1/*
2 *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 *  Copyright (C) 2007 The Regents of the University of California.
4 *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 *  UCRL-CODE-235197
7 *
8 *  This file is part of the SPL, Solaris Porting Layer.
9 *
10 *  The SPL is free software; you can redistribute it and/or modify it
11 *  under the terms of the GNU General Public License as published by the
12 *  Free Software Foundation; either version 2 of the License, or (at your
13 *  option) any later version.
14 *
15 *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 *  for more details.
19 *
20 *  You should have received a copy of the GNU General Public License along
21 *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22 *
23 *  Solaris Porting Layer (SPL) Generic Implementation.
24 */
25
26#include <sys/sysmacros.h>
27#include <sys/systeminfo.h>
28#include <sys/vmsystm.h>
29#include <sys/kmem.h>
30#include <sys/kmem_cache.h>
31#include <sys/vmem.h>
32#include <sys/mutex.h>
33#include <sys/rwlock.h>
34#include <sys/taskq.h>
35#include <sys/tsd.h>
36#include <sys/zmod.h>
37#include <sys/debug.h>
38#include <sys/proc.h>
39#include <sys/kstat.h>
40#include <sys/file.h>
41#include <sys/sunddi.h>
42#include <linux/ctype.h>
43#include <sys/disp.h>
44#include <sys/random.h>
45#include <sys/strings.h>
46#include <linux/kmod.h>
47#include "zfs_gitrev.h"
48#include <linux/mod_compat.h>
49#include <sys/cred.h>
50#include <sys/vnode.h>
51
52char spl_gitrev[64] = ZFS_META_GITREV;
53
54/* BEGIN CSTYLED */
55unsigned long spl_hostid = 0;
56EXPORT_SYMBOL(spl_hostid);
57/* BEGIN CSTYLED */
58module_param(spl_hostid, ulong, 0644);
59MODULE_PARM_DESC(spl_hostid, "The system hostid.");
60/* END CSTYLED */
61
62proc_t p0;
63EXPORT_SYMBOL(p0);
64
65/*
66 * Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna
67 *
68 * "Further scramblings of Marsaglia's xorshift generators"
69 * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
70 *
71 * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
72 * is to provide bytes containing random numbers. It is mapped to /dev/urandom
73 * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
74 * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
75 * we can implement it using a fast PRNG that we seed using Linux' actual
76 * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
77 * with an independent seed so that all calls to random_get_pseudo_bytes() are
78 * free of atomic instructions.
79 *
80 * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
81 * to generate words larger than 128 bits will paradoxically be limited to
82 * `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1`
83 * 128-bit words and selecting the first will implicitly select the second. If
84 * a caller finds this behavior undesirable, random_get_bytes() should be used
85 * instead.
86 *
87 * XXX: Linux interrupt handlers that trigger within the critical section
88 * formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will
89 * see the same numbers. Nothing in the code currently calls this in an
90 * interrupt handler, so this is considered to be okay. If that becomes a
91 * problem, we could create a set of per-cpu variables for interrupt handlers
92 * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
93 * true.
94 */
95void __percpu *spl_pseudo_entropy;
96
97/*
98 * spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed
99 * file:
100 *
101 * http://xorshift.di.unimi.it/xorshift128plus.c
102 */
103
104static inline uint64_t
105spl_rand_next(uint64_t *s)
106{
107	uint64_t s1 = s[0];
108	const uint64_t s0 = s[1];
109	s[0] = s0;
110	s1 ^= s1 << 23; // a
111	s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c
112	return (s[1] + s0);
113}
114
115static inline void
116spl_rand_jump(uint64_t *s)
117{
118	static const uint64_t JUMP[] =
119	    { 0x8a5cd789635d2dff, 0x121fd2155c472f96 };
120
121	uint64_t s0 = 0;
122	uint64_t s1 = 0;
123	int i, b;
124	for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
125		for (b = 0; b < 64; b++) {
126			if (JUMP[i] & 1ULL << b) {
127				s0 ^= s[0];
128				s1 ^= s[1];
129			}
130			(void) spl_rand_next(s);
131		}
132
133	s[0] = s0;
134	s[1] = s1;
135}
136
137int
138random_get_pseudo_bytes(uint8_t *ptr, size_t len)
139{
140	uint64_t *xp, s[2];
141
142	ASSERT(ptr);
143
144	xp = get_cpu_ptr(spl_pseudo_entropy);
145
146	s[0] = xp[0];
147	s[1] = xp[1];
148
149	while (len) {
150		union {
151			uint64_t ui64;
152			uint8_t byte[sizeof (uint64_t)];
153		}entropy;
154		int i = MIN(len, sizeof (uint64_t));
155
156		len -= i;
157		entropy.ui64 = spl_rand_next(s);
158
159		while (i--)
160			*ptr++ = entropy.byte[i];
161	}
162
163	xp[0] = s[0];
164	xp[1] = s[1];
165
166	put_cpu_ptr(spl_pseudo_entropy);
167
168	return (0);
169}
170
171
172EXPORT_SYMBOL(random_get_pseudo_bytes);
173
174#if BITS_PER_LONG == 32
175
176/*
177 * Support 64/64 => 64 division on a 32-bit platform.  While the kernel
178 * provides a div64_u64() function for this we do not use it because the
179 * implementation is flawed.  There are cases which return incorrect
180 * results as late as linux-2.6.35.  Until this is fixed upstream the
181 * spl must provide its own implementation.
182 *
183 * This implementation is a slightly modified version of the algorithm
184 * proposed by the book 'Hacker's Delight'.  The original source can be
185 * found here and is available for use without restriction.
186 *
187 * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
188 */
189
190/*
191 * Calculate number of leading of zeros for a 64-bit value.
192 */
193static int
194nlz64(uint64_t x)
195{
196	register int n = 0;
197
198	if (x == 0)
199		return (64);
200
201	if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
202	if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
203	if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n +  8; x = x <<  8; }
204	if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n +  4; x = x <<  4; }
205	if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n +  2; x = x <<  2; }
206	if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n +  1; }
207
208	return (n);
209}
210
211/*
212 * Newer kernels have a div_u64() function but we define our own
213 * to simplify portability between kernel versions.
214 */
215static inline uint64_t
216__div_u64(uint64_t u, uint32_t v)
217{
218	(void) do_div(u, v);
219	return (u);
220}
221
222/*
223 * Turn off missing prototypes warning for these functions. They are
224 * replacements for libgcc-provided functions and will never be called
225 * directly.
226 */
227#pragma GCC diagnostic push
228#pragma GCC diagnostic ignored "-Wmissing-prototypes"
229
230/*
231 * Implementation of 64-bit unsigned division for 32-bit machines.
232 *
233 * First the procedure takes care of the case in which the divisor is a
234 * 32-bit quantity. There are two subcases: (1) If the left half of the
235 * dividend is less than the divisor, one execution of do_div() is all that
236 * is required (overflow is not possible). (2) Otherwise it does two
237 * divisions, using the grade school method.
238 */
239uint64_t
240__udivdi3(uint64_t u, uint64_t v)
241{
242	uint64_t u0, u1, v1, q0, q1, k;
243	int n;
244
245	if (v >> 32 == 0) {			// If v < 2**32:
246		if (u >> 32 < v) {		// If u/v cannot overflow,
247			return (__div_u64(u, v)); // just do one division.
248		} else {			// If u/v would overflow:
249			u1 = u >> 32;		// Break u into two halves.
250			u0 = u & 0xFFFFFFFF;
251			q1 = __div_u64(u1, v);	// First quotient digit.
252			k  = u1 - q1 * v;	// First remainder, < v.
253			u0 += (k << 32);
254			q0 = __div_u64(u0, v);	// Seconds quotient digit.
255			return ((q1 << 32) + q0);
256		}
257	} else {				// If v >= 2**32:
258		n = nlz64(v);			// 0 <= n <= 31.
259		v1 = (v << n) >> 32;		// Normalize divisor, MSB is 1.
260		u1 = u >> 1;			// To ensure no overflow.
261		q1 = __div_u64(u1, v1);		// Get quotient from
262		q0 = (q1 << n) >> 31;		// Undo normalization and
263						// division of u by 2.
264		if (q0 != 0)			// Make q0 correct or
265			q0 = q0 - 1;		// too small by 1.
266		if ((u - q0 * v) >= v)
267			q0 = q0 + 1;		// Now q0 is correct.
268
269		return (q0);
270	}
271}
272EXPORT_SYMBOL(__udivdi3);
273
274/* BEGIN CSTYLED */
275#ifndef abs64
276#define	abs64(x)	({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
277#endif
278/* END CSTYLED */
279
280/*
281 * Implementation of 64-bit signed division for 32-bit machines.
282 */
283int64_t
284__divdi3(int64_t u, int64_t v)
285{
286	int64_t q, t;
287	q = __udivdi3(abs64(u), abs64(v));
288	t = (u ^ v) >> 63;	// If u, v have different
289	return ((q ^ t) - t);	// signs, negate q.
290}
291EXPORT_SYMBOL(__divdi3);
292
293/*
294 * Implementation of 64-bit unsigned modulo for 32-bit machines.
295 */
296uint64_t
297__umoddi3(uint64_t dividend, uint64_t divisor)
298{
299	return (dividend - (divisor * __udivdi3(dividend, divisor)));
300}
301EXPORT_SYMBOL(__umoddi3);
302
303/* 64-bit signed modulo for 32-bit machines. */
304int64_t
305__moddi3(int64_t n, int64_t d)
306{
307	int64_t q;
308	boolean_t nn = B_FALSE;
309
310	if (n < 0) {
311		nn = B_TRUE;
312		n = -n;
313	}
314	if (d < 0)
315		d = -d;
316
317	q = __umoddi3(n, d);
318
319	return (nn ? -q : q);
320}
321EXPORT_SYMBOL(__moddi3);
322
323/*
324 * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
325 */
326uint64_t
327__udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
328{
329	uint64_t q = __udivdi3(n, d);
330	if (r)
331		*r = n - d * q;
332	return (q);
333}
334EXPORT_SYMBOL(__udivmoddi4);
335
336/*
337 * Implementation of 64-bit signed division/modulo for 32-bit machines.
338 */
339int64_t
340__divmoddi4(int64_t n, int64_t d, int64_t *r)
341{
342	int64_t q, rr;
343	boolean_t nn = B_FALSE;
344	boolean_t nd = B_FALSE;
345	if (n < 0) {
346		nn = B_TRUE;
347		n = -n;
348	}
349	if (d < 0) {
350		nd = B_TRUE;
351		d = -d;
352	}
353
354	q = __udivmoddi4(n, d, (uint64_t *)&rr);
355
356	if (nn != nd)
357		q = -q;
358	if (nn)
359		rr = -rr;
360	if (r)
361		*r = rr;
362	return (q);
363}
364EXPORT_SYMBOL(__divmoddi4);
365
366#if defined(__arm) || defined(__arm__)
367/*
368 * Implementation of 64-bit (un)signed division for 32-bit arm machines.
369 *
370 * Run-time ABI for the ARM Architecture (page 20).  A pair of (unsigned)
371 * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
372 * and the remainder in {r2, r3}.  The return type is specifically left
373 * set to 'void' to ensure the compiler does not overwrite these registers
374 * during the return.  All results are in registers as per ABI
375 */
376void
377__aeabi_uldivmod(uint64_t u, uint64_t v)
378{
379	uint64_t res;
380	uint64_t mod;
381
382	res = __udivdi3(u, v);
383	mod = __umoddi3(u, v);
384	{
385		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
386		register uint32_t r1 asm("r1") = (res >> 32);
387		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
388		register uint32_t r3 asm("r3") = (mod >> 32);
389
390		/* BEGIN CSTYLED */
391		asm volatile(""
392		    : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3)  /* output */
393		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));   /* input */
394		/* END CSTYLED */
395
396		return; /* r0; */
397	}
398}
399EXPORT_SYMBOL(__aeabi_uldivmod);
400
401void
402__aeabi_ldivmod(int64_t u, int64_t v)
403{
404	int64_t res;
405	uint64_t mod;
406
407	res =  __divdi3(u, v);
408	mod = __umoddi3(u, v);
409	{
410		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
411		register uint32_t r1 asm("r1") = (res >> 32);
412		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
413		register uint32_t r3 asm("r3") = (mod >> 32);
414
415		/* BEGIN CSTYLED */
416		asm volatile(""
417		    : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3)  /* output */
418		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));   /* input */
419		/* END CSTYLED */
420
421		return; /* r0; */
422	}
423}
424EXPORT_SYMBOL(__aeabi_ldivmod);
425#endif /* __arm || __arm__ */
426
427#pragma GCC diagnostic pop
428
429#endif /* BITS_PER_LONG */
430
431/*
432 * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
433 * ddi_strtol(9F) man page.  I have not verified the behavior of these
434 * functions against their Solaris counterparts.  It is possible that I
435 * may have misinterpreted the man page or the man page is incorrect.
436 */
437int ddi_strtoul(const char *, char **, int, unsigned long *);
438int ddi_strtol(const char *, char **, int, long *);
439int ddi_strtoull(const char *, char **, int, unsigned long long *);
440int ddi_strtoll(const char *, char **, int, long long *);
441
442#define	define_ddi_strtoux(type, valtype)				\
443int ddi_strtou##type(const char *str, char **endptr,			\
444    int base, valtype *result)						\
445{									\
446	valtype last_value, value = 0;					\
447	char *ptr = (char *)str;					\
448	int flag = 1, digit;						\
449									\
450	if (strlen(ptr) == 0)						\
451		return (EINVAL);					\
452									\
453	/* Auto-detect base based on prefix */				\
454	if (!base) {							\
455		if (str[0] == '0') {					\
456			if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
457				base = 16; /* hex */			\
458				ptr += 2;				\
459			} else if (str[1] >= '0' && str[1] < 8) {	\
460				base = 8; /* octal */			\
461				ptr += 1;				\
462			} else {					\
463				return (EINVAL);			\
464			}						\
465		} else {						\
466			base = 10; /* decimal */			\
467		}							\
468	}								\
469									\
470	while (1) {							\
471		if (isdigit(*ptr))					\
472			digit = *ptr - '0';				\
473		else if (isalpha(*ptr))					\
474			digit = tolower(*ptr) - 'a' + 10;		\
475		else							\
476			break;						\
477									\
478		if (digit >= base)					\
479			break;						\
480									\
481		last_value = value;					\
482		value = value * base + digit;				\
483		if (last_value > value) /* Overflow */			\
484			return (ERANGE);				\
485									\
486		flag = 1;						\
487		ptr++;							\
488	}								\
489									\
490	if (flag)							\
491		*result = value;					\
492									\
493	if (endptr)							\
494		*endptr = (char *)(flag ? ptr : str);			\
495									\
496	return (0);							\
497}									\
498
499#define	define_ddi_strtox(type, valtype)				\
500int ddi_strto##type(const char *str, char **endptr,			\
501    int base, valtype *result)						\
502{									\
503	int rc;								\
504									\
505	if (*str == '-') {						\
506		rc = ddi_strtou##type(str + 1, endptr, base, result);	\
507		if (!rc) {						\
508			if (*endptr == str + 1)				\
509				*endptr = (char *)str;			\
510			else						\
511				*result = -*result;			\
512		}							\
513	} else {							\
514		rc = ddi_strtou##type(str, endptr, base, result);	\
515	}								\
516									\
517	return (rc);							\
518}
519
520define_ddi_strtoux(l, unsigned long)
521define_ddi_strtox(l, long)
522define_ddi_strtoux(ll, unsigned long long)
523define_ddi_strtox(ll, long long)
524
525EXPORT_SYMBOL(ddi_strtoul);
526EXPORT_SYMBOL(ddi_strtol);
527EXPORT_SYMBOL(ddi_strtoll);
528EXPORT_SYMBOL(ddi_strtoull);
529
530int
531ddi_copyin(const void *from, void *to, size_t len, int flags)
532{
533	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
534	if (flags & FKIOCTL) {
535		memcpy(to, from, len);
536		return (0);
537	}
538
539	return (copyin(from, to, len));
540}
541EXPORT_SYMBOL(ddi_copyin);
542
543int
544ddi_copyout(const void *from, void *to, size_t len, int flags)
545{
546	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
547	if (flags & FKIOCTL) {
548		memcpy(to, from, len);
549		return (0);
550	}
551
552	return (copyout(from, to, len));
553}
554EXPORT_SYMBOL(ddi_copyout);
555
556static ssize_t
557spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
558{
559#if defined(HAVE_KERNEL_READ_PPOS)
560	return (kernel_read(file, buf, count, pos));
561#else
562	mm_segment_t saved_fs;
563	ssize_t ret;
564
565	saved_fs = get_fs();
566	set_fs(KERNEL_DS);
567
568	ret = vfs_read(file, (void __user *)buf, count, pos);
569
570	set_fs(saved_fs);
571
572	return (ret);
573#endif
574}
575
576static int
577spl_getattr(struct file *filp, struct kstat *stat)
578{
579	int rc;
580
581	ASSERT(filp);
582	ASSERT(stat);
583
584#if defined(HAVE_4ARGS_VFS_GETATTR)
585	rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
586	    AT_STATX_SYNC_AS_STAT);
587#elif defined(HAVE_2ARGS_VFS_GETATTR)
588	rc = vfs_getattr(&filp->f_path, stat);
589#elif defined(HAVE_3ARGS_VFS_GETATTR)
590	rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat);
591#else
592#error "No available vfs_getattr()"
593#endif
594	if (rc)
595		return (-rc);
596
597	return (0);
598}
599
600/*
601 * Read the unique system identifier from the /etc/hostid file.
602 *
603 * The behavior of /usr/bin/hostid on Linux systems with the
604 * regular eglibc and coreutils is:
605 *
606 *   1. Generate the value if the /etc/hostid file does not exist
607 *      or if the /etc/hostid file is less than four bytes in size.
608 *
609 *   2. If the /etc/hostid file is at least 4 bytes, then return
610 *      the first four bytes [0..3] in native endian order.
611 *
612 *   3. Always ignore bytes [4..] if they exist in the file.
613 *
614 * Only the first four bytes are significant, even on systems that
615 * have a 64-bit word size.
616 *
617 * See:
618 *
619 *   eglibc: sysdeps/unix/sysv/linux/gethostid.c
620 *   coreutils: src/hostid.c
621 *
622 * Notes:
623 *
624 * The /etc/hostid file on Solaris is a text file that often reads:
625 *
626 *   # DO NOT EDIT
627 *   "0123456789"
628 *
629 * Directly copying this file to Linux results in a constant
630 * hostid of 4f442023 because the default comment constitutes
631 * the first four bytes of the file.
632 *
633 */
634
635char *spl_hostid_path = HW_HOSTID_PATH;
636module_param(spl_hostid_path, charp, 0444);
637MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
638
639static int
640hostid_read(uint32_t *hostid)
641{
642	uint64_t size;
643	uint32_t value = 0;
644	int error;
645	loff_t off;
646	struct file *filp;
647	struct kstat stat;
648
649	filp = filp_open(spl_hostid_path, 0, 0);
650
651	if (IS_ERR(filp))
652		return (ENOENT);
653
654	error = spl_getattr(filp, &stat);
655	if (error) {
656		filp_close(filp, 0);
657		return (error);
658	}
659	size = stat.size;
660	if (size < sizeof (HW_HOSTID_MASK)) {
661		filp_close(filp, 0);
662		return (EINVAL);
663	}
664
665	off = 0;
666	/*
667	 * Read directly into the variable like eglibc does.
668	 * Short reads are okay; native behavior is preserved.
669	 */
670	error = spl_kernel_read(filp, &value, sizeof (value), &off);
671	if (error < 0) {
672		filp_close(filp, 0);
673		return (EIO);
674	}
675
676	/* Mask down to 32 bits like coreutils does. */
677	*hostid = (value & HW_HOSTID_MASK);
678	filp_close(filp, 0);
679
680	return (0);
681}
682
683/*
684 * Return the system hostid.  Preferentially use the spl_hostid module option
685 * when set, otherwise use the value in the /etc/hostid file.
686 */
687uint32_t
688zone_get_hostid(void *zone)
689{
690	uint32_t hostid;
691
692	ASSERT3P(zone, ==, NULL);
693
694	if (spl_hostid != 0)
695		return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
696
697	if (hostid_read(&hostid) == 0)
698		return (hostid);
699
700	return (0);
701}
702EXPORT_SYMBOL(zone_get_hostid);
703
704static int
705spl_kvmem_init(void)
706{
707	int rc = 0;
708
709	rc = spl_kmem_init();
710	if (rc)
711		return (rc);
712
713	rc = spl_vmem_init();
714	if (rc) {
715		spl_kmem_fini();
716		return (rc);
717	}
718
719	return (rc);
720}
721
722/*
723 * We initialize the random number generator with 128 bits of entropy from the
724 * system random number generator. In the improbable case that we have a zero
725 * seed, we fallback to the system jiffies, unless it is also zero, in which
726 * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
727 * initialize each of the per-cpu seeds so that the sequences generated on each
728 * CPU are guaranteed to never overlap in practice.
729 */
730static void __init
731spl_random_init(void)
732{
733	uint64_t s[2];
734	int i = 0;
735
736	spl_pseudo_entropy = __alloc_percpu(2 * sizeof (uint64_t),
737	    sizeof (uint64_t));
738
739	get_random_bytes(s, sizeof (s));
740
741	if (s[0] == 0 && s[1] == 0) {
742		if (jiffies != 0) {
743			s[0] = jiffies;
744			s[1] = ~0 - jiffies;
745		} else {
746			(void) memcpy(s, "improbable seed", sizeof (s));
747		}
748		printk("SPL: get_random_bytes() returned 0 "
749		    "when generating random seed. Setting initial seed to "
750		    "0x%016llx%016llx.\n", cpu_to_be64(s[0]),
751		    cpu_to_be64(s[1]));
752	}
753
754	for_each_possible_cpu(i) {
755		uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
756
757		spl_rand_jump(s);
758
759		wordp[0] = s[0];
760		wordp[1] = s[1];
761	}
762}
763
764static void
765spl_random_fini(void)
766{
767	free_percpu(spl_pseudo_entropy);
768}
769
770static void
771spl_kvmem_fini(void)
772{
773	spl_vmem_fini();
774	spl_kmem_fini();
775}
776
777static int __init
778spl_init(void)
779{
780	int rc = 0;
781
782	bzero(&p0, sizeof (proc_t));
783	spl_random_init();
784
785	if ((rc = spl_kvmem_init()))
786		goto out1;
787
788	if ((rc = spl_tsd_init()))
789		goto out2;
790
791	if ((rc = spl_taskq_init()))
792		goto out3;
793
794	if ((rc = spl_kmem_cache_init()))
795		goto out4;
796
797	if ((rc = spl_proc_init()))
798		goto out5;
799
800	if ((rc = spl_kstat_init()))
801		goto out6;
802
803	if ((rc = spl_zlib_init()))
804		goto out7;
805
806	return (rc);
807
808out7:
809	spl_kstat_fini();
810out6:
811	spl_proc_fini();
812out5:
813	spl_kmem_cache_fini();
814out4:
815	spl_taskq_fini();
816out3:
817	spl_tsd_fini();
818out2:
819	spl_kvmem_fini();
820out1:
821	return (rc);
822}
823
824static void __exit
825spl_fini(void)
826{
827	spl_zlib_fini();
828	spl_kstat_fini();
829	spl_proc_fini();
830	spl_kmem_cache_fini();
831	spl_taskq_fini();
832	spl_tsd_fini();
833	spl_kvmem_fini();
834	spl_random_fini();
835}
836
837module_init(spl_init);
838module_exit(spl_fini);
839
840ZFS_MODULE_DESCRIPTION("Solaris Porting Layer");
841ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR);
842ZFS_MODULE_LICENSE("GPL");
843ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
844