1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 */
37
38/*
39 * SPA: Storage Pool Allocator
40 *
41 * This file contains all the routines used when modifying on-disk SPA state.
42 * This includes opening, importing, destroying, exporting a pool, and syncing a
43 * pool.
44 */
45
46#include <sys/zfs_context.h>
47#include <sys/fm/fs/zfs.h>
48#include <sys/spa_impl.h>
49#include <sys/zio.h>
50#include <sys/zio_checksum.h>
51#include <sys/dmu.h>
52#include <sys/dmu_tx.h>
53#include <sys/zap.h>
54#include <sys/zil.h>
55#include <sys/ddt.h>
56#include <sys/vdev_impl.h>
57#include <sys/vdev_removal.h>
58#include <sys/vdev_indirect_mapping.h>
59#include <sys/vdev_indirect_births.h>
60#include <sys/vdev_initialize.h>
61#include <sys/vdev_rebuild.h>
62#include <sys/vdev_trim.h>
63#include <sys/vdev_disk.h>
64#include <sys/vdev_draid.h>
65#include <sys/metaslab.h>
66#include <sys/metaslab_impl.h>
67#include <sys/mmp.h>
68#include <sys/uberblock_impl.h>
69#include <sys/txg.h>
70#include <sys/avl.h>
71#include <sys/bpobj.h>
72#include <sys/dmu_traverse.h>
73#include <sys/dmu_objset.h>
74#include <sys/unique.h>
75#include <sys/dsl_pool.h>
76#include <sys/dsl_dataset.h>
77#include <sys/dsl_dir.h>
78#include <sys/dsl_prop.h>
79#include <sys/dsl_synctask.h>
80#include <sys/fs/zfs.h>
81#include <sys/arc.h>
82#include <sys/callb.h>
83#include <sys/systeminfo.h>
84#include <sys/spa_boot.h>
85#include <sys/zfs_ioctl.h>
86#include <sys/dsl_scan.h>
87#include <sys/zfeature.h>
88#include <sys/dsl_destroy.h>
89#include <sys/zvol.h>
90
91#ifdef	_KERNEL
92#include <sys/fm/protocol.h>
93#include <sys/fm/util.h>
94#include <sys/callb.h>
95#include <sys/zone.h>
96#include <sys/vmsystm.h>
97#endif	/* _KERNEL */
98
99#include "zfs_prop.h"
100#include "zfs_comutil.h"
101
102/*
103 * The interval, in seconds, at which failed configuration cache file writes
104 * should be retried.
105 */
106int zfs_ccw_retry_interval = 300;
107
108typedef enum zti_modes {
109	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
110	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
111	ZTI_MODE_SCALE,			/* Taskqs scale with CPUs. */
112	ZTI_MODE_NULL,			/* don't create a taskq */
113	ZTI_NMODES
114} zti_modes_t;
115
116#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
117#define	ZTI_PCT(n)	{ ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
119#define	ZTI_SCALE	{ ZTI_MODE_SCALE, 0, 1 }
120#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
121
122#define	ZTI_N(n)	ZTI_P(n, 1)
123#define	ZTI_ONE		ZTI_N(1)
124
125typedef struct zio_taskq_info {
126	zti_modes_t zti_mode;
127	uint_t zti_value;
128	uint_t zti_count;
129} zio_taskq_info_t;
130
131static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132	"iss", "iss_h", "int", "int_h"
133};
134
135/*
136 * This table defines the taskq settings for each ZFS I/O type. When
137 * initializing a pool, we use this table to create an appropriately sized
138 * taskq. Some operations are low volume and therefore have a small, static
139 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140 * macros. Other operations process a large amount of data; the ZTI_BATCH
141 * macro causes us to create a taskq oriented for throughput. Some operations
142 * are so high frequency and short-lived that the taskq itself can become a
143 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144 * additional degree of parallelism specified by the number of threads per-
145 * taskq and the number of taskqs; when dispatching an event in this case, the
146 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147 * but with number of taskqs also scaling with number of CPUs.
148 *
149 * The different taskq priorities are to handle the different contexts (issue
150 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151 * need to be handled with minimum delay.
152 */
153const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156	{ ZTI_N(8),	ZTI_NULL,	ZTI_SCALE,	ZTI_NULL }, /* READ */
157	{ ZTI_BATCH,	ZTI_N(5),	ZTI_SCALE,	ZTI_N(5) }, /* WRITE */
158	{ ZTI_SCALE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161	{ ZTI_N(4),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* TRIM */
162};
163
164static void spa_sync_version(void *arg, dmu_tx_t *tx);
165static void spa_sync_props(void *arg, dmu_tx_t *tx);
166static boolean_t spa_has_active_shared_spare(spa_t *spa);
167static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
168static void spa_vdev_resilver_done(spa_t *spa);
169
170uint_t		zio_taskq_batch_pct = 80;	/* 1 thread per cpu in pset */
171uint_t		zio_taskq_batch_tpq;		/* threads per taskq */
172boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
173uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
174
175boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
176
177/*
178 * Report any spa_load_verify errors found, but do not fail spa_load.
179 * This is used by zdb to analyze non-idle pools.
180 */
181boolean_t	spa_load_verify_dryrun = B_FALSE;
182
183/*
184 * This (illegal) pool name is used when temporarily importing a spa_t in order
185 * to get the vdev stats associated with the imported devices.
186 */
187#define	TRYIMPORT_NAME	"$import"
188
189/*
190 * For debugging purposes: print out vdev tree during pool import.
191 */
192int		spa_load_print_vdev_tree = B_FALSE;
193
194/*
195 * A non-zero value for zfs_max_missing_tvds means that we allow importing
196 * pools with missing top-level vdevs. This is strictly intended for advanced
197 * pool recovery cases since missing data is almost inevitable. Pools with
198 * missing devices can only be imported read-only for safety reasons, and their
199 * fail-mode will be automatically set to "continue".
200 *
201 * With 1 missing vdev we should be able to import the pool and mount all
202 * datasets. User data that was not modified after the missing device has been
203 * added should be recoverable. This means that snapshots created prior to the
204 * addition of that device should be completely intact.
205 *
206 * With 2 missing vdevs, some datasets may fail to mount since there are
207 * dataset statistics that are stored as regular metadata. Some data might be
208 * recoverable if those vdevs were added recently.
209 *
210 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
211 * may be missing entirely. Chances of data recovery are very low. Note that
212 * there are also risks of performing an inadvertent rewind as we might be
213 * missing all the vdevs with the latest uberblocks.
214 */
215unsigned long	zfs_max_missing_tvds = 0;
216
217/*
218 * The parameters below are similar to zfs_max_missing_tvds but are only
219 * intended for a preliminary open of the pool with an untrusted config which
220 * might be incomplete or out-dated.
221 *
222 * We are more tolerant for pools opened from a cachefile since we could have
223 * an out-dated cachefile where a device removal was not registered.
224 * We could have set the limit arbitrarily high but in the case where devices
225 * are really missing we would want to return the proper error codes; we chose
226 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
227 * and we get a chance to retrieve the trusted config.
228 */
229uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
230
231/*
232 * In the case where config was assembled by scanning device paths (/dev/dsks
233 * by default) we are less tolerant since all the existing devices should have
234 * been detected and we want spa_load to return the right error codes.
235 */
236uint64_t	zfs_max_missing_tvds_scan = 0;
237
238/*
239 * Debugging aid that pauses spa_sync() towards the end.
240 */
241boolean_t	zfs_pause_spa_sync = B_FALSE;
242
243/*
244 * Variables to indicate the livelist condense zthr func should wait at certain
245 * points for the livelist to be removed - used to test condense/destroy races
246 */
247int zfs_livelist_condense_zthr_pause = 0;
248int zfs_livelist_condense_sync_pause = 0;
249
250/*
251 * Variables to track whether or not condense cancellation has been
252 * triggered in testing.
253 */
254int zfs_livelist_condense_sync_cancel = 0;
255int zfs_livelist_condense_zthr_cancel = 0;
256
257/*
258 * Variable to track whether or not extra ALLOC blkptrs were added to a
259 * livelist entry while it was being condensed (caused by the way we track
260 * remapped blkptrs in dbuf_remap_impl)
261 */
262int zfs_livelist_condense_new_alloc = 0;
263
264/*
265 * ==========================================================================
266 * SPA properties routines
267 * ==========================================================================
268 */
269
270/*
271 * Add a (source=src, propname=propval) list to an nvlist.
272 */
273static void
274spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
275    uint64_t intval, zprop_source_t src)
276{
277	const char *propname = zpool_prop_to_name(prop);
278	nvlist_t *propval;
279
280	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
281	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
282
283	if (strval != NULL)
284		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
285	else
286		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
287
288	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
289	nvlist_free(propval);
290}
291
292/*
293 * Get property values from the spa configuration.
294 */
295static void
296spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
297{
298	vdev_t *rvd = spa->spa_root_vdev;
299	dsl_pool_t *pool = spa->spa_dsl_pool;
300	uint64_t size, alloc, cap, version;
301	const zprop_source_t src = ZPROP_SRC_NONE;
302	spa_config_dirent_t *dp;
303	metaslab_class_t *mc = spa_normal_class(spa);
304
305	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
306
307	if (rvd != NULL) {
308		alloc = metaslab_class_get_alloc(mc);
309		alloc += metaslab_class_get_alloc(spa_special_class(spa));
310		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
311		alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
312
313		size = metaslab_class_get_space(mc);
314		size += metaslab_class_get_space(spa_special_class(spa));
315		size += metaslab_class_get_space(spa_dedup_class(spa));
316		size += metaslab_class_get_space(spa_embedded_log_class(spa));
317
318		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
319		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
320		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
321		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
322		    size - alloc, src);
323		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
324		    spa->spa_checkpoint_info.sci_dspace, src);
325
326		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
327		    metaslab_class_fragmentation(mc), src);
328		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
329		    metaslab_class_expandable_space(mc), src);
330		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
331		    (spa_mode(spa) == SPA_MODE_READ), src);
332
333		cap = (size == 0) ? 0 : (alloc * 100 / size);
334		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
335
336		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
337		    ddt_get_pool_dedup_ratio(spa), src);
338
339		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
340		    rvd->vdev_state, src);
341
342		version = spa_version(spa);
343		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
344			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
345			    version, ZPROP_SRC_DEFAULT);
346		} else {
347			spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
348			    version, ZPROP_SRC_LOCAL);
349		}
350		spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
351		    NULL, spa_load_guid(spa), src);
352	}
353
354	if (pool != NULL) {
355		/*
356		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
357		 * when opening pools before this version freedir will be NULL.
358		 */
359		if (pool->dp_free_dir != NULL) {
360			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
361			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
362			    src);
363		} else {
364			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
365			    NULL, 0, src);
366		}
367
368		if (pool->dp_leak_dir != NULL) {
369			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
370			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
371			    src);
372		} else {
373			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
374			    NULL, 0, src);
375		}
376	}
377
378	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
379
380	if (spa->spa_comment != NULL) {
381		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
382		    0, ZPROP_SRC_LOCAL);
383	}
384
385	if (spa->spa_compatibility != NULL) {
386		spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
387		    spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
388	}
389
390	if (spa->spa_root != NULL)
391		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
392		    0, ZPROP_SRC_LOCAL);
393
394	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
395		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
396		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
397	} else {
398		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
399		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
400	}
401
402	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
403		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
404		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
405	} else {
406		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
407		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
408	}
409
410	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
411		if (dp->scd_path == NULL) {
412			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
413			    "none", 0, ZPROP_SRC_LOCAL);
414		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
415			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
416			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
417		}
418	}
419}
420
421/*
422 * Get zpool property values.
423 */
424int
425spa_prop_get(spa_t *spa, nvlist_t **nvp)
426{
427	objset_t *mos = spa->spa_meta_objset;
428	zap_cursor_t zc;
429	zap_attribute_t za;
430	dsl_pool_t *dp;
431	int err;
432
433	err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
434	if (err)
435		return (err);
436
437	dp = spa_get_dsl(spa);
438	dsl_pool_config_enter(dp, FTAG);
439	mutex_enter(&spa->spa_props_lock);
440
441	/*
442	 * Get properties from the spa config.
443	 */
444	spa_prop_get_config(spa, nvp);
445
446	/* If no pool property object, no more prop to get. */
447	if (mos == NULL || spa->spa_pool_props_object == 0)
448		goto out;
449
450	/*
451	 * Get properties from the MOS pool property object.
452	 */
453	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
454	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
455	    zap_cursor_advance(&zc)) {
456		uint64_t intval = 0;
457		char *strval = NULL;
458		zprop_source_t src = ZPROP_SRC_DEFAULT;
459		zpool_prop_t prop;
460
461		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
462			continue;
463
464		switch (za.za_integer_length) {
465		case 8:
466			/* integer property */
467			if (za.za_first_integer !=
468			    zpool_prop_default_numeric(prop))
469				src = ZPROP_SRC_LOCAL;
470
471			if (prop == ZPOOL_PROP_BOOTFS) {
472				dsl_dataset_t *ds = NULL;
473
474				err = dsl_dataset_hold_obj(dp,
475				    za.za_first_integer, FTAG, &ds);
476				if (err != 0)
477					break;
478
479				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
480				    KM_SLEEP);
481				dsl_dataset_name(ds, strval);
482				dsl_dataset_rele(ds, FTAG);
483			} else {
484				strval = NULL;
485				intval = za.za_first_integer;
486			}
487
488			spa_prop_add_list(*nvp, prop, strval, intval, src);
489
490			if (strval != NULL)
491				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
492
493			break;
494
495		case 1:
496			/* string property */
497			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
498			err = zap_lookup(mos, spa->spa_pool_props_object,
499			    za.za_name, 1, za.za_num_integers, strval);
500			if (err) {
501				kmem_free(strval, za.za_num_integers);
502				break;
503			}
504			spa_prop_add_list(*nvp, prop, strval, 0, src);
505			kmem_free(strval, za.za_num_integers);
506			break;
507
508		default:
509			break;
510		}
511	}
512	zap_cursor_fini(&zc);
513out:
514	mutex_exit(&spa->spa_props_lock);
515	dsl_pool_config_exit(dp, FTAG);
516	if (err && err != ENOENT) {
517		nvlist_free(*nvp);
518		*nvp = NULL;
519		return (err);
520	}
521
522	return (0);
523}
524
525/*
526 * Validate the given pool properties nvlist and modify the list
527 * for the property values to be set.
528 */
529static int
530spa_prop_validate(spa_t *spa, nvlist_t *props)
531{
532	nvpair_t *elem;
533	int error = 0, reset_bootfs = 0;
534	uint64_t objnum = 0;
535	boolean_t has_feature = B_FALSE;
536
537	elem = NULL;
538	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
539		uint64_t intval;
540		char *strval, *slash, *check, *fname;
541		const char *propname = nvpair_name(elem);
542		zpool_prop_t prop = zpool_name_to_prop(propname);
543
544		switch (prop) {
545		case ZPOOL_PROP_INVAL:
546			if (!zpool_prop_feature(propname)) {
547				error = SET_ERROR(EINVAL);
548				break;
549			}
550
551			/*
552			 * Sanitize the input.
553			 */
554			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
555				error = SET_ERROR(EINVAL);
556				break;
557			}
558
559			if (nvpair_value_uint64(elem, &intval) != 0) {
560				error = SET_ERROR(EINVAL);
561				break;
562			}
563
564			if (intval != 0) {
565				error = SET_ERROR(EINVAL);
566				break;
567			}
568
569			fname = strchr(propname, '@') + 1;
570			if (zfeature_lookup_name(fname, NULL) != 0) {
571				error = SET_ERROR(EINVAL);
572				break;
573			}
574
575			has_feature = B_TRUE;
576			break;
577
578		case ZPOOL_PROP_VERSION:
579			error = nvpair_value_uint64(elem, &intval);
580			if (!error &&
581			    (intval < spa_version(spa) ||
582			    intval > SPA_VERSION_BEFORE_FEATURES ||
583			    has_feature))
584				error = SET_ERROR(EINVAL);
585			break;
586
587		case ZPOOL_PROP_DELEGATION:
588		case ZPOOL_PROP_AUTOREPLACE:
589		case ZPOOL_PROP_LISTSNAPS:
590		case ZPOOL_PROP_AUTOEXPAND:
591		case ZPOOL_PROP_AUTOTRIM:
592			error = nvpair_value_uint64(elem, &intval);
593			if (!error && intval > 1)
594				error = SET_ERROR(EINVAL);
595			break;
596
597		case ZPOOL_PROP_MULTIHOST:
598			error = nvpair_value_uint64(elem, &intval);
599			if (!error && intval > 1)
600				error = SET_ERROR(EINVAL);
601
602			if (!error) {
603				uint32_t hostid = zone_get_hostid(NULL);
604				if (hostid)
605					spa->spa_hostid = hostid;
606				else
607					error = SET_ERROR(ENOTSUP);
608			}
609
610			break;
611
612		case ZPOOL_PROP_BOOTFS:
613			/*
614			 * If the pool version is less than SPA_VERSION_BOOTFS,
615			 * or the pool is still being created (version == 0),
616			 * the bootfs property cannot be set.
617			 */
618			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
619				error = SET_ERROR(ENOTSUP);
620				break;
621			}
622
623			/*
624			 * Make sure the vdev config is bootable
625			 */
626			if (!vdev_is_bootable(spa->spa_root_vdev)) {
627				error = SET_ERROR(ENOTSUP);
628				break;
629			}
630
631			reset_bootfs = 1;
632
633			error = nvpair_value_string(elem, &strval);
634
635			if (!error) {
636				objset_t *os;
637
638				if (strval == NULL || strval[0] == '\0') {
639					objnum = zpool_prop_default_numeric(
640					    ZPOOL_PROP_BOOTFS);
641					break;
642				}
643
644				error = dmu_objset_hold(strval, FTAG, &os);
645				if (error != 0)
646					break;
647
648				/* Must be ZPL. */
649				if (dmu_objset_type(os) != DMU_OST_ZFS) {
650					error = SET_ERROR(ENOTSUP);
651				} else {
652					objnum = dmu_objset_id(os);
653				}
654				dmu_objset_rele(os, FTAG);
655			}
656			break;
657
658		case ZPOOL_PROP_FAILUREMODE:
659			error = nvpair_value_uint64(elem, &intval);
660			if (!error && intval > ZIO_FAILURE_MODE_PANIC)
661				error = SET_ERROR(EINVAL);
662
663			/*
664			 * This is a special case which only occurs when
665			 * the pool has completely failed. This allows
666			 * the user to change the in-core failmode property
667			 * without syncing it out to disk (I/Os might
668			 * currently be blocked). We do this by returning
669			 * EIO to the caller (spa_prop_set) to trick it
670			 * into thinking we encountered a property validation
671			 * error.
672			 */
673			if (!error && spa_suspended(spa)) {
674				spa->spa_failmode = intval;
675				error = SET_ERROR(EIO);
676			}
677			break;
678
679		case ZPOOL_PROP_CACHEFILE:
680			if ((error = nvpair_value_string(elem, &strval)) != 0)
681				break;
682
683			if (strval[0] == '\0')
684				break;
685
686			if (strcmp(strval, "none") == 0)
687				break;
688
689			if (strval[0] != '/') {
690				error = SET_ERROR(EINVAL);
691				break;
692			}
693
694			slash = strrchr(strval, '/');
695			ASSERT(slash != NULL);
696
697			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
698			    strcmp(slash, "/..") == 0)
699				error = SET_ERROR(EINVAL);
700			break;
701
702		case ZPOOL_PROP_COMMENT:
703			if ((error = nvpair_value_string(elem, &strval)) != 0)
704				break;
705			for (check = strval; *check != '\0'; check++) {
706				if (!isprint(*check)) {
707					error = SET_ERROR(EINVAL);
708					break;
709				}
710			}
711			if (strlen(strval) > ZPROP_MAX_COMMENT)
712				error = SET_ERROR(E2BIG);
713			break;
714
715		default:
716			break;
717		}
718
719		if (error)
720			break;
721	}
722
723	(void) nvlist_remove_all(props,
724	    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
725
726	if (!error && reset_bootfs) {
727		error = nvlist_remove(props,
728		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
729
730		if (!error) {
731			error = nvlist_add_uint64(props,
732			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
733		}
734	}
735
736	return (error);
737}
738
739void
740spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
741{
742	char *cachefile;
743	spa_config_dirent_t *dp;
744
745	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
746	    &cachefile) != 0)
747		return;
748
749	dp = kmem_alloc(sizeof (spa_config_dirent_t),
750	    KM_SLEEP);
751
752	if (cachefile[0] == '\0')
753		dp->scd_path = spa_strdup(spa_config_path);
754	else if (strcmp(cachefile, "none") == 0)
755		dp->scd_path = NULL;
756	else
757		dp->scd_path = spa_strdup(cachefile);
758
759	list_insert_head(&spa->spa_config_list, dp);
760	if (need_sync)
761		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
762}
763
764int
765spa_prop_set(spa_t *spa, nvlist_t *nvp)
766{
767	int error;
768	nvpair_t *elem = NULL;
769	boolean_t need_sync = B_FALSE;
770
771	if ((error = spa_prop_validate(spa, nvp)) != 0)
772		return (error);
773
774	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
775		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
776
777		if (prop == ZPOOL_PROP_CACHEFILE ||
778		    prop == ZPOOL_PROP_ALTROOT ||
779		    prop == ZPOOL_PROP_READONLY)
780			continue;
781
782		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
783			uint64_t ver;
784
785			if (prop == ZPOOL_PROP_VERSION) {
786				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
787			} else {
788				ASSERT(zpool_prop_feature(nvpair_name(elem)));
789				ver = SPA_VERSION_FEATURES;
790				need_sync = B_TRUE;
791			}
792
793			/* Save time if the version is already set. */
794			if (ver == spa_version(spa))
795				continue;
796
797			/*
798			 * In addition to the pool directory object, we might
799			 * create the pool properties object, the features for
800			 * read object, the features for write object, or the
801			 * feature descriptions object.
802			 */
803			error = dsl_sync_task(spa->spa_name, NULL,
804			    spa_sync_version, &ver,
805			    6, ZFS_SPACE_CHECK_RESERVED);
806			if (error)
807				return (error);
808			continue;
809		}
810
811		need_sync = B_TRUE;
812		break;
813	}
814
815	if (need_sync) {
816		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
817		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
818	}
819
820	return (0);
821}
822
823/*
824 * If the bootfs property value is dsobj, clear it.
825 */
826void
827spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
828{
829	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
830		VERIFY(zap_remove(spa->spa_meta_objset,
831		    spa->spa_pool_props_object,
832		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
833		spa->spa_bootfs = 0;
834	}
835}
836
837/*ARGSUSED*/
838static int
839spa_change_guid_check(void *arg, dmu_tx_t *tx)
840{
841	uint64_t *newguid __maybe_unused = arg;
842	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
843	vdev_t *rvd = spa->spa_root_vdev;
844	uint64_t vdev_state;
845
846	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
847		int error = (spa_has_checkpoint(spa)) ?
848		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
849		return (SET_ERROR(error));
850	}
851
852	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
853	vdev_state = rvd->vdev_state;
854	spa_config_exit(spa, SCL_STATE, FTAG);
855
856	if (vdev_state != VDEV_STATE_HEALTHY)
857		return (SET_ERROR(ENXIO));
858
859	ASSERT3U(spa_guid(spa), !=, *newguid);
860
861	return (0);
862}
863
864static void
865spa_change_guid_sync(void *arg, dmu_tx_t *tx)
866{
867	uint64_t *newguid = arg;
868	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
869	uint64_t oldguid;
870	vdev_t *rvd = spa->spa_root_vdev;
871
872	oldguid = spa_guid(spa);
873
874	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
875	rvd->vdev_guid = *newguid;
876	rvd->vdev_guid_sum += (*newguid - oldguid);
877	vdev_config_dirty(rvd);
878	spa_config_exit(spa, SCL_STATE, FTAG);
879
880	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
881	    (u_longlong_t)oldguid, (u_longlong_t)*newguid);
882}
883
884/*
885 * Change the GUID for the pool.  This is done so that we can later
886 * re-import a pool built from a clone of our own vdevs.  We will modify
887 * the root vdev's guid, our own pool guid, and then mark all of our
888 * vdevs dirty.  Note that we must make sure that all our vdevs are
889 * online when we do this, or else any vdevs that weren't present
890 * would be orphaned from our pool.  We are also going to issue a
891 * sysevent to update any watchers.
892 */
893int
894spa_change_guid(spa_t *spa)
895{
896	int error;
897	uint64_t guid;
898
899	mutex_enter(&spa->spa_vdev_top_lock);
900	mutex_enter(&spa_namespace_lock);
901	guid = spa_generate_guid(NULL);
902
903	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
904	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
905
906	if (error == 0) {
907		spa_write_cachefile(spa, B_FALSE, B_TRUE);
908		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
909	}
910
911	mutex_exit(&spa_namespace_lock);
912	mutex_exit(&spa->spa_vdev_top_lock);
913
914	return (error);
915}
916
917/*
918 * ==========================================================================
919 * SPA state manipulation (open/create/destroy/import/export)
920 * ==========================================================================
921 */
922
923static int
924spa_error_entry_compare(const void *a, const void *b)
925{
926	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
927	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
928	int ret;
929
930	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
931	    sizeof (zbookmark_phys_t));
932
933	return (TREE_ISIGN(ret));
934}
935
936/*
937 * Utility function which retrieves copies of the current logs and
938 * re-initializes them in the process.
939 */
940void
941spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
942{
943	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
944
945	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
946	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
947
948	avl_create(&spa->spa_errlist_scrub,
949	    spa_error_entry_compare, sizeof (spa_error_entry_t),
950	    offsetof(spa_error_entry_t, se_avl));
951	avl_create(&spa->spa_errlist_last,
952	    spa_error_entry_compare, sizeof (spa_error_entry_t),
953	    offsetof(spa_error_entry_t, se_avl));
954}
955
956static void
957spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
958{
959	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
960	enum zti_modes mode = ztip->zti_mode;
961	uint_t value = ztip->zti_value;
962	uint_t count = ztip->zti_count;
963	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
964	uint_t cpus, flags = TASKQ_DYNAMIC;
965	boolean_t batch = B_FALSE;
966
967	switch (mode) {
968	case ZTI_MODE_FIXED:
969		ASSERT3U(value, >, 0);
970		break;
971
972	case ZTI_MODE_BATCH:
973		batch = B_TRUE;
974		flags |= TASKQ_THREADS_CPU_PCT;
975		value = MIN(zio_taskq_batch_pct, 100);
976		break;
977
978	case ZTI_MODE_SCALE:
979		flags |= TASKQ_THREADS_CPU_PCT;
980		/*
981		 * We want more taskqs to reduce lock contention, but we want
982		 * less for better request ordering and CPU utilization.
983		 */
984		cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
985		if (zio_taskq_batch_tpq > 0) {
986			count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
987			    zio_taskq_batch_tpq);
988		} else {
989			/*
990			 * Prefer 6 threads per taskq, but no more taskqs
991			 * than threads in them on large systems. For 80%:
992			 *
993			 *                 taskq   taskq   total
994			 * cpus    taskqs  percent threads threads
995			 * ------- ------- ------- ------- -------
996			 * 1       1       80%     1       1
997			 * 2       1       80%     1       1
998			 * 4       1       80%     3       3
999			 * 8       2       40%     3       6
1000			 * 16      3       27%     4       12
1001			 * 32      5       16%     5       25
1002			 * 64      7       11%     7       49
1003			 * 128     10      8%      10      100
1004			 * 256     14      6%      15      210
1005			 */
1006			count = 1 + cpus / 6;
1007			while (count * count > cpus)
1008				count--;
1009		}
1010		/* Limit each taskq within 100% to not trigger assertion. */
1011		count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1012		value = (zio_taskq_batch_pct + count / 2) / count;
1013		break;
1014
1015	case ZTI_MODE_NULL:
1016		tqs->stqs_count = 0;
1017		tqs->stqs_taskq = NULL;
1018		return;
1019
1020	default:
1021		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1022		    "spa_activate()",
1023		    zio_type_name[t], zio_taskq_types[q], mode, value);
1024		break;
1025	}
1026
1027	ASSERT3U(count, >, 0);
1028	tqs->stqs_count = count;
1029	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1030
1031	for (uint_t i = 0; i < count; i++) {
1032		taskq_t *tq;
1033		char name[32];
1034
1035		if (count > 1)
1036			(void) snprintf(name, sizeof (name), "%s_%s_%u",
1037			    zio_type_name[t], zio_taskq_types[q], i);
1038		else
1039			(void) snprintf(name, sizeof (name), "%s_%s",
1040			    zio_type_name[t], zio_taskq_types[q]);
1041
1042		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1043			if (batch)
1044				flags |= TASKQ_DC_BATCH;
1045
1046			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1047			    spa->spa_proc, zio_taskq_basedc, flags);
1048		} else {
1049			pri_t pri = maxclsyspri;
1050			/*
1051			 * The write issue taskq can be extremely CPU
1052			 * intensive.  Run it at slightly less important
1053			 * priority than the other taskqs.
1054			 *
1055			 * Under Linux and FreeBSD this means incrementing
1056			 * the priority value as opposed to platforms like
1057			 * illumos where it should be decremented.
1058			 *
1059			 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1060			 * are equal then a difference between them is
1061			 * insignificant.
1062			 */
1063			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1064#if defined(__linux__)
1065				pri++;
1066#elif defined(__FreeBSD__)
1067				pri += 4;
1068#else
1069#error "unknown OS"
1070#endif
1071			}
1072			tq = taskq_create_proc(name, value, pri, 50,
1073			    INT_MAX, spa->spa_proc, flags);
1074		}
1075
1076		tqs->stqs_taskq[i] = tq;
1077	}
1078}
1079
1080static void
1081spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1082{
1083	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1084
1085	if (tqs->stqs_taskq == NULL) {
1086		ASSERT3U(tqs->stqs_count, ==, 0);
1087		return;
1088	}
1089
1090	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1091		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1092		taskq_destroy(tqs->stqs_taskq[i]);
1093	}
1094
1095	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1096	tqs->stqs_taskq = NULL;
1097}
1098
1099/*
1100 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1101 * Note that a type may have multiple discrete taskqs to avoid lock contention
1102 * on the taskq itself. In that case we choose which taskq at random by using
1103 * the low bits of gethrtime().
1104 */
1105void
1106spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1107    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1108{
1109	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1110	taskq_t *tq;
1111
1112	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1113	ASSERT3U(tqs->stqs_count, !=, 0);
1114
1115	if (tqs->stqs_count == 1) {
1116		tq = tqs->stqs_taskq[0];
1117	} else {
1118		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1119	}
1120
1121	taskq_dispatch_ent(tq, func, arg, flags, ent);
1122}
1123
1124/*
1125 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1126 */
1127void
1128spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1129    task_func_t *func, void *arg, uint_t flags)
1130{
1131	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1132	taskq_t *tq;
1133	taskqid_t id;
1134
1135	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1136	ASSERT3U(tqs->stqs_count, !=, 0);
1137
1138	if (tqs->stqs_count == 1) {
1139		tq = tqs->stqs_taskq[0];
1140	} else {
1141		tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1142	}
1143
1144	id = taskq_dispatch(tq, func, arg, flags);
1145	if (id)
1146		taskq_wait_id(tq, id);
1147}
1148
1149static void
1150spa_create_zio_taskqs(spa_t *spa)
1151{
1152	for (int t = 0; t < ZIO_TYPES; t++) {
1153		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1154			spa_taskqs_init(spa, t, q);
1155		}
1156	}
1157}
1158
1159/*
1160 * Disabled until spa_thread() can be adapted for Linux.
1161 */
1162#undef HAVE_SPA_THREAD
1163
1164#if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1165static void
1166spa_thread(void *arg)
1167{
1168	psetid_t zio_taskq_psrset_bind = PS_NONE;
1169	callb_cpr_t cprinfo;
1170
1171	spa_t *spa = arg;
1172	user_t *pu = PTOU(curproc);
1173
1174	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1175	    spa->spa_name);
1176
1177	ASSERT(curproc != &p0);
1178	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1179	    "zpool-%s", spa->spa_name);
1180	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1181
1182	/* bind this thread to the requested psrset */
1183	if (zio_taskq_psrset_bind != PS_NONE) {
1184		pool_lock();
1185		mutex_enter(&cpu_lock);
1186		mutex_enter(&pidlock);
1187		mutex_enter(&curproc->p_lock);
1188
1189		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1190		    0, NULL, NULL) == 0)  {
1191			curthread->t_bind_pset = zio_taskq_psrset_bind;
1192		} else {
1193			cmn_err(CE_WARN,
1194			    "Couldn't bind process for zfs pool \"%s\" to "
1195			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1196		}
1197
1198		mutex_exit(&curproc->p_lock);
1199		mutex_exit(&pidlock);
1200		mutex_exit(&cpu_lock);
1201		pool_unlock();
1202	}
1203
1204	if (zio_taskq_sysdc) {
1205		sysdc_thread_enter(curthread, 100, 0);
1206	}
1207
1208	spa->spa_proc = curproc;
1209	spa->spa_did = curthread->t_did;
1210
1211	spa_create_zio_taskqs(spa);
1212
1213	mutex_enter(&spa->spa_proc_lock);
1214	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1215
1216	spa->spa_proc_state = SPA_PROC_ACTIVE;
1217	cv_broadcast(&spa->spa_proc_cv);
1218
1219	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1220	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1221		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1222	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1223
1224	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1225	spa->spa_proc_state = SPA_PROC_GONE;
1226	spa->spa_proc = &p0;
1227	cv_broadcast(&spa->spa_proc_cv);
1228	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1229
1230	mutex_enter(&curproc->p_lock);
1231	lwp_exit();
1232}
1233#endif
1234
1235/*
1236 * Activate an uninitialized pool.
1237 */
1238static void
1239spa_activate(spa_t *spa, spa_mode_t mode)
1240{
1241	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1242
1243	spa->spa_state = POOL_STATE_ACTIVE;
1244	spa->spa_mode = mode;
1245
1246	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1247	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1248	spa->spa_embedded_log_class =
1249	    metaslab_class_create(spa, zfs_metaslab_ops);
1250	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1251	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1252
1253	/* Try to create a covering process */
1254	mutex_enter(&spa->spa_proc_lock);
1255	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1256	ASSERT(spa->spa_proc == &p0);
1257	spa->spa_did = 0;
1258
1259#ifdef HAVE_SPA_THREAD
1260	/* Only create a process if we're going to be around a while. */
1261	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1262		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1263		    NULL, 0) == 0) {
1264			spa->spa_proc_state = SPA_PROC_CREATED;
1265			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1266				cv_wait(&spa->spa_proc_cv,
1267				    &spa->spa_proc_lock);
1268			}
1269			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1270			ASSERT(spa->spa_proc != &p0);
1271			ASSERT(spa->spa_did != 0);
1272		} else {
1273#ifdef _KERNEL
1274			cmn_err(CE_WARN,
1275			    "Couldn't create process for zfs pool \"%s\"\n",
1276			    spa->spa_name);
1277#endif
1278		}
1279	}
1280#endif /* HAVE_SPA_THREAD */
1281	mutex_exit(&spa->spa_proc_lock);
1282
1283	/* If we didn't create a process, we need to create our taskqs. */
1284	if (spa->spa_proc == &p0) {
1285		spa_create_zio_taskqs(spa);
1286	}
1287
1288	for (size_t i = 0; i < TXG_SIZE; i++) {
1289		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1290		    ZIO_FLAG_CANFAIL);
1291	}
1292
1293	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1294	    offsetof(vdev_t, vdev_config_dirty_node));
1295	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1296	    offsetof(objset_t, os_evicting_node));
1297	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1298	    offsetof(vdev_t, vdev_state_dirty_node));
1299
1300	txg_list_create(&spa->spa_vdev_txg_list, spa,
1301	    offsetof(struct vdev, vdev_txg_node));
1302
1303	avl_create(&spa->spa_errlist_scrub,
1304	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1305	    offsetof(spa_error_entry_t, se_avl));
1306	avl_create(&spa->spa_errlist_last,
1307	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1308	    offsetof(spa_error_entry_t, se_avl));
1309
1310	spa_keystore_init(&spa->spa_keystore);
1311
1312	/*
1313	 * This taskq is used to perform zvol-minor-related tasks
1314	 * asynchronously. This has several advantages, including easy
1315	 * resolution of various deadlocks.
1316	 *
1317	 * The taskq must be single threaded to ensure tasks are always
1318	 * processed in the order in which they were dispatched.
1319	 *
1320	 * A taskq per pool allows one to keep the pools independent.
1321	 * This way if one pool is suspended, it will not impact another.
1322	 *
1323	 * The preferred location to dispatch a zvol minor task is a sync
1324	 * task. In this context, there is easy access to the spa_t and minimal
1325	 * error handling is required because the sync task must succeed.
1326	 */
1327	spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1328	    1, INT_MAX, 0);
1329
1330	/*
1331	 * Taskq dedicated to prefetcher threads: this is used to prevent the
1332	 * pool traverse code from monopolizing the global (and limited)
1333	 * system_taskq by inappropriately scheduling long running tasks on it.
1334	 */
1335	spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1336	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1337
1338	/*
1339	 * The taskq to upgrade datasets in this pool. Currently used by
1340	 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1341	 */
1342	spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1343	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1344}
1345
1346/*
1347 * Opposite of spa_activate().
1348 */
1349static void
1350spa_deactivate(spa_t *spa)
1351{
1352	ASSERT(spa->spa_sync_on == B_FALSE);
1353	ASSERT(spa->spa_dsl_pool == NULL);
1354	ASSERT(spa->spa_root_vdev == NULL);
1355	ASSERT(spa->spa_async_zio_root == NULL);
1356	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1357
1358	spa_evicting_os_wait(spa);
1359
1360	if (spa->spa_zvol_taskq) {
1361		taskq_destroy(spa->spa_zvol_taskq);
1362		spa->spa_zvol_taskq = NULL;
1363	}
1364
1365	if (spa->spa_prefetch_taskq) {
1366		taskq_destroy(spa->spa_prefetch_taskq);
1367		spa->spa_prefetch_taskq = NULL;
1368	}
1369
1370	if (spa->spa_upgrade_taskq) {
1371		taskq_destroy(spa->spa_upgrade_taskq);
1372		spa->spa_upgrade_taskq = NULL;
1373	}
1374
1375	txg_list_destroy(&spa->spa_vdev_txg_list);
1376
1377	list_destroy(&spa->spa_config_dirty_list);
1378	list_destroy(&spa->spa_evicting_os_list);
1379	list_destroy(&spa->spa_state_dirty_list);
1380
1381	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1382
1383	for (int t = 0; t < ZIO_TYPES; t++) {
1384		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1385			spa_taskqs_fini(spa, t, q);
1386		}
1387	}
1388
1389	for (size_t i = 0; i < TXG_SIZE; i++) {
1390		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1391		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1392		spa->spa_txg_zio[i] = NULL;
1393	}
1394
1395	metaslab_class_destroy(spa->spa_normal_class);
1396	spa->spa_normal_class = NULL;
1397
1398	metaslab_class_destroy(spa->spa_log_class);
1399	spa->spa_log_class = NULL;
1400
1401	metaslab_class_destroy(spa->spa_embedded_log_class);
1402	spa->spa_embedded_log_class = NULL;
1403
1404	metaslab_class_destroy(spa->spa_special_class);
1405	spa->spa_special_class = NULL;
1406
1407	metaslab_class_destroy(spa->spa_dedup_class);
1408	spa->spa_dedup_class = NULL;
1409
1410	/*
1411	 * If this was part of an import or the open otherwise failed, we may
1412	 * still have errors left in the queues.  Empty them just in case.
1413	 */
1414	spa_errlog_drain(spa);
1415	avl_destroy(&spa->spa_errlist_scrub);
1416	avl_destroy(&spa->spa_errlist_last);
1417
1418	spa_keystore_fini(&spa->spa_keystore);
1419
1420	spa->spa_state = POOL_STATE_UNINITIALIZED;
1421
1422	mutex_enter(&spa->spa_proc_lock);
1423	if (spa->spa_proc_state != SPA_PROC_NONE) {
1424		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1425		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1426		cv_broadcast(&spa->spa_proc_cv);
1427		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1428			ASSERT(spa->spa_proc != &p0);
1429			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1430		}
1431		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1432		spa->spa_proc_state = SPA_PROC_NONE;
1433	}
1434	ASSERT(spa->spa_proc == &p0);
1435	mutex_exit(&spa->spa_proc_lock);
1436
1437	/*
1438	 * We want to make sure spa_thread() has actually exited the ZFS
1439	 * module, so that the module can't be unloaded out from underneath
1440	 * it.
1441	 */
1442	if (spa->spa_did != 0) {
1443		thread_join(spa->spa_did);
1444		spa->spa_did = 0;
1445	}
1446}
1447
1448/*
1449 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1450 * will create all the necessary vdevs in the appropriate layout, with each vdev
1451 * in the CLOSED state.  This will prep the pool before open/creation/import.
1452 * All vdev validation is done by the vdev_alloc() routine.
1453 */
1454int
1455spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1456    uint_t id, int atype)
1457{
1458	nvlist_t **child;
1459	uint_t children;
1460	int error;
1461
1462	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1463		return (error);
1464
1465	if ((*vdp)->vdev_ops->vdev_op_leaf)
1466		return (0);
1467
1468	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1469	    &child, &children);
1470
1471	if (error == ENOENT)
1472		return (0);
1473
1474	if (error) {
1475		vdev_free(*vdp);
1476		*vdp = NULL;
1477		return (SET_ERROR(EINVAL));
1478	}
1479
1480	for (int c = 0; c < children; c++) {
1481		vdev_t *vd;
1482		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1483		    atype)) != 0) {
1484			vdev_free(*vdp);
1485			*vdp = NULL;
1486			return (error);
1487		}
1488	}
1489
1490	ASSERT(*vdp != NULL);
1491
1492	return (0);
1493}
1494
1495static boolean_t
1496spa_should_flush_logs_on_unload(spa_t *spa)
1497{
1498	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1499		return (B_FALSE);
1500
1501	if (!spa_writeable(spa))
1502		return (B_FALSE);
1503
1504	if (!spa->spa_sync_on)
1505		return (B_FALSE);
1506
1507	if (spa_state(spa) != POOL_STATE_EXPORTED)
1508		return (B_FALSE);
1509
1510	if (zfs_keep_log_spacemaps_at_export)
1511		return (B_FALSE);
1512
1513	return (B_TRUE);
1514}
1515
1516/*
1517 * Opens a transaction that will set the flag that will instruct
1518 * spa_sync to attempt to flush all the metaslabs for that txg.
1519 */
1520static void
1521spa_unload_log_sm_flush_all(spa_t *spa)
1522{
1523	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1524	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1525
1526	ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1527	spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1528
1529	dmu_tx_commit(tx);
1530	txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1531}
1532
1533static void
1534spa_unload_log_sm_metadata(spa_t *spa)
1535{
1536	void *cookie = NULL;
1537	spa_log_sm_t *sls;
1538	while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1539	    &cookie)) != NULL) {
1540		VERIFY0(sls->sls_mscount);
1541		kmem_free(sls, sizeof (spa_log_sm_t));
1542	}
1543
1544	for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1545	    e != NULL; e = list_head(&spa->spa_log_summary)) {
1546		VERIFY0(e->lse_mscount);
1547		list_remove(&spa->spa_log_summary, e);
1548		kmem_free(e, sizeof (log_summary_entry_t));
1549	}
1550
1551	spa->spa_unflushed_stats.sus_nblocks = 0;
1552	spa->spa_unflushed_stats.sus_memused = 0;
1553	spa->spa_unflushed_stats.sus_blocklimit = 0;
1554}
1555
1556static void
1557spa_destroy_aux_threads(spa_t *spa)
1558{
1559	if (spa->spa_condense_zthr != NULL) {
1560		zthr_destroy(spa->spa_condense_zthr);
1561		spa->spa_condense_zthr = NULL;
1562	}
1563	if (spa->spa_checkpoint_discard_zthr != NULL) {
1564		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1565		spa->spa_checkpoint_discard_zthr = NULL;
1566	}
1567	if (spa->spa_livelist_delete_zthr != NULL) {
1568		zthr_destroy(spa->spa_livelist_delete_zthr);
1569		spa->spa_livelist_delete_zthr = NULL;
1570	}
1571	if (spa->spa_livelist_condense_zthr != NULL) {
1572		zthr_destroy(spa->spa_livelist_condense_zthr);
1573		spa->spa_livelist_condense_zthr = NULL;
1574	}
1575}
1576
1577/*
1578 * Opposite of spa_load().
1579 */
1580static void
1581spa_unload(spa_t *spa)
1582{
1583	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1584	ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1585
1586	spa_import_progress_remove(spa_guid(spa));
1587	spa_load_note(spa, "UNLOADING");
1588
1589	spa_wake_waiters(spa);
1590
1591	/*
1592	 * If the log space map feature is enabled and the pool is getting
1593	 * exported (but not destroyed), we want to spend some time flushing
1594	 * as many metaslabs as we can in an attempt to destroy log space
1595	 * maps and save import time.
1596	 */
1597	if (spa_should_flush_logs_on_unload(spa))
1598		spa_unload_log_sm_flush_all(spa);
1599
1600	/*
1601	 * Stop async tasks.
1602	 */
1603	spa_async_suspend(spa);
1604
1605	if (spa->spa_root_vdev) {
1606		vdev_t *root_vdev = spa->spa_root_vdev;
1607		vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1608		vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1609		vdev_autotrim_stop_all(spa);
1610		vdev_rebuild_stop_all(spa);
1611	}
1612
1613	/*
1614	 * Stop syncing.
1615	 */
1616	if (spa->spa_sync_on) {
1617		txg_sync_stop(spa->spa_dsl_pool);
1618		spa->spa_sync_on = B_FALSE;
1619	}
1620
1621	/*
1622	 * This ensures that there is no async metaslab prefetching
1623	 * while we attempt to unload the spa.
1624	 */
1625	if (spa->spa_root_vdev != NULL) {
1626		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1627			vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1628			if (vc->vdev_mg != NULL)
1629				taskq_wait(vc->vdev_mg->mg_taskq);
1630		}
1631	}
1632
1633	if (spa->spa_mmp.mmp_thread)
1634		mmp_thread_stop(spa);
1635
1636	/*
1637	 * Wait for any outstanding async I/O to complete.
1638	 */
1639	if (spa->spa_async_zio_root != NULL) {
1640		for (int i = 0; i < max_ncpus; i++)
1641			(void) zio_wait(spa->spa_async_zio_root[i]);
1642		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1643		spa->spa_async_zio_root = NULL;
1644	}
1645
1646	if (spa->spa_vdev_removal != NULL) {
1647		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1648		spa->spa_vdev_removal = NULL;
1649	}
1650
1651	spa_destroy_aux_threads(spa);
1652
1653	spa_condense_fini(spa);
1654
1655	bpobj_close(&spa->spa_deferred_bpobj);
1656
1657	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1658
1659	/*
1660	 * Close all vdevs.
1661	 */
1662	if (spa->spa_root_vdev)
1663		vdev_free(spa->spa_root_vdev);
1664	ASSERT(spa->spa_root_vdev == NULL);
1665
1666	/*
1667	 * Close the dsl pool.
1668	 */
1669	if (spa->spa_dsl_pool) {
1670		dsl_pool_close(spa->spa_dsl_pool);
1671		spa->spa_dsl_pool = NULL;
1672		spa->spa_meta_objset = NULL;
1673	}
1674
1675	ddt_unload(spa);
1676	spa_unload_log_sm_metadata(spa);
1677
1678	/*
1679	 * Drop and purge level 2 cache
1680	 */
1681	spa_l2cache_drop(spa);
1682
1683	for (int i = 0; i < spa->spa_spares.sav_count; i++)
1684		vdev_free(spa->spa_spares.sav_vdevs[i]);
1685	if (spa->spa_spares.sav_vdevs) {
1686		kmem_free(spa->spa_spares.sav_vdevs,
1687		    spa->spa_spares.sav_count * sizeof (void *));
1688		spa->spa_spares.sav_vdevs = NULL;
1689	}
1690	if (spa->spa_spares.sav_config) {
1691		nvlist_free(spa->spa_spares.sav_config);
1692		spa->spa_spares.sav_config = NULL;
1693	}
1694	spa->spa_spares.sav_count = 0;
1695
1696	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1697		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1698		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1699	}
1700	if (spa->spa_l2cache.sav_vdevs) {
1701		kmem_free(spa->spa_l2cache.sav_vdevs,
1702		    spa->spa_l2cache.sav_count * sizeof (void *));
1703		spa->spa_l2cache.sav_vdevs = NULL;
1704	}
1705	if (spa->spa_l2cache.sav_config) {
1706		nvlist_free(spa->spa_l2cache.sav_config);
1707		spa->spa_l2cache.sav_config = NULL;
1708	}
1709	spa->spa_l2cache.sav_count = 0;
1710
1711	spa->spa_async_suspended = 0;
1712
1713	spa->spa_indirect_vdevs_loaded = B_FALSE;
1714
1715	if (spa->spa_comment != NULL) {
1716		spa_strfree(spa->spa_comment);
1717		spa->spa_comment = NULL;
1718	}
1719	if (spa->spa_compatibility != NULL) {
1720		spa_strfree(spa->spa_compatibility);
1721		spa->spa_compatibility = NULL;
1722	}
1723
1724	spa_config_exit(spa, SCL_ALL, spa);
1725}
1726
1727/*
1728 * Load (or re-load) the current list of vdevs describing the active spares for
1729 * this pool.  When this is called, we have some form of basic information in
1730 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1731 * then re-generate a more complete list including status information.
1732 */
1733void
1734spa_load_spares(spa_t *spa)
1735{
1736	nvlist_t **spares;
1737	uint_t nspares;
1738	int i;
1739	vdev_t *vd, *tvd;
1740
1741#ifndef _KERNEL
1742	/*
1743	 * zdb opens both the current state of the pool and the
1744	 * checkpointed state (if present), with a different spa_t.
1745	 *
1746	 * As spare vdevs are shared among open pools, we skip loading
1747	 * them when we load the checkpointed state of the pool.
1748	 */
1749	if (!spa_writeable(spa))
1750		return;
1751#endif
1752
1753	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1754
1755	/*
1756	 * First, close and free any existing spare vdevs.
1757	 */
1758	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1759		vd = spa->spa_spares.sav_vdevs[i];
1760
1761		/* Undo the call to spa_activate() below */
1762		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1763		    B_FALSE)) != NULL && tvd->vdev_isspare)
1764			spa_spare_remove(tvd);
1765		vdev_close(vd);
1766		vdev_free(vd);
1767	}
1768
1769	if (spa->spa_spares.sav_vdevs)
1770		kmem_free(spa->spa_spares.sav_vdevs,
1771		    spa->spa_spares.sav_count * sizeof (void *));
1772
1773	if (spa->spa_spares.sav_config == NULL)
1774		nspares = 0;
1775	else
1776		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1777		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1778
1779	spa->spa_spares.sav_count = (int)nspares;
1780	spa->spa_spares.sav_vdevs = NULL;
1781
1782	if (nspares == 0)
1783		return;
1784
1785	/*
1786	 * Construct the array of vdevs, opening them to get status in the
1787	 * process.   For each spare, there is potentially two different vdev_t
1788	 * structures associated with it: one in the list of spares (used only
1789	 * for basic validation purposes) and one in the active vdev
1790	 * configuration (if it's spared in).  During this phase we open and
1791	 * validate each vdev on the spare list.  If the vdev also exists in the
1792	 * active configuration, then we also mark this vdev as an active spare.
1793	 */
1794	spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1795	    KM_SLEEP);
1796	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1797		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1798		    VDEV_ALLOC_SPARE) == 0);
1799		ASSERT(vd != NULL);
1800
1801		spa->spa_spares.sav_vdevs[i] = vd;
1802
1803		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1804		    B_FALSE)) != NULL) {
1805			if (!tvd->vdev_isspare)
1806				spa_spare_add(tvd);
1807
1808			/*
1809			 * We only mark the spare active if we were successfully
1810			 * able to load the vdev.  Otherwise, importing a pool
1811			 * with a bad active spare would result in strange
1812			 * behavior, because multiple pool would think the spare
1813			 * is actively in use.
1814			 *
1815			 * There is a vulnerability here to an equally bizarre
1816			 * circumstance, where a dead active spare is later
1817			 * brought back to life (onlined or otherwise).  Given
1818			 * the rarity of this scenario, and the extra complexity
1819			 * it adds, we ignore the possibility.
1820			 */
1821			if (!vdev_is_dead(tvd))
1822				spa_spare_activate(tvd);
1823		}
1824
1825		vd->vdev_top = vd;
1826		vd->vdev_aux = &spa->spa_spares;
1827
1828		if (vdev_open(vd) != 0)
1829			continue;
1830
1831		if (vdev_validate_aux(vd) == 0)
1832			spa_spare_add(vd);
1833	}
1834
1835	/*
1836	 * Recompute the stashed list of spares, with status information
1837	 * this time.
1838	 */
1839	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1840	    DATA_TYPE_NVLIST_ARRAY) == 0);
1841
1842	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1843	    KM_SLEEP);
1844	for (i = 0; i < spa->spa_spares.sav_count; i++)
1845		spares[i] = vdev_config_generate(spa,
1846		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1847	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1848	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1849	for (i = 0; i < spa->spa_spares.sav_count; i++)
1850		nvlist_free(spares[i]);
1851	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1852}
1853
1854/*
1855 * Load (or re-load) the current list of vdevs describing the active l2cache for
1856 * this pool.  When this is called, we have some form of basic information in
1857 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1858 * then re-generate a more complete list including status information.
1859 * Devices which are already active have their details maintained, and are
1860 * not re-opened.
1861 */
1862void
1863spa_load_l2cache(spa_t *spa)
1864{
1865	nvlist_t **l2cache = NULL;
1866	uint_t nl2cache;
1867	int i, j, oldnvdevs;
1868	uint64_t guid;
1869	vdev_t *vd, **oldvdevs, **newvdevs;
1870	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1871
1872#ifndef _KERNEL
1873	/*
1874	 * zdb opens both the current state of the pool and the
1875	 * checkpointed state (if present), with a different spa_t.
1876	 *
1877	 * As L2 caches are part of the ARC which is shared among open
1878	 * pools, we skip loading them when we load the checkpointed
1879	 * state of the pool.
1880	 */
1881	if (!spa_writeable(spa))
1882		return;
1883#endif
1884
1885	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1886
1887	oldvdevs = sav->sav_vdevs;
1888	oldnvdevs = sav->sav_count;
1889	sav->sav_vdevs = NULL;
1890	sav->sav_count = 0;
1891
1892	if (sav->sav_config == NULL) {
1893		nl2cache = 0;
1894		newvdevs = NULL;
1895		goto out;
1896	}
1897
1898	VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1899	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1900	newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1901
1902	/*
1903	 * Process new nvlist of vdevs.
1904	 */
1905	for (i = 0; i < nl2cache; i++) {
1906		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1907		    &guid) == 0);
1908
1909		newvdevs[i] = NULL;
1910		for (j = 0; j < oldnvdevs; j++) {
1911			vd = oldvdevs[j];
1912			if (vd != NULL && guid == vd->vdev_guid) {
1913				/*
1914				 * Retain previous vdev for add/remove ops.
1915				 */
1916				newvdevs[i] = vd;
1917				oldvdevs[j] = NULL;
1918				break;
1919			}
1920		}
1921
1922		if (newvdevs[i] == NULL) {
1923			/*
1924			 * Create new vdev
1925			 */
1926			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1927			    VDEV_ALLOC_L2CACHE) == 0);
1928			ASSERT(vd != NULL);
1929			newvdevs[i] = vd;
1930
1931			/*
1932			 * Commit this vdev as an l2cache device,
1933			 * even if it fails to open.
1934			 */
1935			spa_l2cache_add(vd);
1936
1937			vd->vdev_top = vd;
1938			vd->vdev_aux = sav;
1939
1940			spa_l2cache_activate(vd);
1941
1942			if (vdev_open(vd) != 0)
1943				continue;
1944
1945			(void) vdev_validate_aux(vd);
1946
1947			if (!vdev_is_dead(vd))
1948				l2arc_add_vdev(spa, vd);
1949
1950			/*
1951			 * Upon cache device addition to a pool or pool
1952			 * creation with a cache device or if the header
1953			 * of the device is invalid we issue an async
1954			 * TRIM command for the whole device which will
1955			 * execute if l2arc_trim_ahead > 0.
1956			 */
1957			spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1958		}
1959	}
1960
1961	sav->sav_vdevs = newvdevs;
1962	sav->sav_count = (int)nl2cache;
1963
1964	/*
1965	 * Recompute the stashed list of l2cache devices, with status
1966	 * information this time.
1967	 */
1968	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1969	    DATA_TYPE_NVLIST_ARRAY) == 0);
1970
1971	if (sav->sav_count > 0)
1972		l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1973		    KM_SLEEP);
1974	for (i = 0; i < sav->sav_count; i++)
1975		l2cache[i] = vdev_config_generate(spa,
1976		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1977	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1978	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1979
1980out:
1981	/*
1982	 * Purge vdevs that were dropped
1983	 */
1984	for (i = 0; i < oldnvdevs; i++) {
1985		uint64_t pool;
1986
1987		vd = oldvdevs[i];
1988		if (vd != NULL) {
1989			ASSERT(vd->vdev_isl2cache);
1990
1991			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1992			    pool != 0ULL && l2arc_vdev_present(vd))
1993				l2arc_remove_vdev(vd);
1994			vdev_clear_stats(vd);
1995			vdev_free(vd);
1996		}
1997	}
1998
1999	if (oldvdevs)
2000		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2001
2002	for (i = 0; i < sav->sav_count; i++)
2003		nvlist_free(l2cache[i]);
2004	if (sav->sav_count)
2005		kmem_free(l2cache, sav->sav_count * sizeof (void *));
2006}
2007
2008static int
2009load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2010{
2011	dmu_buf_t *db;
2012	char *packed = NULL;
2013	size_t nvsize = 0;
2014	int error;
2015	*value = NULL;
2016
2017	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2018	if (error)
2019		return (error);
2020
2021	nvsize = *(uint64_t *)db->db_data;
2022	dmu_buf_rele(db, FTAG);
2023
2024	packed = vmem_alloc(nvsize, KM_SLEEP);
2025	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2026	    DMU_READ_PREFETCH);
2027	if (error == 0)
2028		error = nvlist_unpack(packed, nvsize, value, 0);
2029	vmem_free(packed, nvsize);
2030
2031	return (error);
2032}
2033
2034/*
2035 * Concrete top-level vdevs that are not missing and are not logs. At every
2036 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2037 */
2038static uint64_t
2039spa_healthy_core_tvds(spa_t *spa)
2040{
2041	vdev_t *rvd = spa->spa_root_vdev;
2042	uint64_t tvds = 0;
2043
2044	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2045		vdev_t *vd = rvd->vdev_child[i];
2046		if (vd->vdev_islog)
2047			continue;
2048		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2049			tvds++;
2050	}
2051
2052	return (tvds);
2053}
2054
2055/*
2056 * Checks to see if the given vdev could not be opened, in which case we post a
2057 * sysevent to notify the autoreplace code that the device has been removed.
2058 */
2059static void
2060spa_check_removed(vdev_t *vd)
2061{
2062	for (uint64_t c = 0; c < vd->vdev_children; c++)
2063		spa_check_removed(vd->vdev_child[c]);
2064
2065	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2066	    vdev_is_concrete(vd)) {
2067		zfs_post_autoreplace(vd->vdev_spa, vd);
2068		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2069	}
2070}
2071
2072static int
2073spa_check_for_missing_logs(spa_t *spa)
2074{
2075	vdev_t *rvd = spa->spa_root_vdev;
2076
2077	/*
2078	 * If we're doing a normal import, then build up any additional
2079	 * diagnostic information about missing log devices.
2080	 * We'll pass this up to the user for further processing.
2081	 */
2082	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2083		nvlist_t **child, *nv;
2084		uint64_t idx = 0;
2085
2086		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2087		    KM_SLEEP);
2088		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2089
2090		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2091			vdev_t *tvd = rvd->vdev_child[c];
2092
2093			/*
2094			 * We consider a device as missing only if it failed
2095			 * to open (i.e. offline or faulted is not considered
2096			 * as missing).
2097			 */
2098			if (tvd->vdev_islog &&
2099			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2100				child[idx++] = vdev_config_generate(spa, tvd,
2101				    B_FALSE, VDEV_CONFIG_MISSING);
2102			}
2103		}
2104
2105		if (idx > 0) {
2106			fnvlist_add_nvlist_array(nv,
2107			    ZPOOL_CONFIG_CHILDREN, child, idx);
2108			fnvlist_add_nvlist(spa->spa_load_info,
2109			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
2110
2111			for (uint64_t i = 0; i < idx; i++)
2112				nvlist_free(child[i]);
2113		}
2114		nvlist_free(nv);
2115		kmem_free(child, rvd->vdev_children * sizeof (char **));
2116
2117		if (idx > 0) {
2118			spa_load_failed(spa, "some log devices are missing");
2119			vdev_dbgmsg_print_tree(rvd, 2);
2120			return (SET_ERROR(ENXIO));
2121		}
2122	} else {
2123		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2124			vdev_t *tvd = rvd->vdev_child[c];
2125
2126			if (tvd->vdev_islog &&
2127			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2128				spa_set_log_state(spa, SPA_LOG_CLEAR);
2129				spa_load_note(spa, "some log devices are "
2130				    "missing, ZIL is dropped.");
2131				vdev_dbgmsg_print_tree(rvd, 2);
2132				break;
2133			}
2134		}
2135	}
2136
2137	return (0);
2138}
2139
2140/*
2141 * Check for missing log devices
2142 */
2143static boolean_t
2144spa_check_logs(spa_t *spa)
2145{
2146	boolean_t rv = B_FALSE;
2147	dsl_pool_t *dp = spa_get_dsl(spa);
2148
2149	switch (spa->spa_log_state) {
2150	default:
2151		break;
2152	case SPA_LOG_MISSING:
2153		/* need to recheck in case slog has been restored */
2154	case SPA_LOG_UNKNOWN:
2155		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2156		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2157		if (rv)
2158			spa_set_log_state(spa, SPA_LOG_MISSING);
2159		break;
2160	}
2161	return (rv);
2162}
2163
2164/*
2165 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2166 */
2167static boolean_t
2168spa_passivate_log(spa_t *spa)
2169{
2170	vdev_t *rvd = spa->spa_root_vdev;
2171	boolean_t slog_found = B_FALSE;
2172
2173	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2174
2175	for (int c = 0; c < rvd->vdev_children; c++) {
2176		vdev_t *tvd = rvd->vdev_child[c];
2177
2178		if (tvd->vdev_islog) {
2179			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2180			metaslab_group_passivate(tvd->vdev_mg);
2181			slog_found = B_TRUE;
2182		}
2183	}
2184
2185	return (slog_found);
2186}
2187
2188/*
2189 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2190 */
2191static void
2192spa_activate_log(spa_t *spa)
2193{
2194	vdev_t *rvd = spa->spa_root_vdev;
2195
2196	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2197
2198	for (int c = 0; c < rvd->vdev_children; c++) {
2199		vdev_t *tvd = rvd->vdev_child[c];
2200
2201		if (tvd->vdev_islog) {
2202			ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2203			metaslab_group_activate(tvd->vdev_mg);
2204		}
2205	}
2206}
2207
2208int
2209spa_reset_logs(spa_t *spa)
2210{
2211	int error;
2212
2213	error = dmu_objset_find(spa_name(spa), zil_reset,
2214	    NULL, DS_FIND_CHILDREN);
2215	if (error == 0) {
2216		/*
2217		 * We successfully offlined the log device, sync out the
2218		 * current txg so that the "stubby" block can be removed
2219		 * by zil_sync().
2220		 */
2221		txg_wait_synced(spa->spa_dsl_pool, 0);
2222	}
2223	return (error);
2224}
2225
2226static void
2227spa_aux_check_removed(spa_aux_vdev_t *sav)
2228{
2229	for (int i = 0; i < sav->sav_count; i++)
2230		spa_check_removed(sav->sav_vdevs[i]);
2231}
2232
2233void
2234spa_claim_notify(zio_t *zio)
2235{
2236	spa_t *spa = zio->io_spa;
2237
2238	if (zio->io_error)
2239		return;
2240
2241	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2242	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2243		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2244	mutex_exit(&spa->spa_props_lock);
2245}
2246
2247typedef struct spa_load_error {
2248	uint64_t	sle_meta_count;
2249	uint64_t	sle_data_count;
2250} spa_load_error_t;
2251
2252static void
2253spa_load_verify_done(zio_t *zio)
2254{
2255	blkptr_t *bp = zio->io_bp;
2256	spa_load_error_t *sle = zio->io_private;
2257	dmu_object_type_t type = BP_GET_TYPE(bp);
2258	int error = zio->io_error;
2259	spa_t *spa = zio->io_spa;
2260
2261	abd_free(zio->io_abd);
2262	if (error) {
2263		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2264		    type != DMU_OT_INTENT_LOG)
2265			atomic_inc_64(&sle->sle_meta_count);
2266		else
2267			atomic_inc_64(&sle->sle_data_count);
2268	}
2269
2270	mutex_enter(&spa->spa_scrub_lock);
2271	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2272	cv_broadcast(&spa->spa_scrub_io_cv);
2273	mutex_exit(&spa->spa_scrub_lock);
2274}
2275
2276/*
2277 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2278 * By default, we set it to 1/16th of the arc.
2279 */
2280int spa_load_verify_shift = 4;
2281int spa_load_verify_metadata = B_TRUE;
2282int spa_load_verify_data = B_TRUE;
2283
2284/*ARGSUSED*/
2285static int
2286spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2287    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2288{
2289	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2290	    BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2291		return (0);
2292	/*
2293	 * Note: normally this routine will not be called if
2294	 * spa_load_verify_metadata is not set.  However, it may be useful
2295	 * to manually set the flag after the traversal has begun.
2296	 */
2297	if (!spa_load_verify_metadata)
2298		return (0);
2299	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2300		return (0);
2301
2302	uint64_t maxinflight_bytes =
2303	    arc_target_bytes() >> spa_load_verify_shift;
2304	zio_t *rio = arg;
2305	size_t size = BP_GET_PSIZE(bp);
2306
2307	mutex_enter(&spa->spa_scrub_lock);
2308	while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2309		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2310	spa->spa_load_verify_bytes += size;
2311	mutex_exit(&spa->spa_scrub_lock);
2312
2313	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2314	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2315	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2316	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2317	return (0);
2318}
2319
2320/* ARGSUSED */
2321static int
2322verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2323{
2324	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2325		return (SET_ERROR(ENAMETOOLONG));
2326
2327	return (0);
2328}
2329
2330static int
2331spa_load_verify(spa_t *spa)
2332{
2333	zio_t *rio;
2334	spa_load_error_t sle = { 0 };
2335	zpool_load_policy_t policy;
2336	boolean_t verify_ok = B_FALSE;
2337	int error = 0;
2338
2339	zpool_get_load_policy(spa->spa_config, &policy);
2340
2341	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2342		return (0);
2343
2344	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2345	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2346	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2347	    DS_FIND_CHILDREN);
2348	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2349	if (error != 0)
2350		return (error);
2351
2352	rio = zio_root(spa, NULL, &sle,
2353	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2354
2355	if (spa_load_verify_metadata) {
2356		if (spa->spa_extreme_rewind) {
2357			spa_load_note(spa, "performing a complete scan of the "
2358			    "pool since extreme rewind is on. This may take "
2359			    "a very long time.\n  (spa_load_verify_data=%u, "
2360			    "spa_load_verify_metadata=%u)",
2361			    spa_load_verify_data, spa_load_verify_metadata);
2362		}
2363
2364		error = traverse_pool(spa, spa->spa_verify_min_txg,
2365		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2366		    TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2367	}
2368
2369	(void) zio_wait(rio);
2370	ASSERT0(spa->spa_load_verify_bytes);
2371
2372	spa->spa_load_meta_errors = sle.sle_meta_count;
2373	spa->spa_load_data_errors = sle.sle_data_count;
2374
2375	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2376		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2377		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2378		    (u_longlong_t)sle.sle_data_count);
2379	}
2380
2381	if (spa_load_verify_dryrun ||
2382	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2383	    sle.sle_data_count <= policy.zlp_maxdata)) {
2384		int64_t loss = 0;
2385
2386		verify_ok = B_TRUE;
2387		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2388		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2389
2390		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2391		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2392		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2393		VERIFY(nvlist_add_int64(spa->spa_load_info,
2394		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2395		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2396		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2397	} else {
2398		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2399	}
2400
2401	if (spa_load_verify_dryrun)
2402		return (0);
2403
2404	if (error) {
2405		if (error != ENXIO && error != EIO)
2406			error = SET_ERROR(EIO);
2407		return (error);
2408	}
2409
2410	return (verify_ok ? 0 : EIO);
2411}
2412
2413/*
2414 * Find a value in the pool props object.
2415 */
2416static void
2417spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2418{
2419	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2420	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2421}
2422
2423/*
2424 * Find a value in the pool directory object.
2425 */
2426static int
2427spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2428{
2429	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2430	    name, sizeof (uint64_t), 1, val);
2431
2432	if (error != 0 && (error != ENOENT || log_enoent)) {
2433		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2434		    "[error=%d]", name, error);
2435	}
2436
2437	return (error);
2438}
2439
2440static int
2441spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2442{
2443	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2444	return (SET_ERROR(err));
2445}
2446
2447boolean_t
2448spa_livelist_delete_check(spa_t *spa)
2449{
2450	return (spa->spa_livelists_to_delete != 0);
2451}
2452
2453/* ARGSUSED */
2454static boolean_t
2455spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2456{
2457	spa_t *spa = arg;
2458	return (spa_livelist_delete_check(spa));
2459}
2460
2461static int
2462delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2463{
2464	spa_t *spa = arg;
2465	zio_free(spa, tx->tx_txg, bp);
2466	dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2467	    -bp_get_dsize_sync(spa, bp),
2468	    -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2469	return (0);
2470}
2471
2472static int
2473dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2474{
2475	int err;
2476	zap_cursor_t zc;
2477	zap_attribute_t za;
2478	zap_cursor_init(&zc, os, zap_obj);
2479	err = zap_cursor_retrieve(&zc, &za);
2480	zap_cursor_fini(&zc);
2481	if (err == 0)
2482		*llp = za.za_first_integer;
2483	return (err);
2484}
2485
2486/*
2487 * Components of livelist deletion that must be performed in syncing
2488 * context: freeing block pointers and updating the pool-wide data
2489 * structures to indicate how much work is left to do
2490 */
2491typedef struct sublist_delete_arg {
2492	spa_t *spa;
2493	dsl_deadlist_t *ll;
2494	uint64_t key;
2495	bplist_t *to_free;
2496} sublist_delete_arg_t;
2497
2498static void
2499sublist_delete_sync(void *arg, dmu_tx_t *tx)
2500{
2501	sublist_delete_arg_t *sda = arg;
2502	spa_t *spa = sda->spa;
2503	dsl_deadlist_t *ll = sda->ll;
2504	uint64_t key = sda->key;
2505	bplist_t *to_free = sda->to_free;
2506
2507	bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2508	dsl_deadlist_remove_entry(ll, key, tx);
2509}
2510
2511typedef struct livelist_delete_arg {
2512	spa_t *spa;
2513	uint64_t ll_obj;
2514	uint64_t zap_obj;
2515} livelist_delete_arg_t;
2516
2517static void
2518livelist_delete_sync(void *arg, dmu_tx_t *tx)
2519{
2520	livelist_delete_arg_t *lda = arg;
2521	spa_t *spa = lda->spa;
2522	uint64_t ll_obj = lda->ll_obj;
2523	uint64_t zap_obj = lda->zap_obj;
2524	objset_t *mos = spa->spa_meta_objset;
2525	uint64_t count;
2526
2527	/* free the livelist and decrement the feature count */
2528	VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2529	dsl_deadlist_free(mos, ll_obj, tx);
2530	spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2531	VERIFY0(zap_count(mos, zap_obj, &count));
2532	if (count == 0) {
2533		/* no more livelists to delete */
2534		VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2535		    DMU_POOL_DELETED_CLONES, tx));
2536		VERIFY0(zap_destroy(mos, zap_obj, tx));
2537		spa->spa_livelists_to_delete = 0;
2538		spa_notify_waiters(spa);
2539	}
2540}
2541
2542/*
2543 * Load in the value for the livelist to be removed and open it. Then,
2544 * load its first sublist and determine which block pointers should actually
2545 * be freed. Then, call a synctask which performs the actual frees and updates
2546 * the pool-wide livelist data.
2547 */
2548/* ARGSUSED */
2549static void
2550spa_livelist_delete_cb(void *arg, zthr_t *z)
2551{
2552	spa_t *spa = arg;
2553	uint64_t ll_obj = 0, count;
2554	objset_t *mos = spa->spa_meta_objset;
2555	uint64_t zap_obj = spa->spa_livelists_to_delete;
2556	/*
2557	 * Determine the next livelist to delete. This function should only
2558	 * be called if there is at least one deleted clone.
2559	 */
2560	VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2561	VERIFY0(zap_count(mos, ll_obj, &count));
2562	if (count > 0) {
2563		dsl_deadlist_t *ll;
2564		dsl_deadlist_entry_t *dle;
2565		bplist_t to_free;
2566		ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2567		dsl_deadlist_open(ll, mos, ll_obj);
2568		dle = dsl_deadlist_first(ll);
2569		ASSERT3P(dle, !=, NULL);
2570		bplist_create(&to_free);
2571		int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2572		    z, NULL);
2573		if (err == 0) {
2574			sublist_delete_arg_t sync_arg = {
2575			    .spa = spa,
2576			    .ll = ll,
2577			    .key = dle->dle_mintxg,
2578			    .to_free = &to_free
2579			};
2580			zfs_dbgmsg("deleting sublist (id %llu) from"
2581			    " livelist %llu, %d remaining",
2582			    dle->dle_bpobj.bpo_object, ll_obj, count - 1);
2583			VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2584			    sublist_delete_sync, &sync_arg, 0,
2585			    ZFS_SPACE_CHECK_DESTROY));
2586		} else {
2587			VERIFY3U(err, ==, EINTR);
2588		}
2589		bplist_clear(&to_free);
2590		bplist_destroy(&to_free);
2591		dsl_deadlist_close(ll);
2592		kmem_free(ll, sizeof (dsl_deadlist_t));
2593	} else {
2594		livelist_delete_arg_t sync_arg = {
2595		    .spa = spa,
2596		    .ll_obj = ll_obj,
2597		    .zap_obj = zap_obj
2598		};
2599		zfs_dbgmsg("deletion of livelist %llu completed", ll_obj);
2600		VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2601		    &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2602	}
2603}
2604
2605static void
2606spa_start_livelist_destroy_thread(spa_t *spa)
2607{
2608	ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2609	spa->spa_livelist_delete_zthr =
2610	    zthr_create("z_livelist_destroy",
2611	    spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa);
2612}
2613
2614typedef struct livelist_new_arg {
2615	bplist_t *allocs;
2616	bplist_t *frees;
2617} livelist_new_arg_t;
2618
2619static int
2620livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2621    dmu_tx_t *tx)
2622{
2623	ASSERT(tx == NULL);
2624	livelist_new_arg_t *lna = arg;
2625	if (bp_freed) {
2626		bplist_append(lna->frees, bp);
2627	} else {
2628		bplist_append(lna->allocs, bp);
2629		zfs_livelist_condense_new_alloc++;
2630	}
2631	return (0);
2632}
2633
2634typedef struct livelist_condense_arg {
2635	spa_t *spa;
2636	bplist_t to_keep;
2637	uint64_t first_size;
2638	uint64_t next_size;
2639} livelist_condense_arg_t;
2640
2641static void
2642spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2643{
2644	livelist_condense_arg_t *lca = arg;
2645	spa_t *spa = lca->spa;
2646	bplist_t new_frees;
2647	dsl_dataset_t *ds = spa->spa_to_condense.ds;
2648
2649	/* Have we been cancelled? */
2650	if (spa->spa_to_condense.cancelled) {
2651		zfs_livelist_condense_sync_cancel++;
2652		goto out;
2653	}
2654
2655	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2656	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2657	dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2658
2659	/*
2660	 * It's possible that the livelist was changed while the zthr was
2661	 * running. Therefore, we need to check for new blkptrs in the two
2662	 * entries being condensed and continue to track them in the livelist.
2663	 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2664	 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2665	 * we need to sort them into two different bplists.
2666	 */
2667	uint64_t first_obj = first->dle_bpobj.bpo_object;
2668	uint64_t next_obj = next->dle_bpobj.bpo_object;
2669	uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2670	uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2671
2672	bplist_create(&new_frees);
2673	livelist_new_arg_t new_bps = {
2674	    .allocs = &lca->to_keep,
2675	    .frees = &new_frees,
2676	};
2677
2678	if (cur_first_size > lca->first_size) {
2679		VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2680		    livelist_track_new_cb, &new_bps, lca->first_size));
2681	}
2682	if (cur_next_size > lca->next_size) {
2683		VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2684		    livelist_track_new_cb, &new_bps, lca->next_size));
2685	}
2686
2687	dsl_deadlist_clear_entry(first, ll, tx);
2688	ASSERT(bpobj_is_empty(&first->dle_bpobj));
2689	dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2690
2691	bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2692	bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2693	bplist_destroy(&new_frees);
2694
2695	char dsname[ZFS_MAX_DATASET_NAME_LEN];
2696	dsl_dataset_name(ds, dsname);
2697	zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2698	    "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2699	    "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj,
2700	    cur_first_size, next_obj, cur_next_size,
2701	    first->dle_bpobj.bpo_object,
2702	    first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2703out:
2704	dmu_buf_rele(ds->ds_dbuf, spa);
2705	spa->spa_to_condense.ds = NULL;
2706	bplist_clear(&lca->to_keep);
2707	bplist_destroy(&lca->to_keep);
2708	kmem_free(lca, sizeof (livelist_condense_arg_t));
2709	spa->spa_to_condense.syncing = B_FALSE;
2710}
2711
2712static void
2713spa_livelist_condense_cb(void *arg, zthr_t *t)
2714{
2715	while (zfs_livelist_condense_zthr_pause &&
2716	    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2717		delay(1);
2718
2719	spa_t *spa = arg;
2720	dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2721	dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2722	uint64_t first_size, next_size;
2723
2724	livelist_condense_arg_t *lca =
2725	    kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2726	bplist_create(&lca->to_keep);
2727
2728	/*
2729	 * Process the livelists (matching FREEs and ALLOCs) in open context
2730	 * so we have minimal work in syncing context to condense.
2731	 *
2732	 * We save bpobj sizes (first_size and next_size) to use later in
2733	 * syncing context to determine if entries were added to these sublists
2734	 * while in open context. This is possible because the clone is still
2735	 * active and open for normal writes and we want to make sure the new,
2736	 * unprocessed blockpointers are inserted into the livelist normally.
2737	 *
2738	 * Note that dsl_process_sub_livelist() both stores the size number of
2739	 * blockpointers and iterates over them while the bpobj's lock held, so
2740	 * the sizes returned to us are consistent which what was actually
2741	 * processed.
2742	 */
2743	int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2744	    &first_size);
2745	if (err == 0)
2746		err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2747		    t, &next_size);
2748
2749	if (err == 0) {
2750		while (zfs_livelist_condense_sync_pause &&
2751		    !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2752			delay(1);
2753
2754		dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2755		dmu_tx_mark_netfree(tx);
2756		dmu_tx_hold_space(tx, 1);
2757		err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2758		if (err == 0) {
2759			/*
2760			 * Prevent the condense zthr restarting before
2761			 * the synctask completes.
2762			 */
2763			spa->spa_to_condense.syncing = B_TRUE;
2764			lca->spa = spa;
2765			lca->first_size = first_size;
2766			lca->next_size = next_size;
2767			dsl_sync_task_nowait(spa_get_dsl(spa),
2768			    spa_livelist_condense_sync, lca, tx);
2769			dmu_tx_commit(tx);
2770			return;
2771		}
2772	}
2773	/*
2774	 * Condensing can not continue: either it was externally stopped or
2775	 * we were unable to assign to a tx because the pool has run out of
2776	 * space. In the second case, we'll just end up trying to condense
2777	 * again in a later txg.
2778	 */
2779	ASSERT(err != 0);
2780	bplist_clear(&lca->to_keep);
2781	bplist_destroy(&lca->to_keep);
2782	kmem_free(lca, sizeof (livelist_condense_arg_t));
2783	dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2784	spa->spa_to_condense.ds = NULL;
2785	if (err == EINTR)
2786		zfs_livelist_condense_zthr_cancel++;
2787}
2788
2789/* ARGSUSED */
2790/*
2791 * Check that there is something to condense but that a condense is not
2792 * already in progress and that condensing has not been cancelled.
2793 */
2794static boolean_t
2795spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2796{
2797	spa_t *spa = arg;
2798	if ((spa->spa_to_condense.ds != NULL) &&
2799	    (spa->spa_to_condense.syncing == B_FALSE) &&
2800	    (spa->spa_to_condense.cancelled == B_FALSE)) {
2801		return (B_TRUE);
2802	}
2803	return (B_FALSE);
2804}
2805
2806static void
2807spa_start_livelist_condensing_thread(spa_t *spa)
2808{
2809	spa->spa_to_condense.ds = NULL;
2810	spa->spa_to_condense.first = NULL;
2811	spa->spa_to_condense.next = NULL;
2812	spa->spa_to_condense.syncing = B_FALSE;
2813	spa->spa_to_condense.cancelled = B_FALSE;
2814
2815	ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2816	spa->spa_livelist_condense_zthr =
2817	    zthr_create("z_livelist_condense",
2818	    spa_livelist_condense_cb_check,
2819	    spa_livelist_condense_cb, spa);
2820}
2821
2822static void
2823spa_spawn_aux_threads(spa_t *spa)
2824{
2825	ASSERT(spa_writeable(spa));
2826
2827	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2828
2829	spa_start_indirect_condensing_thread(spa);
2830	spa_start_livelist_destroy_thread(spa);
2831	spa_start_livelist_condensing_thread(spa);
2832
2833	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2834	spa->spa_checkpoint_discard_zthr =
2835	    zthr_create("z_checkpoint_discard",
2836	    spa_checkpoint_discard_thread_check,
2837	    spa_checkpoint_discard_thread, spa);
2838}
2839
2840/*
2841 * Fix up config after a partly-completed split.  This is done with the
2842 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2843 * pool have that entry in their config, but only the splitting one contains
2844 * a list of all the guids of the vdevs that are being split off.
2845 *
2846 * This function determines what to do with that list: either rejoin
2847 * all the disks to the pool, or complete the splitting process.  To attempt
2848 * the rejoin, each disk that is offlined is marked online again, and
2849 * we do a reopen() call.  If the vdev label for every disk that was
2850 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2851 * then we call vdev_split() on each disk, and complete the split.
2852 *
2853 * Otherwise we leave the config alone, with all the vdevs in place in
2854 * the original pool.
2855 */
2856static void
2857spa_try_repair(spa_t *spa, nvlist_t *config)
2858{
2859	uint_t extracted;
2860	uint64_t *glist;
2861	uint_t i, gcount;
2862	nvlist_t *nvl;
2863	vdev_t **vd;
2864	boolean_t attempt_reopen;
2865
2866	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2867		return;
2868
2869	/* check that the config is complete */
2870	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2871	    &glist, &gcount) != 0)
2872		return;
2873
2874	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2875
2876	/* attempt to online all the vdevs & validate */
2877	attempt_reopen = B_TRUE;
2878	for (i = 0; i < gcount; i++) {
2879		if (glist[i] == 0)	/* vdev is hole */
2880			continue;
2881
2882		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2883		if (vd[i] == NULL) {
2884			/*
2885			 * Don't bother attempting to reopen the disks;
2886			 * just do the split.
2887			 */
2888			attempt_reopen = B_FALSE;
2889		} else {
2890			/* attempt to re-online it */
2891			vd[i]->vdev_offline = B_FALSE;
2892		}
2893	}
2894
2895	if (attempt_reopen) {
2896		vdev_reopen(spa->spa_root_vdev);
2897
2898		/* check each device to see what state it's in */
2899		for (extracted = 0, i = 0; i < gcount; i++) {
2900			if (vd[i] != NULL &&
2901			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2902				break;
2903			++extracted;
2904		}
2905	}
2906
2907	/*
2908	 * If every disk has been moved to the new pool, or if we never
2909	 * even attempted to look at them, then we split them off for
2910	 * good.
2911	 */
2912	if (!attempt_reopen || gcount == extracted) {
2913		for (i = 0; i < gcount; i++)
2914			if (vd[i] != NULL)
2915				vdev_split(vd[i]);
2916		vdev_reopen(spa->spa_root_vdev);
2917	}
2918
2919	kmem_free(vd, gcount * sizeof (vdev_t *));
2920}
2921
2922static int
2923spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2924{
2925	char *ereport = FM_EREPORT_ZFS_POOL;
2926	int error;
2927
2928	spa->spa_load_state = state;
2929	(void) spa_import_progress_set_state(spa_guid(spa),
2930	    spa_load_state(spa));
2931
2932	gethrestime(&spa->spa_loaded_ts);
2933	error = spa_load_impl(spa, type, &ereport);
2934
2935	/*
2936	 * Don't count references from objsets that are already closed
2937	 * and are making their way through the eviction process.
2938	 */
2939	spa_evicting_os_wait(spa);
2940	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2941	if (error) {
2942		if (error != EEXIST) {
2943			spa->spa_loaded_ts.tv_sec = 0;
2944			spa->spa_loaded_ts.tv_nsec = 0;
2945		}
2946		if (error != EBADF) {
2947			(void) zfs_ereport_post(ereport, spa,
2948			    NULL, NULL, NULL, 0);
2949		}
2950	}
2951	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2952	spa->spa_ena = 0;
2953
2954	(void) spa_import_progress_set_state(spa_guid(spa),
2955	    spa_load_state(spa));
2956
2957	return (error);
2958}
2959
2960#ifdef ZFS_DEBUG
2961/*
2962 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2963 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2964 * spa's per-vdev ZAP list.
2965 */
2966static uint64_t
2967vdev_count_verify_zaps(vdev_t *vd)
2968{
2969	spa_t *spa = vd->vdev_spa;
2970	uint64_t total = 0;
2971
2972	if (vd->vdev_top_zap != 0) {
2973		total++;
2974		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2975		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2976	}
2977	if (vd->vdev_leaf_zap != 0) {
2978		total++;
2979		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2980		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2981	}
2982
2983	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2984		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2985	}
2986
2987	return (total);
2988}
2989#endif
2990
2991/*
2992 * Determine whether the activity check is required.
2993 */
2994static boolean_t
2995spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2996    nvlist_t *config)
2997{
2998	uint64_t state = 0;
2999	uint64_t hostid = 0;
3000	uint64_t tryconfig_txg = 0;
3001	uint64_t tryconfig_timestamp = 0;
3002	uint16_t tryconfig_mmp_seq = 0;
3003	nvlist_t *nvinfo;
3004
3005	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3006		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3007		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3008		    &tryconfig_txg);
3009		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3010		    &tryconfig_timestamp);
3011		(void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3012		    &tryconfig_mmp_seq);
3013	}
3014
3015	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3016
3017	/*
3018	 * Disable the MMP activity check - This is used by zdb which
3019	 * is intended to be used on potentially active pools.
3020	 */
3021	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3022		return (B_FALSE);
3023
3024	/*
3025	 * Skip the activity check when the MMP feature is disabled.
3026	 */
3027	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3028		return (B_FALSE);
3029
3030	/*
3031	 * If the tryconfig_ values are nonzero, they are the results of an
3032	 * earlier tryimport.  If they all match the uberblock we just found,
3033	 * then the pool has not changed and we return false so we do not test
3034	 * a second time.
3035	 */
3036	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3037	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3038	    tryconfig_mmp_seq && tryconfig_mmp_seq ==
3039	    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3040		return (B_FALSE);
3041
3042	/*
3043	 * Allow the activity check to be skipped when importing the pool
3044	 * on the same host which last imported it.  Since the hostid from
3045	 * configuration may be stale use the one read from the label.
3046	 */
3047	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3048		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3049
3050	if (hostid == spa_get_hostid(spa))
3051		return (B_FALSE);
3052
3053	/*
3054	 * Skip the activity test when the pool was cleanly exported.
3055	 */
3056	if (state != POOL_STATE_ACTIVE)
3057		return (B_FALSE);
3058
3059	return (B_TRUE);
3060}
3061
3062/*
3063 * Nanoseconds the activity check must watch for changes on-disk.
3064 */
3065static uint64_t
3066spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3067{
3068	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3069	uint64_t multihost_interval = MSEC2NSEC(
3070	    MMP_INTERVAL_OK(zfs_multihost_interval));
3071	uint64_t import_delay = MAX(NANOSEC, import_intervals *
3072	    multihost_interval);
3073
3074	/*
3075	 * Local tunables determine a minimum duration except for the case
3076	 * where we know when the remote host will suspend the pool if MMP
3077	 * writes do not land.
3078	 *
3079	 * See Big Theory comment at the top of mmp.c for the reasoning behind
3080	 * these cases and times.
3081	 */
3082
3083	ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3084
3085	if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3086	    MMP_FAIL_INT(ub) > 0) {
3087
3088		/* MMP on remote host will suspend pool after failed writes */
3089		import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3090		    MMP_IMPORT_SAFETY_FACTOR / 100;
3091
3092		zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3093		    "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3094		    "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
3095		    MMP_INTERVAL(ub), import_intervals);
3096
3097	} else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3098	    MMP_FAIL_INT(ub) == 0) {
3099
3100		/* MMP on remote host will never suspend pool */
3101		import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3102		    ub->ub_mmp_delay) * import_intervals);
3103
3104		zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3105		    "mmp_interval=%llu ub_mmp_delay=%llu "
3106		    "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
3107		    ub->ub_mmp_delay, import_intervals);
3108
3109	} else if (MMP_VALID(ub)) {
3110		/*
3111		 * zfs-0.7 compatibility case
3112		 */
3113
3114		import_delay = MAX(import_delay, (multihost_interval +
3115		    ub->ub_mmp_delay) * import_intervals);
3116
3117		zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3118		    "import_intervals=%u leaves=%u", import_delay,
3119		    ub->ub_mmp_delay, import_intervals,
3120		    vdev_count_leaves(spa));
3121	} else {
3122		/* Using local tunings is the only reasonable option */
3123		zfs_dbgmsg("pool last imported on non-MMP aware "
3124		    "host using import_delay=%llu multihost_interval=%llu "
3125		    "import_intervals=%u", import_delay, multihost_interval,
3126		    import_intervals);
3127	}
3128
3129	return (import_delay);
3130}
3131
3132/*
3133 * Perform the import activity check.  If the user canceled the import or
3134 * we detected activity then fail.
3135 */
3136static int
3137spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3138{
3139	uint64_t txg = ub->ub_txg;
3140	uint64_t timestamp = ub->ub_timestamp;
3141	uint64_t mmp_config = ub->ub_mmp_config;
3142	uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3143	uint64_t import_delay;
3144	hrtime_t import_expire;
3145	nvlist_t *mmp_label = NULL;
3146	vdev_t *rvd = spa->spa_root_vdev;
3147	kcondvar_t cv;
3148	kmutex_t mtx;
3149	int error = 0;
3150
3151	cv_init(&cv, NULL, CV_DEFAULT, NULL);
3152	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3153	mutex_enter(&mtx);
3154
3155	/*
3156	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3157	 * during the earlier tryimport.  If the txg recorded there is 0 then
3158	 * the pool is known to be active on another host.
3159	 *
3160	 * Otherwise, the pool might be in use on another host.  Check for
3161	 * changes in the uberblocks on disk if necessary.
3162	 */
3163	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3164		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3165		    ZPOOL_CONFIG_LOAD_INFO);
3166
3167		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3168		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3169			vdev_uberblock_load(rvd, ub, &mmp_label);
3170			error = SET_ERROR(EREMOTEIO);
3171			goto out;
3172		}
3173	}
3174
3175	import_delay = spa_activity_check_duration(spa, ub);
3176
3177	/* Add a small random factor in case of simultaneous imports (0-25%) */
3178	import_delay += import_delay * spa_get_random(250) / 1000;
3179
3180	import_expire = gethrtime() + import_delay;
3181
3182	while (gethrtime() < import_expire) {
3183		(void) spa_import_progress_set_mmp_check(spa_guid(spa),
3184		    NSEC2SEC(import_expire - gethrtime()));
3185
3186		vdev_uberblock_load(rvd, ub, &mmp_label);
3187
3188		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3189		    mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3190			zfs_dbgmsg("multihost activity detected "
3191			    "txg %llu ub_txg  %llu "
3192			    "timestamp %llu ub_timestamp  %llu "
3193			    "mmp_config %#llx ub_mmp_config %#llx",
3194			    txg, ub->ub_txg, timestamp, ub->ub_timestamp,
3195			    mmp_config, ub->ub_mmp_config);
3196
3197			error = SET_ERROR(EREMOTEIO);
3198			break;
3199		}
3200
3201		if (mmp_label) {
3202			nvlist_free(mmp_label);
3203			mmp_label = NULL;
3204		}
3205
3206		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3207		if (error != -1) {
3208			error = SET_ERROR(EINTR);
3209			break;
3210		}
3211		error = 0;
3212	}
3213
3214out:
3215	mutex_exit(&mtx);
3216	mutex_destroy(&mtx);
3217	cv_destroy(&cv);
3218
3219	/*
3220	 * If the pool is determined to be active store the status in the
3221	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
3222	 * available from configuration read from disk store them as well.
3223	 * This allows 'zpool import' to generate a more useful message.
3224	 *
3225	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
3226	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3227	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
3228	 */
3229	if (error == EREMOTEIO) {
3230		char *hostname = "<unknown>";
3231		uint64_t hostid = 0;
3232
3233		if (mmp_label) {
3234			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3235				hostname = fnvlist_lookup_string(mmp_label,
3236				    ZPOOL_CONFIG_HOSTNAME);
3237				fnvlist_add_string(spa->spa_load_info,
3238				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3239			}
3240
3241			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3242				hostid = fnvlist_lookup_uint64(mmp_label,
3243				    ZPOOL_CONFIG_HOSTID);
3244				fnvlist_add_uint64(spa->spa_load_info,
3245				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
3246			}
3247		}
3248
3249		fnvlist_add_uint64(spa->spa_load_info,
3250		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3251		fnvlist_add_uint64(spa->spa_load_info,
3252		    ZPOOL_CONFIG_MMP_TXG, 0);
3253
3254		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3255	}
3256
3257	if (mmp_label)
3258		nvlist_free(mmp_label);
3259
3260	return (error);
3261}
3262
3263static int
3264spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3265{
3266	uint64_t hostid;
3267	char *hostname;
3268	uint64_t myhostid = 0;
3269
3270	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3271	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3272		hostname = fnvlist_lookup_string(mos_config,
3273		    ZPOOL_CONFIG_HOSTNAME);
3274
3275		myhostid = zone_get_hostid(NULL);
3276
3277		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3278			cmn_err(CE_WARN, "pool '%s' could not be "
3279			    "loaded as it was last accessed by "
3280			    "another system (host: %s hostid: 0x%llx). "
3281			    "See: https://openzfs.github.io/openzfs-docs/msg/"
3282			    "ZFS-8000-EY",
3283			    spa_name(spa), hostname, (u_longlong_t)hostid);
3284			spa_load_failed(spa, "hostid verification failed: pool "
3285			    "last accessed by host: %s (hostid: 0x%llx)",
3286			    hostname, (u_longlong_t)hostid);
3287			return (SET_ERROR(EBADF));
3288		}
3289	}
3290
3291	return (0);
3292}
3293
3294static int
3295spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3296{
3297	int error = 0;
3298	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3299	int parse;
3300	vdev_t *rvd;
3301	uint64_t pool_guid;
3302	char *comment;
3303	char *compatibility;
3304
3305	/*
3306	 * Versioning wasn't explicitly added to the label until later, so if
3307	 * it's not present treat it as the initial version.
3308	 */
3309	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3310	    &spa->spa_ubsync.ub_version) != 0)
3311		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3312
3313	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3314		spa_load_failed(spa, "invalid config provided: '%s' missing",
3315		    ZPOOL_CONFIG_POOL_GUID);
3316		return (SET_ERROR(EINVAL));
3317	}
3318
3319	/*
3320	 * If we are doing an import, ensure that the pool is not already
3321	 * imported by checking if its pool guid already exists in the
3322	 * spa namespace.
3323	 *
3324	 * The only case that we allow an already imported pool to be
3325	 * imported again, is when the pool is checkpointed and we want to
3326	 * look at its checkpointed state from userland tools like zdb.
3327	 */
3328#ifdef _KERNEL
3329	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3330	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3331	    spa_guid_exists(pool_guid, 0)) {
3332#else
3333	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3334	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3335	    spa_guid_exists(pool_guid, 0) &&
3336	    !spa_importing_readonly_checkpoint(spa)) {
3337#endif
3338		spa_load_failed(spa, "a pool with guid %llu is already open",
3339		    (u_longlong_t)pool_guid);
3340		return (SET_ERROR(EEXIST));
3341	}
3342
3343	spa->spa_config_guid = pool_guid;
3344
3345	nvlist_free(spa->spa_load_info);
3346	spa->spa_load_info = fnvlist_alloc();
3347
3348	ASSERT(spa->spa_comment == NULL);
3349	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3350		spa->spa_comment = spa_strdup(comment);
3351
3352	ASSERT(spa->spa_compatibility == NULL);
3353	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3354	    &compatibility) == 0)
3355		spa->spa_compatibility = spa_strdup(compatibility);
3356
3357	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3358	    &spa->spa_config_txg);
3359
3360	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3361		spa->spa_config_splitting = fnvlist_dup(nvl);
3362
3363	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3364		spa_load_failed(spa, "invalid config provided: '%s' missing",
3365		    ZPOOL_CONFIG_VDEV_TREE);
3366		return (SET_ERROR(EINVAL));
3367	}
3368
3369	/*
3370	 * Create "The Godfather" zio to hold all async IOs
3371	 */
3372	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3373	    KM_SLEEP);
3374	for (int i = 0; i < max_ncpus; i++) {
3375		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3376		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3377		    ZIO_FLAG_GODFATHER);
3378	}
3379
3380	/*
3381	 * Parse the configuration into a vdev tree.  We explicitly set the
3382	 * value that will be returned by spa_version() since parsing the
3383	 * configuration requires knowing the version number.
3384	 */
3385	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3386	parse = (type == SPA_IMPORT_EXISTING ?
3387	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3388	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3389	spa_config_exit(spa, SCL_ALL, FTAG);
3390
3391	if (error != 0) {
3392		spa_load_failed(spa, "unable to parse config [error=%d]",
3393		    error);
3394		return (error);
3395	}
3396
3397	ASSERT(spa->spa_root_vdev == rvd);
3398	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3399	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3400
3401	if (type != SPA_IMPORT_ASSEMBLE) {
3402		ASSERT(spa_guid(spa) == pool_guid);
3403	}
3404
3405	return (0);
3406}
3407
3408/*
3409 * Recursively open all vdevs in the vdev tree. This function is called twice:
3410 * first with the untrusted config, then with the trusted config.
3411 */
3412static int
3413spa_ld_open_vdevs(spa_t *spa)
3414{
3415	int error = 0;
3416
3417	/*
3418	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3419	 * missing/unopenable for the root vdev to be still considered openable.
3420	 */
3421	if (spa->spa_trust_config) {
3422		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3423	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3424		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3425	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3426		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3427	} else {
3428		spa->spa_missing_tvds_allowed = 0;
3429	}
3430
3431	spa->spa_missing_tvds_allowed =
3432	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3433
3434	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3435	error = vdev_open(spa->spa_root_vdev);
3436	spa_config_exit(spa, SCL_ALL, FTAG);
3437
3438	if (spa->spa_missing_tvds != 0) {
3439		spa_load_note(spa, "vdev tree has %lld missing top-level "
3440		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3441		if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3442			/*
3443			 * Although theoretically we could allow users to open
3444			 * incomplete pools in RW mode, we'd need to add a lot
3445			 * of extra logic (e.g. adjust pool space to account
3446			 * for missing vdevs).
3447			 * This limitation also prevents users from accidentally
3448			 * opening the pool in RW mode during data recovery and
3449			 * damaging it further.
3450			 */
3451			spa_load_note(spa, "pools with missing top-level "
3452			    "vdevs can only be opened in read-only mode.");
3453			error = SET_ERROR(ENXIO);
3454		} else {
3455			spa_load_note(spa, "current settings allow for maximum "
3456			    "%lld missing top-level vdevs at this stage.",
3457			    (u_longlong_t)spa->spa_missing_tvds_allowed);
3458		}
3459	}
3460	if (error != 0) {
3461		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3462		    error);
3463	}
3464	if (spa->spa_missing_tvds != 0 || error != 0)
3465		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3466
3467	return (error);
3468}
3469
3470/*
3471 * We need to validate the vdev labels against the configuration that
3472 * we have in hand. This function is called twice: first with an untrusted
3473 * config, then with a trusted config. The validation is more strict when the
3474 * config is trusted.
3475 */
3476static int
3477spa_ld_validate_vdevs(spa_t *spa)
3478{
3479	int error = 0;
3480	vdev_t *rvd = spa->spa_root_vdev;
3481
3482	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3483	error = vdev_validate(rvd);
3484	spa_config_exit(spa, SCL_ALL, FTAG);
3485
3486	if (error != 0) {
3487		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3488		return (error);
3489	}
3490
3491	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3492		spa_load_failed(spa, "cannot open vdev tree after invalidating "
3493		    "some vdevs");
3494		vdev_dbgmsg_print_tree(rvd, 2);
3495		return (SET_ERROR(ENXIO));
3496	}
3497
3498	return (0);
3499}
3500
3501static void
3502spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3503{
3504	spa->spa_state = POOL_STATE_ACTIVE;
3505	spa->spa_ubsync = spa->spa_uberblock;
3506	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3507	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3508	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3509	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3510	spa->spa_claim_max_txg = spa->spa_first_txg;
3511	spa->spa_prev_software_version = ub->ub_software_version;
3512}
3513
3514static int
3515spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3516{
3517	vdev_t *rvd = spa->spa_root_vdev;
3518	nvlist_t *label;
3519	uberblock_t *ub = &spa->spa_uberblock;
3520	boolean_t activity_check = B_FALSE;
3521
3522	/*
3523	 * If we are opening the checkpointed state of the pool by
3524	 * rewinding to it, at this point we will have written the
3525	 * checkpointed uberblock to the vdev labels, so searching
3526	 * the labels will find the right uberblock.  However, if
3527	 * we are opening the checkpointed state read-only, we have
3528	 * not modified the labels. Therefore, we must ignore the
3529	 * labels and continue using the spa_uberblock that was set
3530	 * by spa_ld_checkpoint_rewind.
3531	 *
3532	 * Note that it would be fine to ignore the labels when
3533	 * rewinding (opening writeable) as well. However, if we
3534	 * crash just after writing the labels, we will end up
3535	 * searching the labels. Doing so in the common case means
3536	 * that this code path gets exercised normally, rather than
3537	 * just in the edge case.
3538	 */
3539	if (ub->ub_checkpoint_txg != 0 &&
3540	    spa_importing_readonly_checkpoint(spa)) {
3541		spa_ld_select_uberblock_done(spa, ub);
3542		return (0);
3543	}
3544
3545	/*
3546	 * Find the best uberblock.
3547	 */
3548	vdev_uberblock_load(rvd, ub, &label);
3549
3550	/*
3551	 * If we weren't able to find a single valid uberblock, return failure.
3552	 */
3553	if (ub->ub_txg == 0) {
3554		nvlist_free(label);
3555		spa_load_failed(spa, "no valid uberblock found");
3556		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3557	}
3558
3559	if (spa->spa_load_max_txg != UINT64_MAX) {
3560		(void) spa_import_progress_set_max_txg(spa_guid(spa),
3561		    (u_longlong_t)spa->spa_load_max_txg);
3562	}
3563	spa_load_note(spa, "using uberblock with txg=%llu",
3564	    (u_longlong_t)ub->ub_txg);
3565
3566
3567	/*
3568	 * For pools which have the multihost property on determine if the
3569	 * pool is truly inactive and can be safely imported.  Prevent
3570	 * hosts which don't have a hostid set from importing the pool.
3571	 */
3572	activity_check = spa_activity_check_required(spa, ub, label,
3573	    spa->spa_config);
3574	if (activity_check) {
3575		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3576		    spa_get_hostid(spa) == 0) {
3577			nvlist_free(label);
3578			fnvlist_add_uint64(spa->spa_load_info,
3579			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3580			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3581		}
3582
3583		int error = spa_activity_check(spa, ub, spa->spa_config);
3584		if (error) {
3585			nvlist_free(label);
3586			return (error);
3587		}
3588
3589		fnvlist_add_uint64(spa->spa_load_info,
3590		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3591		fnvlist_add_uint64(spa->spa_load_info,
3592		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3593		fnvlist_add_uint16(spa->spa_load_info,
3594		    ZPOOL_CONFIG_MMP_SEQ,
3595		    (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3596	}
3597
3598	/*
3599	 * If the pool has an unsupported version we can't open it.
3600	 */
3601	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3602		nvlist_free(label);
3603		spa_load_failed(spa, "version %llu is not supported",
3604		    (u_longlong_t)ub->ub_version);
3605		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3606	}
3607
3608	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3609		nvlist_t *features;
3610
3611		/*
3612		 * If we weren't able to find what's necessary for reading the
3613		 * MOS in the label, return failure.
3614		 */
3615		if (label == NULL) {
3616			spa_load_failed(spa, "label config unavailable");
3617			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3618			    ENXIO));
3619		}
3620
3621		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3622		    &features) != 0) {
3623			nvlist_free(label);
3624			spa_load_failed(spa, "invalid label: '%s' missing",
3625			    ZPOOL_CONFIG_FEATURES_FOR_READ);
3626			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3627			    ENXIO));
3628		}
3629
3630		/*
3631		 * Update our in-core representation with the definitive values
3632		 * from the label.
3633		 */
3634		nvlist_free(spa->spa_label_features);
3635		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3636	}
3637
3638	nvlist_free(label);
3639
3640	/*
3641	 * Look through entries in the label nvlist's features_for_read. If
3642	 * there is a feature listed there which we don't understand then we
3643	 * cannot open a pool.
3644	 */
3645	if (ub->ub_version >= SPA_VERSION_FEATURES) {
3646		nvlist_t *unsup_feat;
3647
3648		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3649		    0);
3650
3651		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3652		    NULL); nvp != NULL;
3653		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3654			if (!zfeature_is_supported(nvpair_name(nvp))) {
3655				VERIFY(nvlist_add_string(unsup_feat,
3656				    nvpair_name(nvp), "") == 0);
3657			}
3658		}
3659
3660		if (!nvlist_empty(unsup_feat)) {
3661			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3662			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3663			nvlist_free(unsup_feat);
3664			spa_load_failed(spa, "some features are unsupported");
3665			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3666			    ENOTSUP));
3667		}
3668
3669		nvlist_free(unsup_feat);
3670	}
3671
3672	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3673		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3674		spa_try_repair(spa, spa->spa_config);
3675		spa_config_exit(spa, SCL_ALL, FTAG);
3676		nvlist_free(spa->spa_config_splitting);
3677		spa->spa_config_splitting = NULL;
3678	}
3679
3680	/*
3681	 * Initialize internal SPA structures.
3682	 */
3683	spa_ld_select_uberblock_done(spa, ub);
3684
3685	return (0);
3686}
3687
3688static int
3689spa_ld_open_rootbp(spa_t *spa)
3690{
3691	int error = 0;
3692	vdev_t *rvd = spa->spa_root_vdev;
3693
3694	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3695	if (error != 0) {
3696		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3697		    "[error=%d]", error);
3698		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3699	}
3700	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3701
3702	return (0);
3703}
3704
3705static int
3706spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3707    boolean_t reloading)
3708{
3709	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3710	nvlist_t *nv, *mos_config, *policy;
3711	int error = 0, copy_error;
3712	uint64_t healthy_tvds, healthy_tvds_mos;
3713	uint64_t mos_config_txg;
3714
3715	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3716	    != 0)
3717		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3718
3719	/*
3720	 * If we're assembling a pool from a split, the config provided is
3721	 * already trusted so there is nothing to do.
3722	 */
3723	if (type == SPA_IMPORT_ASSEMBLE)
3724		return (0);
3725
3726	healthy_tvds = spa_healthy_core_tvds(spa);
3727
3728	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3729	    != 0) {
3730		spa_load_failed(spa, "unable to retrieve MOS config");
3731		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3732	}
3733
3734	/*
3735	 * If we are doing an open, pool owner wasn't verified yet, thus do
3736	 * the verification here.
3737	 */
3738	if (spa->spa_load_state == SPA_LOAD_OPEN) {
3739		error = spa_verify_host(spa, mos_config);
3740		if (error != 0) {
3741			nvlist_free(mos_config);
3742			return (error);
3743		}
3744	}
3745
3746	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3747
3748	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3749
3750	/*
3751	 * Build a new vdev tree from the trusted config
3752	 */
3753	error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3754	if (error != 0) {
3755		nvlist_free(mos_config);
3756		spa_config_exit(spa, SCL_ALL, FTAG);
3757		spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3758		    error);
3759		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3760	}
3761
3762	/*
3763	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3764	 * obtained by scanning /dev/dsk, then it will have the right vdev
3765	 * paths. We update the trusted MOS config with this information.
3766	 * We first try to copy the paths with vdev_copy_path_strict, which
3767	 * succeeds only when both configs have exactly the same vdev tree.
3768	 * If that fails, we fall back to a more flexible method that has a
3769	 * best effort policy.
3770	 */
3771	copy_error = vdev_copy_path_strict(rvd, mrvd);
3772	if (copy_error != 0 || spa_load_print_vdev_tree) {
3773		spa_load_note(spa, "provided vdev tree:");
3774		vdev_dbgmsg_print_tree(rvd, 2);
3775		spa_load_note(spa, "MOS vdev tree:");
3776		vdev_dbgmsg_print_tree(mrvd, 2);
3777	}
3778	if (copy_error != 0) {
3779		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3780		    "back to vdev_copy_path_relaxed");
3781		vdev_copy_path_relaxed(rvd, mrvd);
3782	}
3783
3784	vdev_close(rvd);
3785	vdev_free(rvd);
3786	spa->spa_root_vdev = mrvd;
3787	rvd = mrvd;
3788	spa_config_exit(spa, SCL_ALL, FTAG);
3789
3790	/*
3791	 * We will use spa_config if we decide to reload the spa or if spa_load
3792	 * fails and we rewind. We must thus regenerate the config using the
3793	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3794	 * pass settings on how to load the pool and is not stored in the MOS.
3795	 * We copy it over to our new, trusted config.
3796	 */
3797	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3798	    ZPOOL_CONFIG_POOL_TXG);
3799	nvlist_free(mos_config);
3800	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3801	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3802	    &policy) == 0)
3803		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3804	spa_config_set(spa, mos_config);
3805	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3806
3807	/*
3808	 * Now that we got the config from the MOS, we should be more strict
3809	 * in checking blkptrs and can make assumptions about the consistency
3810	 * of the vdev tree. spa_trust_config must be set to true before opening
3811	 * vdevs in order for them to be writeable.
3812	 */
3813	spa->spa_trust_config = B_TRUE;
3814
3815	/*
3816	 * Open and validate the new vdev tree
3817	 */
3818	error = spa_ld_open_vdevs(spa);
3819	if (error != 0)
3820		return (error);
3821
3822	error = spa_ld_validate_vdevs(spa);
3823	if (error != 0)
3824		return (error);
3825
3826	if (copy_error != 0 || spa_load_print_vdev_tree) {
3827		spa_load_note(spa, "final vdev tree:");
3828		vdev_dbgmsg_print_tree(rvd, 2);
3829	}
3830
3831	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3832	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3833		/*
3834		 * Sanity check to make sure that we are indeed loading the
3835		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3836		 * in the config provided and they happened to be the only ones
3837		 * to have the latest uberblock, we could involuntarily perform
3838		 * an extreme rewind.
3839		 */
3840		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3841		if (healthy_tvds_mos - healthy_tvds >=
3842		    SPA_SYNC_MIN_VDEVS) {
3843			spa_load_note(spa, "config provided misses too many "
3844			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3845			    (u_longlong_t)healthy_tvds,
3846			    (u_longlong_t)healthy_tvds_mos);
3847			spa_load_note(spa, "vdev tree:");
3848			vdev_dbgmsg_print_tree(rvd, 2);
3849			if (reloading) {
3850				spa_load_failed(spa, "config was already "
3851				    "provided from MOS. Aborting.");
3852				return (spa_vdev_err(rvd,
3853				    VDEV_AUX_CORRUPT_DATA, EIO));
3854			}
3855			spa_load_note(spa, "spa must be reloaded using MOS "
3856			    "config");
3857			return (SET_ERROR(EAGAIN));
3858		}
3859	}
3860
3861	error = spa_check_for_missing_logs(spa);
3862	if (error != 0)
3863		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3864
3865	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3866		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3867		    "guid sum (%llu != %llu)",
3868		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3869		    (u_longlong_t)rvd->vdev_guid_sum);
3870		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3871		    ENXIO));
3872	}
3873
3874	return (0);
3875}
3876
3877static int
3878spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3879{
3880	int error = 0;
3881	vdev_t *rvd = spa->spa_root_vdev;
3882
3883	/*
3884	 * Everything that we read before spa_remove_init() must be stored
3885	 * on concreted vdevs.  Therefore we do this as early as possible.
3886	 */
3887	error = spa_remove_init(spa);
3888	if (error != 0) {
3889		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3890		    error);
3891		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3892	}
3893
3894	/*
3895	 * Retrieve information needed to condense indirect vdev mappings.
3896	 */
3897	error = spa_condense_init(spa);
3898	if (error != 0) {
3899		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3900		    error);
3901		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3902	}
3903
3904	return (0);
3905}
3906
3907static int
3908spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3909{
3910	int error = 0;
3911	vdev_t *rvd = spa->spa_root_vdev;
3912
3913	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3914		boolean_t missing_feat_read = B_FALSE;
3915		nvlist_t *unsup_feat, *enabled_feat;
3916
3917		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3918		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3919			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3920		}
3921
3922		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3923		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3924			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3925		}
3926
3927		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3928		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3929			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3930		}
3931
3932		enabled_feat = fnvlist_alloc();
3933		unsup_feat = fnvlist_alloc();
3934
3935		if (!spa_features_check(spa, B_FALSE,
3936		    unsup_feat, enabled_feat))
3937			missing_feat_read = B_TRUE;
3938
3939		if (spa_writeable(spa) ||
3940		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3941			if (!spa_features_check(spa, B_TRUE,
3942			    unsup_feat, enabled_feat)) {
3943				*missing_feat_writep = B_TRUE;
3944			}
3945		}
3946
3947		fnvlist_add_nvlist(spa->spa_load_info,
3948		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3949
3950		if (!nvlist_empty(unsup_feat)) {
3951			fnvlist_add_nvlist(spa->spa_load_info,
3952			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3953		}
3954
3955		fnvlist_free(enabled_feat);
3956		fnvlist_free(unsup_feat);
3957
3958		if (!missing_feat_read) {
3959			fnvlist_add_boolean(spa->spa_load_info,
3960			    ZPOOL_CONFIG_CAN_RDONLY);
3961		}
3962
3963		/*
3964		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3965		 * twofold: to determine whether the pool is available for
3966		 * import in read-write mode and (if it is not) whether the
3967		 * pool is available for import in read-only mode. If the pool
3968		 * is available for import in read-write mode, it is displayed
3969		 * as available in userland; if it is not available for import
3970		 * in read-only mode, it is displayed as unavailable in
3971		 * userland. If the pool is available for import in read-only
3972		 * mode but not read-write mode, it is displayed as unavailable
3973		 * in userland with a special note that the pool is actually
3974		 * available for open in read-only mode.
3975		 *
3976		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3977		 * missing a feature for write, we must first determine whether
3978		 * the pool can be opened read-only before returning to
3979		 * userland in order to know whether to display the
3980		 * abovementioned note.
3981		 */
3982		if (missing_feat_read || (*missing_feat_writep &&
3983		    spa_writeable(spa))) {
3984			spa_load_failed(spa, "pool uses unsupported features");
3985			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3986			    ENOTSUP));
3987		}
3988
3989		/*
3990		 * Load refcounts for ZFS features from disk into an in-memory
3991		 * cache during SPA initialization.
3992		 */
3993		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3994			uint64_t refcount;
3995
3996			error = feature_get_refcount_from_disk(spa,
3997			    &spa_feature_table[i], &refcount);
3998			if (error == 0) {
3999				spa->spa_feat_refcount_cache[i] = refcount;
4000			} else if (error == ENOTSUP) {
4001				spa->spa_feat_refcount_cache[i] =
4002				    SPA_FEATURE_DISABLED;
4003			} else {
4004				spa_load_failed(spa, "error getting refcount "
4005				    "for feature %s [error=%d]",
4006				    spa_feature_table[i].fi_guid, error);
4007				return (spa_vdev_err(rvd,
4008				    VDEV_AUX_CORRUPT_DATA, EIO));
4009			}
4010		}
4011	}
4012
4013	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4014		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4015		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4016			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4017	}
4018
4019	/*
4020	 * Encryption was added before bookmark_v2, even though bookmark_v2
4021	 * is now a dependency. If this pool has encryption enabled without
4022	 * bookmark_v2, trigger an errata message.
4023	 */
4024	if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4025	    !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4026		spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4027	}
4028
4029	return (0);
4030}
4031
4032static int
4033spa_ld_load_special_directories(spa_t *spa)
4034{
4035	int error = 0;
4036	vdev_t *rvd = spa->spa_root_vdev;
4037
4038	spa->spa_is_initializing = B_TRUE;
4039	error = dsl_pool_open(spa->spa_dsl_pool);
4040	spa->spa_is_initializing = B_FALSE;
4041	if (error != 0) {
4042		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4043		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4044	}
4045
4046	return (0);
4047}
4048
4049static int
4050spa_ld_get_props(spa_t *spa)
4051{
4052	int error = 0;
4053	uint64_t obj;
4054	vdev_t *rvd = spa->spa_root_vdev;
4055
4056	/* Grab the checksum salt from the MOS. */
4057	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4058	    DMU_POOL_CHECKSUM_SALT, 1,
4059	    sizeof (spa->spa_cksum_salt.zcs_bytes),
4060	    spa->spa_cksum_salt.zcs_bytes);
4061	if (error == ENOENT) {
4062		/* Generate a new salt for subsequent use */
4063		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4064		    sizeof (spa->spa_cksum_salt.zcs_bytes));
4065	} else if (error != 0) {
4066		spa_load_failed(spa, "unable to retrieve checksum salt from "
4067		    "MOS [error=%d]", error);
4068		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4069	}
4070
4071	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4072		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4073	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4074	if (error != 0) {
4075		spa_load_failed(spa, "error opening deferred-frees bpobj "
4076		    "[error=%d]", error);
4077		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4078	}
4079
4080	/*
4081	 * Load the bit that tells us to use the new accounting function
4082	 * (raid-z deflation).  If we have an older pool, this will not
4083	 * be present.
4084	 */
4085	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4086	if (error != 0 && error != ENOENT)
4087		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4088
4089	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4090	    &spa->spa_creation_version, B_FALSE);
4091	if (error != 0 && error != ENOENT)
4092		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4093
4094	/*
4095	 * Load the persistent error log.  If we have an older pool, this will
4096	 * not be present.
4097	 */
4098	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4099	    B_FALSE);
4100	if (error != 0 && error != ENOENT)
4101		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4102
4103	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4104	    &spa->spa_errlog_scrub, B_FALSE);
4105	if (error != 0 && error != ENOENT)
4106		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4107
4108	/*
4109	 * Load the livelist deletion field. If a livelist is queued for
4110	 * deletion, indicate that in the spa
4111	 */
4112	error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4113	    &spa->spa_livelists_to_delete, B_FALSE);
4114	if (error != 0 && error != ENOENT)
4115		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4116
4117	/*
4118	 * Load the history object.  If we have an older pool, this
4119	 * will not be present.
4120	 */
4121	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4122	if (error != 0 && error != ENOENT)
4123		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4124
4125	/*
4126	 * Load the per-vdev ZAP map. If we have an older pool, this will not
4127	 * be present; in this case, defer its creation to a later time to
4128	 * avoid dirtying the MOS this early / out of sync context. See
4129	 * spa_sync_config_object.
4130	 */
4131
4132	/* The sentinel is only available in the MOS config. */
4133	nvlist_t *mos_config;
4134	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4135		spa_load_failed(spa, "unable to retrieve MOS config");
4136		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4137	}
4138
4139	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4140	    &spa->spa_all_vdev_zaps, B_FALSE);
4141
4142	if (error == ENOENT) {
4143		VERIFY(!nvlist_exists(mos_config,
4144		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4145		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4146		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4147	} else if (error != 0) {
4148		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4149	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4150		/*
4151		 * An older version of ZFS overwrote the sentinel value, so
4152		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4153		 * destruction to later; see spa_sync_config_object.
4154		 */
4155		spa->spa_avz_action = AVZ_ACTION_DESTROY;
4156		/*
4157		 * We're assuming that no vdevs have had their ZAPs created
4158		 * before this. Better be sure of it.
4159		 */
4160		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4161	}
4162	nvlist_free(mos_config);
4163
4164	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4165
4166	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4167	    B_FALSE);
4168	if (error && error != ENOENT)
4169		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4170
4171	if (error == 0) {
4172		uint64_t autoreplace;
4173
4174		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4175		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4176		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4177		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4178		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4179		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4180		spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4181		spa->spa_autoreplace = (autoreplace != 0);
4182	}
4183
4184	/*
4185	 * If we are importing a pool with missing top-level vdevs,
4186	 * we enforce that the pool doesn't panic or get suspended on
4187	 * error since the likelihood of missing data is extremely high.
4188	 */
4189	if (spa->spa_missing_tvds > 0 &&
4190	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4191	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4192		spa_load_note(spa, "forcing failmode to 'continue' "
4193		    "as some top level vdevs are missing");
4194		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4195	}
4196
4197	return (0);
4198}
4199
4200static int
4201spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4202{
4203	int error = 0;
4204	vdev_t *rvd = spa->spa_root_vdev;
4205
4206	/*
4207	 * If we're assembling the pool from the split-off vdevs of
4208	 * an existing pool, we don't want to attach the spares & cache
4209	 * devices.
4210	 */
4211
4212	/*
4213	 * Load any hot spares for this pool.
4214	 */
4215	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4216	    B_FALSE);
4217	if (error != 0 && error != ENOENT)
4218		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4219	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4220		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4221		if (load_nvlist(spa, spa->spa_spares.sav_object,
4222		    &spa->spa_spares.sav_config) != 0) {
4223			spa_load_failed(spa, "error loading spares nvlist");
4224			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4225		}
4226
4227		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4228		spa_load_spares(spa);
4229		spa_config_exit(spa, SCL_ALL, FTAG);
4230	} else if (error == 0) {
4231		spa->spa_spares.sav_sync = B_TRUE;
4232	}
4233
4234	/*
4235	 * Load any level 2 ARC devices for this pool.
4236	 */
4237	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4238	    &spa->spa_l2cache.sav_object, B_FALSE);
4239	if (error != 0 && error != ENOENT)
4240		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4241	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4242		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4243		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4244		    &spa->spa_l2cache.sav_config) != 0) {
4245			spa_load_failed(spa, "error loading l2cache nvlist");
4246			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4247		}
4248
4249		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4250		spa_load_l2cache(spa);
4251		spa_config_exit(spa, SCL_ALL, FTAG);
4252	} else if (error == 0) {
4253		spa->spa_l2cache.sav_sync = B_TRUE;
4254	}
4255
4256	return (0);
4257}
4258
4259static int
4260spa_ld_load_vdev_metadata(spa_t *spa)
4261{
4262	int error = 0;
4263	vdev_t *rvd = spa->spa_root_vdev;
4264
4265	/*
4266	 * If the 'multihost' property is set, then never allow a pool to
4267	 * be imported when the system hostid is zero.  The exception to
4268	 * this rule is zdb which is always allowed to access pools.
4269	 */
4270	if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4271	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4272		fnvlist_add_uint64(spa->spa_load_info,
4273		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4274		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4275	}
4276
4277	/*
4278	 * If the 'autoreplace' property is set, then post a resource notifying
4279	 * the ZFS DE that it should not issue any faults for unopenable
4280	 * devices.  We also iterate over the vdevs, and post a sysevent for any
4281	 * unopenable vdevs so that the normal autoreplace handler can take
4282	 * over.
4283	 */
4284	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4285		spa_check_removed(spa->spa_root_vdev);
4286		/*
4287		 * For the import case, this is done in spa_import(), because
4288		 * at this point we're using the spare definitions from
4289		 * the MOS config, not necessarily from the userland config.
4290		 */
4291		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4292			spa_aux_check_removed(&spa->spa_spares);
4293			spa_aux_check_removed(&spa->spa_l2cache);
4294		}
4295	}
4296
4297	/*
4298	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4299	 */
4300	error = vdev_load(rvd);
4301	if (error != 0) {
4302		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4303		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4304	}
4305
4306	error = spa_ld_log_spacemaps(spa);
4307	if (error != 0) {
4308		spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4309		    error);
4310		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4311	}
4312
4313	/*
4314	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4315	 */
4316	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4317	vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4318	spa_config_exit(spa, SCL_ALL, FTAG);
4319
4320	return (0);
4321}
4322
4323static int
4324spa_ld_load_dedup_tables(spa_t *spa)
4325{
4326	int error = 0;
4327	vdev_t *rvd = spa->spa_root_vdev;
4328
4329	error = ddt_load(spa);
4330	if (error != 0) {
4331		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4332		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4333	}
4334
4335	return (0);
4336}
4337
4338static int
4339spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4340{
4341	vdev_t *rvd = spa->spa_root_vdev;
4342
4343	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4344		boolean_t missing = spa_check_logs(spa);
4345		if (missing) {
4346			if (spa->spa_missing_tvds != 0) {
4347				spa_load_note(spa, "spa_check_logs failed "
4348				    "so dropping the logs");
4349			} else {
4350				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4351				spa_load_failed(spa, "spa_check_logs failed");
4352				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4353				    ENXIO));
4354			}
4355		}
4356	}
4357
4358	return (0);
4359}
4360
4361static int
4362spa_ld_verify_pool_data(spa_t *spa)
4363{
4364	int error = 0;
4365	vdev_t *rvd = spa->spa_root_vdev;
4366
4367	/*
4368	 * We've successfully opened the pool, verify that we're ready
4369	 * to start pushing transactions.
4370	 */
4371	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4372		error = spa_load_verify(spa);
4373		if (error != 0) {
4374			spa_load_failed(spa, "spa_load_verify failed "
4375			    "[error=%d]", error);
4376			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4377			    error));
4378		}
4379	}
4380
4381	return (0);
4382}
4383
4384static void
4385spa_ld_claim_log_blocks(spa_t *spa)
4386{
4387	dmu_tx_t *tx;
4388	dsl_pool_t *dp = spa_get_dsl(spa);
4389
4390	/*
4391	 * Claim log blocks that haven't been committed yet.
4392	 * This must all happen in a single txg.
4393	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4394	 * invoked from zil_claim_log_block()'s i/o done callback.
4395	 * Price of rollback is that we abandon the log.
4396	 */
4397	spa->spa_claiming = B_TRUE;
4398
4399	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4400	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4401	    zil_claim, tx, DS_FIND_CHILDREN);
4402	dmu_tx_commit(tx);
4403
4404	spa->spa_claiming = B_FALSE;
4405
4406	spa_set_log_state(spa, SPA_LOG_GOOD);
4407}
4408
4409static void
4410spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4411    boolean_t update_config_cache)
4412{
4413	vdev_t *rvd = spa->spa_root_vdev;
4414	int need_update = B_FALSE;
4415
4416	/*
4417	 * If the config cache is stale, or we have uninitialized
4418	 * metaslabs (see spa_vdev_add()), then update the config.
4419	 *
4420	 * If this is a verbatim import, trust the current
4421	 * in-core spa_config and update the disk labels.
4422	 */
4423	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4424	    spa->spa_load_state == SPA_LOAD_IMPORT ||
4425	    spa->spa_load_state == SPA_LOAD_RECOVER ||
4426	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4427		need_update = B_TRUE;
4428
4429	for (int c = 0; c < rvd->vdev_children; c++)
4430		if (rvd->vdev_child[c]->vdev_ms_array == 0)
4431			need_update = B_TRUE;
4432
4433	/*
4434	 * Update the config cache asynchronously in case we're the
4435	 * root pool, in which case the config cache isn't writable yet.
4436	 */
4437	if (need_update)
4438		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4439}
4440
4441static void
4442spa_ld_prepare_for_reload(spa_t *spa)
4443{
4444	spa_mode_t mode = spa->spa_mode;
4445	int async_suspended = spa->spa_async_suspended;
4446
4447	spa_unload(spa);
4448	spa_deactivate(spa);
4449	spa_activate(spa, mode);
4450
4451	/*
4452	 * We save the value of spa_async_suspended as it gets reset to 0 by
4453	 * spa_unload(). We want to restore it back to the original value before
4454	 * returning as we might be calling spa_async_resume() later.
4455	 */
4456	spa->spa_async_suspended = async_suspended;
4457}
4458
4459static int
4460spa_ld_read_checkpoint_txg(spa_t *spa)
4461{
4462	uberblock_t checkpoint;
4463	int error = 0;
4464
4465	ASSERT0(spa->spa_checkpoint_txg);
4466	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4467
4468	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4469	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4470	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4471
4472	if (error == ENOENT)
4473		return (0);
4474
4475	if (error != 0)
4476		return (error);
4477
4478	ASSERT3U(checkpoint.ub_txg, !=, 0);
4479	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4480	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4481	spa->spa_checkpoint_txg = checkpoint.ub_txg;
4482	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4483
4484	return (0);
4485}
4486
4487static int
4488spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4489{
4490	int error = 0;
4491
4492	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4493	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4494
4495	/*
4496	 * Never trust the config that is provided unless we are assembling
4497	 * a pool following a split.
4498	 * This means don't trust blkptrs and the vdev tree in general. This
4499	 * also effectively puts the spa in read-only mode since
4500	 * spa_writeable() checks for spa_trust_config to be true.
4501	 * We will later load a trusted config from the MOS.
4502	 */
4503	if (type != SPA_IMPORT_ASSEMBLE)
4504		spa->spa_trust_config = B_FALSE;
4505
4506	/*
4507	 * Parse the config provided to create a vdev tree.
4508	 */
4509	error = spa_ld_parse_config(spa, type);
4510	if (error != 0)
4511		return (error);
4512
4513	spa_import_progress_add(spa);
4514
4515	/*
4516	 * Now that we have the vdev tree, try to open each vdev. This involves
4517	 * opening the underlying physical device, retrieving its geometry and
4518	 * probing the vdev with a dummy I/O. The state of each vdev will be set
4519	 * based on the success of those operations. After this we'll be ready
4520	 * to read from the vdevs.
4521	 */
4522	error = spa_ld_open_vdevs(spa);
4523	if (error != 0)
4524		return (error);
4525
4526	/*
4527	 * Read the label of each vdev and make sure that the GUIDs stored
4528	 * there match the GUIDs in the config provided.
4529	 * If we're assembling a new pool that's been split off from an
4530	 * existing pool, the labels haven't yet been updated so we skip
4531	 * validation for now.
4532	 */
4533	if (type != SPA_IMPORT_ASSEMBLE) {
4534		error = spa_ld_validate_vdevs(spa);
4535		if (error != 0)
4536			return (error);
4537	}
4538
4539	/*
4540	 * Read all vdev labels to find the best uberblock (i.e. latest,
4541	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4542	 * get the list of features required to read blkptrs in the MOS from
4543	 * the vdev label with the best uberblock and verify that our version
4544	 * of zfs supports them all.
4545	 */
4546	error = spa_ld_select_uberblock(spa, type);
4547	if (error != 0)
4548		return (error);
4549
4550	/*
4551	 * Pass that uberblock to the dsl_pool layer which will open the root
4552	 * blkptr. This blkptr points to the latest version of the MOS and will
4553	 * allow us to read its contents.
4554	 */
4555	error = spa_ld_open_rootbp(spa);
4556	if (error != 0)
4557		return (error);
4558
4559	return (0);
4560}
4561
4562static int
4563spa_ld_checkpoint_rewind(spa_t *spa)
4564{
4565	uberblock_t checkpoint;
4566	int error = 0;
4567
4568	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4569	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4570
4571	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4572	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4573	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4574
4575	if (error != 0) {
4576		spa_load_failed(spa, "unable to retrieve checkpointed "
4577		    "uberblock from the MOS config [error=%d]", error);
4578
4579		if (error == ENOENT)
4580			error = ZFS_ERR_NO_CHECKPOINT;
4581
4582		return (error);
4583	}
4584
4585	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4586	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4587
4588	/*
4589	 * We need to update the txg and timestamp of the checkpointed
4590	 * uberblock to be higher than the latest one. This ensures that
4591	 * the checkpointed uberblock is selected if we were to close and
4592	 * reopen the pool right after we've written it in the vdev labels.
4593	 * (also see block comment in vdev_uberblock_compare)
4594	 */
4595	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4596	checkpoint.ub_timestamp = gethrestime_sec();
4597
4598	/*
4599	 * Set current uberblock to be the checkpointed uberblock.
4600	 */
4601	spa->spa_uberblock = checkpoint;
4602
4603	/*
4604	 * If we are doing a normal rewind, then the pool is open for
4605	 * writing and we sync the "updated" checkpointed uberblock to
4606	 * disk. Once this is done, we've basically rewound the whole
4607	 * pool and there is no way back.
4608	 *
4609	 * There are cases when we don't want to attempt and sync the
4610	 * checkpointed uberblock to disk because we are opening a
4611	 * pool as read-only. Specifically, verifying the checkpointed
4612	 * state with zdb, and importing the checkpointed state to get
4613	 * a "preview" of its content.
4614	 */
4615	if (spa_writeable(spa)) {
4616		vdev_t *rvd = spa->spa_root_vdev;
4617
4618		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4619		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4620		int svdcount = 0;
4621		int children = rvd->vdev_children;
4622		int c0 = spa_get_random(children);
4623
4624		for (int c = 0; c < children; c++) {
4625			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4626
4627			/* Stop when revisiting the first vdev */
4628			if (c > 0 && svd[0] == vd)
4629				break;
4630
4631			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4632			    !vdev_is_concrete(vd))
4633				continue;
4634
4635			svd[svdcount++] = vd;
4636			if (svdcount == SPA_SYNC_MIN_VDEVS)
4637				break;
4638		}
4639		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4640		if (error == 0)
4641			spa->spa_last_synced_guid = rvd->vdev_guid;
4642		spa_config_exit(spa, SCL_ALL, FTAG);
4643
4644		if (error != 0) {
4645			spa_load_failed(spa, "failed to write checkpointed "
4646			    "uberblock to the vdev labels [error=%d]", error);
4647			return (error);
4648		}
4649	}
4650
4651	return (0);
4652}
4653
4654static int
4655spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4656    boolean_t *update_config_cache)
4657{
4658	int error;
4659
4660	/*
4661	 * Parse the config for pool, open and validate vdevs,
4662	 * select an uberblock, and use that uberblock to open
4663	 * the MOS.
4664	 */
4665	error = spa_ld_mos_init(spa, type);
4666	if (error != 0)
4667		return (error);
4668
4669	/*
4670	 * Retrieve the trusted config stored in the MOS and use it to create
4671	 * a new, exact version of the vdev tree, then reopen all vdevs.
4672	 */
4673	error = spa_ld_trusted_config(spa, type, B_FALSE);
4674	if (error == EAGAIN) {
4675		if (update_config_cache != NULL)
4676			*update_config_cache = B_TRUE;
4677
4678		/*
4679		 * Redo the loading process with the trusted config if it is
4680		 * too different from the untrusted config.
4681		 */
4682		spa_ld_prepare_for_reload(spa);
4683		spa_load_note(spa, "RELOADING");
4684		error = spa_ld_mos_init(spa, type);
4685		if (error != 0)
4686			return (error);
4687
4688		error = spa_ld_trusted_config(spa, type, B_TRUE);
4689		if (error != 0)
4690			return (error);
4691
4692	} else if (error != 0) {
4693		return (error);
4694	}
4695
4696	return (0);
4697}
4698
4699/*
4700 * Load an existing storage pool, using the config provided. This config
4701 * describes which vdevs are part of the pool and is later validated against
4702 * partial configs present in each vdev's label and an entire copy of the
4703 * config stored in the MOS.
4704 */
4705static int
4706spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4707{
4708	int error = 0;
4709	boolean_t missing_feat_write = B_FALSE;
4710	boolean_t checkpoint_rewind =
4711	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4712	boolean_t update_config_cache = B_FALSE;
4713
4714	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4715	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4716
4717	spa_load_note(spa, "LOADING");
4718
4719	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4720	if (error != 0)
4721		return (error);
4722
4723	/*
4724	 * If we are rewinding to the checkpoint then we need to repeat
4725	 * everything we've done so far in this function but this time
4726	 * selecting the checkpointed uberblock and using that to open
4727	 * the MOS.
4728	 */
4729	if (checkpoint_rewind) {
4730		/*
4731		 * If we are rewinding to the checkpoint update config cache
4732		 * anyway.
4733		 */
4734		update_config_cache = B_TRUE;
4735
4736		/*
4737		 * Extract the checkpointed uberblock from the current MOS
4738		 * and use this as the pool's uberblock from now on. If the
4739		 * pool is imported as writeable we also write the checkpoint
4740		 * uberblock to the labels, making the rewind permanent.
4741		 */
4742		error = spa_ld_checkpoint_rewind(spa);
4743		if (error != 0)
4744			return (error);
4745
4746		/*
4747		 * Redo the loading process again with the
4748		 * checkpointed uberblock.
4749		 */
4750		spa_ld_prepare_for_reload(spa);
4751		spa_load_note(spa, "LOADING checkpointed uberblock");
4752		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4753		if (error != 0)
4754			return (error);
4755	}
4756
4757	/*
4758	 * Retrieve the checkpoint txg if the pool has a checkpoint.
4759	 */
4760	error = spa_ld_read_checkpoint_txg(spa);
4761	if (error != 0)
4762		return (error);
4763
4764	/*
4765	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4766	 * from the pool and their contents were re-mapped to other vdevs. Note
4767	 * that everything that we read before this step must have been
4768	 * rewritten on concrete vdevs after the last device removal was
4769	 * initiated. Otherwise we could be reading from indirect vdevs before
4770	 * we have loaded their mappings.
4771	 */
4772	error = spa_ld_open_indirect_vdev_metadata(spa);
4773	if (error != 0)
4774		return (error);
4775
4776	/*
4777	 * Retrieve the full list of active features from the MOS and check if
4778	 * they are all supported.
4779	 */
4780	error = spa_ld_check_features(spa, &missing_feat_write);
4781	if (error != 0)
4782		return (error);
4783
4784	/*
4785	 * Load several special directories from the MOS needed by the dsl_pool
4786	 * layer.
4787	 */
4788	error = spa_ld_load_special_directories(spa);
4789	if (error != 0)
4790		return (error);
4791
4792	/*
4793	 * Retrieve pool properties from the MOS.
4794	 */
4795	error = spa_ld_get_props(spa);
4796	if (error != 0)
4797		return (error);
4798
4799	/*
4800	 * Retrieve the list of auxiliary devices - cache devices and spares -
4801	 * and open them.
4802	 */
4803	error = spa_ld_open_aux_vdevs(spa, type);
4804	if (error != 0)
4805		return (error);
4806
4807	/*
4808	 * Load the metadata for all vdevs. Also check if unopenable devices
4809	 * should be autoreplaced.
4810	 */
4811	error = spa_ld_load_vdev_metadata(spa);
4812	if (error != 0)
4813		return (error);
4814
4815	error = spa_ld_load_dedup_tables(spa);
4816	if (error != 0)
4817		return (error);
4818
4819	/*
4820	 * Verify the logs now to make sure we don't have any unexpected errors
4821	 * when we claim log blocks later.
4822	 */
4823	error = spa_ld_verify_logs(spa, type, ereport);
4824	if (error != 0)
4825		return (error);
4826
4827	if (missing_feat_write) {
4828		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4829
4830		/*
4831		 * At this point, we know that we can open the pool in
4832		 * read-only mode but not read-write mode. We now have enough
4833		 * information and can return to userland.
4834		 */
4835		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4836		    ENOTSUP));
4837	}
4838
4839	/*
4840	 * Traverse the last txgs to make sure the pool was left off in a safe
4841	 * state. When performing an extreme rewind, we verify the whole pool,
4842	 * which can take a very long time.
4843	 */
4844	error = spa_ld_verify_pool_data(spa);
4845	if (error != 0)
4846		return (error);
4847
4848	/*
4849	 * Calculate the deflated space for the pool. This must be done before
4850	 * we write anything to the pool because we'd need to update the space
4851	 * accounting using the deflated sizes.
4852	 */
4853	spa_update_dspace(spa);
4854
4855	/*
4856	 * We have now retrieved all the information we needed to open the
4857	 * pool. If we are importing the pool in read-write mode, a few
4858	 * additional steps must be performed to finish the import.
4859	 */
4860	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4861	    spa->spa_load_max_txg == UINT64_MAX)) {
4862		uint64_t config_cache_txg = spa->spa_config_txg;
4863
4864		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4865
4866		/*
4867		 * In case of a checkpoint rewind, log the original txg
4868		 * of the checkpointed uberblock.
4869		 */
4870		if (checkpoint_rewind) {
4871			spa_history_log_internal(spa, "checkpoint rewind",
4872			    NULL, "rewound state to txg=%llu",
4873			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4874		}
4875
4876		/*
4877		 * Traverse the ZIL and claim all blocks.
4878		 */
4879		spa_ld_claim_log_blocks(spa);
4880
4881		/*
4882		 * Kick-off the syncing thread.
4883		 */
4884		spa->spa_sync_on = B_TRUE;
4885		txg_sync_start(spa->spa_dsl_pool);
4886		mmp_thread_start(spa);
4887
4888		/*
4889		 * Wait for all claims to sync.  We sync up to the highest
4890		 * claimed log block birth time so that claimed log blocks
4891		 * don't appear to be from the future.  spa_claim_max_txg
4892		 * will have been set for us by ZIL traversal operations
4893		 * performed above.
4894		 */
4895		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4896
4897		/*
4898		 * Check if we need to request an update of the config. On the
4899		 * next sync, we would update the config stored in vdev labels
4900		 * and the cachefile (by default /etc/zfs/zpool.cache).
4901		 */
4902		spa_ld_check_for_config_update(spa, config_cache_txg,
4903		    update_config_cache);
4904
4905		/*
4906		 * Check if a rebuild was in progress and if so resume it.
4907		 * Then check all DTLs to see if anything needs resilvering.
4908		 * The resilver will be deferred if a rebuild was started.
4909		 */
4910		if (vdev_rebuild_active(spa->spa_root_vdev)) {
4911			vdev_rebuild_restart(spa);
4912		} else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4913		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4914			spa_async_request(spa, SPA_ASYNC_RESILVER);
4915		}
4916
4917		/*
4918		 * Log the fact that we booted up (so that we can detect if
4919		 * we rebooted in the middle of an operation).
4920		 */
4921		spa_history_log_version(spa, "open", NULL);
4922
4923		spa_restart_removal(spa);
4924		spa_spawn_aux_threads(spa);
4925
4926		/*
4927		 * Delete any inconsistent datasets.
4928		 *
4929		 * Note:
4930		 * Since we may be issuing deletes for clones here,
4931		 * we make sure to do so after we've spawned all the
4932		 * auxiliary threads above (from which the livelist
4933		 * deletion zthr is part of).
4934		 */
4935		(void) dmu_objset_find(spa_name(spa),
4936		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4937
4938		/*
4939		 * Clean up any stale temporary dataset userrefs.
4940		 */
4941		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4942
4943		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4944		vdev_initialize_restart(spa->spa_root_vdev);
4945		vdev_trim_restart(spa->spa_root_vdev);
4946		vdev_autotrim_restart(spa);
4947		spa_config_exit(spa, SCL_CONFIG, FTAG);
4948	}
4949
4950	spa_import_progress_remove(spa_guid(spa));
4951	spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4952
4953	spa_load_note(spa, "LOADED");
4954
4955	return (0);
4956}
4957
4958static int
4959spa_load_retry(spa_t *spa, spa_load_state_t state)
4960{
4961	spa_mode_t mode = spa->spa_mode;
4962
4963	spa_unload(spa);
4964	spa_deactivate(spa);
4965
4966	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4967
4968	spa_activate(spa, mode);
4969	spa_async_suspend(spa);
4970
4971	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4972	    (u_longlong_t)spa->spa_load_max_txg);
4973
4974	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4975}
4976
4977/*
4978 * If spa_load() fails this function will try loading prior txg's. If
4979 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4980 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4981 * function will not rewind the pool and will return the same error as
4982 * spa_load().
4983 */
4984static int
4985spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4986    int rewind_flags)
4987{
4988	nvlist_t *loadinfo = NULL;
4989	nvlist_t *config = NULL;
4990	int load_error, rewind_error;
4991	uint64_t safe_rewind_txg;
4992	uint64_t min_txg;
4993
4994	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4995		spa->spa_load_max_txg = spa->spa_load_txg;
4996		spa_set_log_state(spa, SPA_LOG_CLEAR);
4997	} else {
4998		spa->spa_load_max_txg = max_request;
4999		if (max_request != UINT64_MAX)
5000			spa->spa_extreme_rewind = B_TRUE;
5001	}
5002
5003	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5004	if (load_error == 0)
5005		return (0);
5006	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5007		/*
5008		 * When attempting checkpoint-rewind on a pool with no
5009		 * checkpoint, we should not attempt to load uberblocks
5010		 * from previous txgs when spa_load fails.
5011		 */
5012		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5013		spa_import_progress_remove(spa_guid(spa));
5014		return (load_error);
5015	}
5016
5017	if (spa->spa_root_vdev != NULL)
5018		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5019
5020	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5021	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5022
5023	if (rewind_flags & ZPOOL_NEVER_REWIND) {
5024		nvlist_free(config);
5025		spa_import_progress_remove(spa_guid(spa));
5026		return (load_error);
5027	}
5028
5029	if (state == SPA_LOAD_RECOVER) {
5030		/* Price of rolling back is discarding txgs, including log */
5031		spa_set_log_state(spa, SPA_LOG_CLEAR);
5032	} else {
5033		/*
5034		 * If we aren't rolling back save the load info from our first
5035		 * import attempt so that we can restore it after attempting
5036		 * to rewind.
5037		 */
5038		loadinfo = spa->spa_load_info;
5039		spa->spa_load_info = fnvlist_alloc();
5040	}
5041
5042	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5043	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5044	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5045	    TXG_INITIAL : safe_rewind_txg;
5046
5047	/*
5048	 * Continue as long as we're finding errors, we're still within
5049	 * the acceptable rewind range, and we're still finding uberblocks
5050	 */
5051	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5052	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5053		if (spa->spa_load_max_txg < safe_rewind_txg)
5054			spa->spa_extreme_rewind = B_TRUE;
5055		rewind_error = spa_load_retry(spa, state);
5056	}
5057
5058	spa->spa_extreme_rewind = B_FALSE;
5059	spa->spa_load_max_txg = UINT64_MAX;
5060
5061	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5062		spa_config_set(spa, config);
5063	else
5064		nvlist_free(config);
5065
5066	if (state == SPA_LOAD_RECOVER) {
5067		ASSERT3P(loadinfo, ==, NULL);
5068		spa_import_progress_remove(spa_guid(spa));
5069		return (rewind_error);
5070	} else {
5071		/* Store the rewind info as part of the initial load info */
5072		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5073		    spa->spa_load_info);
5074
5075		/* Restore the initial load info */
5076		fnvlist_free(spa->spa_load_info);
5077		spa->spa_load_info = loadinfo;
5078
5079		spa_import_progress_remove(spa_guid(spa));
5080		return (load_error);
5081	}
5082}
5083
5084/*
5085 * Pool Open/Import
5086 *
5087 * The import case is identical to an open except that the configuration is sent
5088 * down from userland, instead of grabbed from the configuration cache.  For the
5089 * case of an open, the pool configuration will exist in the
5090 * POOL_STATE_UNINITIALIZED state.
5091 *
5092 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5093 * the same time open the pool, without having to keep around the spa_t in some
5094 * ambiguous state.
5095 */
5096static int
5097spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5098    nvlist_t **config)
5099{
5100	spa_t *spa;
5101	spa_load_state_t state = SPA_LOAD_OPEN;
5102	int error;
5103	int locked = B_FALSE;
5104	int firstopen = B_FALSE;
5105
5106	*spapp = NULL;
5107
5108	/*
5109	 * As disgusting as this is, we need to support recursive calls to this
5110	 * function because dsl_dir_open() is called during spa_load(), and ends
5111	 * up calling spa_open() again.  The real fix is to figure out how to
5112	 * avoid dsl_dir_open() calling this in the first place.
5113	 */
5114	if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5115		mutex_enter(&spa_namespace_lock);
5116		locked = B_TRUE;
5117	}
5118
5119	if ((spa = spa_lookup(pool)) == NULL) {
5120		if (locked)
5121			mutex_exit(&spa_namespace_lock);
5122		return (SET_ERROR(ENOENT));
5123	}
5124
5125	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5126		zpool_load_policy_t policy;
5127
5128		firstopen = B_TRUE;
5129
5130		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5131		    &policy);
5132		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5133			state = SPA_LOAD_RECOVER;
5134
5135		spa_activate(spa, spa_mode_global);
5136
5137		if (state != SPA_LOAD_RECOVER)
5138			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5139		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5140
5141		zfs_dbgmsg("spa_open_common: opening %s", pool);
5142		error = spa_load_best(spa, state, policy.zlp_txg,
5143		    policy.zlp_rewind);
5144
5145		if (error == EBADF) {
5146			/*
5147			 * If vdev_validate() returns failure (indicated by
5148			 * EBADF), it indicates that one of the vdevs indicates
5149			 * that the pool has been exported or destroyed.  If
5150			 * this is the case, the config cache is out of sync and
5151			 * we should remove the pool from the namespace.
5152			 */
5153			spa_unload(spa);
5154			spa_deactivate(spa);
5155			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5156			spa_remove(spa);
5157			if (locked)
5158				mutex_exit(&spa_namespace_lock);
5159			return (SET_ERROR(ENOENT));
5160		}
5161
5162		if (error) {
5163			/*
5164			 * We can't open the pool, but we still have useful
5165			 * information: the state of each vdev after the
5166			 * attempted vdev_open().  Return this to the user.
5167			 */
5168			if (config != NULL && spa->spa_config) {
5169				VERIFY(nvlist_dup(spa->spa_config, config,
5170				    KM_SLEEP) == 0);
5171				VERIFY(nvlist_add_nvlist(*config,
5172				    ZPOOL_CONFIG_LOAD_INFO,
5173				    spa->spa_load_info) == 0);
5174			}
5175			spa_unload(spa);
5176			spa_deactivate(spa);
5177			spa->spa_last_open_failed = error;
5178			if (locked)
5179				mutex_exit(&spa_namespace_lock);
5180			*spapp = NULL;
5181			return (error);
5182		}
5183	}
5184
5185	spa_open_ref(spa, tag);
5186
5187	if (config != NULL)
5188		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5189
5190	/*
5191	 * If we've recovered the pool, pass back any information we
5192	 * gathered while doing the load.
5193	 */
5194	if (state == SPA_LOAD_RECOVER) {
5195		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5196		    spa->spa_load_info) == 0);
5197	}
5198
5199	if (locked) {
5200		spa->spa_last_open_failed = 0;
5201		spa->spa_last_ubsync_txg = 0;
5202		spa->spa_load_txg = 0;
5203		mutex_exit(&spa_namespace_lock);
5204	}
5205
5206	if (firstopen)
5207		zvol_create_minors_recursive(spa_name(spa));
5208
5209	*spapp = spa;
5210
5211	return (0);
5212}
5213
5214int
5215spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5216    nvlist_t **config)
5217{
5218	return (spa_open_common(name, spapp, tag, policy, config));
5219}
5220
5221int
5222spa_open(const char *name, spa_t **spapp, void *tag)
5223{
5224	return (spa_open_common(name, spapp, tag, NULL, NULL));
5225}
5226
5227/*
5228 * Lookup the given spa_t, incrementing the inject count in the process,
5229 * preventing it from being exported or destroyed.
5230 */
5231spa_t *
5232spa_inject_addref(char *name)
5233{
5234	spa_t *spa;
5235
5236	mutex_enter(&spa_namespace_lock);
5237	if ((spa = spa_lookup(name)) == NULL) {
5238		mutex_exit(&spa_namespace_lock);
5239		return (NULL);
5240	}
5241	spa->spa_inject_ref++;
5242	mutex_exit(&spa_namespace_lock);
5243
5244	return (spa);
5245}
5246
5247void
5248spa_inject_delref(spa_t *spa)
5249{
5250	mutex_enter(&spa_namespace_lock);
5251	spa->spa_inject_ref--;
5252	mutex_exit(&spa_namespace_lock);
5253}
5254
5255/*
5256 * Add spares device information to the nvlist.
5257 */
5258static void
5259spa_add_spares(spa_t *spa, nvlist_t *config)
5260{
5261	nvlist_t **spares;
5262	uint_t i, nspares;
5263	nvlist_t *nvroot;
5264	uint64_t guid;
5265	vdev_stat_t *vs;
5266	uint_t vsc;
5267	uint64_t pool;
5268
5269	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5270
5271	if (spa->spa_spares.sav_count == 0)
5272		return;
5273
5274	VERIFY(nvlist_lookup_nvlist(config,
5275	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5276	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5277	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5278	if (nspares != 0) {
5279		VERIFY(nvlist_add_nvlist_array(nvroot,
5280		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5281		VERIFY(nvlist_lookup_nvlist_array(nvroot,
5282		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5283
5284		/*
5285		 * Go through and find any spares which have since been
5286		 * repurposed as an active spare.  If this is the case, update
5287		 * their status appropriately.
5288		 */
5289		for (i = 0; i < nspares; i++) {
5290			VERIFY(nvlist_lookup_uint64(spares[i],
5291			    ZPOOL_CONFIG_GUID, &guid) == 0);
5292			if (spa_spare_exists(guid, &pool, NULL) &&
5293			    pool != 0ULL) {
5294				VERIFY(nvlist_lookup_uint64_array(
5295				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
5296				    (uint64_t **)&vs, &vsc) == 0);
5297				vs->vs_state = VDEV_STATE_CANT_OPEN;
5298				vs->vs_aux = VDEV_AUX_SPARED;
5299			}
5300		}
5301	}
5302}
5303
5304/*
5305 * Add l2cache device information to the nvlist, including vdev stats.
5306 */
5307static void
5308spa_add_l2cache(spa_t *spa, nvlist_t *config)
5309{
5310	nvlist_t **l2cache;
5311	uint_t i, j, nl2cache;
5312	nvlist_t *nvroot;
5313	uint64_t guid;
5314	vdev_t *vd;
5315	vdev_stat_t *vs;
5316	uint_t vsc;
5317
5318	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5319
5320	if (spa->spa_l2cache.sav_count == 0)
5321		return;
5322
5323	VERIFY(nvlist_lookup_nvlist(config,
5324	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5325	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5326	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5327	if (nl2cache != 0) {
5328		VERIFY(nvlist_add_nvlist_array(nvroot,
5329		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5330		VERIFY(nvlist_lookup_nvlist_array(nvroot,
5331		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5332
5333		/*
5334		 * Update level 2 cache device stats.
5335		 */
5336
5337		for (i = 0; i < nl2cache; i++) {
5338			VERIFY(nvlist_lookup_uint64(l2cache[i],
5339			    ZPOOL_CONFIG_GUID, &guid) == 0);
5340
5341			vd = NULL;
5342			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5343				if (guid ==
5344				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5345					vd = spa->spa_l2cache.sav_vdevs[j];
5346					break;
5347				}
5348			}
5349			ASSERT(vd != NULL);
5350
5351			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
5352			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
5353			    == 0);
5354			vdev_get_stats(vd, vs);
5355			vdev_config_generate_stats(vd, l2cache[i]);
5356
5357		}
5358	}
5359}
5360
5361static void
5362spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5363{
5364	zap_cursor_t zc;
5365	zap_attribute_t za;
5366
5367	if (spa->spa_feat_for_read_obj != 0) {
5368		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5369		    spa->spa_feat_for_read_obj);
5370		    zap_cursor_retrieve(&zc, &za) == 0;
5371		    zap_cursor_advance(&zc)) {
5372			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5373			    za.za_num_integers == 1);
5374			VERIFY0(nvlist_add_uint64(features, za.za_name,
5375			    za.za_first_integer));
5376		}
5377		zap_cursor_fini(&zc);
5378	}
5379
5380	if (spa->spa_feat_for_write_obj != 0) {
5381		for (zap_cursor_init(&zc, spa->spa_meta_objset,
5382		    spa->spa_feat_for_write_obj);
5383		    zap_cursor_retrieve(&zc, &za) == 0;
5384		    zap_cursor_advance(&zc)) {
5385			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5386			    za.za_num_integers == 1);
5387			VERIFY0(nvlist_add_uint64(features, za.za_name,
5388			    za.za_first_integer));
5389		}
5390		zap_cursor_fini(&zc);
5391	}
5392}
5393
5394static void
5395spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5396{
5397	int i;
5398
5399	for (i = 0; i < SPA_FEATURES; i++) {
5400		zfeature_info_t feature = spa_feature_table[i];
5401		uint64_t refcount;
5402
5403		if (feature_get_refcount(spa, &feature, &refcount) != 0)
5404			continue;
5405
5406		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5407	}
5408}
5409
5410/*
5411 * Store a list of pool features and their reference counts in the
5412 * config.
5413 *
5414 * The first time this is called on a spa, allocate a new nvlist, fetch
5415 * the pool features and reference counts from disk, then save the list
5416 * in the spa. In subsequent calls on the same spa use the saved nvlist
5417 * and refresh its values from the cached reference counts.  This
5418 * ensures we don't block here on I/O on a suspended pool so 'zpool
5419 * clear' can resume the pool.
5420 */
5421static void
5422spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5423{
5424	nvlist_t *features;
5425
5426	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5427
5428	mutex_enter(&spa->spa_feat_stats_lock);
5429	features = spa->spa_feat_stats;
5430
5431	if (features != NULL) {
5432		spa_feature_stats_from_cache(spa, features);
5433	} else {
5434		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5435		spa->spa_feat_stats = features;
5436		spa_feature_stats_from_disk(spa, features);
5437	}
5438
5439	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5440	    features));
5441
5442	mutex_exit(&spa->spa_feat_stats_lock);
5443}
5444
5445int
5446spa_get_stats(const char *name, nvlist_t **config,
5447    char *altroot, size_t buflen)
5448{
5449	int error;
5450	spa_t *spa;
5451
5452	*config = NULL;
5453	error = spa_open_common(name, &spa, FTAG, NULL, config);
5454
5455	if (spa != NULL) {
5456		/*
5457		 * This still leaves a window of inconsistency where the spares
5458		 * or l2cache devices could change and the config would be
5459		 * self-inconsistent.
5460		 */
5461		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5462
5463		if (*config != NULL) {
5464			uint64_t loadtimes[2];
5465
5466			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5467			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5468			VERIFY(nvlist_add_uint64_array(*config,
5469			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
5470
5471			VERIFY(nvlist_add_uint64(*config,
5472			    ZPOOL_CONFIG_ERRCOUNT,
5473			    spa_get_errlog_size(spa)) == 0);
5474
5475			if (spa_suspended(spa)) {
5476				VERIFY(nvlist_add_uint64(*config,
5477				    ZPOOL_CONFIG_SUSPENDED,
5478				    spa->spa_failmode) == 0);
5479				VERIFY(nvlist_add_uint64(*config,
5480				    ZPOOL_CONFIG_SUSPENDED_REASON,
5481				    spa->spa_suspended) == 0);
5482			}
5483
5484			spa_add_spares(spa, *config);
5485			spa_add_l2cache(spa, *config);
5486			spa_add_feature_stats(spa, *config);
5487		}
5488	}
5489
5490	/*
5491	 * We want to get the alternate root even for faulted pools, so we cheat
5492	 * and call spa_lookup() directly.
5493	 */
5494	if (altroot) {
5495		if (spa == NULL) {
5496			mutex_enter(&spa_namespace_lock);
5497			spa = spa_lookup(name);
5498			if (spa)
5499				spa_altroot(spa, altroot, buflen);
5500			else
5501				altroot[0] = '\0';
5502			spa = NULL;
5503			mutex_exit(&spa_namespace_lock);
5504		} else {
5505			spa_altroot(spa, altroot, buflen);
5506		}
5507	}
5508
5509	if (spa != NULL) {
5510		spa_config_exit(spa, SCL_CONFIG, FTAG);
5511		spa_close(spa, FTAG);
5512	}
5513
5514	return (error);
5515}
5516
5517/*
5518 * Validate that the auxiliary device array is well formed.  We must have an
5519 * array of nvlists, each which describes a valid leaf vdev.  If this is an
5520 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5521 * specified, as long as they are well-formed.
5522 */
5523static int
5524spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5525    spa_aux_vdev_t *sav, const char *config, uint64_t version,
5526    vdev_labeltype_t label)
5527{
5528	nvlist_t **dev;
5529	uint_t i, ndev;
5530	vdev_t *vd;
5531	int error;
5532
5533	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5534
5535	/*
5536	 * It's acceptable to have no devs specified.
5537	 */
5538	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5539		return (0);
5540
5541	if (ndev == 0)
5542		return (SET_ERROR(EINVAL));
5543
5544	/*
5545	 * Make sure the pool is formatted with a version that supports this
5546	 * device type.
5547	 */
5548	if (spa_version(spa) < version)
5549		return (SET_ERROR(ENOTSUP));
5550
5551	/*
5552	 * Set the pending device list so we correctly handle device in-use
5553	 * checking.
5554	 */
5555	sav->sav_pending = dev;
5556	sav->sav_npending = ndev;
5557
5558	for (i = 0; i < ndev; i++) {
5559		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5560		    mode)) != 0)
5561			goto out;
5562
5563		if (!vd->vdev_ops->vdev_op_leaf) {
5564			vdev_free(vd);
5565			error = SET_ERROR(EINVAL);
5566			goto out;
5567		}
5568
5569		vd->vdev_top = vd;
5570
5571		if ((error = vdev_open(vd)) == 0 &&
5572		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
5573			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5574			    vd->vdev_guid) == 0);
5575		}
5576
5577		vdev_free(vd);
5578
5579		if (error &&
5580		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5581			goto out;
5582		else
5583			error = 0;
5584	}
5585
5586out:
5587	sav->sav_pending = NULL;
5588	sav->sav_npending = 0;
5589	return (error);
5590}
5591
5592static int
5593spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5594{
5595	int error;
5596
5597	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5598
5599	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5600	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5601	    VDEV_LABEL_SPARE)) != 0) {
5602		return (error);
5603	}
5604
5605	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5606	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5607	    VDEV_LABEL_L2CACHE));
5608}
5609
5610static void
5611spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5612    const char *config)
5613{
5614	int i;
5615
5616	if (sav->sav_config != NULL) {
5617		nvlist_t **olddevs;
5618		uint_t oldndevs;
5619		nvlist_t **newdevs;
5620
5621		/*
5622		 * Generate new dev list by concatenating with the
5623		 * current dev list.
5624		 */
5625		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5626		    &olddevs, &oldndevs) == 0);
5627
5628		newdevs = kmem_alloc(sizeof (void *) *
5629		    (ndevs + oldndevs), KM_SLEEP);
5630		for (i = 0; i < oldndevs; i++)
5631			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5632			    KM_SLEEP) == 0);
5633		for (i = 0; i < ndevs; i++)
5634			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5635			    KM_SLEEP) == 0);
5636
5637		VERIFY(nvlist_remove(sav->sav_config, config,
5638		    DATA_TYPE_NVLIST_ARRAY) == 0);
5639
5640		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5641		    config, newdevs, ndevs + oldndevs) == 0);
5642		for (i = 0; i < oldndevs + ndevs; i++)
5643			nvlist_free(newdevs[i]);
5644		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5645	} else {
5646		/*
5647		 * Generate a new dev list.
5648		 */
5649		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5650		    KM_SLEEP) == 0);
5651		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5652		    devs, ndevs) == 0);
5653	}
5654}
5655
5656/*
5657 * Stop and drop level 2 ARC devices
5658 */
5659void
5660spa_l2cache_drop(spa_t *spa)
5661{
5662	vdev_t *vd;
5663	int i;
5664	spa_aux_vdev_t *sav = &spa->spa_l2cache;
5665
5666	for (i = 0; i < sav->sav_count; i++) {
5667		uint64_t pool;
5668
5669		vd = sav->sav_vdevs[i];
5670		ASSERT(vd != NULL);
5671
5672		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5673		    pool != 0ULL && l2arc_vdev_present(vd))
5674			l2arc_remove_vdev(vd);
5675	}
5676}
5677
5678/*
5679 * Verify encryption parameters for spa creation. If we are encrypting, we must
5680 * have the encryption feature flag enabled.
5681 */
5682static int
5683spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5684    boolean_t has_encryption)
5685{
5686	if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5687	    dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5688	    !has_encryption)
5689		return (SET_ERROR(ENOTSUP));
5690
5691	return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5692}
5693
5694/*
5695 * Pool Creation
5696 */
5697int
5698spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5699    nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5700{
5701	spa_t *spa;
5702	char *altroot = NULL;
5703	vdev_t *rvd;
5704	dsl_pool_t *dp;
5705	dmu_tx_t *tx;
5706	int error = 0;
5707	uint64_t txg = TXG_INITIAL;
5708	nvlist_t **spares, **l2cache;
5709	uint_t nspares, nl2cache;
5710	uint64_t version, obj, ndraid = 0;
5711	boolean_t has_features;
5712	boolean_t has_encryption;
5713	boolean_t has_allocclass;
5714	spa_feature_t feat;
5715	char *feat_name;
5716	char *poolname;
5717	nvlist_t *nvl;
5718
5719	if (props == NULL ||
5720	    nvlist_lookup_string(props, "tname", &poolname) != 0)
5721		poolname = (char *)pool;
5722
5723	/*
5724	 * If this pool already exists, return failure.
5725	 */
5726	mutex_enter(&spa_namespace_lock);
5727	if (spa_lookup(poolname) != NULL) {
5728		mutex_exit(&spa_namespace_lock);
5729		return (SET_ERROR(EEXIST));
5730	}
5731
5732	/*
5733	 * Allocate a new spa_t structure.
5734	 */
5735	nvl = fnvlist_alloc();
5736	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5737	(void) nvlist_lookup_string(props,
5738	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5739	spa = spa_add(poolname, nvl, altroot);
5740	fnvlist_free(nvl);
5741	spa_activate(spa, spa_mode_global);
5742
5743	if (props && (error = spa_prop_validate(spa, props))) {
5744		spa_deactivate(spa);
5745		spa_remove(spa);
5746		mutex_exit(&spa_namespace_lock);
5747		return (error);
5748	}
5749
5750	/*
5751	 * Temporary pool names should never be written to disk.
5752	 */
5753	if (poolname != pool)
5754		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5755
5756	has_features = B_FALSE;
5757	has_encryption = B_FALSE;
5758	has_allocclass = B_FALSE;
5759	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5760	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5761		if (zpool_prop_feature(nvpair_name(elem))) {
5762			has_features = B_TRUE;
5763
5764			feat_name = strchr(nvpair_name(elem), '@') + 1;
5765			VERIFY0(zfeature_lookup_name(feat_name, &feat));
5766			if (feat == SPA_FEATURE_ENCRYPTION)
5767				has_encryption = B_TRUE;
5768			if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5769				has_allocclass = B_TRUE;
5770		}
5771	}
5772
5773	/* verify encryption params, if they were provided */
5774	if (dcp != NULL) {
5775		error = spa_create_check_encryption_params(dcp, has_encryption);
5776		if (error != 0) {
5777			spa_deactivate(spa);
5778			spa_remove(spa);
5779			mutex_exit(&spa_namespace_lock);
5780			return (error);
5781		}
5782	}
5783	if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5784		spa_deactivate(spa);
5785		spa_remove(spa);
5786		mutex_exit(&spa_namespace_lock);
5787		return (ENOTSUP);
5788	}
5789
5790	if (has_features || nvlist_lookup_uint64(props,
5791	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5792		version = SPA_VERSION;
5793	}
5794	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5795
5796	spa->spa_first_txg = txg;
5797	spa->spa_uberblock.ub_txg = txg - 1;
5798	spa->spa_uberblock.ub_version = version;
5799	spa->spa_ubsync = spa->spa_uberblock;
5800	spa->spa_load_state = SPA_LOAD_CREATE;
5801	spa->spa_removing_phys.sr_state = DSS_NONE;
5802	spa->spa_removing_phys.sr_removing_vdev = -1;
5803	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5804	spa->spa_indirect_vdevs_loaded = B_TRUE;
5805
5806	/*
5807	 * Create "The Godfather" zio to hold all async IOs
5808	 */
5809	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5810	    KM_SLEEP);
5811	for (int i = 0; i < max_ncpus; i++) {
5812		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5813		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5814		    ZIO_FLAG_GODFATHER);
5815	}
5816
5817	/*
5818	 * Create the root vdev.
5819	 */
5820	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5821
5822	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5823
5824	ASSERT(error != 0 || rvd != NULL);
5825	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5826
5827	if (error == 0 && !zfs_allocatable_devs(nvroot))
5828		error = SET_ERROR(EINVAL);
5829
5830	if (error == 0 &&
5831	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5832	    (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5833	    (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5834		/*
5835		 * instantiate the metaslab groups (this will dirty the vdevs)
5836		 * we can no longer error exit past this point
5837		 */
5838		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5839			vdev_t *vd = rvd->vdev_child[c];
5840
5841			vdev_metaslab_set_size(vd);
5842			vdev_expand(vd, txg);
5843		}
5844	}
5845
5846	spa_config_exit(spa, SCL_ALL, FTAG);
5847
5848	if (error != 0) {
5849		spa_unload(spa);
5850		spa_deactivate(spa);
5851		spa_remove(spa);
5852		mutex_exit(&spa_namespace_lock);
5853		return (error);
5854	}
5855
5856	/*
5857	 * Get the list of spares, if specified.
5858	 */
5859	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5860	    &spares, &nspares) == 0) {
5861		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5862		    KM_SLEEP) == 0);
5863		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5864		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5865		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5866		spa_load_spares(spa);
5867		spa_config_exit(spa, SCL_ALL, FTAG);
5868		spa->spa_spares.sav_sync = B_TRUE;
5869	}
5870
5871	/*
5872	 * Get the list of level 2 cache devices, if specified.
5873	 */
5874	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5875	    &l2cache, &nl2cache) == 0) {
5876		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5877		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5878		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5879		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5880		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5881		spa_load_l2cache(spa);
5882		spa_config_exit(spa, SCL_ALL, FTAG);
5883		spa->spa_l2cache.sav_sync = B_TRUE;
5884	}
5885
5886	spa->spa_is_initializing = B_TRUE;
5887	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5888	spa->spa_is_initializing = B_FALSE;
5889
5890	/*
5891	 * Create DDTs (dedup tables).
5892	 */
5893	ddt_create(spa);
5894
5895	spa_update_dspace(spa);
5896
5897	tx = dmu_tx_create_assigned(dp, txg);
5898
5899	/*
5900	 * Create the pool's history object.
5901	 */
5902	if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5903		spa_history_create_obj(spa, tx);
5904
5905	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5906	spa_history_log_version(spa, "create", tx);
5907
5908	/*
5909	 * Create the pool config object.
5910	 */
5911	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5912	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5913	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5914
5915	if (zap_add(spa->spa_meta_objset,
5916	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5917	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5918		cmn_err(CE_PANIC, "failed to add pool config");
5919	}
5920
5921	if (zap_add(spa->spa_meta_objset,
5922	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5923	    sizeof (uint64_t), 1, &version, tx) != 0) {
5924		cmn_err(CE_PANIC, "failed to add pool version");
5925	}
5926
5927	/* Newly created pools with the right version are always deflated. */
5928	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5929		spa->spa_deflate = TRUE;
5930		if (zap_add(spa->spa_meta_objset,
5931		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5932		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5933			cmn_err(CE_PANIC, "failed to add deflate");
5934		}
5935	}
5936
5937	/*
5938	 * Create the deferred-free bpobj.  Turn off compression
5939	 * because sync-to-convergence takes longer if the blocksize
5940	 * keeps changing.
5941	 */
5942	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5943	dmu_object_set_compress(spa->spa_meta_objset, obj,
5944	    ZIO_COMPRESS_OFF, tx);
5945	if (zap_add(spa->spa_meta_objset,
5946	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5947	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5948		cmn_err(CE_PANIC, "failed to add bpobj");
5949	}
5950	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5951	    spa->spa_meta_objset, obj));
5952
5953	/*
5954	 * Generate some random noise for salted checksums to operate on.
5955	 */
5956	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5957	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5958
5959	/*
5960	 * Set pool properties.
5961	 */
5962	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5963	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5964	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5965	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5966	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5967	spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5968
5969	if (props != NULL) {
5970		spa_configfile_set(spa, props, B_FALSE);
5971		spa_sync_props(props, tx);
5972	}
5973
5974	for (int i = 0; i < ndraid; i++)
5975		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
5976
5977	dmu_tx_commit(tx);
5978
5979	spa->spa_sync_on = B_TRUE;
5980	txg_sync_start(dp);
5981	mmp_thread_start(spa);
5982	txg_wait_synced(dp, txg);
5983
5984	spa_spawn_aux_threads(spa);
5985
5986	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5987
5988	/*
5989	 * Don't count references from objsets that are already closed
5990	 * and are making their way through the eviction process.
5991	 */
5992	spa_evicting_os_wait(spa);
5993	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5994	spa->spa_load_state = SPA_LOAD_NONE;
5995
5996	mutex_exit(&spa_namespace_lock);
5997
5998	return (0);
5999}
6000
6001/*
6002 * Import a non-root pool into the system.
6003 */
6004int
6005spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6006{
6007	spa_t *spa;
6008	char *altroot = NULL;
6009	spa_load_state_t state = SPA_LOAD_IMPORT;
6010	zpool_load_policy_t policy;
6011	spa_mode_t mode = spa_mode_global;
6012	uint64_t readonly = B_FALSE;
6013	int error;
6014	nvlist_t *nvroot;
6015	nvlist_t **spares, **l2cache;
6016	uint_t nspares, nl2cache;
6017
6018	/*
6019	 * If a pool with this name exists, return failure.
6020	 */
6021	mutex_enter(&spa_namespace_lock);
6022	if (spa_lookup(pool) != NULL) {
6023		mutex_exit(&spa_namespace_lock);
6024		return (SET_ERROR(EEXIST));
6025	}
6026
6027	/*
6028	 * Create and initialize the spa structure.
6029	 */
6030	(void) nvlist_lookup_string(props,
6031	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6032	(void) nvlist_lookup_uint64(props,
6033	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6034	if (readonly)
6035		mode = SPA_MODE_READ;
6036	spa = spa_add(pool, config, altroot);
6037	spa->spa_import_flags = flags;
6038
6039	/*
6040	 * Verbatim import - Take a pool and insert it into the namespace
6041	 * as if it had been loaded at boot.
6042	 */
6043	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6044		if (props != NULL)
6045			spa_configfile_set(spa, props, B_FALSE);
6046
6047		spa_write_cachefile(spa, B_FALSE, B_TRUE);
6048		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6049		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6050		mutex_exit(&spa_namespace_lock);
6051		return (0);
6052	}
6053
6054	spa_activate(spa, mode);
6055
6056	/*
6057	 * Don't start async tasks until we know everything is healthy.
6058	 */
6059	spa_async_suspend(spa);
6060
6061	zpool_get_load_policy(config, &policy);
6062	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6063		state = SPA_LOAD_RECOVER;
6064
6065	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6066
6067	if (state != SPA_LOAD_RECOVER) {
6068		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6069		zfs_dbgmsg("spa_import: importing %s", pool);
6070	} else {
6071		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6072		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6073	}
6074	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6075
6076	/*
6077	 * Propagate anything learned while loading the pool and pass it
6078	 * back to caller (i.e. rewind info, missing devices, etc).
6079	 */
6080	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6081	    spa->spa_load_info) == 0);
6082
6083	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6084	/*
6085	 * Toss any existing sparelist, as it doesn't have any validity
6086	 * anymore, and conflicts with spa_has_spare().
6087	 */
6088	if (spa->spa_spares.sav_config) {
6089		nvlist_free(spa->spa_spares.sav_config);
6090		spa->spa_spares.sav_config = NULL;
6091		spa_load_spares(spa);
6092	}
6093	if (spa->spa_l2cache.sav_config) {
6094		nvlist_free(spa->spa_l2cache.sav_config);
6095		spa->spa_l2cache.sav_config = NULL;
6096		spa_load_l2cache(spa);
6097	}
6098
6099	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
6100	    &nvroot) == 0);
6101	spa_config_exit(spa, SCL_ALL, FTAG);
6102
6103	if (props != NULL)
6104		spa_configfile_set(spa, props, B_FALSE);
6105
6106	if (error != 0 || (props && spa_writeable(spa) &&
6107	    (error = spa_prop_set(spa, props)))) {
6108		spa_unload(spa);
6109		spa_deactivate(spa);
6110		spa_remove(spa);
6111		mutex_exit(&spa_namespace_lock);
6112		return (error);
6113	}
6114
6115	spa_async_resume(spa);
6116
6117	/*
6118	 * Override any spares and level 2 cache devices as specified by
6119	 * the user, as these may have correct device names/devids, etc.
6120	 */
6121	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6122	    &spares, &nspares) == 0) {
6123		if (spa->spa_spares.sav_config)
6124			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
6125			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
6126		else
6127			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
6128			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6129		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
6130		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
6131		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6132		spa_load_spares(spa);
6133		spa_config_exit(spa, SCL_ALL, FTAG);
6134		spa->spa_spares.sav_sync = B_TRUE;
6135	}
6136	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6137	    &l2cache, &nl2cache) == 0) {
6138		if (spa->spa_l2cache.sav_config)
6139			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
6140			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
6141		else
6142			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
6143			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6144		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6145		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
6146		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6147		spa_load_l2cache(spa);
6148		spa_config_exit(spa, SCL_ALL, FTAG);
6149		spa->spa_l2cache.sav_sync = B_TRUE;
6150	}
6151
6152	/*
6153	 * Check for any removed devices.
6154	 */
6155	if (spa->spa_autoreplace) {
6156		spa_aux_check_removed(&spa->spa_spares);
6157		spa_aux_check_removed(&spa->spa_l2cache);
6158	}
6159
6160	if (spa_writeable(spa)) {
6161		/*
6162		 * Update the config cache to include the newly-imported pool.
6163		 */
6164		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6165	}
6166
6167	/*
6168	 * It's possible that the pool was expanded while it was exported.
6169	 * We kick off an async task to handle this for us.
6170	 */
6171	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6172
6173	spa_history_log_version(spa, "import", NULL);
6174
6175	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6176
6177	mutex_exit(&spa_namespace_lock);
6178
6179	zvol_create_minors_recursive(pool);
6180
6181	return (0);
6182}
6183
6184nvlist_t *
6185spa_tryimport(nvlist_t *tryconfig)
6186{
6187	nvlist_t *config = NULL;
6188	char *poolname, *cachefile;
6189	spa_t *spa;
6190	uint64_t state;
6191	int error;
6192	zpool_load_policy_t policy;
6193
6194	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6195		return (NULL);
6196
6197	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6198		return (NULL);
6199
6200	/*
6201	 * Create and initialize the spa structure.
6202	 */
6203	mutex_enter(&spa_namespace_lock);
6204	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6205	spa_activate(spa, SPA_MODE_READ);
6206
6207	/*
6208	 * Rewind pool if a max txg was provided.
6209	 */
6210	zpool_get_load_policy(spa->spa_config, &policy);
6211	if (policy.zlp_txg != UINT64_MAX) {
6212		spa->spa_load_max_txg = policy.zlp_txg;
6213		spa->spa_extreme_rewind = B_TRUE;
6214		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6215		    poolname, (longlong_t)policy.zlp_txg);
6216	} else {
6217		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6218	}
6219
6220	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6221	    == 0) {
6222		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6223		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6224	} else {
6225		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6226	}
6227
6228	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6229
6230	/*
6231	 * If 'tryconfig' was at least parsable, return the current config.
6232	 */
6233	if (spa->spa_root_vdev != NULL) {
6234		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6235		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
6236		    poolname) == 0);
6237		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6238		    state) == 0);
6239		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6240		    spa->spa_uberblock.ub_timestamp) == 0);
6241		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6242		    spa->spa_load_info) == 0);
6243		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6244		    spa->spa_errata) == 0);
6245
6246		/*
6247		 * If the bootfs property exists on this pool then we
6248		 * copy it out so that external consumers can tell which
6249		 * pools are bootable.
6250		 */
6251		if ((!error || error == EEXIST) && spa->spa_bootfs) {
6252			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6253
6254			/*
6255			 * We have to play games with the name since the
6256			 * pool was opened as TRYIMPORT_NAME.
6257			 */
6258			if (dsl_dsobj_to_dsname(spa_name(spa),
6259			    spa->spa_bootfs, tmpname) == 0) {
6260				char *cp;
6261				char *dsname;
6262
6263				dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6264
6265				cp = strchr(tmpname, '/');
6266				if (cp == NULL) {
6267					(void) strlcpy(dsname, tmpname,
6268					    MAXPATHLEN);
6269				} else {
6270					(void) snprintf(dsname, MAXPATHLEN,
6271					    "%s/%s", poolname, ++cp);
6272				}
6273				VERIFY(nvlist_add_string(config,
6274				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
6275				kmem_free(dsname, MAXPATHLEN);
6276			}
6277			kmem_free(tmpname, MAXPATHLEN);
6278		}
6279
6280		/*
6281		 * Add the list of hot spares and level 2 cache devices.
6282		 */
6283		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6284		spa_add_spares(spa, config);
6285		spa_add_l2cache(spa, config);
6286		spa_config_exit(spa, SCL_CONFIG, FTAG);
6287	}
6288
6289	spa_unload(spa);
6290	spa_deactivate(spa);
6291	spa_remove(spa);
6292	mutex_exit(&spa_namespace_lock);
6293
6294	return (config);
6295}
6296
6297/*
6298 * Pool export/destroy
6299 *
6300 * The act of destroying or exporting a pool is very simple.  We make sure there
6301 * is no more pending I/O and any references to the pool are gone.  Then, we
6302 * update the pool state and sync all the labels to disk, removing the
6303 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6304 * we don't sync the labels or remove the configuration cache.
6305 */
6306static int
6307spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6308    boolean_t force, boolean_t hardforce)
6309{
6310	int error;
6311	spa_t *spa;
6312
6313	if (oldconfig)
6314		*oldconfig = NULL;
6315
6316	if (!(spa_mode_global & SPA_MODE_WRITE))
6317		return (SET_ERROR(EROFS));
6318
6319	mutex_enter(&spa_namespace_lock);
6320	if ((spa = spa_lookup(pool)) == NULL) {
6321		mutex_exit(&spa_namespace_lock);
6322		return (SET_ERROR(ENOENT));
6323	}
6324
6325	if (spa->spa_is_exporting) {
6326		/* the pool is being exported by another thread */
6327		mutex_exit(&spa_namespace_lock);
6328		return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6329	}
6330	spa->spa_is_exporting = B_TRUE;
6331
6332	/*
6333	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6334	 * reacquire the namespace lock, and see if we can export.
6335	 */
6336	spa_open_ref(spa, FTAG);
6337	mutex_exit(&spa_namespace_lock);
6338	spa_async_suspend(spa);
6339	if (spa->spa_zvol_taskq) {
6340		zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6341		taskq_wait(spa->spa_zvol_taskq);
6342	}
6343	mutex_enter(&spa_namespace_lock);
6344	spa_close(spa, FTAG);
6345
6346	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6347		goto export_spa;
6348	/*
6349	 * The pool will be in core if it's openable, in which case we can
6350	 * modify its state.  Objsets may be open only because they're dirty,
6351	 * so we have to force it to sync before checking spa_refcnt.
6352	 */
6353	if (spa->spa_sync_on) {
6354		txg_wait_synced(spa->spa_dsl_pool, 0);
6355		spa_evicting_os_wait(spa);
6356	}
6357
6358	/*
6359	 * A pool cannot be exported or destroyed if there are active
6360	 * references.  If we are resetting a pool, allow references by
6361	 * fault injection handlers.
6362	 */
6363	if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6364		error = SET_ERROR(EBUSY);
6365		goto fail;
6366	}
6367
6368	if (spa->spa_sync_on) {
6369		/*
6370		 * A pool cannot be exported if it has an active shared spare.
6371		 * This is to prevent other pools stealing the active spare
6372		 * from an exported pool. At user's own will, such pool can
6373		 * be forcedly exported.
6374		 */
6375		if (!force && new_state == POOL_STATE_EXPORTED &&
6376		    spa_has_active_shared_spare(spa)) {
6377			error = SET_ERROR(EXDEV);
6378			goto fail;
6379		}
6380
6381		/*
6382		 * We're about to export or destroy this pool. Make sure
6383		 * we stop all initialization and trim activity here before
6384		 * we set the spa_final_txg. This will ensure that all
6385		 * dirty data resulting from the initialization is
6386		 * committed to disk before we unload the pool.
6387		 */
6388		if (spa->spa_root_vdev != NULL) {
6389			vdev_t *rvd = spa->spa_root_vdev;
6390			vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6391			vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6392			vdev_autotrim_stop_all(spa);
6393			vdev_rebuild_stop_all(spa);
6394		}
6395
6396		/*
6397		 * We want this to be reflected on every label,
6398		 * so mark them all dirty.  spa_unload() will do the
6399		 * final sync that pushes these changes out.
6400		 */
6401		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6402			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6403			spa->spa_state = new_state;
6404			spa->spa_final_txg = spa_last_synced_txg(spa) +
6405			    TXG_DEFER_SIZE + 1;
6406			vdev_config_dirty(spa->spa_root_vdev);
6407			spa_config_exit(spa, SCL_ALL, FTAG);
6408		}
6409	}
6410
6411export_spa:
6412	if (new_state == POOL_STATE_DESTROYED)
6413		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6414	else if (new_state == POOL_STATE_EXPORTED)
6415		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6416
6417	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6418		spa_unload(spa);
6419		spa_deactivate(spa);
6420	}
6421
6422	if (oldconfig && spa->spa_config)
6423		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6424
6425	if (new_state != POOL_STATE_UNINITIALIZED) {
6426		if (!hardforce)
6427			spa_write_cachefile(spa, B_TRUE, B_TRUE);
6428		spa_remove(spa);
6429	} else {
6430		/*
6431		 * If spa_remove() is not called for this spa_t and
6432		 * there is any possibility that it can be reused,
6433		 * we make sure to reset the exporting flag.
6434		 */
6435		spa->spa_is_exporting = B_FALSE;
6436	}
6437
6438	mutex_exit(&spa_namespace_lock);
6439	return (0);
6440
6441fail:
6442	spa->spa_is_exporting = B_FALSE;
6443	spa_async_resume(spa);
6444	mutex_exit(&spa_namespace_lock);
6445	return (error);
6446}
6447
6448/*
6449 * Destroy a storage pool.
6450 */
6451int
6452spa_destroy(const char *pool)
6453{
6454	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6455	    B_FALSE, B_FALSE));
6456}
6457
6458/*
6459 * Export a storage pool.
6460 */
6461int
6462spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6463    boolean_t hardforce)
6464{
6465	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6466	    force, hardforce));
6467}
6468
6469/*
6470 * Similar to spa_export(), this unloads the spa_t without actually removing it
6471 * from the namespace in any way.
6472 */
6473int
6474spa_reset(const char *pool)
6475{
6476	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6477	    B_FALSE, B_FALSE));
6478}
6479
6480/*
6481 * ==========================================================================
6482 * Device manipulation
6483 * ==========================================================================
6484 */
6485
6486/*
6487 * This is called as a synctask to increment the draid feature flag
6488 */
6489static void
6490spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6491{
6492	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6493	int draid = (int)(uintptr_t)arg;
6494
6495	for (int c = 0; c < draid; c++)
6496		spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6497}
6498
6499/*
6500 * Add a device to a storage pool.
6501 */
6502int
6503spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6504{
6505	uint64_t txg, ndraid = 0;
6506	int error;
6507	vdev_t *rvd = spa->spa_root_vdev;
6508	vdev_t *vd, *tvd;
6509	nvlist_t **spares, **l2cache;
6510	uint_t nspares, nl2cache;
6511
6512	ASSERT(spa_writeable(spa));
6513
6514	txg = spa_vdev_enter(spa);
6515
6516	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6517	    VDEV_ALLOC_ADD)) != 0)
6518		return (spa_vdev_exit(spa, NULL, txg, error));
6519
6520	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
6521
6522	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6523	    &nspares) != 0)
6524		nspares = 0;
6525
6526	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6527	    &nl2cache) != 0)
6528		nl2cache = 0;
6529
6530	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6531		return (spa_vdev_exit(spa, vd, txg, EINVAL));
6532
6533	if (vd->vdev_children != 0 &&
6534	    (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6535		return (spa_vdev_exit(spa, vd, txg, error));
6536	}
6537
6538	/*
6539	 * The virtual dRAID spares must be added after vdev tree is created
6540	 * and the vdev guids are generated.  The guid of their associated
6541	 * dRAID is stored in the config and used when opening the spare.
6542	 */
6543	if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6544	    rvd->vdev_children)) == 0) {
6545		if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6546		    ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6547			nspares = 0;
6548	} else {
6549		return (spa_vdev_exit(spa, vd, txg, error));
6550	}
6551
6552	/*
6553	 * We must validate the spares and l2cache devices after checking the
6554	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
6555	 */
6556	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6557		return (spa_vdev_exit(spa, vd, txg, error));
6558
6559	/*
6560	 * If we are in the middle of a device removal, we can only add
6561	 * devices which match the existing devices in the pool.
6562	 * If we are in the middle of a removal, or have some indirect
6563	 * vdevs, we can not add raidz or dRAID top levels.
6564	 */
6565	if (spa->spa_vdev_removal != NULL ||
6566	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6567		for (int c = 0; c < vd->vdev_children; c++) {
6568			tvd = vd->vdev_child[c];
6569			if (spa->spa_vdev_removal != NULL &&
6570			    tvd->vdev_ashift != spa->spa_max_ashift) {
6571				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6572			}
6573			/* Fail if top level vdev is raidz or a dRAID */
6574			if (vdev_get_nparity(tvd) != 0)
6575				return (spa_vdev_exit(spa, vd, txg, EINVAL));
6576
6577			/*
6578			 * Need the top level mirror to be
6579			 * a mirror of leaf vdevs only
6580			 */
6581			if (tvd->vdev_ops == &vdev_mirror_ops) {
6582				for (uint64_t cid = 0;
6583				    cid < tvd->vdev_children; cid++) {
6584					vdev_t *cvd = tvd->vdev_child[cid];
6585					if (!cvd->vdev_ops->vdev_op_leaf) {
6586						return (spa_vdev_exit(spa, vd,
6587						    txg, EINVAL));
6588					}
6589				}
6590			}
6591		}
6592	}
6593
6594	for (int c = 0; c < vd->vdev_children; c++) {
6595		tvd = vd->vdev_child[c];
6596		vdev_remove_child(vd, tvd);
6597		tvd->vdev_id = rvd->vdev_children;
6598		vdev_add_child(rvd, tvd);
6599		vdev_config_dirty(tvd);
6600	}
6601
6602	if (nspares != 0) {
6603		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6604		    ZPOOL_CONFIG_SPARES);
6605		spa_load_spares(spa);
6606		spa->spa_spares.sav_sync = B_TRUE;
6607	}
6608
6609	if (nl2cache != 0) {
6610		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6611		    ZPOOL_CONFIG_L2CACHE);
6612		spa_load_l2cache(spa);
6613		spa->spa_l2cache.sav_sync = B_TRUE;
6614	}
6615
6616	/*
6617	 * We can't increment a feature while holding spa_vdev so we
6618	 * have to do it in a synctask.
6619	 */
6620	if (ndraid != 0) {
6621		dmu_tx_t *tx;
6622
6623		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6624		dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6625		    (void *)(uintptr_t)ndraid, tx);
6626		dmu_tx_commit(tx);
6627	}
6628
6629	/*
6630	 * We have to be careful when adding new vdevs to an existing pool.
6631	 * If other threads start allocating from these vdevs before we
6632	 * sync the config cache, and we lose power, then upon reboot we may
6633	 * fail to open the pool because there are DVAs that the config cache
6634	 * can't translate.  Therefore, we first add the vdevs without
6635	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6636	 * and then let spa_config_update() initialize the new metaslabs.
6637	 *
6638	 * spa_load() checks for added-but-not-initialized vdevs, so that
6639	 * if we lose power at any point in this sequence, the remaining
6640	 * steps will be completed the next time we load the pool.
6641	 */
6642	(void) spa_vdev_exit(spa, vd, txg, 0);
6643
6644	mutex_enter(&spa_namespace_lock);
6645	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6646	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6647	mutex_exit(&spa_namespace_lock);
6648
6649	return (0);
6650}
6651
6652/*
6653 * Attach a device to a mirror.  The arguments are the path to any device
6654 * in the mirror, and the nvroot for the new device.  If the path specifies
6655 * a device that is not mirrored, we automatically insert the mirror vdev.
6656 *
6657 * If 'replacing' is specified, the new device is intended to replace the
6658 * existing device; in this case the two devices are made into their own
6659 * mirror using the 'replacing' vdev, which is functionally identical to
6660 * the mirror vdev (it actually reuses all the same ops) but has a few
6661 * extra rules: you can't attach to it after it's been created, and upon
6662 * completion of resilvering, the first disk (the one being replaced)
6663 * is automatically detached.
6664 *
6665 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6666 * should be performed instead of traditional healing reconstruction.  From
6667 * an administrators perspective these are both resilver operations.
6668 */
6669int
6670spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6671    int rebuild)
6672{
6673	uint64_t txg, dtl_max_txg;
6674	vdev_t *rvd = spa->spa_root_vdev;
6675	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6676	vdev_ops_t *pvops;
6677	char *oldvdpath, *newvdpath;
6678	int newvd_isspare;
6679	int error;
6680
6681	ASSERT(spa_writeable(spa));
6682
6683	txg = spa_vdev_enter(spa);
6684
6685	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6686
6687	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6688	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6689		error = (spa_has_checkpoint(spa)) ?
6690		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6691		return (spa_vdev_exit(spa, NULL, txg, error));
6692	}
6693
6694	if (rebuild) {
6695		if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6696			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6697
6698		if (dsl_scan_resilvering(spa_get_dsl(spa)))
6699			return (spa_vdev_exit(spa, NULL, txg,
6700			    ZFS_ERR_RESILVER_IN_PROGRESS));
6701	} else {
6702		if (vdev_rebuild_active(rvd))
6703			return (spa_vdev_exit(spa, NULL, txg,
6704			    ZFS_ERR_REBUILD_IN_PROGRESS));
6705	}
6706
6707	if (spa->spa_vdev_removal != NULL)
6708		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6709
6710	if (oldvd == NULL)
6711		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6712
6713	if (!oldvd->vdev_ops->vdev_op_leaf)
6714		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6715
6716	pvd = oldvd->vdev_parent;
6717
6718	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6719	    VDEV_ALLOC_ATTACH)) != 0)
6720		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6721
6722	if (newrootvd->vdev_children != 1)
6723		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6724
6725	newvd = newrootvd->vdev_child[0];
6726
6727	if (!newvd->vdev_ops->vdev_op_leaf)
6728		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6729
6730	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6731		return (spa_vdev_exit(spa, newrootvd, txg, error));
6732
6733	/*
6734	 * Spares can't replace logs
6735	 */
6736	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6737		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6738
6739	/*
6740	 * A dRAID spare can only replace a child of its parent dRAID vdev.
6741	 */
6742	if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6743	    oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6744		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6745	}
6746
6747	if (rebuild) {
6748		/*
6749		 * For rebuilds, the top vdev must support reconstruction
6750		 * using only space maps.  This means the only allowable
6751		 * vdevs types are the root vdev, a mirror, or dRAID.
6752		 */
6753		tvd = pvd;
6754		if (pvd->vdev_top != NULL)
6755			tvd = pvd->vdev_top;
6756
6757		if (tvd->vdev_ops != &vdev_mirror_ops &&
6758		    tvd->vdev_ops != &vdev_root_ops &&
6759		    tvd->vdev_ops != &vdev_draid_ops) {
6760			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6761		}
6762	}
6763
6764	if (!replacing) {
6765		/*
6766		 * For attach, the only allowable parent is a mirror or the root
6767		 * vdev.
6768		 */
6769		if (pvd->vdev_ops != &vdev_mirror_ops &&
6770		    pvd->vdev_ops != &vdev_root_ops)
6771			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6772
6773		pvops = &vdev_mirror_ops;
6774	} else {
6775		/*
6776		 * Active hot spares can only be replaced by inactive hot
6777		 * spares.
6778		 */
6779		if (pvd->vdev_ops == &vdev_spare_ops &&
6780		    oldvd->vdev_isspare &&
6781		    !spa_has_spare(spa, newvd->vdev_guid))
6782			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6783
6784		/*
6785		 * If the source is a hot spare, and the parent isn't already a
6786		 * spare, then we want to create a new hot spare.  Otherwise, we
6787		 * want to create a replacing vdev.  The user is not allowed to
6788		 * attach to a spared vdev child unless the 'isspare' state is
6789		 * the same (spare replaces spare, non-spare replaces
6790		 * non-spare).
6791		 */
6792		if (pvd->vdev_ops == &vdev_replacing_ops &&
6793		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6794			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6795		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6796		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6797			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6798		}
6799
6800		if (newvd->vdev_isspare)
6801			pvops = &vdev_spare_ops;
6802		else
6803			pvops = &vdev_replacing_ops;
6804	}
6805
6806	/*
6807	 * Make sure the new device is big enough.
6808	 */
6809	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6810		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6811
6812	/*
6813	 * The new device cannot have a higher alignment requirement
6814	 * than the top-level vdev.
6815	 */
6816	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6817		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6818
6819	/*
6820	 * If this is an in-place replacement, update oldvd's path and devid
6821	 * to make it distinguishable from newvd, and unopenable from now on.
6822	 */
6823	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6824		spa_strfree(oldvd->vdev_path);
6825		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6826		    KM_SLEEP);
6827		(void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6828		    "%s/%s", newvd->vdev_path, "old");
6829		if (oldvd->vdev_devid != NULL) {
6830			spa_strfree(oldvd->vdev_devid);
6831			oldvd->vdev_devid = NULL;
6832		}
6833	}
6834
6835	/*
6836	 * If the parent is not a mirror, or if we're replacing, insert the new
6837	 * mirror/replacing/spare vdev above oldvd.
6838	 */
6839	if (pvd->vdev_ops != pvops)
6840		pvd = vdev_add_parent(oldvd, pvops);
6841
6842	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6843	ASSERT(pvd->vdev_ops == pvops);
6844	ASSERT(oldvd->vdev_parent == pvd);
6845
6846	/*
6847	 * Extract the new device from its root and add it to pvd.
6848	 */
6849	vdev_remove_child(newrootvd, newvd);
6850	newvd->vdev_id = pvd->vdev_children;
6851	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6852	vdev_add_child(pvd, newvd);
6853
6854	/*
6855	 * Reevaluate the parent vdev state.
6856	 */
6857	vdev_propagate_state(pvd);
6858
6859	tvd = newvd->vdev_top;
6860	ASSERT(pvd->vdev_top == tvd);
6861	ASSERT(tvd->vdev_parent == rvd);
6862
6863	vdev_config_dirty(tvd);
6864
6865	/*
6866	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6867	 * for any dmu_sync-ed blocks.  It will propagate upward when
6868	 * spa_vdev_exit() calls vdev_dtl_reassess().
6869	 */
6870	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6871
6872	vdev_dtl_dirty(newvd, DTL_MISSING,
6873	    TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6874
6875	if (newvd->vdev_isspare) {
6876		spa_spare_activate(newvd);
6877		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6878	}
6879
6880	oldvdpath = spa_strdup(oldvd->vdev_path);
6881	newvdpath = spa_strdup(newvd->vdev_path);
6882	newvd_isspare = newvd->vdev_isspare;
6883
6884	/*
6885	 * Mark newvd's DTL dirty in this txg.
6886	 */
6887	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6888
6889	/*
6890	 * Schedule the resilver or rebuild to restart in the future. We do
6891	 * this to ensure that dmu_sync-ed blocks have been stitched into the
6892	 * respective datasets.
6893	 */
6894	if (rebuild) {
6895		newvd->vdev_rebuild_txg = txg;
6896
6897		vdev_rebuild(tvd);
6898	} else {
6899		newvd->vdev_resilver_txg = txg;
6900
6901		if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6902		    spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6903			vdev_defer_resilver(newvd);
6904		} else {
6905			dsl_scan_restart_resilver(spa->spa_dsl_pool,
6906			    dtl_max_txg);
6907		}
6908	}
6909
6910	if (spa->spa_bootfs)
6911		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6912
6913	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6914
6915	/*
6916	 * Commit the config
6917	 */
6918	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6919
6920	spa_history_log_internal(spa, "vdev attach", NULL,
6921	    "%s vdev=%s %s vdev=%s",
6922	    replacing && newvd_isspare ? "spare in" :
6923	    replacing ? "replace" : "attach", newvdpath,
6924	    replacing ? "for" : "to", oldvdpath);
6925
6926	spa_strfree(oldvdpath);
6927	spa_strfree(newvdpath);
6928
6929	return (0);
6930}
6931
6932/*
6933 * Detach a device from a mirror or replacing vdev.
6934 *
6935 * If 'replace_done' is specified, only detach if the parent
6936 * is a replacing vdev.
6937 */
6938int
6939spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6940{
6941	uint64_t txg;
6942	int error;
6943	vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6944	vdev_t *vd, *pvd, *cvd, *tvd;
6945	boolean_t unspare = B_FALSE;
6946	uint64_t unspare_guid = 0;
6947	char *vdpath;
6948
6949	ASSERT(spa_writeable(spa));
6950
6951	txg = spa_vdev_detach_enter(spa, guid);
6952
6953	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6954
6955	/*
6956	 * Besides being called directly from the userland through the
6957	 * ioctl interface, spa_vdev_detach() can be potentially called
6958	 * at the end of spa_vdev_resilver_done().
6959	 *
6960	 * In the regular case, when we have a checkpoint this shouldn't
6961	 * happen as we never empty the DTLs of a vdev during the scrub
6962	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6963	 * should never get here when we have a checkpoint.
6964	 *
6965	 * That said, even in a case when we checkpoint the pool exactly
6966	 * as spa_vdev_resilver_done() calls this function everything
6967	 * should be fine as the resilver will return right away.
6968	 */
6969	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6970	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6971		error = (spa_has_checkpoint(spa)) ?
6972		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6973		return (spa_vdev_exit(spa, NULL, txg, error));
6974	}
6975
6976	if (vd == NULL)
6977		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6978
6979	if (!vd->vdev_ops->vdev_op_leaf)
6980		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6981
6982	pvd = vd->vdev_parent;
6983
6984	/*
6985	 * If the parent/child relationship is not as expected, don't do it.
6986	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6987	 * vdev that's replacing B with C.  The user's intent in replacing
6988	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6989	 * the replace by detaching C, the expected behavior is to end up
6990	 * M(A,B).  But suppose that right after deciding to detach C,
6991	 * the replacement of B completes.  We would have M(A,C), and then
6992	 * ask to detach C, which would leave us with just A -- not what
6993	 * the user wanted.  To prevent this, we make sure that the
6994	 * parent/child relationship hasn't changed -- in this example,
6995	 * that C's parent is still the replacing vdev R.
6996	 */
6997	if (pvd->vdev_guid != pguid && pguid != 0)
6998		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6999
7000	/*
7001	 * Only 'replacing' or 'spare' vdevs can be replaced.
7002	 */
7003	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7004	    pvd->vdev_ops != &vdev_spare_ops)
7005		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7006
7007	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7008	    spa_version(spa) >= SPA_VERSION_SPARES);
7009
7010	/*
7011	 * Only mirror, replacing, and spare vdevs support detach.
7012	 */
7013	if (pvd->vdev_ops != &vdev_replacing_ops &&
7014	    pvd->vdev_ops != &vdev_mirror_ops &&
7015	    pvd->vdev_ops != &vdev_spare_ops)
7016		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7017
7018	/*
7019	 * If this device has the only valid copy of some data,
7020	 * we cannot safely detach it.
7021	 */
7022	if (vdev_dtl_required(vd))
7023		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7024
7025	ASSERT(pvd->vdev_children >= 2);
7026
7027	/*
7028	 * If we are detaching the second disk from a replacing vdev, then
7029	 * check to see if we changed the original vdev's path to have "/old"
7030	 * at the end in spa_vdev_attach().  If so, undo that change now.
7031	 */
7032	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7033	    vd->vdev_path != NULL) {
7034		size_t len = strlen(vd->vdev_path);
7035
7036		for (int c = 0; c < pvd->vdev_children; c++) {
7037			cvd = pvd->vdev_child[c];
7038
7039			if (cvd == vd || cvd->vdev_path == NULL)
7040				continue;
7041
7042			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7043			    strcmp(cvd->vdev_path + len, "/old") == 0) {
7044				spa_strfree(cvd->vdev_path);
7045				cvd->vdev_path = spa_strdup(vd->vdev_path);
7046				break;
7047			}
7048		}
7049	}
7050
7051	/*
7052	 * If we are detaching the original disk from a normal spare, then it
7053	 * implies that the spare should become a real disk, and be removed
7054	 * from the active spare list for the pool.  dRAID spares on the
7055	 * other hand are coupled to the pool and thus should never be removed
7056	 * from the spares list.
7057	 */
7058	if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7059		vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7060
7061		if (last_cvd->vdev_isspare &&
7062		    last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7063			unspare = B_TRUE;
7064		}
7065	}
7066
7067	/*
7068	 * Erase the disk labels so the disk can be used for other things.
7069	 * This must be done after all other error cases are handled,
7070	 * but before we disembowel vd (so we can still do I/O to it).
7071	 * But if we can't do it, don't treat the error as fatal --
7072	 * it may be that the unwritability of the disk is the reason
7073	 * it's being detached!
7074	 */
7075	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7076
7077	/*
7078	 * Remove vd from its parent and compact the parent's children.
7079	 */
7080	vdev_remove_child(pvd, vd);
7081	vdev_compact_children(pvd);
7082
7083	/*
7084	 * Remember one of the remaining children so we can get tvd below.
7085	 */
7086	cvd = pvd->vdev_child[pvd->vdev_children - 1];
7087
7088	/*
7089	 * If we need to remove the remaining child from the list of hot spares,
7090	 * do it now, marking the vdev as no longer a spare in the process.
7091	 * We must do this before vdev_remove_parent(), because that can
7092	 * change the GUID if it creates a new toplevel GUID.  For a similar
7093	 * reason, we must remove the spare now, in the same txg as the detach;
7094	 * otherwise someone could attach a new sibling, change the GUID, and
7095	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7096	 */
7097	if (unspare) {
7098		ASSERT(cvd->vdev_isspare);
7099		spa_spare_remove(cvd);
7100		unspare_guid = cvd->vdev_guid;
7101		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7102		cvd->vdev_unspare = B_TRUE;
7103	}
7104
7105	/*
7106	 * If the parent mirror/replacing vdev only has one child,
7107	 * the parent is no longer needed.  Remove it from the tree.
7108	 */
7109	if (pvd->vdev_children == 1) {
7110		if (pvd->vdev_ops == &vdev_spare_ops)
7111			cvd->vdev_unspare = B_FALSE;
7112		vdev_remove_parent(cvd);
7113	}
7114
7115	/*
7116	 * We don't set tvd until now because the parent we just removed
7117	 * may have been the previous top-level vdev.
7118	 */
7119	tvd = cvd->vdev_top;
7120	ASSERT(tvd->vdev_parent == rvd);
7121
7122	/*
7123	 * Reevaluate the parent vdev state.
7124	 */
7125	vdev_propagate_state(cvd);
7126
7127	/*
7128	 * If the 'autoexpand' property is set on the pool then automatically
7129	 * try to expand the size of the pool. For example if the device we
7130	 * just detached was smaller than the others, it may be possible to
7131	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7132	 * first so that we can obtain the updated sizes of the leaf vdevs.
7133	 */
7134	if (spa->spa_autoexpand) {
7135		vdev_reopen(tvd);
7136		vdev_expand(tvd, txg);
7137	}
7138
7139	vdev_config_dirty(tvd);
7140
7141	/*
7142	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
7143	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7144	 * But first make sure we're not on any *other* txg's DTL list, to
7145	 * prevent vd from being accessed after it's freed.
7146	 */
7147	vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7148	for (int t = 0; t < TXG_SIZE; t++)
7149		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7150	vd->vdev_detached = B_TRUE;
7151	vdev_dirty(tvd, VDD_DTL, vd, txg);
7152
7153	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7154	spa_notify_waiters(spa);
7155
7156	/* hang on to the spa before we release the lock */
7157	spa_open_ref(spa, FTAG);
7158
7159	error = spa_vdev_exit(spa, vd, txg, 0);
7160
7161	spa_history_log_internal(spa, "detach", NULL,
7162	    "vdev=%s", vdpath);
7163	spa_strfree(vdpath);
7164
7165	/*
7166	 * If this was the removal of the original device in a hot spare vdev,
7167	 * then we want to go through and remove the device from the hot spare
7168	 * list of every other pool.
7169	 */
7170	if (unspare) {
7171		spa_t *altspa = NULL;
7172
7173		mutex_enter(&spa_namespace_lock);
7174		while ((altspa = spa_next(altspa)) != NULL) {
7175			if (altspa->spa_state != POOL_STATE_ACTIVE ||
7176			    altspa == spa)
7177				continue;
7178
7179			spa_open_ref(altspa, FTAG);
7180			mutex_exit(&spa_namespace_lock);
7181			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7182			mutex_enter(&spa_namespace_lock);
7183			spa_close(altspa, FTAG);
7184		}
7185		mutex_exit(&spa_namespace_lock);
7186
7187		/* search the rest of the vdevs for spares to remove */
7188		spa_vdev_resilver_done(spa);
7189	}
7190
7191	/* all done with the spa; OK to release */
7192	mutex_enter(&spa_namespace_lock);
7193	spa_close(spa, FTAG);
7194	mutex_exit(&spa_namespace_lock);
7195
7196	return (error);
7197}
7198
7199static int
7200spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7201    list_t *vd_list)
7202{
7203	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7204
7205	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7206
7207	/* Look up vdev and ensure it's a leaf. */
7208	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7209	if (vd == NULL || vd->vdev_detached) {
7210		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7211		return (SET_ERROR(ENODEV));
7212	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7213		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7214		return (SET_ERROR(EINVAL));
7215	} else if (!vdev_writeable(vd)) {
7216		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7217		return (SET_ERROR(EROFS));
7218	}
7219	mutex_enter(&vd->vdev_initialize_lock);
7220	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7221
7222	/*
7223	 * When we activate an initialize action we check to see
7224	 * if the vdev_initialize_thread is NULL. We do this instead
7225	 * of using the vdev_initialize_state since there might be
7226	 * a previous initialization process which has completed but
7227	 * the thread is not exited.
7228	 */
7229	if (cmd_type == POOL_INITIALIZE_START &&
7230	    (vd->vdev_initialize_thread != NULL ||
7231	    vd->vdev_top->vdev_removing)) {
7232		mutex_exit(&vd->vdev_initialize_lock);
7233		return (SET_ERROR(EBUSY));
7234	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7235	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7236	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7237		mutex_exit(&vd->vdev_initialize_lock);
7238		return (SET_ERROR(ESRCH));
7239	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7240	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7241		mutex_exit(&vd->vdev_initialize_lock);
7242		return (SET_ERROR(ESRCH));
7243	}
7244
7245	switch (cmd_type) {
7246	case POOL_INITIALIZE_START:
7247		vdev_initialize(vd);
7248		break;
7249	case POOL_INITIALIZE_CANCEL:
7250		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7251		break;
7252	case POOL_INITIALIZE_SUSPEND:
7253		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7254		break;
7255	default:
7256		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7257	}
7258	mutex_exit(&vd->vdev_initialize_lock);
7259
7260	return (0);
7261}
7262
7263int
7264spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7265    nvlist_t *vdev_errlist)
7266{
7267	int total_errors = 0;
7268	list_t vd_list;
7269
7270	list_create(&vd_list, sizeof (vdev_t),
7271	    offsetof(vdev_t, vdev_initialize_node));
7272
7273	/*
7274	 * We hold the namespace lock through the whole function
7275	 * to prevent any changes to the pool while we're starting or
7276	 * stopping initialization. The config and state locks are held so that
7277	 * we can properly assess the vdev state before we commit to
7278	 * the initializing operation.
7279	 */
7280	mutex_enter(&spa_namespace_lock);
7281
7282	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7283	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7284		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7285
7286		int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7287		    &vd_list);
7288		if (error != 0) {
7289			char guid_as_str[MAXNAMELEN];
7290
7291			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7292			    "%llu", (unsigned long long)vdev_guid);
7293			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7294			total_errors++;
7295		}
7296	}
7297
7298	/* Wait for all initialize threads to stop. */
7299	vdev_initialize_stop_wait(spa, &vd_list);
7300
7301	/* Sync out the initializing state */
7302	txg_wait_synced(spa->spa_dsl_pool, 0);
7303	mutex_exit(&spa_namespace_lock);
7304
7305	list_destroy(&vd_list);
7306
7307	return (total_errors);
7308}
7309
7310static int
7311spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7312    uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7313{
7314	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7315
7316	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7317
7318	/* Look up vdev and ensure it's a leaf. */
7319	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7320	if (vd == NULL || vd->vdev_detached) {
7321		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7322		return (SET_ERROR(ENODEV));
7323	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7324		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7325		return (SET_ERROR(EINVAL));
7326	} else if (!vdev_writeable(vd)) {
7327		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7328		return (SET_ERROR(EROFS));
7329	} else if (!vd->vdev_has_trim) {
7330		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7331		return (SET_ERROR(EOPNOTSUPP));
7332	} else if (secure && !vd->vdev_has_securetrim) {
7333		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7334		return (SET_ERROR(EOPNOTSUPP));
7335	}
7336	mutex_enter(&vd->vdev_trim_lock);
7337	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7338
7339	/*
7340	 * When we activate a TRIM action we check to see if the
7341	 * vdev_trim_thread is NULL. We do this instead of using the
7342	 * vdev_trim_state since there might be a previous TRIM process
7343	 * which has completed but the thread is not exited.
7344	 */
7345	if (cmd_type == POOL_TRIM_START &&
7346	    (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7347		mutex_exit(&vd->vdev_trim_lock);
7348		return (SET_ERROR(EBUSY));
7349	} else if (cmd_type == POOL_TRIM_CANCEL &&
7350	    (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7351	    vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7352		mutex_exit(&vd->vdev_trim_lock);
7353		return (SET_ERROR(ESRCH));
7354	} else if (cmd_type == POOL_TRIM_SUSPEND &&
7355	    vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7356		mutex_exit(&vd->vdev_trim_lock);
7357		return (SET_ERROR(ESRCH));
7358	}
7359
7360	switch (cmd_type) {
7361	case POOL_TRIM_START:
7362		vdev_trim(vd, rate, partial, secure);
7363		break;
7364	case POOL_TRIM_CANCEL:
7365		vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7366		break;
7367	case POOL_TRIM_SUSPEND:
7368		vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7369		break;
7370	default:
7371		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7372	}
7373	mutex_exit(&vd->vdev_trim_lock);
7374
7375	return (0);
7376}
7377
7378/*
7379 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7380 * TRIM threads for each child vdev.  These threads pass over all of the free
7381 * space in the vdev's metaslabs and issues TRIM commands for that space.
7382 */
7383int
7384spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7385    boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7386{
7387	int total_errors = 0;
7388	list_t vd_list;
7389
7390	list_create(&vd_list, sizeof (vdev_t),
7391	    offsetof(vdev_t, vdev_trim_node));
7392
7393	/*
7394	 * We hold the namespace lock through the whole function
7395	 * to prevent any changes to the pool while we're starting or
7396	 * stopping TRIM. The config and state locks are held so that
7397	 * we can properly assess the vdev state before we commit to
7398	 * the TRIM operation.
7399	 */
7400	mutex_enter(&spa_namespace_lock);
7401
7402	for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7403	    pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7404		uint64_t vdev_guid = fnvpair_value_uint64(pair);
7405
7406		int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7407		    rate, partial, secure, &vd_list);
7408		if (error != 0) {
7409			char guid_as_str[MAXNAMELEN];
7410
7411			(void) snprintf(guid_as_str, sizeof (guid_as_str),
7412			    "%llu", (unsigned long long)vdev_guid);
7413			fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7414			total_errors++;
7415		}
7416	}
7417
7418	/* Wait for all TRIM threads to stop. */
7419	vdev_trim_stop_wait(spa, &vd_list);
7420
7421	/* Sync out the TRIM state */
7422	txg_wait_synced(spa->spa_dsl_pool, 0);
7423	mutex_exit(&spa_namespace_lock);
7424
7425	list_destroy(&vd_list);
7426
7427	return (total_errors);
7428}
7429
7430/*
7431 * Split a set of devices from their mirrors, and create a new pool from them.
7432 */
7433int
7434spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7435    nvlist_t *props, boolean_t exp)
7436{
7437	int error = 0;
7438	uint64_t txg, *glist;
7439	spa_t *newspa;
7440	uint_t c, children, lastlog;
7441	nvlist_t **child, *nvl, *tmp;
7442	dmu_tx_t *tx;
7443	char *altroot = NULL;
7444	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
7445	boolean_t activate_slog;
7446
7447	ASSERT(spa_writeable(spa));
7448
7449	txg = spa_vdev_enter(spa);
7450
7451	ASSERT(MUTEX_HELD(&spa_namespace_lock));
7452	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7453		error = (spa_has_checkpoint(spa)) ?
7454		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7455		return (spa_vdev_exit(spa, NULL, txg, error));
7456	}
7457
7458	/* clear the log and flush everything up to now */
7459	activate_slog = spa_passivate_log(spa);
7460	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7461	error = spa_reset_logs(spa);
7462	txg = spa_vdev_config_enter(spa);
7463
7464	if (activate_slog)
7465		spa_activate_log(spa);
7466
7467	if (error != 0)
7468		return (spa_vdev_exit(spa, NULL, txg, error));
7469
7470	/* check new spa name before going any further */
7471	if (spa_lookup(newname) != NULL)
7472		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7473
7474	/*
7475	 * scan through all the children to ensure they're all mirrors
7476	 */
7477	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7478	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7479	    &children) != 0)
7480		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7481
7482	/* first, check to ensure we've got the right child count */
7483	rvd = spa->spa_root_vdev;
7484	lastlog = 0;
7485	for (c = 0; c < rvd->vdev_children; c++) {
7486		vdev_t *vd = rvd->vdev_child[c];
7487
7488		/* don't count the holes & logs as children */
7489		if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7490		    !vdev_is_concrete(vd))) {
7491			if (lastlog == 0)
7492				lastlog = c;
7493			continue;
7494		}
7495
7496		lastlog = 0;
7497	}
7498	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7499		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7500
7501	/* next, ensure no spare or cache devices are part of the split */
7502	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7503	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7504		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7505
7506	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7507	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7508
7509	/* then, loop over each vdev and validate it */
7510	for (c = 0; c < children; c++) {
7511		uint64_t is_hole = 0;
7512
7513		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7514		    &is_hole);
7515
7516		if (is_hole != 0) {
7517			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7518			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7519				continue;
7520			} else {
7521				error = SET_ERROR(EINVAL);
7522				break;
7523			}
7524		}
7525
7526		/* deal with indirect vdevs */
7527		if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7528		    &vdev_indirect_ops)
7529			continue;
7530
7531		/* which disk is going to be split? */
7532		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7533		    &glist[c]) != 0) {
7534			error = SET_ERROR(EINVAL);
7535			break;
7536		}
7537
7538		/* look it up in the spa */
7539		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7540		if (vml[c] == NULL) {
7541			error = SET_ERROR(ENODEV);
7542			break;
7543		}
7544
7545		/* make sure there's nothing stopping the split */
7546		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7547		    vml[c]->vdev_islog ||
7548		    !vdev_is_concrete(vml[c]) ||
7549		    vml[c]->vdev_isspare ||
7550		    vml[c]->vdev_isl2cache ||
7551		    !vdev_writeable(vml[c]) ||
7552		    vml[c]->vdev_children != 0 ||
7553		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7554		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7555			error = SET_ERROR(EINVAL);
7556			break;
7557		}
7558
7559		if (vdev_dtl_required(vml[c]) ||
7560		    vdev_resilver_needed(vml[c], NULL, NULL)) {
7561			error = SET_ERROR(EBUSY);
7562			break;
7563		}
7564
7565		/* we need certain info from the top level */
7566		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7567		    vml[c]->vdev_top->vdev_ms_array) == 0);
7568		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7569		    vml[c]->vdev_top->vdev_ms_shift) == 0);
7570		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7571		    vml[c]->vdev_top->vdev_asize) == 0);
7572		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7573		    vml[c]->vdev_top->vdev_ashift) == 0);
7574
7575		/* transfer per-vdev ZAPs */
7576		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7577		VERIFY0(nvlist_add_uint64(child[c],
7578		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7579
7580		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7581		VERIFY0(nvlist_add_uint64(child[c],
7582		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
7583		    vml[c]->vdev_parent->vdev_top_zap));
7584	}
7585
7586	if (error != 0) {
7587		kmem_free(vml, children * sizeof (vdev_t *));
7588		kmem_free(glist, children * sizeof (uint64_t));
7589		return (spa_vdev_exit(spa, NULL, txg, error));
7590	}
7591
7592	/* stop writers from using the disks */
7593	for (c = 0; c < children; c++) {
7594		if (vml[c] != NULL)
7595			vml[c]->vdev_offline = B_TRUE;
7596	}
7597	vdev_reopen(spa->spa_root_vdev);
7598
7599	/*
7600	 * Temporarily record the splitting vdevs in the spa config.  This
7601	 * will disappear once the config is regenerated.
7602	 */
7603	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7604	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7605	    glist, children) == 0);
7606	kmem_free(glist, children * sizeof (uint64_t));
7607
7608	mutex_enter(&spa->spa_props_lock);
7609	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7610	    nvl) == 0);
7611	mutex_exit(&spa->spa_props_lock);
7612	spa->spa_config_splitting = nvl;
7613	vdev_config_dirty(spa->spa_root_vdev);
7614
7615	/* configure and create the new pool */
7616	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7617	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7618	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7619	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7620	    spa_version(spa)) == 0);
7621	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7622	    spa->spa_config_txg) == 0);
7623	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7624	    spa_generate_guid(NULL)) == 0);
7625	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7626	(void) nvlist_lookup_string(props,
7627	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7628
7629	/* add the new pool to the namespace */
7630	newspa = spa_add(newname, config, altroot);
7631	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7632	newspa->spa_config_txg = spa->spa_config_txg;
7633	spa_set_log_state(newspa, SPA_LOG_CLEAR);
7634
7635	/* release the spa config lock, retaining the namespace lock */
7636	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7637
7638	if (zio_injection_enabled)
7639		zio_handle_panic_injection(spa, FTAG, 1);
7640
7641	spa_activate(newspa, spa_mode_global);
7642	spa_async_suspend(newspa);
7643
7644	/*
7645	 * Temporarily stop the initializing and TRIM activity.  We set the
7646	 * state to ACTIVE so that we know to resume initializing or TRIM
7647	 * once the split has completed.
7648	 */
7649	list_t vd_initialize_list;
7650	list_create(&vd_initialize_list, sizeof (vdev_t),
7651	    offsetof(vdev_t, vdev_initialize_node));
7652
7653	list_t vd_trim_list;
7654	list_create(&vd_trim_list, sizeof (vdev_t),
7655	    offsetof(vdev_t, vdev_trim_node));
7656
7657	for (c = 0; c < children; c++) {
7658		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7659			mutex_enter(&vml[c]->vdev_initialize_lock);
7660			vdev_initialize_stop(vml[c],
7661			    VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7662			mutex_exit(&vml[c]->vdev_initialize_lock);
7663
7664			mutex_enter(&vml[c]->vdev_trim_lock);
7665			vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7666			mutex_exit(&vml[c]->vdev_trim_lock);
7667		}
7668	}
7669
7670	vdev_initialize_stop_wait(spa, &vd_initialize_list);
7671	vdev_trim_stop_wait(spa, &vd_trim_list);
7672
7673	list_destroy(&vd_initialize_list);
7674	list_destroy(&vd_trim_list);
7675
7676	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7677	newspa->spa_is_splitting = B_TRUE;
7678
7679	/* create the new pool from the disks of the original pool */
7680	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7681	if (error)
7682		goto out;
7683
7684	/* if that worked, generate a real config for the new pool */
7685	if (newspa->spa_root_vdev != NULL) {
7686		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7687		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
7688		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7689		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7690		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7691		    B_TRUE));
7692	}
7693
7694	/* set the props */
7695	if (props != NULL) {
7696		spa_configfile_set(newspa, props, B_FALSE);
7697		error = spa_prop_set(newspa, props);
7698		if (error)
7699			goto out;
7700	}
7701
7702	/* flush everything */
7703	txg = spa_vdev_config_enter(newspa);
7704	vdev_config_dirty(newspa->spa_root_vdev);
7705	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7706
7707	if (zio_injection_enabled)
7708		zio_handle_panic_injection(spa, FTAG, 2);
7709
7710	spa_async_resume(newspa);
7711
7712	/* finally, update the original pool's config */
7713	txg = spa_vdev_config_enter(spa);
7714	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7715	error = dmu_tx_assign(tx, TXG_WAIT);
7716	if (error != 0)
7717		dmu_tx_abort(tx);
7718	for (c = 0; c < children; c++) {
7719		if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7720			vdev_t *tvd = vml[c]->vdev_top;
7721
7722			/*
7723			 * Need to be sure the detachable VDEV is not
7724			 * on any *other* txg's DTL list to prevent it
7725			 * from being accessed after it's freed.
7726			 */
7727			for (int t = 0; t < TXG_SIZE; t++) {
7728				(void) txg_list_remove_this(
7729				    &tvd->vdev_dtl_list, vml[c], t);
7730			}
7731
7732			vdev_split(vml[c]);
7733			if (error == 0)
7734				spa_history_log_internal(spa, "detach", tx,
7735				    "vdev=%s", vml[c]->vdev_path);
7736
7737			vdev_free(vml[c]);
7738		}
7739	}
7740	spa->spa_avz_action = AVZ_ACTION_REBUILD;
7741	vdev_config_dirty(spa->spa_root_vdev);
7742	spa->spa_config_splitting = NULL;
7743	nvlist_free(nvl);
7744	if (error == 0)
7745		dmu_tx_commit(tx);
7746	(void) spa_vdev_exit(spa, NULL, txg, 0);
7747
7748	if (zio_injection_enabled)
7749		zio_handle_panic_injection(spa, FTAG, 3);
7750
7751	/* split is complete; log a history record */
7752	spa_history_log_internal(newspa, "split", NULL,
7753	    "from pool %s", spa_name(spa));
7754
7755	newspa->spa_is_splitting = B_FALSE;
7756	kmem_free(vml, children * sizeof (vdev_t *));
7757
7758	/* if we're not going to mount the filesystems in userland, export */
7759	if (exp)
7760		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7761		    B_FALSE, B_FALSE);
7762
7763	return (error);
7764
7765out:
7766	spa_unload(newspa);
7767	spa_deactivate(newspa);
7768	spa_remove(newspa);
7769
7770	txg = spa_vdev_config_enter(spa);
7771
7772	/* re-online all offlined disks */
7773	for (c = 0; c < children; c++) {
7774		if (vml[c] != NULL)
7775			vml[c]->vdev_offline = B_FALSE;
7776	}
7777
7778	/* restart initializing or trimming disks as necessary */
7779	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7780	spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7781	spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7782
7783	vdev_reopen(spa->spa_root_vdev);
7784
7785	nvlist_free(spa->spa_config_splitting);
7786	spa->spa_config_splitting = NULL;
7787	(void) spa_vdev_exit(spa, NULL, txg, error);
7788
7789	kmem_free(vml, children * sizeof (vdev_t *));
7790	return (error);
7791}
7792
7793/*
7794 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7795 * currently spared, so we can detach it.
7796 */
7797static vdev_t *
7798spa_vdev_resilver_done_hunt(vdev_t *vd)
7799{
7800	vdev_t *newvd, *oldvd;
7801
7802	for (int c = 0; c < vd->vdev_children; c++) {
7803		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7804		if (oldvd != NULL)
7805			return (oldvd);
7806	}
7807
7808	/*
7809	 * Check for a completed replacement.  We always consider the first
7810	 * vdev in the list to be the oldest vdev, and the last one to be
7811	 * the newest (see spa_vdev_attach() for how that works).  In
7812	 * the case where the newest vdev is faulted, we will not automatically
7813	 * remove it after a resilver completes.  This is OK as it will require
7814	 * user intervention to determine which disk the admin wishes to keep.
7815	 */
7816	if (vd->vdev_ops == &vdev_replacing_ops) {
7817		ASSERT(vd->vdev_children > 1);
7818
7819		newvd = vd->vdev_child[vd->vdev_children - 1];
7820		oldvd = vd->vdev_child[0];
7821
7822		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7823		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7824		    !vdev_dtl_required(oldvd))
7825			return (oldvd);
7826	}
7827
7828	/*
7829	 * Check for a completed resilver with the 'unspare' flag set.
7830	 * Also potentially update faulted state.
7831	 */
7832	if (vd->vdev_ops == &vdev_spare_ops) {
7833		vdev_t *first = vd->vdev_child[0];
7834		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7835
7836		if (last->vdev_unspare) {
7837			oldvd = first;
7838			newvd = last;
7839		} else if (first->vdev_unspare) {
7840			oldvd = last;
7841			newvd = first;
7842		} else {
7843			oldvd = NULL;
7844		}
7845
7846		if (oldvd != NULL &&
7847		    vdev_dtl_empty(newvd, DTL_MISSING) &&
7848		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7849		    !vdev_dtl_required(oldvd))
7850			return (oldvd);
7851
7852		vdev_propagate_state(vd);
7853
7854		/*
7855		 * If there are more than two spares attached to a disk,
7856		 * and those spares are not required, then we want to
7857		 * attempt to free them up now so that they can be used
7858		 * by other pools.  Once we're back down to a single
7859		 * disk+spare, we stop removing them.
7860		 */
7861		if (vd->vdev_children > 2) {
7862			newvd = vd->vdev_child[1];
7863
7864			if (newvd->vdev_isspare && last->vdev_isspare &&
7865			    vdev_dtl_empty(last, DTL_MISSING) &&
7866			    vdev_dtl_empty(last, DTL_OUTAGE) &&
7867			    !vdev_dtl_required(newvd))
7868				return (newvd);
7869		}
7870	}
7871
7872	return (NULL);
7873}
7874
7875static void
7876spa_vdev_resilver_done(spa_t *spa)
7877{
7878	vdev_t *vd, *pvd, *ppvd;
7879	uint64_t guid, sguid, pguid, ppguid;
7880
7881	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7882
7883	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7884		pvd = vd->vdev_parent;
7885		ppvd = pvd->vdev_parent;
7886		guid = vd->vdev_guid;
7887		pguid = pvd->vdev_guid;
7888		ppguid = ppvd->vdev_guid;
7889		sguid = 0;
7890		/*
7891		 * If we have just finished replacing a hot spared device, then
7892		 * we need to detach the parent's first child (the original hot
7893		 * spare) as well.
7894		 */
7895		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7896		    ppvd->vdev_children == 2) {
7897			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7898			sguid = ppvd->vdev_child[1]->vdev_guid;
7899		}
7900		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7901
7902		spa_config_exit(spa, SCL_ALL, FTAG);
7903		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7904			return;
7905		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7906			return;
7907		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7908	}
7909
7910	spa_config_exit(spa, SCL_ALL, FTAG);
7911
7912	/*
7913	 * If a detach was not performed above replace waiters will not have
7914	 * been notified.  In which case we must do so now.
7915	 */
7916	spa_notify_waiters(spa);
7917}
7918
7919/*
7920 * Update the stored path or FRU for this vdev.
7921 */
7922static int
7923spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7924    boolean_t ispath)
7925{
7926	vdev_t *vd;
7927	boolean_t sync = B_FALSE;
7928
7929	ASSERT(spa_writeable(spa));
7930
7931	spa_vdev_state_enter(spa, SCL_ALL);
7932
7933	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7934		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7935
7936	if (!vd->vdev_ops->vdev_op_leaf)
7937		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7938
7939	if (ispath) {
7940		if (strcmp(value, vd->vdev_path) != 0) {
7941			spa_strfree(vd->vdev_path);
7942			vd->vdev_path = spa_strdup(value);
7943			sync = B_TRUE;
7944		}
7945	} else {
7946		if (vd->vdev_fru == NULL) {
7947			vd->vdev_fru = spa_strdup(value);
7948			sync = B_TRUE;
7949		} else if (strcmp(value, vd->vdev_fru) != 0) {
7950			spa_strfree(vd->vdev_fru);
7951			vd->vdev_fru = spa_strdup(value);
7952			sync = B_TRUE;
7953		}
7954	}
7955
7956	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7957}
7958
7959int
7960spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7961{
7962	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7963}
7964
7965int
7966spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7967{
7968	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7969}
7970
7971/*
7972 * ==========================================================================
7973 * SPA Scanning
7974 * ==========================================================================
7975 */
7976int
7977spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7978{
7979	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7980
7981	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7982		return (SET_ERROR(EBUSY));
7983
7984	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7985}
7986
7987int
7988spa_scan_stop(spa_t *spa)
7989{
7990	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7991	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7992		return (SET_ERROR(EBUSY));
7993	return (dsl_scan_cancel(spa->spa_dsl_pool));
7994}
7995
7996int
7997spa_scan(spa_t *spa, pool_scan_func_t func)
7998{
7999	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8000
8001	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8002		return (SET_ERROR(ENOTSUP));
8003
8004	if (func == POOL_SCAN_RESILVER &&
8005	    !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8006		return (SET_ERROR(ENOTSUP));
8007
8008	/*
8009	 * If a resilver was requested, but there is no DTL on a
8010	 * writeable leaf device, we have nothing to do.
8011	 */
8012	if (func == POOL_SCAN_RESILVER &&
8013	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8014		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8015		return (0);
8016	}
8017
8018	return (dsl_scan(spa->spa_dsl_pool, func));
8019}
8020
8021/*
8022 * ==========================================================================
8023 * SPA async task processing
8024 * ==========================================================================
8025 */
8026
8027static void
8028spa_async_remove(spa_t *spa, vdev_t *vd)
8029{
8030	if (vd->vdev_remove_wanted) {
8031		vd->vdev_remove_wanted = B_FALSE;
8032		vd->vdev_delayed_close = B_FALSE;
8033		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8034
8035		/*
8036		 * We want to clear the stats, but we don't want to do a full
8037		 * vdev_clear() as that will cause us to throw away
8038		 * degraded/faulted state as well as attempt to reopen the
8039		 * device, all of which is a waste.
8040		 */
8041		vd->vdev_stat.vs_read_errors = 0;
8042		vd->vdev_stat.vs_write_errors = 0;
8043		vd->vdev_stat.vs_checksum_errors = 0;
8044
8045		vdev_state_dirty(vd->vdev_top);
8046
8047		/* Tell userspace that the vdev is gone. */
8048		zfs_post_remove(spa, vd);
8049	}
8050
8051	for (int c = 0; c < vd->vdev_children; c++)
8052		spa_async_remove(spa, vd->vdev_child[c]);
8053}
8054
8055static void
8056spa_async_probe(spa_t *spa, vdev_t *vd)
8057{
8058	if (vd->vdev_probe_wanted) {
8059		vd->vdev_probe_wanted = B_FALSE;
8060		vdev_reopen(vd);	/* vdev_open() does the actual probe */
8061	}
8062
8063	for (int c = 0; c < vd->vdev_children; c++)
8064		spa_async_probe(spa, vd->vdev_child[c]);
8065}
8066
8067static void
8068spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8069{
8070	if (!spa->spa_autoexpand)
8071		return;
8072
8073	for (int c = 0; c < vd->vdev_children; c++) {
8074		vdev_t *cvd = vd->vdev_child[c];
8075		spa_async_autoexpand(spa, cvd);
8076	}
8077
8078	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8079		return;
8080
8081	spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8082}
8083
8084static void
8085spa_async_thread(void *arg)
8086{
8087	spa_t *spa = (spa_t *)arg;
8088	dsl_pool_t *dp = spa->spa_dsl_pool;
8089	int tasks;
8090
8091	ASSERT(spa->spa_sync_on);
8092
8093	mutex_enter(&spa->spa_async_lock);
8094	tasks = spa->spa_async_tasks;
8095	spa->spa_async_tasks = 0;
8096	mutex_exit(&spa->spa_async_lock);
8097
8098	/*
8099	 * See if the config needs to be updated.
8100	 */
8101	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8102		uint64_t old_space, new_space;
8103
8104		mutex_enter(&spa_namespace_lock);
8105		old_space = metaslab_class_get_space(spa_normal_class(spa));
8106		old_space += metaslab_class_get_space(spa_special_class(spa));
8107		old_space += metaslab_class_get_space(spa_dedup_class(spa));
8108		old_space += metaslab_class_get_space(
8109		    spa_embedded_log_class(spa));
8110
8111		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8112
8113		new_space = metaslab_class_get_space(spa_normal_class(spa));
8114		new_space += metaslab_class_get_space(spa_special_class(spa));
8115		new_space += metaslab_class_get_space(spa_dedup_class(spa));
8116		new_space += metaslab_class_get_space(
8117		    spa_embedded_log_class(spa));
8118		mutex_exit(&spa_namespace_lock);
8119
8120		/*
8121		 * If the pool grew as a result of the config update,
8122		 * then log an internal history event.
8123		 */
8124		if (new_space != old_space) {
8125			spa_history_log_internal(spa, "vdev online", NULL,
8126			    "pool '%s' size: %llu(+%llu)",
8127			    spa_name(spa), (u_longlong_t)new_space,
8128			    (u_longlong_t)(new_space - old_space));
8129		}
8130	}
8131
8132	/*
8133	 * See if any devices need to be marked REMOVED.
8134	 */
8135	if (tasks & SPA_ASYNC_REMOVE) {
8136		spa_vdev_state_enter(spa, SCL_NONE);
8137		spa_async_remove(spa, spa->spa_root_vdev);
8138		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8139			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8140		for (int i = 0; i < spa->spa_spares.sav_count; i++)
8141			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8142		(void) spa_vdev_state_exit(spa, NULL, 0);
8143	}
8144
8145	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8146		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8147		spa_async_autoexpand(spa, spa->spa_root_vdev);
8148		spa_config_exit(spa, SCL_CONFIG, FTAG);
8149	}
8150
8151	/*
8152	 * See if any devices need to be probed.
8153	 */
8154	if (tasks & SPA_ASYNC_PROBE) {
8155		spa_vdev_state_enter(spa, SCL_NONE);
8156		spa_async_probe(spa, spa->spa_root_vdev);
8157		(void) spa_vdev_state_exit(spa, NULL, 0);
8158	}
8159
8160	/*
8161	 * If any devices are done replacing, detach them.
8162	 */
8163	if (tasks & SPA_ASYNC_RESILVER_DONE ||
8164	    tasks & SPA_ASYNC_REBUILD_DONE) {
8165		spa_vdev_resilver_done(spa);
8166	}
8167
8168	/*
8169	 * Kick off a resilver.
8170	 */
8171	if (tasks & SPA_ASYNC_RESILVER &&
8172	    !vdev_rebuild_active(spa->spa_root_vdev) &&
8173	    (!dsl_scan_resilvering(dp) ||
8174	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8175		dsl_scan_restart_resilver(dp, 0);
8176
8177	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8178		mutex_enter(&spa_namespace_lock);
8179		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8180		vdev_initialize_restart(spa->spa_root_vdev);
8181		spa_config_exit(spa, SCL_CONFIG, FTAG);
8182		mutex_exit(&spa_namespace_lock);
8183	}
8184
8185	if (tasks & SPA_ASYNC_TRIM_RESTART) {
8186		mutex_enter(&spa_namespace_lock);
8187		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8188		vdev_trim_restart(spa->spa_root_vdev);
8189		spa_config_exit(spa, SCL_CONFIG, FTAG);
8190		mutex_exit(&spa_namespace_lock);
8191	}
8192
8193	if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8194		mutex_enter(&spa_namespace_lock);
8195		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8196		vdev_autotrim_restart(spa);
8197		spa_config_exit(spa, SCL_CONFIG, FTAG);
8198		mutex_exit(&spa_namespace_lock);
8199	}
8200
8201	/*
8202	 * Kick off L2 cache whole device TRIM.
8203	 */
8204	if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8205		mutex_enter(&spa_namespace_lock);
8206		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8207		vdev_trim_l2arc(spa);
8208		spa_config_exit(spa, SCL_CONFIG, FTAG);
8209		mutex_exit(&spa_namespace_lock);
8210	}
8211
8212	/*
8213	 * Kick off L2 cache rebuilding.
8214	 */
8215	if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8216		mutex_enter(&spa_namespace_lock);
8217		spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8218		l2arc_spa_rebuild_start(spa);
8219		spa_config_exit(spa, SCL_L2ARC, FTAG);
8220		mutex_exit(&spa_namespace_lock);
8221	}
8222
8223	/*
8224	 * Let the world know that we're done.
8225	 */
8226	mutex_enter(&spa->spa_async_lock);
8227	spa->spa_async_thread = NULL;
8228	cv_broadcast(&spa->spa_async_cv);
8229	mutex_exit(&spa->spa_async_lock);
8230	thread_exit();
8231}
8232
8233void
8234spa_async_suspend(spa_t *spa)
8235{
8236	mutex_enter(&spa->spa_async_lock);
8237	spa->spa_async_suspended++;
8238	while (spa->spa_async_thread != NULL)
8239		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8240	mutex_exit(&spa->spa_async_lock);
8241
8242	spa_vdev_remove_suspend(spa);
8243
8244	zthr_t *condense_thread = spa->spa_condense_zthr;
8245	if (condense_thread != NULL)
8246		zthr_cancel(condense_thread);
8247
8248	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8249	if (discard_thread != NULL)
8250		zthr_cancel(discard_thread);
8251
8252	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8253	if (ll_delete_thread != NULL)
8254		zthr_cancel(ll_delete_thread);
8255
8256	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8257	if (ll_condense_thread != NULL)
8258		zthr_cancel(ll_condense_thread);
8259}
8260
8261void
8262spa_async_resume(spa_t *spa)
8263{
8264	mutex_enter(&spa->spa_async_lock);
8265	ASSERT(spa->spa_async_suspended != 0);
8266	spa->spa_async_suspended--;
8267	mutex_exit(&spa->spa_async_lock);
8268	spa_restart_removal(spa);
8269
8270	zthr_t *condense_thread = spa->spa_condense_zthr;
8271	if (condense_thread != NULL)
8272		zthr_resume(condense_thread);
8273
8274	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8275	if (discard_thread != NULL)
8276		zthr_resume(discard_thread);
8277
8278	zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8279	if (ll_delete_thread != NULL)
8280		zthr_resume(ll_delete_thread);
8281
8282	zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8283	if (ll_condense_thread != NULL)
8284		zthr_resume(ll_condense_thread);
8285}
8286
8287static boolean_t
8288spa_async_tasks_pending(spa_t *spa)
8289{
8290	uint_t non_config_tasks;
8291	uint_t config_task;
8292	boolean_t config_task_suspended;
8293
8294	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8295	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8296	if (spa->spa_ccw_fail_time == 0) {
8297		config_task_suspended = B_FALSE;
8298	} else {
8299		config_task_suspended =
8300		    (gethrtime() - spa->spa_ccw_fail_time) <
8301		    ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8302	}
8303
8304	return (non_config_tasks || (config_task && !config_task_suspended));
8305}
8306
8307static void
8308spa_async_dispatch(spa_t *spa)
8309{
8310	mutex_enter(&spa->spa_async_lock);
8311	if (spa_async_tasks_pending(spa) &&
8312	    !spa->spa_async_suspended &&
8313	    spa->spa_async_thread == NULL)
8314		spa->spa_async_thread = thread_create(NULL, 0,
8315		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8316	mutex_exit(&spa->spa_async_lock);
8317}
8318
8319void
8320spa_async_request(spa_t *spa, int task)
8321{
8322	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8323	mutex_enter(&spa->spa_async_lock);
8324	spa->spa_async_tasks |= task;
8325	mutex_exit(&spa->spa_async_lock);
8326}
8327
8328int
8329spa_async_tasks(spa_t *spa)
8330{
8331	return (spa->spa_async_tasks);
8332}
8333
8334/*
8335 * ==========================================================================
8336 * SPA syncing routines
8337 * ==========================================================================
8338 */
8339
8340
8341static int
8342bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8343    dmu_tx_t *tx)
8344{
8345	bpobj_t *bpo = arg;
8346	bpobj_enqueue(bpo, bp, bp_freed, tx);
8347	return (0);
8348}
8349
8350int
8351bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8352{
8353	return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8354}
8355
8356int
8357bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8358{
8359	return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8360}
8361
8362static int
8363spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8364{
8365	zio_t *pio = arg;
8366
8367	zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8368	    pio->io_flags));
8369	return (0);
8370}
8371
8372static int
8373bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8374    dmu_tx_t *tx)
8375{
8376	ASSERT(!bp_freed);
8377	return (spa_free_sync_cb(arg, bp, tx));
8378}
8379
8380/*
8381 * Note: this simple function is not inlined to make it easier to dtrace the
8382 * amount of time spent syncing frees.
8383 */
8384static void
8385spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8386{
8387	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8388	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8389	VERIFY(zio_wait(zio) == 0);
8390}
8391
8392/*
8393 * Note: this simple function is not inlined to make it easier to dtrace the
8394 * amount of time spent syncing deferred frees.
8395 */
8396static void
8397spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8398{
8399	if (spa_sync_pass(spa) != 1)
8400		return;
8401
8402	/*
8403	 * Note:
8404	 * If the log space map feature is active, we stop deferring
8405	 * frees to the next TXG and therefore running this function
8406	 * would be considered a no-op as spa_deferred_bpobj should
8407	 * not have any entries.
8408	 *
8409	 * That said we run this function anyway (instead of returning
8410	 * immediately) for the edge-case scenario where we just
8411	 * activated the log space map feature in this TXG but we have
8412	 * deferred frees from the previous TXG.
8413	 */
8414	zio_t *zio = zio_root(spa, NULL, NULL, 0);
8415	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8416	    bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8417	VERIFY0(zio_wait(zio));
8418}
8419
8420static void
8421spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8422{
8423	char *packed = NULL;
8424	size_t bufsize;
8425	size_t nvsize = 0;
8426	dmu_buf_t *db;
8427
8428	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8429
8430	/*
8431	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8432	 * information.  This avoids the dmu_buf_will_dirty() path and
8433	 * saves us a pre-read to get data we don't actually care about.
8434	 */
8435	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8436	packed = vmem_alloc(bufsize, KM_SLEEP);
8437
8438	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8439	    KM_SLEEP) == 0);
8440	bzero(packed + nvsize, bufsize - nvsize);
8441
8442	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8443
8444	vmem_free(packed, bufsize);
8445
8446	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8447	dmu_buf_will_dirty(db, tx);
8448	*(uint64_t *)db->db_data = nvsize;
8449	dmu_buf_rele(db, FTAG);
8450}
8451
8452static void
8453spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8454    const char *config, const char *entry)
8455{
8456	nvlist_t *nvroot;
8457	nvlist_t **list;
8458	int i;
8459
8460	if (!sav->sav_sync)
8461		return;
8462
8463	/*
8464	 * Update the MOS nvlist describing the list of available devices.
8465	 * spa_validate_aux() will have already made sure this nvlist is
8466	 * valid and the vdevs are labeled appropriately.
8467	 */
8468	if (sav->sav_object == 0) {
8469		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8470		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8471		    sizeof (uint64_t), tx);
8472		VERIFY(zap_update(spa->spa_meta_objset,
8473		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8474		    &sav->sav_object, tx) == 0);
8475	}
8476
8477	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
8478	if (sav->sav_count == 0) {
8479		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
8480	} else {
8481		list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8482		for (i = 0; i < sav->sav_count; i++)
8483			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8484			    B_FALSE, VDEV_CONFIG_L2CACHE);
8485		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
8486		    sav->sav_count) == 0);
8487		for (i = 0; i < sav->sav_count; i++)
8488			nvlist_free(list[i]);
8489		kmem_free(list, sav->sav_count * sizeof (void *));
8490	}
8491
8492	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8493	nvlist_free(nvroot);
8494
8495	sav->sav_sync = B_FALSE;
8496}
8497
8498/*
8499 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8500 * The all-vdev ZAP must be empty.
8501 */
8502static void
8503spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8504{
8505	spa_t *spa = vd->vdev_spa;
8506
8507	if (vd->vdev_top_zap != 0) {
8508		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8509		    vd->vdev_top_zap, tx));
8510	}
8511	if (vd->vdev_leaf_zap != 0) {
8512		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8513		    vd->vdev_leaf_zap, tx));
8514	}
8515	for (uint64_t i = 0; i < vd->vdev_children; i++) {
8516		spa_avz_build(vd->vdev_child[i], avz, tx);
8517	}
8518}
8519
8520static void
8521spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8522{
8523	nvlist_t *config;
8524
8525	/*
8526	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8527	 * its config may not be dirty but we still need to build per-vdev ZAPs.
8528	 * Similarly, if the pool is being assembled (e.g. after a split), we
8529	 * need to rebuild the AVZ although the config may not be dirty.
8530	 */
8531	if (list_is_empty(&spa->spa_config_dirty_list) &&
8532	    spa->spa_avz_action == AVZ_ACTION_NONE)
8533		return;
8534
8535	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8536
8537	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8538	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8539	    spa->spa_all_vdev_zaps != 0);
8540
8541	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8542		/* Make and build the new AVZ */
8543		uint64_t new_avz = zap_create(spa->spa_meta_objset,
8544		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8545		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8546
8547		/* Diff old AVZ with new one */
8548		zap_cursor_t zc;
8549		zap_attribute_t za;
8550
8551		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8552		    spa->spa_all_vdev_zaps);
8553		    zap_cursor_retrieve(&zc, &za) == 0;
8554		    zap_cursor_advance(&zc)) {
8555			uint64_t vdzap = za.za_first_integer;
8556			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8557			    vdzap) == ENOENT) {
8558				/*
8559				 * ZAP is listed in old AVZ but not in new one;
8560				 * destroy it
8561				 */
8562				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8563				    tx));
8564			}
8565		}
8566
8567		zap_cursor_fini(&zc);
8568
8569		/* Destroy the old AVZ */
8570		VERIFY0(zap_destroy(spa->spa_meta_objset,
8571		    spa->spa_all_vdev_zaps, tx));
8572
8573		/* Replace the old AVZ in the dir obj with the new one */
8574		VERIFY0(zap_update(spa->spa_meta_objset,
8575		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8576		    sizeof (new_avz), 1, &new_avz, tx));
8577
8578		spa->spa_all_vdev_zaps = new_avz;
8579	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8580		zap_cursor_t zc;
8581		zap_attribute_t za;
8582
8583		/* Walk through the AVZ and destroy all listed ZAPs */
8584		for (zap_cursor_init(&zc, spa->spa_meta_objset,
8585		    spa->spa_all_vdev_zaps);
8586		    zap_cursor_retrieve(&zc, &za) == 0;
8587		    zap_cursor_advance(&zc)) {
8588			uint64_t zap = za.za_first_integer;
8589			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8590		}
8591
8592		zap_cursor_fini(&zc);
8593
8594		/* Destroy and unlink the AVZ itself */
8595		VERIFY0(zap_destroy(spa->spa_meta_objset,
8596		    spa->spa_all_vdev_zaps, tx));
8597		VERIFY0(zap_remove(spa->spa_meta_objset,
8598		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8599		spa->spa_all_vdev_zaps = 0;
8600	}
8601
8602	if (spa->spa_all_vdev_zaps == 0) {
8603		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8604		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8605		    DMU_POOL_VDEV_ZAP_MAP, tx);
8606	}
8607	spa->spa_avz_action = AVZ_ACTION_NONE;
8608
8609	/* Create ZAPs for vdevs that don't have them. */
8610	vdev_construct_zaps(spa->spa_root_vdev, tx);
8611
8612	config = spa_config_generate(spa, spa->spa_root_vdev,
8613	    dmu_tx_get_txg(tx), B_FALSE);
8614
8615	/*
8616	 * If we're upgrading the spa version then make sure that
8617	 * the config object gets updated with the correct version.
8618	 */
8619	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8620		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8621		    spa->spa_uberblock.ub_version);
8622
8623	spa_config_exit(spa, SCL_STATE, FTAG);
8624
8625	nvlist_free(spa->spa_config_syncing);
8626	spa->spa_config_syncing = config;
8627
8628	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8629}
8630
8631static void
8632spa_sync_version(void *arg, dmu_tx_t *tx)
8633{
8634	uint64_t *versionp = arg;
8635	uint64_t version = *versionp;
8636	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8637
8638	/*
8639	 * Setting the version is special cased when first creating the pool.
8640	 */
8641	ASSERT(tx->tx_txg != TXG_INITIAL);
8642
8643	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8644	ASSERT(version >= spa_version(spa));
8645
8646	spa->spa_uberblock.ub_version = version;
8647	vdev_config_dirty(spa->spa_root_vdev);
8648	spa_history_log_internal(spa, "set", tx, "version=%lld",
8649	    (longlong_t)version);
8650}
8651
8652/*
8653 * Set zpool properties.
8654 */
8655static void
8656spa_sync_props(void *arg, dmu_tx_t *tx)
8657{
8658	nvlist_t *nvp = arg;
8659	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8660	objset_t *mos = spa->spa_meta_objset;
8661	nvpair_t *elem = NULL;
8662
8663	mutex_enter(&spa->spa_props_lock);
8664
8665	while ((elem = nvlist_next_nvpair(nvp, elem))) {
8666		uint64_t intval;
8667		char *strval, *fname;
8668		zpool_prop_t prop;
8669		const char *propname;
8670		zprop_type_t proptype;
8671		spa_feature_t fid;
8672
8673		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8674		case ZPOOL_PROP_INVAL:
8675			/*
8676			 * We checked this earlier in spa_prop_validate().
8677			 */
8678			ASSERT(zpool_prop_feature(nvpair_name(elem)));
8679
8680			fname = strchr(nvpair_name(elem), '@') + 1;
8681			VERIFY0(zfeature_lookup_name(fname, &fid));
8682
8683			spa_feature_enable(spa, fid, tx);
8684			spa_history_log_internal(spa, "set", tx,
8685			    "%s=enabled", nvpair_name(elem));
8686			break;
8687
8688		case ZPOOL_PROP_VERSION:
8689			intval = fnvpair_value_uint64(elem);
8690			/*
8691			 * The version is synced separately before other
8692			 * properties and should be correct by now.
8693			 */
8694			ASSERT3U(spa_version(spa), >=, intval);
8695			break;
8696
8697		case ZPOOL_PROP_ALTROOT:
8698			/*
8699			 * 'altroot' is a non-persistent property. It should
8700			 * have been set temporarily at creation or import time.
8701			 */
8702			ASSERT(spa->spa_root != NULL);
8703			break;
8704
8705		case ZPOOL_PROP_READONLY:
8706		case ZPOOL_PROP_CACHEFILE:
8707			/*
8708			 * 'readonly' and 'cachefile' are also non-persistent
8709			 * properties.
8710			 */
8711			break;
8712		case ZPOOL_PROP_COMMENT:
8713			strval = fnvpair_value_string(elem);
8714			if (spa->spa_comment != NULL)
8715				spa_strfree(spa->spa_comment);
8716			spa->spa_comment = spa_strdup(strval);
8717			/*
8718			 * We need to dirty the configuration on all the vdevs
8719			 * so that their labels get updated.  It's unnecessary
8720			 * to do this for pool creation since the vdev's
8721			 * configuration has already been dirtied.
8722			 */
8723			if (tx->tx_txg != TXG_INITIAL)
8724				vdev_config_dirty(spa->spa_root_vdev);
8725			spa_history_log_internal(spa, "set", tx,
8726			    "%s=%s", nvpair_name(elem), strval);
8727			break;
8728		case ZPOOL_PROP_COMPATIBILITY:
8729			strval = fnvpair_value_string(elem);
8730			if (spa->spa_compatibility != NULL)
8731				spa_strfree(spa->spa_compatibility);
8732			spa->spa_compatibility = spa_strdup(strval);
8733			/*
8734			 * Dirty the configuration on vdevs as above.
8735			 */
8736			if (tx->tx_txg != TXG_INITIAL)
8737				vdev_config_dirty(spa->spa_root_vdev);
8738			spa_history_log_internal(spa, "set", tx,
8739			    "%s=%s", nvpair_name(elem), strval);
8740			break;
8741
8742		default:
8743			/*
8744			 * Set pool property values in the poolprops mos object.
8745			 */
8746			if (spa->spa_pool_props_object == 0) {
8747				spa->spa_pool_props_object =
8748				    zap_create_link(mos, DMU_OT_POOL_PROPS,
8749				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8750				    tx);
8751			}
8752
8753			/* normalize the property name */
8754			propname = zpool_prop_to_name(prop);
8755			proptype = zpool_prop_get_type(prop);
8756
8757			if (nvpair_type(elem) == DATA_TYPE_STRING) {
8758				ASSERT(proptype == PROP_TYPE_STRING);
8759				strval = fnvpair_value_string(elem);
8760				VERIFY0(zap_update(mos,
8761				    spa->spa_pool_props_object, propname,
8762				    1, strlen(strval) + 1, strval, tx));
8763				spa_history_log_internal(spa, "set", tx,
8764				    "%s=%s", nvpair_name(elem), strval);
8765			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8766				intval = fnvpair_value_uint64(elem);
8767
8768				if (proptype == PROP_TYPE_INDEX) {
8769					const char *unused;
8770					VERIFY0(zpool_prop_index_to_string(
8771					    prop, intval, &unused));
8772				}
8773				VERIFY0(zap_update(mos,
8774				    spa->spa_pool_props_object, propname,
8775				    8, 1, &intval, tx));
8776				spa_history_log_internal(spa, "set", tx,
8777				    "%s=%lld", nvpair_name(elem),
8778				    (longlong_t)intval);
8779			} else {
8780				ASSERT(0); /* not allowed */
8781			}
8782
8783			switch (prop) {
8784			case ZPOOL_PROP_DELEGATION:
8785				spa->spa_delegation = intval;
8786				break;
8787			case ZPOOL_PROP_BOOTFS:
8788				spa->spa_bootfs = intval;
8789				break;
8790			case ZPOOL_PROP_FAILUREMODE:
8791				spa->spa_failmode = intval;
8792				break;
8793			case ZPOOL_PROP_AUTOTRIM:
8794				spa->spa_autotrim = intval;
8795				spa_async_request(spa,
8796				    SPA_ASYNC_AUTOTRIM_RESTART);
8797				break;
8798			case ZPOOL_PROP_AUTOEXPAND:
8799				spa->spa_autoexpand = intval;
8800				if (tx->tx_txg != TXG_INITIAL)
8801					spa_async_request(spa,
8802					    SPA_ASYNC_AUTOEXPAND);
8803				break;
8804			case ZPOOL_PROP_MULTIHOST:
8805				spa->spa_multihost = intval;
8806				break;
8807			default:
8808				break;
8809			}
8810		}
8811
8812	}
8813
8814	mutex_exit(&spa->spa_props_lock);
8815}
8816
8817/*
8818 * Perform one-time upgrade on-disk changes.  spa_version() does not
8819 * reflect the new version this txg, so there must be no changes this
8820 * txg to anything that the upgrade code depends on after it executes.
8821 * Therefore this must be called after dsl_pool_sync() does the sync
8822 * tasks.
8823 */
8824static void
8825spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8826{
8827	if (spa_sync_pass(spa) != 1)
8828		return;
8829
8830	dsl_pool_t *dp = spa->spa_dsl_pool;
8831	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8832
8833	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8834	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8835		dsl_pool_create_origin(dp, tx);
8836
8837		/* Keeping the origin open increases spa_minref */
8838		spa->spa_minref += 3;
8839	}
8840
8841	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8842	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8843		dsl_pool_upgrade_clones(dp, tx);
8844	}
8845
8846	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8847	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8848		dsl_pool_upgrade_dir_clones(dp, tx);
8849
8850		/* Keeping the freedir open increases spa_minref */
8851		spa->spa_minref += 3;
8852	}
8853
8854	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8855	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8856		spa_feature_create_zap_objects(spa, tx);
8857	}
8858
8859	/*
8860	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8861	 * when possibility to use lz4 compression for metadata was added
8862	 * Old pools that have this feature enabled must be upgraded to have
8863	 * this feature active
8864	 */
8865	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8866		boolean_t lz4_en = spa_feature_is_enabled(spa,
8867		    SPA_FEATURE_LZ4_COMPRESS);
8868		boolean_t lz4_ac = spa_feature_is_active(spa,
8869		    SPA_FEATURE_LZ4_COMPRESS);
8870
8871		if (lz4_en && !lz4_ac)
8872			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8873	}
8874
8875	/*
8876	 * If we haven't written the salt, do so now.  Note that the
8877	 * feature may not be activated yet, but that's fine since
8878	 * the presence of this ZAP entry is backwards compatible.
8879	 */
8880	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8881	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8882		VERIFY0(zap_add(spa->spa_meta_objset,
8883		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8884		    sizeof (spa->spa_cksum_salt.zcs_bytes),
8885		    spa->spa_cksum_salt.zcs_bytes, tx));
8886	}
8887
8888	rrw_exit(&dp->dp_config_rwlock, FTAG);
8889}
8890
8891static void
8892vdev_indirect_state_sync_verify(vdev_t *vd)
8893{
8894	vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8895	vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8896
8897	if (vd->vdev_ops == &vdev_indirect_ops) {
8898		ASSERT(vim != NULL);
8899		ASSERT(vib != NULL);
8900	}
8901
8902	uint64_t obsolete_sm_object = 0;
8903	ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8904	if (obsolete_sm_object != 0) {
8905		ASSERT(vd->vdev_obsolete_sm != NULL);
8906		ASSERT(vd->vdev_removing ||
8907		    vd->vdev_ops == &vdev_indirect_ops);
8908		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8909		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8910		ASSERT3U(obsolete_sm_object, ==,
8911		    space_map_object(vd->vdev_obsolete_sm));
8912		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8913		    space_map_allocated(vd->vdev_obsolete_sm));
8914	}
8915	ASSERT(vd->vdev_obsolete_segments != NULL);
8916
8917	/*
8918	 * Since frees / remaps to an indirect vdev can only
8919	 * happen in syncing context, the obsolete segments
8920	 * tree must be empty when we start syncing.
8921	 */
8922	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8923}
8924
8925/*
8926 * Set the top-level vdev's max queue depth. Evaluate each top-level's
8927 * async write queue depth in case it changed. The max queue depth will
8928 * not change in the middle of syncing out this txg.
8929 */
8930static void
8931spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8932{
8933	ASSERT(spa_writeable(spa));
8934
8935	vdev_t *rvd = spa->spa_root_vdev;
8936	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8937	    zfs_vdev_queue_depth_pct / 100;
8938	metaslab_class_t *normal = spa_normal_class(spa);
8939	metaslab_class_t *special = spa_special_class(spa);
8940	metaslab_class_t *dedup = spa_dedup_class(spa);
8941
8942	uint64_t slots_per_allocator = 0;
8943	for (int c = 0; c < rvd->vdev_children; c++) {
8944		vdev_t *tvd = rvd->vdev_child[c];
8945
8946		metaslab_group_t *mg = tvd->vdev_mg;
8947		if (mg == NULL || !metaslab_group_initialized(mg))
8948			continue;
8949
8950		metaslab_class_t *mc = mg->mg_class;
8951		if (mc != normal && mc != special && mc != dedup)
8952			continue;
8953
8954		/*
8955		 * It is safe to do a lock-free check here because only async
8956		 * allocations look at mg_max_alloc_queue_depth, and async
8957		 * allocations all happen from spa_sync().
8958		 */
8959		for (int i = 0; i < mg->mg_allocators; i++) {
8960			ASSERT0(zfs_refcount_count(
8961			    &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8962		}
8963		mg->mg_max_alloc_queue_depth = max_queue_depth;
8964
8965		for (int i = 0; i < mg->mg_allocators; i++) {
8966			mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8967			    zfs_vdev_def_queue_depth;
8968		}
8969		slots_per_allocator += zfs_vdev_def_queue_depth;
8970	}
8971
8972	for (int i = 0; i < spa->spa_alloc_count; i++) {
8973		ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
8974		    mca_alloc_slots));
8975		ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
8976		    mca_alloc_slots));
8977		ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
8978		    mca_alloc_slots));
8979		normal->mc_allocator[i].mca_alloc_max_slots =
8980		    slots_per_allocator;
8981		special->mc_allocator[i].mca_alloc_max_slots =
8982		    slots_per_allocator;
8983		dedup->mc_allocator[i].mca_alloc_max_slots =
8984		    slots_per_allocator;
8985	}
8986	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8987	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8988	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8989}
8990
8991static void
8992spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
8993{
8994	ASSERT(spa_writeable(spa));
8995
8996	vdev_t *rvd = spa->spa_root_vdev;
8997	for (int c = 0; c < rvd->vdev_children; c++) {
8998		vdev_t *vd = rvd->vdev_child[c];
8999		vdev_indirect_state_sync_verify(vd);
9000
9001		if (vdev_indirect_should_condense(vd)) {
9002			spa_condense_indirect_start_sync(vd, tx);
9003			break;
9004		}
9005	}
9006}
9007
9008static void
9009spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9010{
9011	objset_t *mos = spa->spa_meta_objset;
9012	dsl_pool_t *dp = spa->spa_dsl_pool;
9013	uint64_t txg = tx->tx_txg;
9014	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9015
9016	do {
9017		int pass = ++spa->spa_sync_pass;
9018
9019		spa_sync_config_object(spa, tx);
9020		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9021		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9022		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9023		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9024		spa_errlog_sync(spa, txg);
9025		dsl_pool_sync(dp, txg);
9026
9027		if (pass < zfs_sync_pass_deferred_free ||
9028		    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9029			/*
9030			 * If the log space map feature is active we don't
9031			 * care about deferred frees and the deferred bpobj
9032			 * as the log space map should effectively have the
9033			 * same results (i.e. appending only to one object).
9034			 */
9035			spa_sync_frees(spa, free_bpl, tx);
9036		} else {
9037			/*
9038			 * We can not defer frees in pass 1, because
9039			 * we sync the deferred frees later in pass 1.
9040			 */
9041			ASSERT3U(pass, >, 1);
9042			bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9043			    &spa->spa_deferred_bpobj, tx);
9044		}
9045
9046		ddt_sync(spa, txg);
9047		dsl_scan_sync(dp, tx);
9048		svr_sync(spa, tx);
9049		spa_sync_upgrades(spa, tx);
9050
9051		spa_flush_metaslabs(spa, tx);
9052
9053		vdev_t *vd = NULL;
9054		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9055		    != NULL)
9056			vdev_sync(vd, txg);
9057
9058		/*
9059		 * Note: We need to check if the MOS is dirty because we could
9060		 * have marked the MOS dirty without updating the uberblock
9061		 * (e.g. if we have sync tasks but no dirty user data). We need
9062		 * to check the uberblock's rootbp because it is updated if we
9063		 * have synced out dirty data (though in this case the MOS will
9064		 * most likely also be dirty due to second order effects, we
9065		 * don't want to rely on that here).
9066		 */
9067		if (pass == 1 &&
9068		    spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9069		    !dmu_objset_is_dirty(mos, txg)) {
9070			/*
9071			 * Nothing changed on the first pass, therefore this
9072			 * TXG is a no-op. Avoid syncing deferred frees, so
9073			 * that we can keep this TXG as a no-op.
9074			 */
9075			ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9076			ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9077			ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9078			ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9079			break;
9080		}
9081
9082		spa_sync_deferred_frees(spa, tx);
9083	} while (dmu_objset_is_dirty(mos, txg));
9084}
9085
9086/*
9087 * Rewrite the vdev configuration (which includes the uberblock) to
9088 * commit the transaction group.
9089 *
9090 * If there are no dirty vdevs, we sync the uberblock to a few random
9091 * top-level vdevs that are known to be visible in the config cache
9092 * (see spa_vdev_add() for a complete description). If there *are* dirty
9093 * vdevs, sync the uberblock to all vdevs.
9094 */
9095static void
9096spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9097{
9098	vdev_t *rvd = spa->spa_root_vdev;
9099	uint64_t txg = tx->tx_txg;
9100
9101	for (;;) {
9102		int error = 0;
9103
9104		/*
9105		 * We hold SCL_STATE to prevent vdev open/close/etc.
9106		 * while we're attempting to write the vdev labels.
9107		 */
9108		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9109
9110		if (list_is_empty(&spa->spa_config_dirty_list)) {
9111			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9112			int svdcount = 0;
9113			int children = rvd->vdev_children;
9114			int c0 = spa_get_random(children);
9115
9116			for (int c = 0; c < children; c++) {
9117				vdev_t *vd =
9118				    rvd->vdev_child[(c0 + c) % children];
9119
9120				/* Stop when revisiting the first vdev */
9121				if (c > 0 && svd[0] == vd)
9122					break;
9123
9124				if (vd->vdev_ms_array == 0 ||
9125				    vd->vdev_islog ||
9126				    !vdev_is_concrete(vd))
9127					continue;
9128
9129				svd[svdcount++] = vd;
9130				if (svdcount == SPA_SYNC_MIN_VDEVS)
9131					break;
9132			}
9133			error = vdev_config_sync(svd, svdcount, txg);
9134		} else {
9135			error = vdev_config_sync(rvd->vdev_child,
9136			    rvd->vdev_children, txg);
9137		}
9138
9139		if (error == 0)
9140			spa->spa_last_synced_guid = rvd->vdev_guid;
9141
9142		spa_config_exit(spa, SCL_STATE, FTAG);
9143
9144		if (error == 0)
9145			break;
9146		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9147		zio_resume_wait(spa);
9148	}
9149}
9150
9151/*
9152 * Sync the specified transaction group.  New blocks may be dirtied as
9153 * part of the process, so we iterate until it converges.
9154 */
9155void
9156spa_sync(spa_t *spa, uint64_t txg)
9157{
9158	vdev_t *vd = NULL;
9159
9160	VERIFY(spa_writeable(spa));
9161
9162	/*
9163	 * Wait for i/os issued in open context that need to complete
9164	 * before this txg syncs.
9165	 */
9166	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9167	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9168	    ZIO_FLAG_CANFAIL);
9169
9170	/*
9171	 * Lock out configuration changes.
9172	 */
9173	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9174
9175	spa->spa_syncing_txg = txg;
9176	spa->spa_sync_pass = 0;
9177
9178	for (int i = 0; i < spa->spa_alloc_count; i++) {
9179		mutex_enter(&spa->spa_alloc_locks[i]);
9180		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9181		mutex_exit(&spa->spa_alloc_locks[i]);
9182	}
9183
9184	/*
9185	 * If there are any pending vdev state changes, convert them
9186	 * into config changes that go out with this transaction group.
9187	 */
9188	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9189	while (list_head(&spa->spa_state_dirty_list) != NULL) {
9190		/*
9191		 * We need the write lock here because, for aux vdevs,
9192		 * calling vdev_config_dirty() modifies sav_config.
9193		 * This is ugly and will become unnecessary when we
9194		 * eliminate the aux vdev wart by integrating all vdevs
9195		 * into the root vdev tree.
9196		 */
9197		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9198		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9199		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9200			vdev_state_clean(vd);
9201			vdev_config_dirty(vd);
9202		}
9203		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9204		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9205	}
9206	spa_config_exit(spa, SCL_STATE, FTAG);
9207
9208	dsl_pool_t *dp = spa->spa_dsl_pool;
9209	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9210
9211	spa->spa_sync_starttime = gethrtime();
9212	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9213	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9214	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9215	    NSEC_TO_TICK(spa->spa_deadman_synctime));
9216
9217	/*
9218	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9219	 * set spa_deflate if we have no raid-z vdevs.
9220	 */
9221	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9222	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9223		vdev_t *rvd = spa->spa_root_vdev;
9224
9225		int i;
9226		for (i = 0; i < rvd->vdev_children; i++) {
9227			vd = rvd->vdev_child[i];
9228			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9229				break;
9230		}
9231		if (i == rvd->vdev_children) {
9232			spa->spa_deflate = TRUE;
9233			VERIFY0(zap_add(spa->spa_meta_objset,
9234			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9235			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9236		}
9237	}
9238
9239	spa_sync_adjust_vdev_max_queue_depth(spa);
9240
9241	spa_sync_condense_indirect(spa, tx);
9242
9243	spa_sync_iterate_to_convergence(spa, tx);
9244
9245#ifdef ZFS_DEBUG
9246	if (!list_is_empty(&spa->spa_config_dirty_list)) {
9247	/*
9248	 * Make sure that the number of ZAPs for all the vdevs matches
9249	 * the number of ZAPs in the per-vdev ZAP list. This only gets
9250	 * called if the config is dirty; otherwise there may be
9251	 * outstanding AVZ operations that weren't completed in
9252	 * spa_sync_config_object.
9253	 */
9254		uint64_t all_vdev_zap_entry_count;
9255		ASSERT0(zap_count(spa->spa_meta_objset,
9256		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9257		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9258		    all_vdev_zap_entry_count);
9259	}
9260#endif
9261
9262	if (spa->spa_vdev_removal != NULL) {
9263		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9264	}
9265
9266	spa_sync_rewrite_vdev_config(spa, tx);
9267	dmu_tx_commit(tx);
9268
9269	taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9270	spa->spa_deadman_tqid = 0;
9271
9272	/*
9273	 * Clear the dirty config list.
9274	 */
9275	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9276		vdev_config_clean(vd);
9277
9278	/*
9279	 * Now that the new config has synced transactionally,
9280	 * let it become visible to the config cache.
9281	 */
9282	if (spa->spa_config_syncing != NULL) {
9283		spa_config_set(spa, spa->spa_config_syncing);
9284		spa->spa_config_txg = txg;
9285		spa->spa_config_syncing = NULL;
9286	}
9287
9288	dsl_pool_sync_done(dp, txg);
9289
9290	for (int i = 0; i < spa->spa_alloc_count; i++) {
9291		mutex_enter(&spa->spa_alloc_locks[i]);
9292		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
9293		mutex_exit(&spa->spa_alloc_locks[i]);
9294	}
9295
9296	/*
9297	 * Update usable space statistics.
9298	 */
9299	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9300	    != NULL)
9301		vdev_sync_done(vd, txg);
9302
9303	metaslab_class_evict_old(spa->spa_normal_class, txg);
9304	metaslab_class_evict_old(spa->spa_log_class, txg);
9305
9306	spa_sync_close_syncing_log_sm(spa);
9307
9308	spa_update_dspace(spa);
9309
9310	/*
9311	 * It had better be the case that we didn't dirty anything
9312	 * since vdev_config_sync().
9313	 */
9314	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9315	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9316	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9317
9318	while (zfs_pause_spa_sync)
9319		delay(1);
9320
9321	spa->spa_sync_pass = 0;
9322
9323	/*
9324	 * Update the last synced uberblock here. We want to do this at
9325	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9326	 * will be guaranteed that all the processing associated with
9327	 * that txg has been completed.
9328	 */
9329	spa->spa_ubsync = spa->spa_uberblock;
9330	spa_config_exit(spa, SCL_CONFIG, FTAG);
9331
9332	spa_handle_ignored_writes(spa);
9333
9334	/*
9335	 * If any async tasks have been requested, kick them off.
9336	 */
9337	spa_async_dispatch(spa);
9338}
9339
9340/*
9341 * Sync all pools.  We don't want to hold the namespace lock across these
9342 * operations, so we take a reference on the spa_t and drop the lock during the
9343 * sync.
9344 */
9345void
9346spa_sync_allpools(void)
9347{
9348	spa_t *spa = NULL;
9349	mutex_enter(&spa_namespace_lock);
9350	while ((spa = spa_next(spa)) != NULL) {
9351		if (spa_state(spa) != POOL_STATE_ACTIVE ||
9352		    !spa_writeable(spa) || spa_suspended(spa))
9353			continue;
9354		spa_open_ref(spa, FTAG);
9355		mutex_exit(&spa_namespace_lock);
9356		txg_wait_synced(spa_get_dsl(spa), 0);
9357		mutex_enter(&spa_namespace_lock);
9358		spa_close(spa, FTAG);
9359	}
9360	mutex_exit(&spa_namespace_lock);
9361}
9362
9363/*
9364 * ==========================================================================
9365 * Miscellaneous routines
9366 * ==========================================================================
9367 */
9368
9369/*
9370 * Remove all pools in the system.
9371 */
9372void
9373spa_evict_all(void)
9374{
9375	spa_t *spa;
9376
9377	/*
9378	 * Remove all cached state.  All pools should be closed now,
9379	 * so every spa in the AVL tree should be unreferenced.
9380	 */
9381	mutex_enter(&spa_namespace_lock);
9382	while ((spa = spa_next(NULL)) != NULL) {
9383		/*
9384		 * Stop async tasks.  The async thread may need to detach
9385		 * a device that's been replaced, which requires grabbing
9386		 * spa_namespace_lock, so we must drop it here.
9387		 */
9388		spa_open_ref(spa, FTAG);
9389		mutex_exit(&spa_namespace_lock);
9390		spa_async_suspend(spa);
9391		mutex_enter(&spa_namespace_lock);
9392		spa_close(spa, FTAG);
9393
9394		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9395			spa_unload(spa);
9396			spa_deactivate(spa);
9397		}
9398		spa_remove(spa);
9399	}
9400	mutex_exit(&spa_namespace_lock);
9401}
9402
9403vdev_t *
9404spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9405{
9406	vdev_t *vd;
9407	int i;
9408
9409	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9410		return (vd);
9411
9412	if (aux) {
9413		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9414			vd = spa->spa_l2cache.sav_vdevs[i];
9415			if (vd->vdev_guid == guid)
9416				return (vd);
9417		}
9418
9419		for (i = 0; i < spa->spa_spares.sav_count; i++) {
9420			vd = spa->spa_spares.sav_vdevs[i];
9421			if (vd->vdev_guid == guid)
9422				return (vd);
9423		}
9424	}
9425
9426	return (NULL);
9427}
9428
9429void
9430spa_upgrade(spa_t *spa, uint64_t version)
9431{
9432	ASSERT(spa_writeable(spa));
9433
9434	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9435
9436	/*
9437	 * This should only be called for a non-faulted pool, and since a
9438	 * future version would result in an unopenable pool, this shouldn't be
9439	 * possible.
9440	 */
9441	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9442	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9443
9444	spa->spa_uberblock.ub_version = version;
9445	vdev_config_dirty(spa->spa_root_vdev);
9446
9447	spa_config_exit(spa, SCL_ALL, FTAG);
9448
9449	txg_wait_synced(spa_get_dsl(spa), 0);
9450}
9451
9452boolean_t
9453spa_has_spare(spa_t *spa, uint64_t guid)
9454{
9455	int i;
9456	uint64_t spareguid;
9457	spa_aux_vdev_t *sav = &spa->spa_spares;
9458
9459	for (i = 0; i < sav->sav_count; i++)
9460		if (sav->sav_vdevs[i]->vdev_guid == guid)
9461			return (B_TRUE);
9462
9463	for (i = 0; i < sav->sav_npending; i++) {
9464		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9465		    &spareguid) == 0 && spareguid == guid)
9466			return (B_TRUE);
9467	}
9468
9469	return (B_FALSE);
9470}
9471
9472/*
9473 * Check if a pool has an active shared spare device.
9474 * Note: reference count of an active spare is 2, as a spare and as a replace
9475 */
9476static boolean_t
9477spa_has_active_shared_spare(spa_t *spa)
9478{
9479	int i, refcnt;
9480	uint64_t pool;
9481	spa_aux_vdev_t *sav = &spa->spa_spares;
9482
9483	for (i = 0; i < sav->sav_count; i++) {
9484		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9485		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9486		    refcnt > 2)
9487			return (B_TRUE);
9488	}
9489
9490	return (B_FALSE);
9491}
9492
9493uint64_t
9494spa_total_metaslabs(spa_t *spa)
9495{
9496	vdev_t *rvd = spa->spa_root_vdev;
9497
9498	uint64_t m = 0;
9499	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9500		vdev_t *vd = rvd->vdev_child[c];
9501		if (!vdev_is_concrete(vd))
9502			continue;
9503		m += vd->vdev_ms_count;
9504	}
9505	return (m);
9506}
9507
9508/*
9509 * Notify any waiting threads that some activity has switched from being in-
9510 * progress to not-in-progress so that the thread can wake up and determine
9511 * whether it is finished waiting.
9512 */
9513void
9514spa_notify_waiters(spa_t *spa)
9515{
9516	/*
9517	 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9518	 * happening between the waiting thread's check and cv_wait.
9519	 */
9520	mutex_enter(&spa->spa_activities_lock);
9521	cv_broadcast(&spa->spa_activities_cv);
9522	mutex_exit(&spa->spa_activities_lock);
9523}
9524
9525/*
9526 * Notify any waiting threads that the pool is exporting, and then block until
9527 * they are finished using the spa_t.
9528 */
9529void
9530spa_wake_waiters(spa_t *spa)
9531{
9532	mutex_enter(&spa->spa_activities_lock);
9533	spa->spa_waiters_cancel = B_TRUE;
9534	cv_broadcast(&spa->spa_activities_cv);
9535	while (spa->spa_waiters != 0)
9536		cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9537	spa->spa_waiters_cancel = B_FALSE;
9538	mutex_exit(&spa->spa_activities_lock);
9539}
9540
9541/* Whether the vdev or any of its descendants are being initialized/trimmed. */
9542static boolean_t
9543spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9544{
9545	spa_t *spa = vd->vdev_spa;
9546
9547	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9548	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9549	ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9550	    activity == ZPOOL_WAIT_TRIM);
9551
9552	kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9553	    &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9554
9555	mutex_exit(&spa->spa_activities_lock);
9556	mutex_enter(lock);
9557	mutex_enter(&spa->spa_activities_lock);
9558
9559	boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9560	    (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9561	    (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9562	mutex_exit(lock);
9563
9564	if (in_progress)
9565		return (B_TRUE);
9566
9567	for (int i = 0; i < vd->vdev_children; i++) {
9568		if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9569		    activity))
9570			return (B_TRUE);
9571	}
9572
9573	return (B_FALSE);
9574}
9575
9576/*
9577 * If use_guid is true, this checks whether the vdev specified by guid is
9578 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9579 * is being initialized/trimmed. The caller must hold the config lock and
9580 * spa_activities_lock.
9581 */
9582static int
9583spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9584    zpool_wait_activity_t activity, boolean_t *in_progress)
9585{
9586	mutex_exit(&spa->spa_activities_lock);
9587	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9588	mutex_enter(&spa->spa_activities_lock);
9589
9590	vdev_t *vd;
9591	if (use_guid) {
9592		vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9593		if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9594			spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9595			return (EINVAL);
9596		}
9597	} else {
9598		vd = spa->spa_root_vdev;
9599	}
9600
9601	*in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9602
9603	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9604	return (0);
9605}
9606
9607/*
9608 * Locking for waiting threads
9609 * ---------------------------
9610 *
9611 * Waiting threads need a way to check whether a given activity is in progress,
9612 * and then, if it is, wait for it to complete. Each activity will have some
9613 * in-memory representation of the relevant on-disk state which can be used to
9614 * determine whether or not the activity is in progress. The in-memory state and
9615 * the locking used to protect it will be different for each activity, and may
9616 * not be suitable for use with a cvar (e.g., some state is protected by the
9617 * config lock). To allow waiting threads to wait without any races, another
9618 * lock, spa_activities_lock, is used.
9619 *
9620 * When the state is checked, both the activity-specific lock (if there is one)
9621 * and spa_activities_lock are held. In some cases, the activity-specific lock
9622 * is acquired explicitly (e.g. the config lock). In others, the locking is
9623 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9624 * thread releases the activity-specific lock and, if the activity is in
9625 * progress, then cv_waits using spa_activities_lock.
9626 *
9627 * The waiting thread is woken when another thread, one completing some
9628 * activity, updates the state of the activity and then calls
9629 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9630 * needs to hold its activity-specific lock when updating the state, and this
9631 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9632 *
9633 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9634 * and because it is held when the waiting thread checks the state of the
9635 * activity, it can never be the case that the completing thread both updates
9636 * the activity state and cv_broadcasts in between the waiting thread's check
9637 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9638 *
9639 * In order to prevent deadlock, when the waiting thread does its check, in some
9640 * cases it will temporarily drop spa_activities_lock in order to acquire the
9641 * activity-specific lock. The order in which spa_activities_lock and the
9642 * activity specific lock are acquired in the waiting thread is determined by
9643 * the order in which they are acquired in the completing thread; if the
9644 * completing thread calls spa_notify_waiters with the activity-specific lock
9645 * held, then the waiting thread must also acquire the activity-specific lock
9646 * first.
9647 */
9648
9649static int
9650spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9651    boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9652{
9653	int error = 0;
9654
9655	ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9656
9657	switch (activity) {
9658	case ZPOOL_WAIT_CKPT_DISCARD:
9659		*in_progress =
9660		    (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9661		    zap_contains(spa_meta_objset(spa),
9662		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9663		    ENOENT);
9664		break;
9665	case ZPOOL_WAIT_FREE:
9666		*in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9667		    !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9668		    spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9669		    spa_livelist_delete_check(spa));
9670		break;
9671	case ZPOOL_WAIT_INITIALIZE:
9672	case ZPOOL_WAIT_TRIM:
9673		error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9674		    activity, in_progress);
9675		break;
9676	case ZPOOL_WAIT_REPLACE:
9677		mutex_exit(&spa->spa_activities_lock);
9678		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9679		mutex_enter(&spa->spa_activities_lock);
9680
9681		*in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9682		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9683		break;
9684	case ZPOOL_WAIT_REMOVE:
9685		*in_progress = (spa->spa_removing_phys.sr_state ==
9686		    DSS_SCANNING);
9687		break;
9688	case ZPOOL_WAIT_RESILVER:
9689		if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9690			break;
9691		/* fall through */
9692	case ZPOOL_WAIT_SCRUB:
9693	{
9694		boolean_t scanning, paused, is_scrub;
9695		dsl_scan_t *scn =  spa->spa_dsl_pool->dp_scan;
9696
9697		is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9698		scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9699		paused = dsl_scan_is_paused_scrub(scn);
9700		*in_progress = (scanning && !paused &&
9701		    is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9702		break;
9703	}
9704	default:
9705		panic("unrecognized value for activity %d", activity);
9706	}
9707
9708	return (error);
9709}
9710
9711static int
9712spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9713    boolean_t use_tag, uint64_t tag, boolean_t *waited)
9714{
9715	/*
9716	 * The tag is used to distinguish between instances of an activity.
9717	 * 'initialize' and 'trim' are the only activities that we use this for.
9718	 * The other activities can only have a single instance in progress in a
9719	 * pool at one time, making the tag unnecessary.
9720	 *
9721	 * There can be multiple devices being replaced at once, but since they
9722	 * all finish once resilvering finishes, we don't bother keeping track
9723	 * of them individually, we just wait for them all to finish.
9724	 */
9725	if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9726	    activity != ZPOOL_WAIT_TRIM)
9727		return (EINVAL);
9728
9729	if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9730		return (EINVAL);
9731
9732	spa_t *spa;
9733	int error = spa_open(pool, &spa, FTAG);
9734	if (error != 0)
9735		return (error);
9736
9737	/*
9738	 * Increment the spa's waiter count so that we can call spa_close and
9739	 * still ensure that the spa_t doesn't get freed before this thread is
9740	 * finished with it when the pool is exported. We want to call spa_close
9741	 * before we start waiting because otherwise the additional ref would
9742	 * prevent the pool from being exported or destroyed throughout the
9743	 * potentially long wait.
9744	 */
9745	mutex_enter(&spa->spa_activities_lock);
9746	spa->spa_waiters++;
9747	spa_close(spa, FTAG);
9748
9749	*waited = B_FALSE;
9750	for (;;) {
9751		boolean_t in_progress;
9752		error = spa_activity_in_progress(spa, activity, use_tag, tag,
9753		    &in_progress);
9754
9755		if (error || !in_progress || spa->spa_waiters_cancel)
9756			break;
9757
9758		*waited = B_TRUE;
9759
9760		if (cv_wait_sig(&spa->spa_activities_cv,
9761		    &spa->spa_activities_lock) == 0) {
9762			error = EINTR;
9763			break;
9764		}
9765	}
9766
9767	spa->spa_waiters--;
9768	cv_signal(&spa->spa_waiters_cv);
9769	mutex_exit(&spa->spa_activities_lock);
9770
9771	return (error);
9772}
9773
9774/*
9775 * Wait for a particular instance of the specified activity to complete, where
9776 * the instance is identified by 'tag'
9777 */
9778int
9779spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9780    boolean_t *waited)
9781{
9782	return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9783}
9784
9785/*
9786 * Wait for all instances of the specified activity complete
9787 */
9788int
9789spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9790{
9791
9792	return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9793}
9794
9795sysevent_t *
9796spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9797{
9798	sysevent_t *ev = NULL;
9799#ifdef _KERNEL
9800	nvlist_t *resource;
9801
9802	resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9803	if (resource) {
9804		ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9805		ev->resource = resource;
9806	}
9807#endif
9808	return (ev);
9809}
9810
9811void
9812spa_event_post(sysevent_t *ev)
9813{
9814#ifdef _KERNEL
9815	if (ev) {
9816		zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9817		kmem_free(ev, sizeof (*ev));
9818	}
9819#endif
9820}
9821
9822/*
9823 * Post a zevent corresponding to the given sysevent.   The 'name' must be one
9824 * of the event definitions in sys/sysevent/eventdefs.h.  The payload will be
9825 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
9826 * in the userland libzpool, as we don't want consumers to misinterpret ztest
9827 * or zdb as real changes.
9828 */
9829void
9830spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9831{
9832	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9833}
9834
9835/* state manipulation functions */
9836EXPORT_SYMBOL(spa_open);
9837EXPORT_SYMBOL(spa_open_rewind);
9838EXPORT_SYMBOL(spa_get_stats);
9839EXPORT_SYMBOL(spa_create);
9840EXPORT_SYMBOL(spa_import);
9841EXPORT_SYMBOL(spa_tryimport);
9842EXPORT_SYMBOL(spa_destroy);
9843EXPORT_SYMBOL(spa_export);
9844EXPORT_SYMBOL(spa_reset);
9845EXPORT_SYMBOL(spa_async_request);
9846EXPORT_SYMBOL(spa_async_suspend);
9847EXPORT_SYMBOL(spa_async_resume);
9848EXPORT_SYMBOL(spa_inject_addref);
9849EXPORT_SYMBOL(spa_inject_delref);
9850EXPORT_SYMBOL(spa_scan_stat_init);
9851EXPORT_SYMBOL(spa_scan_get_stats);
9852
9853/* device manipulation */
9854EXPORT_SYMBOL(spa_vdev_add);
9855EXPORT_SYMBOL(spa_vdev_attach);
9856EXPORT_SYMBOL(spa_vdev_detach);
9857EXPORT_SYMBOL(spa_vdev_setpath);
9858EXPORT_SYMBOL(spa_vdev_setfru);
9859EXPORT_SYMBOL(spa_vdev_split_mirror);
9860
9861/* spare statech is global across all pools) */
9862EXPORT_SYMBOL(spa_spare_add);
9863EXPORT_SYMBOL(spa_spare_remove);
9864EXPORT_SYMBOL(spa_spare_exists);
9865EXPORT_SYMBOL(spa_spare_activate);
9866
9867/* L2ARC statech is global across all pools) */
9868EXPORT_SYMBOL(spa_l2cache_add);
9869EXPORT_SYMBOL(spa_l2cache_remove);
9870EXPORT_SYMBOL(spa_l2cache_exists);
9871EXPORT_SYMBOL(spa_l2cache_activate);
9872EXPORT_SYMBOL(spa_l2cache_drop);
9873
9874/* scanning */
9875EXPORT_SYMBOL(spa_scan);
9876EXPORT_SYMBOL(spa_scan_stop);
9877
9878/* spa syncing */
9879EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9880EXPORT_SYMBOL(spa_sync_allpools);
9881
9882/* properties */
9883EXPORT_SYMBOL(spa_prop_set);
9884EXPORT_SYMBOL(spa_prop_get);
9885EXPORT_SYMBOL(spa_prop_clear_bootfs);
9886
9887/* asynchronous event notification */
9888EXPORT_SYMBOL(spa_event_notify);
9889
9890/* BEGIN CSTYLED */
9891ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9892	"log2 fraction of arc that can be used by inflight I/Os when "
9893	"verifying pool during import");
9894
9895ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9896	"Set to traverse metadata on pool import");
9897
9898ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9899	"Set to traverse data on pool import");
9900
9901ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9902	"Print vdev tree to zfs_dbgmsg during pool import");
9903
9904ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9905	"Percentage of CPUs to run an IO worker thread");
9906
9907ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
9908	"Number of threads per IO worker taskqueue");
9909
9910ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9911	"Allow importing pool with up to this number of missing top-level "
9912	"vdevs (in read-only mode)");
9913
9914ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9915	"Set the livelist condense zthr to pause");
9916
9917ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9918	"Set the livelist condense synctask to pause");
9919
9920ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9921	"Whether livelist condensing was canceled in the synctask");
9922
9923ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9924	"Whether livelist condensing was canceled in the zthr function");
9925
9926ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9927	"Whether extra ALLOC blkptrs were added to a livelist entry while it "
9928	"was being condensed");
9929/* END CSTYLED */
9930