
1524	struct ubl_cbdata cb;
1525	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1526	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1527
1528	ASSERT(ub);
1529	ASSERT(config);
1530
1531	bzero(ub, sizeof (uberblock_t));
1532	*config = NULL;
1533
1534	cb.ubl_ubbest = ub;
1535	cb.ubl_vd = NULL;
1536
1537	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1538	zio = zio_root(spa, NULL, &cb, flags);
1539	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1540	(void) zio_wait(zio);
1541
1542	/*
1543	 * It's possible that the best uberblock was discovered on a label
1544	 * that has a configuration which was written in a future txg.
1545	 * Search all labels on this vdev to find the configuration that
1546	 * matches the txg for our uberblock.
1547	 */
1548	if (cb.ubl_vd != NULL) {
1549		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1550		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1551
1552		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1553		if (*config == NULL && spa->spa_extreme_rewind) {
1554			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1555			    "Trying again without txg restrictions.");
1556			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1557		}
1558		if (*config == NULL) {
1559			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1560		}
1561	}
1562	spa_config_exit(spa, SCL_ALL, FTAG);
1563}
1564
1565/*
1566 * For use when a leaf vdev is expanded.
1567 * The location of labels 2 and 3 changed, and at the new location the
1568 * uberblock rings are either empty or contain garbage.  The sync will write
1569 * new configs there because the vdev is dirty, but expansion also needs the
1570 * uberblock rings copied.  Read them from label 0 which did not move.
1571 *
1572 * Since the point is to populate labels {2,3} with valid uberblocks,
1573 * we zero uberblocks we fail to read or which are not valid.
1574 */
1575
1576static void
1577vdev_copy_uberblocks(vdev_t *vd)
1578{
1579	abd_t *ub_abd;
1580	zio_t *write_zio;
1581	int locks = (SCL_L2ARC | SCL_ZIO);
1582	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1583	    ZIO_FLAG_SPECULATIVE;
1584
1585	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1586	    SCL_STATE);
1587	ASSERT(vd->vdev_ops->vdev_op_leaf);
1588
1589	/*
1590	 * No uberblocks are stored on distributed spares, they may be
1591	 * safely skipped when expanding a leaf vdev.
1592	 */
1593	if (vd->vdev_ops == &vdev_draid_spare_ops)
1594		return;
1595
1596	spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1597
1598	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1599
1600	write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1601	for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1602		const int src_label = 0;
1603		zio_t *zio;
1604
1605		zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1606		vdev_label_read(zio, vd, src_label, ub_abd,
1607		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1608		    NULL, NULL, flags);
1609
1610		if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1611			abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1612
1613		for (int l = 2; l < VDEV_LABELS; l++)
1614			vdev_label_write(write_zio, vd, l, ub_abd,
1615			    VDEV_UBERBLOCK_OFFSET(vd, n),
1616			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1617			    flags | ZIO_FLAG_DONT_PROPAGATE);
1618	}
1619	(void) zio_wait(write_zio);
1620
1621	spa_config_exit(vd->vdev_spa, locks, FTAG);
1622
1623	abd_free(ub_abd);
1624}
1625
1626/*
1627 * On success, increment root zio's count of good writes.
1628 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1629 */
1630static void
1631vdev_uberblock_sync_done(zio_t *zio)
1632{
1633	uint64_t *good_writes = zio->io_private;
1634
1635	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1636		atomic_inc_64(good_writes);
1637}
1638
1639/*
1640 * Write the uberblock to all labels of all leaves of the specified vdev.
1641 */
1642static void
1643vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1644    uberblock_t *ub, vdev_t *vd, int flags)
1645{
1646	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1647		vdev_uberblock_sync(zio, good_writes,
1648		    ub, vd->vdev_child[c], flags);
1649	}
1650
1651	if (!vd->vdev_ops->vdev_op_leaf)
1652		return;
1653
1654	if (!vdev_writeable(vd))
1655		return;
1656
1657	/*
1658	 * There's no need to write uberblocks to a distributed spare, they
1659	 * are already stored on all the leaves of the parent dRAID.  For
1660	 * this same reason vdev_uberblock_load_impl() skips distributed
1661	 * spares when reading uberblocks.
1662	 */
1663	if (vd->vdev_ops == &vdev_draid_spare_ops)
1664		return;
1665
1666	/* If the vdev was expanded, need to copy uberblock rings. */
1667	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1668	    vd->vdev_copy_uberblocks == B_TRUE) {
1669		vdev_copy_uberblocks(vd);
1670		vd->vdev_copy_uberblocks = B_FALSE;
1671	}
1672
1673	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1674	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1675
1676	/* Copy the uberblock_t into the ABD */
1677	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1678	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1679	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1680
1681	for (int l = 0; l < VDEV_LABELS; l++)
1682		vdev_label_write(zio, vd, l, ub_abd,
1683		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1684		    vdev_uberblock_sync_done, good_writes,
1685		    flags | ZIO_FLAG_DONT_PROPAGATE);
1686
1687	abd_free(ub_abd);
1688}
1689
1690/* Sync the uberblocks to all vdevs in svd[] */
1691static int
1692vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1693{
1694	spa_t *spa = svd[0]->vdev_spa;
1695	zio_t *zio;
1696	uint64_t good_writes = 0;
1697
1698	zio = zio_root(spa, NULL, NULL, flags);
1699
1700	for (int v = 0; v < svdcount; v++)
1701		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1702
1703	(void) zio_wait(zio);
1704
1705	/*
1706	 * Flush the uberblocks to disk.  This ensures that the odd labels
1707	 * are no longer needed (because the new uberblocks and the even
1708	 * labels are safely on disk), so it is safe to overwrite them.
1709	 */
1710	zio = zio_root(spa, NULL, NULL, flags);
1711
1712	for (int v = 0; v < svdcount; v++) {
1713		if (vdev_writeable(svd[v])) {
1714			zio_flush(zio, svd[v]);
1715		}
1716	}
1717
1718	(void) zio_wait(zio);
1719
1720	return (good_writes >= 1 ? 0 : EIO);
1721}
1722
1723/*
1724 * On success, increment the count of good writes for our top-level vdev.
1725 */
1726static void
1727vdev_label_sync_done(zio_t *zio)
1728{
1729	uint64_t *good_writes = zio->io_private;
1730
1731	if (zio->io_error == 0)
1732		atomic_inc_64(good_writes);
1733}
1734
1735/*
1736 * If there weren't enough good writes, indicate failure to the parent.
1737 */
1738static void
1739vdev_label_sync_top_done(zio_t *zio)
1740{
1741	uint64_t *good_writes = zio->io_private;
1742
1743	if (*good_writes == 0)
1744		zio->io_error = SET_ERROR(EIO);
1745
1746	kmem_free(good_writes, sizeof (uint64_t));
1747}
1748
1749/*
1750 * We ignore errors for log and cache devices, simply free the private data.
1751 */
1752static void
1753vdev_label_sync_ignore_done(zio_t *zio)
1754{
1755	kmem_free(zio->io_private, sizeof (uint64_t));
1756}
1757
1758/*
1759 * Write all even or odd labels to all leaves of the specified vdev.
1760 */
1761static void
1762vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1763    vdev_t *vd, int l, uint64_t txg, int flags)
1764{
1765	nvlist_t *label;
1766	vdev_phys_t *vp;
1767	abd_t *vp_abd;
1768	char *buf;
1769	size_t buflen;
1770
1771	for (int c = 0; c < vd->vdev_children; c++) {
1772		vdev_label_sync(zio, good_writes,
1773		    vd->vdev_child[c], l, txg, flags);
1774	}
1775
1776	if (!vd->vdev_ops->vdev_op_leaf)
1777		return;
1778
1779	if (!vdev_writeable(vd))
1780		return;
1781
1782	/*
1783	 * The top-level config never needs to be written to a distributed
1784	 * spare.  When read vdev_dspare_label_read_config() will generate
1785	 * the config for the vdev_label_read_config().
1786	 */
1787	if (vd->vdev_ops == &vdev_draid_spare_ops)
1788		return;
1789
1790	/*
1791	 * Generate a label describing the top-level config to which we belong.
1792	 */
1793	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1794
1795	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1796	abd_zero(vp_abd, sizeof (vdev_phys_t));
1797	vp = abd_to_buf(vp_abd);
1798
1799	buf = vp->vp_nvlist;
1800	buflen = sizeof (vp->vp_nvlist);
1801
1802	if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1803		for (; l < VDEV_LABELS; l += 2) {
1804			vdev_label_write(zio, vd, l, vp_abd,
1805			    offsetof(vdev_label_t, vl_vdev_phys),
1806			    sizeof (vdev_phys_t),
1807			    vdev_label_sync_done, good_writes,
1808			    flags | ZIO_FLAG_DONT_PROPAGATE);
1809		}
1810	}
1811
1812	abd_free(vp_abd);
1813	nvlist_free(label);
1814}
1815
1816static int
1817vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1818{
1819	list_t *dl = &spa->spa_config_dirty_list;
1820	vdev_t *vd;
1821	zio_t *zio;
1822	int error;
1823
1824	/*
1825	 * Write the new labels to disk.
1826	 */
1827	zio = zio_root(spa, NULL, NULL, flags);
1828
1829	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1830		uint64_t *good_writes;
1831
1832		ASSERT(!vd->vdev_ishole);
1833
1834		good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1835		zio_t *vio = zio_null(zio, spa, NULL,
1836		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1837		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1838		    good_writes, flags);
1839		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1840		zio_nowait(vio);
1841	}
1842
1843	error = zio_wait(zio);
1844
1845	/*
1846	 * Flush the new labels to disk.
1847	 */
1848	zio = zio_root(spa, NULL, NULL, flags);
1849
1850	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1851		zio_flush(zio, vd);
1852
1853	(void) zio_wait(zio);
1854
1855	return (error);
1856}
1857
1858/*
1859 * Sync the uberblock and any changes to the vdev configuration.
1860 *
1861 * The order of operations is carefully crafted to ensure that
1862 * if the system panics or loses power at any time, the state on disk
1863 * is still transactionally consistent.  The in-line comments below
1864 * describe the failure semantics at each stage.
1865 *
1866 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1867 * at any time, you can just call it again, and it will resume its work.
1868 */
1869int
1870vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1871{
1872	spa_t *spa = svd[0]->vdev_spa;
1873	uberblock_t *ub = &spa->spa_uberblock;
1874	int error = 0;
1875	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1876
1877	ASSERT(svdcount != 0);
1878retry:
1879	/*
1880	 * Normally, we don't want to try too hard to write every label and
1881	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1882	 * sync process to block while we retry.  But if we can't write a
1883	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1884	 * bailing out and declaring the pool faulted.
1885	 */
1886	if (error != 0) {
1887		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1888			return (error);
1889		flags |= ZIO_FLAG_TRYHARD;
1890	}
1891
1892	ASSERT(ub->ub_txg <= txg);
1893
1894	/*
1895	 * If this isn't a resync due to I/O errors,
1896	 * and nothing changed in this transaction group,
1897	 * and the vdev configuration hasn't changed,
1898	 * then there's nothing to do.
1899	 */
1900	if (ub->ub_txg < txg) {
1901		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1902		    txg, spa->spa_mmp.mmp_delay);
1903
1904		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1905			return (0);
1906	}
1907
1908	if (txg > spa_freeze_txg(spa))
1909		return (0);
1910
1911	ASSERT(txg <= spa->spa_final_txg);
1912
1913	/*
1914	 * Flush the write cache of every disk that's been written to
1915	 * in this transaction group.  This ensures that all blocks
1916	 * written in this txg will be committed to stable storage
1917	 * before any uberblock that references them.
1918	 */
1919	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1920
1921	for (vdev_t *vd =
1922	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1923	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1924		zio_flush(zio, vd);
1925
1926	(void) zio_wait(zio);
1927
1928	/*
1929	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1930	 * system dies in the middle of this process, that's OK: all of the
1931	 * even labels that made it to disk will be newer than any uberblock,
1932	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1933	 * which have not yet been touched, will still be valid.  We flush
1934	 * the new labels to disk to ensure that all even-label updates
1935	 * are committed to stable storage before the uberblock update.
1936	 */
1937	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1938		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1939			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1940			    "for pool '%s' when syncing out the even labels "
1941			    "of dirty vdevs", error, spa_name(spa));
1942		}
1943		goto retry;
1944	}
1945
1946	/*
1947	 * Sync the uberblocks to all vdevs in svd[].
1948	 * If the system dies in the middle of this step, there are two cases
1949	 * to consider, and the on-disk state is consistent either way:
1950	 *
1951	 * (1)	If none of the new uberblocks made it to disk, then the
1952	 *	previous uberblock will be the newest, and the odd labels
1953	 *	(which had not yet been touched) will be valid with respect
1954	 *	to that uberblock.
1955	 *
1956	 * (2)	If one or more new uberblocks made it to disk, then they
1957	 *	will be the newest, and the even labels (which had all
1958	 *	been successfully committed) will be valid with respect
1959	 *	to the new uberblocks.
1960	 */
1961	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1962		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1963			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1964			    "%d for pool '%s'", error, spa_name(spa));
1965		}
1966		goto retry;
1967	}
1968
1969	if (spa_multihost(spa))
1970		mmp_update_uberblock(spa, ub);
1971
1972	/*
1973	 * Sync out odd labels for every dirty vdev.  If the system dies
1974	 * in the middle of this process, the even labels and the new
1975	 * uberblocks will suffice to open the pool.  The next time
1976	 * the pool is opened, the first thing we'll do -- before any
1977	 * user data is modified -- is mark every vdev dirty so that
1978	 * all labels will be brought up to date.  We flush the new labels
1979	 * to disk to ensure that all odd-label updates are committed to
1980	 * stable storage before the next transaction group begins.
1981	 */
1982	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1983		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1984			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1985			    "for pool '%s' when syncing out the odd labels of "
1986			    "dirty vdevs", error, spa_name(spa));
1987		}
1988		goto retry;
1989	}
1990
1991	return (0);
1992}
1993