1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2016 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29#include <sys/dsl_pool.h>
30#include <sys/dsl_dataset.h>
31#include <sys/dsl_prop.h>
32#include <sys/dsl_dir.h>
33#include <sys/dsl_synctask.h>
34#include <sys/dsl_scan.h>
35#include <sys/dnode.h>
36#include <sys/dmu_tx.h>
37#include <sys/dmu_objset.h>
38#include <sys/arc.h>
39#include <sys/zap.h>
40#include <sys/zio.h>
41#include <sys/zfs_context.h>
42#include <sys/fs/zfs.h>
43#include <sys/zfs_znode.h>
44#include <sys/spa_impl.h>
45#include <sys/vdev_impl.h>
46#include <sys/metaslab_impl.h>
47#include <sys/bptree.h>
48#include <sys/zfeature.h>
49#include <sys/zil_impl.h>
50#include <sys/dsl_userhold.h>
51#include <sys/trace_zfs.h>
52#include <sys/mmp.h>
53
54/*
55 * ZFS Write Throttle
56 * ------------------
57 *
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
67 *
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
74 *
75 * Implementation
76 *
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
84 *
85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
88 *
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92 *
93 * The delay is also calculated based on the amount of dirty data.  See the
94 * comment above dmu_tx_delay() for details.
95 */
96
97/*
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max.  It can also be overridden with a module
100 * parameter.
101 */
102unsigned long zfs_dirty_data_max = 0;
103unsigned long zfs_dirty_data_max_max = 0;
104int zfs_dirty_data_max_percent = 10;
105int zfs_dirty_data_max_max_percent = 25;
106
107/*
108 * If there's at least this much dirty data (as a percentage of
109 * zfs_dirty_data_max), push out a txg.  This should be less than
110 * zfs_vdev_async_write_active_min_dirty_percent.
111 */
112int zfs_dirty_data_sync_percent = 20;
113
114/*
115 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
116 * and delay each transaction.
117 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
118 */
119int zfs_delay_min_dirty_percent = 60;
120
121/*
122 * This controls how quickly the delay approaches infinity.
123 * Larger values cause it to delay more for a given amount of dirty data.
124 * Therefore larger values will cause there to be less dirty data for a
125 * given throughput.
126 *
127 * For the smoothest delay, this value should be about 1 billion divided
128 * by the maximum number of operations per second.  This will smoothly
129 * handle between 10x and 1/10th this number.
130 *
131 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
132 * multiply in dmu_tx_delay().
133 */
134unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
135
136/*
137 * This determines the number of threads used by the dp_sync_taskq.
138 */
139int zfs_sync_taskq_batch_pct = 75;
140
141/*
142 * These tunables determine the behavior of how zil_itxg_clean() is
143 * called via zil_clean() in the context of spa_sync(). When an itxg
144 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
145 * If the dispatch fails, the call to zil_itxg_clean() will occur
146 * synchronously in the context of spa_sync(), which can negatively
147 * impact the performance of spa_sync() (e.g. in the case of the itxg
148 * list having a large number of itxs that needs to be cleaned).
149 *
150 * Thus, these tunables can be used to manipulate the behavior of the
151 * taskq used by zil_clean(); they determine the number of taskq entries
152 * that are pre-populated when the taskq is first created (via the
153 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
154 * taskq entries that are cached after an on-demand allocation (via the
155 * "zfs_zil_clean_taskq_maxalloc").
156 *
157 * The idea being, we want to try reasonably hard to ensure there will
158 * already be a taskq entry pre-allocated by the time that it is needed
159 * by zil_clean(). This way, we can avoid the possibility of an
160 * on-demand allocation of a new taskq entry from failing, which would
161 * result in zil_itxg_clean() being called synchronously from zil_clean()
162 * (which can adversely affect performance of spa_sync()).
163 *
164 * Additionally, the number of threads used by the taskq can be
165 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
166 */
167int zfs_zil_clean_taskq_nthr_pct = 100;
168int zfs_zil_clean_taskq_minalloc = 1024;
169int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
170
171int
172dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
173{
174	uint64_t obj;
175	int err;
176
177	err = zap_lookup(dp->dp_meta_objset,
178	    dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
179	    name, sizeof (obj), 1, &obj);
180	if (err)
181		return (err);
182
183	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
184}
185
186static dsl_pool_t *
187dsl_pool_open_impl(spa_t *spa, uint64_t txg)
188{
189	dsl_pool_t *dp;
190	blkptr_t *bp = spa_get_rootblkptr(spa);
191
192	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
193	dp->dp_spa = spa;
194	dp->dp_meta_rootbp = *bp;
195	rrw_init(&dp->dp_config_rwlock, B_TRUE);
196	txg_init(dp, txg);
197	mmp_init(spa);
198
199	txg_list_create(&dp->dp_dirty_datasets, spa,
200	    offsetof(dsl_dataset_t, ds_dirty_link));
201	txg_list_create(&dp->dp_dirty_zilogs, spa,
202	    offsetof(zilog_t, zl_dirty_link));
203	txg_list_create(&dp->dp_dirty_dirs, spa,
204	    offsetof(dsl_dir_t, dd_dirty_link));
205	txg_list_create(&dp->dp_sync_tasks, spa,
206	    offsetof(dsl_sync_task_t, dst_node));
207	txg_list_create(&dp->dp_early_sync_tasks, spa,
208	    offsetof(dsl_sync_task_t, dst_node));
209
210	dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
211	    zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
212	    TASKQ_THREADS_CPU_PCT);
213
214	dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
215	    zfs_zil_clean_taskq_nthr_pct, minclsyspri,
216	    zfs_zil_clean_taskq_minalloc,
217	    zfs_zil_clean_taskq_maxalloc,
218	    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
219
220	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
221	cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
222
223	dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
224	    boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
225	    TASKQ_THREADS_CPU_PCT);
226	dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
227	    100, defclsyspri, boot_ncpus, INT_MAX,
228	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
229
230	return (dp);
231}
232
233int
234dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
235{
236	int err;
237	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
238
239	/*
240	 * Initialize the caller's dsl_pool_t structure before we actually open
241	 * the meta objset.  This is done because a self-healing write zio may
242	 * be issued as part of dmu_objset_open_impl() and the spa needs its
243	 * dsl_pool_t initialized in order to handle the write.
244	 */
245	*dpp = dp;
246
247	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
248	    &dp->dp_meta_objset);
249	if (err != 0) {
250		dsl_pool_close(dp);
251		*dpp = NULL;
252	}
253
254	return (err);
255}
256
257int
258dsl_pool_open(dsl_pool_t *dp)
259{
260	int err;
261	dsl_dir_t *dd;
262	dsl_dataset_t *ds;
263	uint64_t obj;
264
265	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
266	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
267	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
268	    &dp->dp_root_dir_obj);
269	if (err)
270		goto out;
271
272	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
273	    NULL, dp, &dp->dp_root_dir);
274	if (err)
275		goto out;
276
277	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
278	if (err)
279		goto out;
280
281	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
282		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
283		if (err)
284			goto out;
285		err = dsl_dataset_hold_obj(dp,
286		    dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
287		if (err == 0) {
288			err = dsl_dataset_hold_obj(dp,
289			    dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
290			    &dp->dp_origin_snap);
291			dsl_dataset_rele(ds, FTAG);
292		}
293		dsl_dir_rele(dd, dp);
294		if (err)
295			goto out;
296	}
297
298	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
299		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
300		    &dp->dp_free_dir);
301		if (err)
302			goto out;
303
304		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
305		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
306		if (err)
307			goto out;
308		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
309		    dp->dp_meta_objset, obj));
310	}
311
312	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
313		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
314		    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
315		if (err == 0) {
316			VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
317			    dp->dp_meta_objset, obj));
318		} else if (err == ENOENT) {
319			/*
320			 * We might not have created the remap bpobj yet.
321			 */
322			err = 0;
323		} else {
324			goto out;
325		}
326	}
327
328	/*
329	 * Note: errors ignored, because the these special dirs, used for
330	 * space accounting, are only created on demand.
331	 */
332	(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
333	    &dp->dp_leak_dir);
334
335	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
336		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
337		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
338		    &dp->dp_bptree_obj);
339		if (err != 0)
340			goto out;
341	}
342
343	if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
344		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
345		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
346		    &dp->dp_empty_bpobj);
347		if (err != 0)
348			goto out;
349	}
350
351	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
352	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
353	    &dp->dp_tmp_userrefs_obj);
354	if (err == ENOENT)
355		err = 0;
356	if (err)
357		goto out;
358
359	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
360
361out:
362	rrw_exit(&dp->dp_config_rwlock, FTAG);
363	return (err);
364}
365
366void
367dsl_pool_close(dsl_pool_t *dp)
368{
369	/*
370	 * Drop our references from dsl_pool_open().
371	 *
372	 * Since we held the origin_snap from "syncing" context (which
373	 * includes pool-opening context), it actually only got a "ref"
374	 * and not a hold, so just drop that here.
375	 */
376	if (dp->dp_origin_snap != NULL)
377		dsl_dataset_rele(dp->dp_origin_snap, dp);
378	if (dp->dp_mos_dir != NULL)
379		dsl_dir_rele(dp->dp_mos_dir, dp);
380	if (dp->dp_free_dir != NULL)
381		dsl_dir_rele(dp->dp_free_dir, dp);
382	if (dp->dp_leak_dir != NULL)
383		dsl_dir_rele(dp->dp_leak_dir, dp);
384	if (dp->dp_root_dir != NULL)
385		dsl_dir_rele(dp->dp_root_dir, dp);
386
387	bpobj_close(&dp->dp_free_bpobj);
388	bpobj_close(&dp->dp_obsolete_bpobj);
389
390	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
391	if (dp->dp_meta_objset != NULL)
392		dmu_objset_evict(dp->dp_meta_objset);
393
394	txg_list_destroy(&dp->dp_dirty_datasets);
395	txg_list_destroy(&dp->dp_dirty_zilogs);
396	txg_list_destroy(&dp->dp_sync_tasks);
397	txg_list_destroy(&dp->dp_early_sync_tasks);
398	txg_list_destroy(&dp->dp_dirty_dirs);
399
400	taskq_destroy(dp->dp_zil_clean_taskq);
401	taskq_destroy(dp->dp_sync_taskq);
402
403	/*
404	 * We can't set retry to TRUE since we're explicitly specifying
405	 * a spa to flush. This is good enough; any missed buffers for
406	 * this spa won't cause trouble, and they'll eventually fall
407	 * out of the ARC just like any other unused buffer.
408	 */
409	arc_flush(dp->dp_spa, FALSE);
410
411	mmp_fini(dp->dp_spa);
412	txg_fini(dp);
413	dsl_scan_fini(dp);
414	dmu_buf_user_evict_wait();
415
416	rrw_destroy(&dp->dp_config_rwlock);
417	mutex_destroy(&dp->dp_lock);
418	cv_destroy(&dp->dp_spaceavail_cv);
419	taskq_destroy(dp->dp_unlinked_drain_taskq);
420	taskq_destroy(dp->dp_zrele_taskq);
421	if (dp->dp_blkstats != NULL) {
422		mutex_destroy(&dp->dp_blkstats->zab_lock);
423		vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
424	}
425	kmem_free(dp, sizeof (dsl_pool_t));
426}
427
428void
429dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
430{
431	uint64_t obj;
432	/*
433	 * Currently, we only create the obsolete_bpobj where there are
434	 * indirect vdevs with referenced mappings.
435	 */
436	ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
437	/* create and open the obsolete_bpobj */
438	obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
439	VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
440	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
441	    DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
442	spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
443}
444
445void
446dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
447{
448	spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
449	VERIFY0(zap_remove(dp->dp_meta_objset,
450	    DMU_POOL_DIRECTORY_OBJECT,
451	    DMU_POOL_OBSOLETE_BPOBJ, tx));
452	bpobj_free(dp->dp_meta_objset,
453	    dp->dp_obsolete_bpobj.bpo_object, tx);
454	bpobj_close(&dp->dp_obsolete_bpobj);
455}
456
457dsl_pool_t *
458dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
459    uint64_t txg)
460{
461	int err;
462	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
463	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
464#ifdef _KERNEL
465	objset_t *os;
466#else
467	objset_t *os __attribute__((unused));
468#endif
469	dsl_dataset_t *ds;
470	uint64_t obj;
471
472	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
473
474	/* create and open the MOS (meta-objset) */
475	dp->dp_meta_objset = dmu_objset_create_impl(spa,
476	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
477	spa->spa_meta_objset = dp->dp_meta_objset;
478
479	/* create the pool directory */
480	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
481	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
482	ASSERT0(err);
483
484	/* Initialize scan structures */
485	VERIFY0(dsl_scan_init(dp, txg));
486
487	/* create and open the root dir */
488	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
489	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
490	    NULL, dp, &dp->dp_root_dir));
491
492	/* create and open the meta-objset dir */
493	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
494	VERIFY0(dsl_pool_open_special_dir(dp,
495	    MOS_DIR_NAME, &dp->dp_mos_dir));
496
497	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
498		/* create and open the free dir */
499		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
500		    FREE_DIR_NAME, tx);
501		VERIFY0(dsl_pool_open_special_dir(dp,
502		    FREE_DIR_NAME, &dp->dp_free_dir));
503
504		/* create and open the free_bplist */
505		obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
506		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
507		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
508		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
509		    dp->dp_meta_objset, obj));
510	}
511
512	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
513		dsl_pool_create_origin(dp, tx);
514
515	/*
516	 * Some features may be needed when creating the root dataset, so we
517	 * create the feature objects here.
518	 */
519	if (spa_version(spa) >= SPA_VERSION_FEATURES)
520		spa_feature_create_zap_objects(spa, tx);
521
522	if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
523	    dcp->cp_crypt != ZIO_CRYPT_INHERIT)
524		spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
525
526	/* create the root dataset */
527	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
528
529	/* create the root objset */
530	VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
531	    DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
532	rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
533	os = dmu_objset_create_impl(dp->dp_spa, ds,
534	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
535	rrw_exit(&ds->ds_bp_rwlock, FTAG);
536#ifdef _KERNEL
537	zfs_create_fs(os, kcred, zplprops, tx);
538#endif
539	dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
540
541	dmu_tx_commit(tx);
542
543	rrw_exit(&dp->dp_config_rwlock, FTAG);
544
545	return (dp);
546}
547
548/*
549 * Account for the meta-objset space in its placeholder dsl_dir.
550 */
551void
552dsl_pool_mos_diduse_space(dsl_pool_t *dp,
553    int64_t used, int64_t comp, int64_t uncomp)
554{
555	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
556	mutex_enter(&dp->dp_lock);
557	dp->dp_mos_used_delta += used;
558	dp->dp_mos_compressed_delta += comp;
559	dp->dp_mos_uncompressed_delta += uncomp;
560	mutex_exit(&dp->dp_lock);
561}
562
563static void
564dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
565{
566	zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
567	dmu_objset_sync(dp->dp_meta_objset, zio, tx);
568	VERIFY0(zio_wait(zio));
569	dmu_objset_sync_done(dp->dp_meta_objset, tx);
570	taskq_wait(dp->dp_sync_taskq);
571	multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
572
573	dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
574	spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
575}
576
577static void
578dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
579{
580	ASSERT(MUTEX_HELD(&dp->dp_lock));
581
582	if (delta < 0)
583		ASSERT3U(-delta, <=, dp->dp_dirty_total);
584
585	dp->dp_dirty_total += delta;
586
587	/*
588	 * Note: we signal even when increasing dp_dirty_total.
589	 * This ensures forward progress -- each thread wakes the next waiter.
590	 */
591	if (dp->dp_dirty_total < zfs_dirty_data_max)
592		cv_signal(&dp->dp_spaceavail_cv);
593}
594
595#ifdef ZFS_DEBUG
596static boolean_t
597dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
598{
599	spa_t *spa = dp->dp_spa;
600	vdev_t *rvd = spa->spa_root_vdev;
601
602	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
603		vdev_t *vd = rvd->vdev_child[c];
604		txg_list_t *tl = &vd->vdev_ms_list;
605		metaslab_t *ms;
606
607		for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
608		    ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
609			VERIFY(range_tree_is_empty(ms->ms_freeing));
610			VERIFY(range_tree_is_empty(ms->ms_checkpointing));
611		}
612	}
613
614	return (B_TRUE);
615}
616#endif
617
618void
619dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
620{
621	zio_t *zio;
622	dmu_tx_t *tx;
623	dsl_dir_t *dd;
624	dsl_dataset_t *ds;
625	objset_t *mos = dp->dp_meta_objset;
626	list_t synced_datasets;
627
628	list_create(&synced_datasets, sizeof (dsl_dataset_t),
629	    offsetof(dsl_dataset_t, ds_synced_link));
630
631	tx = dmu_tx_create_assigned(dp, txg);
632
633	/*
634	 * Run all early sync tasks before writing out any dirty blocks.
635	 * For more info on early sync tasks see block comment in
636	 * dsl_early_sync_task().
637	 */
638	if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
639		dsl_sync_task_t *dst;
640
641		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
642		while ((dst =
643		    txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
644			ASSERT(dsl_early_sync_task_verify(dp, txg));
645			dsl_sync_task_sync(dst, tx);
646		}
647		ASSERT(dsl_early_sync_task_verify(dp, txg));
648	}
649
650	/*
651	 * Write out all dirty blocks of dirty datasets.
652	 */
653	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
654	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
655		/*
656		 * We must not sync any non-MOS datasets twice, because
657		 * we may have taken a snapshot of them.  However, we
658		 * may sync newly-created datasets on pass 2.
659		 */
660		ASSERT(!list_link_active(&ds->ds_synced_link));
661		list_insert_tail(&synced_datasets, ds);
662		dsl_dataset_sync(ds, zio, tx);
663	}
664	VERIFY0(zio_wait(zio));
665
666	/*
667	 * Update the long range free counter after
668	 * we're done syncing user data
669	 */
670	mutex_enter(&dp->dp_lock);
671	ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
672	    dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
673	dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
674	mutex_exit(&dp->dp_lock);
675
676	/*
677	 * After the data blocks have been written (ensured by the zio_wait()
678	 * above), update the user/group/project space accounting.  This happens
679	 * in tasks dispatched to dp_sync_taskq, so wait for them before
680	 * continuing.
681	 */
682	for (ds = list_head(&synced_datasets); ds != NULL;
683	    ds = list_next(&synced_datasets, ds)) {
684		dmu_objset_sync_done(ds->ds_objset, tx);
685	}
686	taskq_wait(dp->dp_sync_taskq);
687
688	/*
689	 * Sync the datasets again to push out the changes due to
690	 * userspace updates.  This must be done before we process the
691	 * sync tasks, so that any snapshots will have the correct
692	 * user accounting information (and we won't get confused
693	 * about which blocks are part of the snapshot).
694	 */
695	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
696	while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
697		objset_t *os = ds->ds_objset;
698
699		ASSERT(list_link_active(&ds->ds_synced_link));
700		dmu_buf_rele(ds->ds_dbuf, ds);
701		dsl_dataset_sync(ds, zio, tx);
702
703		/*
704		 * Release any key mappings created by calls to
705		 * dsl_dataset_dirty() from the userquota accounting
706		 * code paths.
707		 */
708		if (os->os_encrypted && !os->os_raw_receive &&
709		    !os->os_next_write_raw[txg & TXG_MASK]) {
710			ASSERT3P(ds->ds_key_mapping, !=, NULL);
711			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
712		}
713	}
714	VERIFY0(zio_wait(zio));
715
716	/*
717	 * Now that the datasets have been completely synced, we can
718	 * clean up our in-memory structures accumulated while syncing:
719	 *
720	 *  - move dead blocks from the pending deadlist and livelists
721	 *    to the on-disk versions
722	 *  - release hold from dsl_dataset_dirty()
723	 *  - release key mapping hold from dsl_dataset_dirty()
724	 */
725	while ((ds = list_remove_head(&synced_datasets)) != NULL) {
726		objset_t *os = ds->ds_objset;
727
728		if (os->os_encrypted && !os->os_raw_receive &&
729		    !os->os_next_write_raw[txg & TXG_MASK]) {
730			ASSERT3P(ds->ds_key_mapping, !=, NULL);
731			key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
732		}
733
734		dsl_dataset_sync_done(ds, tx);
735	}
736
737	while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
738		dsl_dir_sync(dd, tx);
739	}
740
741	/*
742	 * The MOS's space is accounted for in the pool/$MOS
743	 * (dp_mos_dir).  We can't modify the mos while we're syncing
744	 * it, so we remember the deltas and apply them here.
745	 */
746	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
747	    dp->dp_mos_uncompressed_delta != 0) {
748		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
749		    dp->dp_mos_used_delta,
750		    dp->dp_mos_compressed_delta,
751		    dp->dp_mos_uncompressed_delta, tx);
752		dp->dp_mos_used_delta = 0;
753		dp->dp_mos_compressed_delta = 0;
754		dp->dp_mos_uncompressed_delta = 0;
755	}
756
757	if (dmu_objset_is_dirty(mos, txg)) {
758		dsl_pool_sync_mos(dp, tx);
759	}
760
761	/*
762	 * We have written all of the accounted dirty data, so our
763	 * dp_space_towrite should now be zero. However, some seldom-used
764	 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
765	 * the accounting of any dirtied space now.
766	 *
767	 * Note that, besides any dirty data from datasets, the amount of
768	 * dirty data in the MOS is also accounted by the pool. Therefore,
769	 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
770	 * attempt to update the accounting for the same dirty data twice.
771	 * (i.e. at this point we only update the accounting for the space
772	 * that we know that we "leaked").
773	 */
774	dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
775
776	/*
777	 * If we modify a dataset in the same txg that we want to destroy it,
778	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
779	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
780	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
781	 * and clearing the hold on it) before we process the sync_tasks.
782	 * The MOS data dirtied by the sync_tasks will be synced on the next
783	 * pass.
784	 */
785	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
786		dsl_sync_task_t *dst;
787		/*
788		 * No more sync tasks should have been added while we
789		 * were syncing.
790		 */
791		ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
792		while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
793			dsl_sync_task_sync(dst, tx);
794	}
795
796	dmu_tx_commit(tx);
797
798	DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
799}
800
801void
802dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
803{
804	zilog_t *zilog;
805
806	while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
807		dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
808		/*
809		 * We don't remove the zilog from the dp_dirty_zilogs
810		 * list until after we've cleaned it. This ensures that
811		 * callers of zilog_is_dirty() receive an accurate
812		 * answer when they are racing with the spa sync thread.
813		 */
814		zil_clean(zilog, txg);
815		(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
816		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
817		dmu_buf_rele(ds->ds_dbuf, zilog);
818	}
819	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
820}
821
822/*
823 * TRUE if the current thread is the tx_sync_thread or if we
824 * are being called from SPA context during pool initialization.
825 */
826int
827dsl_pool_sync_context(dsl_pool_t *dp)
828{
829	return (curthread == dp->dp_tx.tx_sync_thread ||
830	    spa_is_initializing(dp->dp_spa) ||
831	    taskq_member(dp->dp_sync_taskq, curthread));
832}
833
834/*
835 * This function returns the amount of allocatable space in the pool
836 * minus whatever space is currently reserved by ZFS for specific
837 * purposes. Specifically:
838 *
839 * 1] Any reserved SLOP space
840 * 2] Any space used by the checkpoint
841 * 3] Any space used for deferred frees
842 *
843 * The latter 2 are especially important because they are needed to
844 * rectify the SPA's and DMU's different understanding of how much space
845 * is used. Now the DMU is aware of that extra space tracked by the SPA
846 * without having to maintain a separate special dir (e.g similar to
847 * $MOS, $FREEING, and $LEAKED).
848 *
849 * Note: By deferred frees here, we mean the frees that were deferred
850 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
851 * segments placed in ms_defer trees during metaslab_sync_done().
852 */
853uint64_t
854dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
855{
856	spa_t *spa = dp->dp_spa;
857	uint64_t space, resv, adjustedsize;
858	uint64_t spa_deferred_frees =
859	    spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
860
861	space = spa_get_dspace(spa)
862	    - spa_get_checkpoint_space(spa) - spa_deferred_frees;
863	resv = spa_get_slop_space(spa);
864
865	switch (slop_policy) {
866	case ZFS_SPACE_CHECK_NORMAL:
867		break;
868	case ZFS_SPACE_CHECK_RESERVED:
869		resv >>= 1;
870		break;
871	case ZFS_SPACE_CHECK_EXTRA_RESERVED:
872		resv >>= 2;
873		break;
874	case ZFS_SPACE_CHECK_NONE:
875		resv = 0;
876		break;
877	default:
878		panic("invalid slop policy value: %d", slop_policy);
879		break;
880	}
881	adjustedsize = (space >= resv) ? (space - resv) : 0;
882
883	return (adjustedsize);
884}
885
886uint64_t
887dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
888{
889	uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
890	uint64_t deferred =
891	    metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
892	uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
893	return (quota);
894}
895
896boolean_t
897dsl_pool_need_dirty_delay(dsl_pool_t *dp)
898{
899	uint64_t delay_min_bytes =
900	    zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
901	uint64_t dirty_min_bytes =
902	    zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
903	uint64_t dirty;
904
905	mutex_enter(&dp->dp_lock);
906	dirty = dp->dp_dirty_total;
907	mutex_exit(&dp->dp_lock);
908	if (dirty > dirty_min_bytes)
909		txg_kick(dp);
910	return (dirty > delay_min_bytes);
911}
912
913void
914dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
915{
916	if (space > 0) {
917		mutex_enter(&dp->dp_lock);
918		dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
919		dsl_pool_dirty_delta(dp, space);
920		mutex_exit(&dp->dp_lock);
921	}
922}
923
924void
925dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
926{
927	ASSERT3S(space, >=, 0);
928	if (space == 0)
929		return;
930
931	mutex_enter(&dp->dp_lock);
932	if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
933		/* XXX writing something we didn't dirty? */
934		space = dp->dp_dirty_pertxg[txg & TXG_MASK];
935	}
936	ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
937	dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
938	ASSERT3U(dp->dp_dirty_total, >=, space);
939	dsl_pool_dirty_delta(dp, -space);
940	mutex_exit(&dp->dp_lock);
941}
942
943/* ARGSUSED */
944static int
945upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
946{
947	dmu_tx_t *tx = arg;
948	dsl_dataset_t *ds, *prev = NULL;
949	int err;
950
951	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
952	if (err)
953		return (err);
954
955	while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
956		err = dsl_dataset_hold_obj(dp,
957		    dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
958		if (err) {
959			dsl_dataset_rele(ds, FTAG);
960			return (err);
961		}
962
963		if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
964			break;
965		dsl_dataset_rele(ds, FTAG);
966		ds = prev;
967		prev = NULL;
968	}
969
970	if (prev == NULL) {
971		prev = dp->dp_origin_snap;
972
973		/*
974		 * The $ORIGIN can't have any data, or the accounting
975		 * will be wrong.
976		 */
977		rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
978		ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
979		rrw_exit(&ds->ds_bp_rwlock, FTAG);
980
981		/* The origin doesn't get attached to itself */
982		if (ds->ds_object == prev->ds_object) {
983			dsl_dataset_rele(ds, FTAG);
984			return (0);
985		}
986
987		dmu_buf_will_dirty(ds->ds_dbuf, tx);
988		dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
989		dsl_dataset_phys(ds)->ds_prev_snap_txg =
990		    dsl_dataset_phys(prev)->ds_creation_txg;
991
992		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
993		dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
994
995		dmu_buf_will_dirty(prev->ds_dbuf, tx);
996		dsl_dataset_phys(prev)->ds_num_children++;
997
998		if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
999			ASSERT(ds->ds_prev == NULL);
1000			VERIFY0(dsl_dataset_hold_obj(dp,
1001			    dsl_dataset_phys(ds)->ds_prev_snap_obj,
1002			    ds, &ds->ds_prev));
1003		}
1004	}
1005
1006	ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1007	ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1008
1009	if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1010		dmu_buf_will_dirty(prev->ds_dbuf, tx);
1011		dsl_dataset_phys(prev)->ds_next_clones_obj =
1012		    zap_create(dp->dp_meta_objset,
1013		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1014	}
1015	VERIFY0(zap_add_int(dp->dp_meta_objset,
1016	    dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1017
1018	dsl_dataset_rele(ds, FTAG);
1019	if (prev != dp->dp_origin_snap)
1020		dsl_dataset_rele(prev, FTAG);
1021	return (0);
1022}
1023
1024void
1025dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1026{
1027	ASSERT(dmu_tx_is_syncing(tx));
1028	ASSERT(dp->dp_origin_snap != NULL);
1029
1030	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1031	    tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1032}
1033
1034/* ARGSUSED */
1035static int
1036upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1037{
1038	dmu_tx_t *tx = arg;
1039	objset_t *mos = dp->dp_meta_objset;
1040
1041	if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1042		dsl_dataset_t *origin;
1043
1044		VERIFY0(dsl_dataset_hold_obj(dp,
1045		    dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1046
1047		if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1048			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1049			dsl_dir_phys(origin->ds_dir)->dd_clones =
1050			    zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1051			    0, tx);
1052		}
1053
1054		VERIFY0(zap_add_int(dp->dp_meta_objset,
1055		    dsl_dir_phys(origin->ds_dir)->dd_clones,
1056		    ds->ds_object, tx));
1057
1058		dsl_dataset_rele(origin, FTAG);
1059	}
1060	return (0);
1061}
1062
1063void
1064dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1065{
1066	uint64_t obj;
1067
1068	ASSERT(dmu_tx_is_syncing(tx));
1069
1070	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1071	VERIFY0(dsl_pool_open_special_dir(dp,
1072	    FREE_DIR_NAME, &dp->dp_free_dir));
1073
1074	/*
1075	 * We can't use bpobj_alloc(), because spa_version() still
1076	 * returns the old version, and we need a new-version bpobj with
1077	 * subobj support.  So call dmu_object_alloc() directly.
1078	 */
1079	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1080	    SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1081	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1082	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1083	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1084
1085	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1086	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1087}
1088
1089void
1090dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1091{
1092	uint64_t dsobj;
1093	dsl_dataset_t *ds;
1094
1095	ASSERT(dmu_tx_is_syncing(tx));
1096	ASSERT(dp->dp_origin_snap == NULL);
1097	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1098
1099	/* create the origin dir, ds, & snap-ds */
1100	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1101	    NULL, 0, kcred, NULL, tx);
1102	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1103	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1104	VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1105	    dp, &dp->dp_origin_snap));
1106	dsl_dataset_rele(ds, FTAG);
1107}
1108
1109taskq_t *
1110dsl_pool_zrele_taskq(dsl_pool_t *dp)
1111{
1112	return (dp->dp_zrele_taskq);
1113}
1114
1115taskq_t *
1116dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1117{
1118	return (dp->dp_unlinked_drain_taskq);
1119}
1120
1121/*
1122 * Walk through the pool-wide zap object of temporary snapshot user holds
1123 * and release them.
1124 */
1125void
1126dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1127{
1128	zap_attribute_t za;
1129	zap_cursor_t zc;
1130	objset_t *mos = dp->dp_meta_objset;
1131	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1132	nvlist_t *holds;
1133
1134	if (zapobj == 0)
1135		return;
1136	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1137
1138	holds = fnvlist_alloc();
1139
1140	for (zap_cursor_init(&zc, mos, zapobj);
1141	    zap_cursor_retrieve(&zc, &za) == 0;
1142	    zap_cursor_advance(&zc)) {
1143		char *htag;
1144		nvlist_t *tags;
1145
1146		htag = strchr(za.za_name, '-');
1147		*htag = '\0';
1148		++htag;
1149		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1150			tags = fnvlist_alloc();
1151			fnvlist_add_boolean(tags, htag);
1152			fnvlist_add_nvlist(holds, za.za_name, tags);
1153			fnvlist_free(tags);
1154		} else {
1155			fnvlist_add_boolean(tags, htag);
1156		}
1157	}
1158	dsl_dataset_user_release_tmp(dp, holds);
1159	fnvlist_free(holds);
1160	zap_cursor_fini(&zc);
1161}
1162
1163/*
1164 * Create the pool-wide zap object for storing temporary snapshot holds.
1165 */
1166static void
1167dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1168{
1169	objset_t *mos = dp->dp_meta_objset;
1170
1171	ASSERT(dp->dp_tmp_userrefs_obj == 0);
1172	ASSERT(dmu_tx_is_syncing(tx));
1173
1174	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1175	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1176}
1177
1178static int
1179dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1180    const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1181{
1182	objset_t *mos = dp->dp_meta_objset;
1183	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1184	char *name;
1185	int error;
1186
1187	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1188	ASSERT(dmu_tx_is_syncing(tx));
1189
1190	/*
1191	 * If the pool was created prior to SPA_VERSION_USERREFS, the
1192	 * zap object for temporary holds might not exist yet.
1193	 */
1194	if (zapobj == 0) {
1195		if (holding) {
1196			dsl_pool_user_hold_create_obj(dp, tx);
1197			zapobj = dp->dp_tmp_userrefs_obj;
1198		} else {
1199			return (SET_ERROR(ENOENT));
1200		}
1201	}
1202
1203	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1204	if (holding)
1205		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1206	else
1207		error = zap_remove(mos, zapobj, name, tx);
1208	kmem_strfree(name);
1209
1210	return (error);
1211}
1212
1213/*
1214 * Add a temporary hold for the given dataset object and tag.
1215 */
1216int
1217dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1218    uint64_t now, dmu_tx_t *tx)
1219{
1220	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1221}
1222
1223/*
1224 * Release a temporary hold for the given dataset object and tag.
1225 */
1226int
1227dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1228    dmu_tx_t *tx)
1229{
1230	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1231	    tx, B_FALSE));
1232}
1233
1234/*
1235 * DSL Pool Configuration Lock
1236 *
1237 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1238 * creation / destruction / rename / property setting).  It must be held for
1239 * read to hold a dataset or dsl_dir.  I.e. you must call
1240 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1241 * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
1242 * must be held continuously until all datasets and dsl_dirs are released.
1243 *
1244 * The only exception to this rule is that if a "long hold" is placed on
1245 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1246 * is still held.  The long hold will prevent the dataset from being
1247 * destroyed -- the destroy will fail with EBUSY.  A long hold can be
1248 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1249 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1250 *
1251 * Legitimate long-holders (including owners) should be long-running, cancelable
1252 * tasks that should cause "zfs destroy" to fail.  This includes DMU
1253 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1254 * "zfs send", and "zfs diff".  There are several other long-holders whose
1255 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1256 *
1257 * The usual formula for long-holding would be:
1258 * dsl_pool_hold()
1259 * dsl_dataset_hold()
1260 * ... perform checks ...
1261 * dsl_dataset_long_hold()
1262 * dsl_pool_rele()
1263 * ... perform long-running task ...
1264 * dsl_dataset_long_rele()
1265 * dsl_dataset_rele()
1266 *
1267 * Note that when the long hold is released, the dataset is still held but
1268 * the pool is not held.  The dataset may change arbitrarily during this time
1269 * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
1270 * dataset except release it.
1271 *
1272 * Operations generally fall somewhere into the following taxonomy:
1273 *
1274 *                              Read-Only             Modifying
1275 *
1276 *    Dataset Layer / MOS        zfs get             zfs destroy
1277 *
1278 *     Individual Dataset         read()                write()
1279 *
1280 *
1281 * Dataset Layer Operations
1282 *
1283 * Modifying operations should generally use dsl_sync_task().  The synctask
1284 * infrastructure enforces proper locking strategy with respect to the
1285 * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
1286 *
1287 * Read-only operations will manually hold the pool, then the dataset, obtain
1288 * information from the dataset, then release the pool and dataset.
1289 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1290 * hold/rele.
1291 *
1292 *
1293 * Operations On Individual Datasets
1294 *
1295 * Objects _within_ an objset should only be modified by the current 'owner'
1296 * of the objset to prevent incorrect concurrent modification. Thus, use
1297 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1298 * and fail with EBUSY if there is already an owner. The owner can then
1299 * implement its own locking strategy, independent of the dataset layer's
1300 * locking infrastructure.
1301 * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1302 *  vnop will not reach into the dataset layer).
1303 *
1304 * Ideally, objects would also only be read by the objset���s owner, so that we
1305 * don���t observe state mid-modification.
1306 * (E.g. the ZPL is creating a new object and linking it into a directory; if
1307 * you don���t coordinate with the ZPL to hold ZPL-level locks, you could see an
1308 * intermediate state.  The ioctl level violates this but in pretty benign
1309 * ways, e.g. reading the zpl props object.)
1310 */
1311
1312int
1313dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1314{
1315	spa_t *spa;
1316	int error;
1317
1318	error = spa_open(name, &spa, tag);
1319	if (error == 0) {
1320		*dp = spa_get_dsl(spa);
1321		dsl_pool_config_enter(*dp, tag);
1322	}
1323	return (error);
1324}
1325
1326void
1327dsl_pool_rele(dsl_pool_t *dp, void *tag)
1328{
1329	dsl_pool_config_exit(dp, tag);
1330	spa_close(dp->dp_spa, tag);
1331}
1332
1333void
1334dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1335{
1336	/*
1337	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1338	 *
1339	 * The rrwlock can (with the track_all flag) track all reading threads,
1340	 * which is very useful for debugging which code path failed to release
1341	 * the lock, and for verifying that the *current* thread does hold
1342	 * the lock.
1343	 *
1344	 * (Unlike a rwlock, which knows that N threads hold it for
1345	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1346	 * if any thread holds it for read, even if this thread doesn't).
1347	 */
1348	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1349	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1350}
1351
1352void
1353dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1354{
1355	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1356	rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1357}
1358
1359void
1360dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1361{
1362	rrw_exit(&dp->dp_config_rwlock, tag);
1363}
1364
1365boolean_t
1366dsl_pool_config_held(dsl_pool_t *dp)
1367{
1368	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1369}
1370
1371boolean_t
1372dsl_pool_config_held_writer(dsl_pool_t *dp)
1373{
1374	return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1375}
1376
1377EXPORT_SYMBOL(dsl_pool_config_enter);
1378EXPORT_SYMBOL(dsl_pool_config_exit);
1379
1380/* BEGIN CSTYLED */
1381/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1382ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD,
1383	"Max percent of RAM allowed to be dirty");
1384
1385/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1386ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD,
1387	"zfs_dirty_data_max upper bound as % of RAM");
1388
1389ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW,
1390	"Transaction delay threshold");
1391
1392ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW,
1393	"Determines the dirty space limit");
1394
1395/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1396ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD,
1397	"zfs_dirty_data_max upper bound in bytes");
1398
1399ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW,
1400	"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1401
1402ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW,
1403	"How quickly delay approaches infinity");
1404
1405ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
1406	"Max percent of CPUs that are used to sync dirty data");
1407
1408ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1409	"Max percent of CPUs that are used per dp_sync_taskq");
1410
1411ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1412	"Number of taskq entries that are pre-populated");
1413
1414ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1415	"Max number of taskq entries that are cached");
1416/* END CSTYLED */
1417