1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2014, 2021 by Delphix. All rights reserved.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27 * Copyright 2017 RackTop Systems.
28 * Copyright (c) 2018 Datto Inc.
29 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
30 */
31
32/*
33 * Routines to manage ZFS mounts.  We separate all the nasty routines that have
34 * to deal with the OS.  The following functions are the main entry points --
35 * they are used by mount and unmount and when changing a filesystem's
36 * mountpoint.
37 *
38 *	zfs_is_mounted()
39 *	zfs_mount()
40 *	zfs_mount_at()
41 *	zfs_unmount()
42 *	zfs_unmountall()
43 *
44 * This file also contains the functions used to manage sharing filesystems via
45 * NFS and iSCSI:
46 *
47 *	zfs_is_shared()
48 *	zfs_share()
49 *	zfs_unshare()
50 *
51 *	zfs_is_shared_nfs()
52 *	zfs_is_shared_smb()
53 *	zfs_share_proto()
54 *	zfs_shareall();
55 *	zfs_unshare_nfs()
56 *	zfs_unshare_smb()
57 *	zfs_unshareall_nfs()
58 *	zfs_unshareall_smb()
59 *	zfs_unshareall()
60 *	zfs_unshareall_bypath()
61 *
62 * The following functions are available for pool consumers, and will
63 * mount/unmount and share/unshare all datasets within pool:
64 *
65 *	zpool_enable_datasets()
66 *	zpool_disable_datasets()
67 */
68
69#include <dirent.h>
70#include <dlfcn.h>
71#include <errno.h>
72#include <fcntl.h>
73#include <libgen.h>
74#include <libintl.h>
75#include <stdio.h>
76#include <stdlib.h>
77#include <strings.h>
78#include <unistd.h>
79#include <zone.h>
80#include <sys/mntent.h>
81#include <sys/mount.h>
82#include <sys/stat.h>
83#include <sys/vfs.h>
84#include <sys/dsl_crypt.h>
85
86#include <libzfs.h>
87
88#include "libzfs_impl.h"
89#include <thread_pool.h>
90
91#include <libshare.h>
92#include <sys/systeminfo.h>
93#define	MAXISALEN	257	/* based on sysinfo(2) man page */
94
95static int mount_tp_nthr = 512;	/* tpool threads for multi-threaded mounting */
96
97static void zfs_mount_task(void *);
98zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **,
99    zfs_share_proto_t);
100
101/*
102 * The share protocols table must be in the same order as the zfs_share_proto_t
103 * enum in libzfs_impl.h
104 */
105proto_table_t proto_table[PROTO_END] = {
106	{ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED},
107	{ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED},
108};
109
110zfs_share_proto_t nfs_only[] = {
111	PROTO_NFS,
112	PROTO_END
113};
114
115zfs_share_proto_t smb_only[] = {
116	PROTO_SMB,
117	PROTO_END
118};
119zfs_share_proto_t share_all_proto[] = {
120	PROTO_NFS,
121	PROTO_SMB,
122	PROTO_END
123};
124
125
126
127static boolean_t
128dir_is_empty_stat(const char *dirname)
129{
130	struct stat st;
131
132	/*
133	 * We only want to return false if the given path is a non empty
134	 * directory, all other errors are handled elsewhere.
135	 */
136	if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) {
137		return (B_TRUE);
138	}
139
140	/*
141	 * An empty directory will still have two entries in it, one
142	 * entry for each of "." and "..".
143	 */
144	if (st.st_size > 2) {
145		return (B_FALSE);
146	}
147
148	return (B_TRUE);
149}
150
151static boolean_t
152dir_is_empty_readdir(const char *dirname)
153{
154	DIR *dirp;
155	struct dirent64 *dp;
156	int dirfd;
157
158	if ((dirfd = openat(AT_FDCWD, dirname,
159	    O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) {
160		return (B_TRUE);
161	}
162
163	if ((dirp = fdopendir(dirfd)) == NULL) {
164		(void) close(dirfd);
165		return (B_TRUE);
166	}
167
168	while ((dp = readdir64(dirp)) != NULL) {
169
170		if (strcmp(dp->d_name, ".") == 0 ||
171		    strcmp(dp->d_name, "..") == 0)
172			continue;
173
174		(void) closedir(dirp);
175		return (B_FALSE);
176	}
177
178	(void) closedir(dirp);
179	return (B_TRUE);
180}
181
182/*
183 * Returns true if the specified directory is empty.  If we can't open the
184 * directory at all, return true so that the mount can fail with a more
185 * informative error message.
186 */
187static boolean_t
188dir_is_empty(const char *dirname)
189{
190	struct statfs64 st;
191
192	/*
193	 * If the statvfs call fails or the filesystem is not a ZFS
194	 * filesystem, fall back to the slow path which uses readdir.
195	 */
196	if ((statfs64(dirname, &st) != 0) ||
197	    (st.f_type != ZFS_SUPER_MAGIC)) {
198		return (dir_is_empty_readdir(dirname));
199	}
200
201	/*
202	 * At this point, we know the provided path is on a ZFS
203	 * filesystem, so we can use stat instead of readdir to
204	 * determine if the directory is empty or not. We try to avoid
205	 * using readdir because that requires opening "dirname"; this
206	 * open file descriptor can potentially end up in a child
207	 * process if there's a concurrent fork, thus preventing the
208	 * zfs_mount() from otherwise succeeding (the open file
209	 * descriptor inherited by the child process will cause the
210	 * parent's mount to fail with EBUSY). The performance
211	 * implications of replacing the open, read, and close with a
212	 * single stat is nice; but is not the main motivation for the
213	 * added complexity.
214	 */
215	return (dir_is_empty_stat(dirname));
216}
217
218/*
219 * Checks to see if the mount is active.  If the filesystem is mounted, we fill
220 * in 'where' with the current mountpoint, and return 1.  Otherwise, we return
221 * 0.
222 */
223boolean_t
224is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where)
225{
226	struct mnttab entry;
227
228	if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0)
229		return (B_FALSE);
230
231	if (where != NULL)
232		*where = zfs_strdup(zfs_hdl, entry.mnt_mountp);
233
234	return (B_TRUE);
235}
236
237boolean_t
238zfs_is_mounted(zfs_handle_t *zhp, char **where)
239{
240	return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where));
241}
242
243/*
244 * Checks any higher order concerns about whether the given dataset is
245 * mountable, false otherwise.  zfs_is_mountable_internal specifically assumes
246 * that the caller has verified the sanity of mounting the dataset at
247 * mountpoint to the extent the caller wants.
248 */
249static boolean_t
250zfs_is_mountable_internal(zfs_handle_t *zhp, const char *mountpoint)
251{
252
253	if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) &&
254	    getzoneid() == GLOBAL_ZONEID)
255		return (B_FALSE);
256
257	return (B_TRUE);
258}
259
260/*
261 * Returns true if the given dataset is mountable, false otherwise.  Returns the
262 * mountpoint in 'buf'.
263 */
264boolean_t
265zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen,
266    zprop_source_t *source, int flags)
267{
268	char sourceloc[MAXNAMELEN];
269	zprop_source_t sourcetype;
270
271	if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type,
272	    B_FALSE))
273		return (B_FALSE);
274
275	verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen,
276	    &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0);
277
278	if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 ||
279	    strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0)
280		return (B_FALSE);
281
282	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF)
283		return (B_FALSE);
284
285	if (!zfs_is_mountable_internal(zhp, buf))
286		return (B_FALSE);
287
288	if (zfs_prop_get_int(zhp, ZFS_PROP_REDACTED) && !(flags & MS_FORCE))
289		return (B_FALSE);
290
291	if (source)
292		*source = sourcetype;
293
294	return (B_TRUE);
295}
296
297/*
298 * The filesystem is mounted by invoking the system mount utility rather
299 * than by the system call mount(2).  This ensures that the /etc/mtab
300 * file is correctly locked for the update.  Performing our own locking
301 * and /etc/mtab update requires making an unsafe assumption about how
302 * the mount utility performs its locking.  Unfortunately, this also means
303 * in the case of a mount failure we do not have the exact errno.  We must
304 * make due with return value from the mount process.
305 *
306 * In the long term a shared library called libmount is under development
307 * which provides a common API to address the locking and errno issues.
308 * Once the standard mount utility has been updated to use this library
309 * we can add an autoconf check to conditionally use it.
310 *
311 * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
312 */
313
314static int
315zfs_add_option(zfs_handle_t *zhp, char *options, int len,
316    zfs_prop_t prop, char *on, char *off)
317{
318	char *source;
319	uint64_t value;
320
321	/* Skip adding duplicate default options */
322	if ((strstr(options, on) != NULL) || (strstr(options, off) != NULL))
323		return (0);
324
325	/*
326	 * zfs_prop_get_int() is not used to ensure our mount options
327	 * are not influenced by the current /proc/self/mounts contents.
328	 */
329	value = getprop_uint64(zhp, prop, &source);
330
331	(void) strlcat(options, ",", len);
332	(void) strlcat(options, value ? on : off, len);
333
334	return (0);
335}
336
337static int
338zfs_add_options(zfs_handle_t *zhp, char *options, int len)
339{
340	int error = 0;
341
342	error = zfs_add_option(zhp, options, len,
343	    ZFS_PROP_ATIME, MNTOPT_ATIME, MNTOPT_NOATIME);
344	/*
345	 * don't add relatime/strictatime when atime=off, otherwise strictatime
346	 * will force atime=on
347	 */
348	if (strstr(options, MNTOPT_NOATIME) == NULL) {
349		error = zfs_add_option(zhp, options, len,
350		    ZFS_PROP_RELATIME, MNTOPT_RELATIME, MNTOPT_STRICTATIME);
351	}
352	error = error ? error : zfs_add_option(zhp, options, len,
353	    ZFS_PROP_DEVICES, MNTOPT_DEVICES, MNTOPT_NODEVICES);
354	error = error ? error : zfs_add_option(zhp, options, len,
355	    ZFS_PROP_EXEC, MNTOPT_EXEC, MNTOPT_NOEXEC);
356	error = error ? error : zfs_add_option(zhp, options, len,
357	    ZFS_PROP_READONLY, MNTOPT_RO, MNTOPT_RW);
358	error = error ? error : zfs_add_option(zhp, options, len,
359	    ZFS_PROP_SETUID, MNTOPT_SETUID, MNTOPT_NOSETUID);
360	error = error ? error : zfs_add_option(zhp, options, len,
361	    ZFS_PROP_NBMAND, MNTOPT_NBMAND, MNTOPT_NONBMAND);
362
363	return (error);
364}
365
366int
367zfs_mount(zfs_handle_t *zhp, const char *options, int flags)
368{
369	char mountpoint[ZFS_MAXPROPLEN];
370
371	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL,
372	    flags))
373		return (0);
374
375	return (zfs_mount_at(zhp, options, flags, mountpoint));
376}
377
378/*
379 * Mount the given filesystem.
380 */
381int
382zfs_mount_at(zfs_handle_t *zhp, const char *options, int flags,
383    const char *mountpoint)
384{
385	struct stat buf;
386	char mntopts[MNT_LINE_MAX];
387	char overlay[ZFS_MAXPROPLEN];
388	char prop_encroot[MAXNAMELEN];
389	boolean_t is_encroot;
390	zfs_handle_t *encroot_hp = zhp;
391	libzfs_handle_t *hdl = zhp->zfs_hdl;
392	uint64_t keystatus;
393	int remount = 0, rc;
394
395	if (options == NULL) {
396		(void) strlcpy(mntopts, MNTOPT_DEFAULTS, sizeof (mntopts));
397	} else {
398		(void) strlcpy(mntopts, options, sizeof (mntopts));
399	}
400
401	if (strstr(mntopts, MNTOPT_REMOUNT) != NULL)
402		remount = 1;
403
404	/* Potentially duplicates some checks if invoked by zfs_mount(). */
405	if (!zfs_is_mountable_internal(zhp, mountpoint))
406		return (0);
407
408	/*
409	 * If the pool is imported read-only then all mounts must be read-only
410	 */
411	if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL))
412		(void) strlcat(mntopts, "," MNTOPT_RO, sizeof (mntopts));
413
414	/*
415	 * Append default mount options which apply to the mount point.
416	 * This is done because under Linux (unlike Solaris) multiple mount
417	 * points may reference a single super block.  This means that just
418	 * given a super block there is no back reference to update the per
419	 * mount point options.
420	 */
421	rc = zfs_add_options(zhp, mntopts, sizeof (mntopts));
422	if (rc) {
423		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
424		    "default options unavailable"));
425		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
426		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
427		    mountpoint));
428	}
429
430	/*
431	 * If the filesystem is encrypted the key must be loaded  in order to
432	 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
433	 * or not we attempt to load the keys. Note: we must call
434	 * zfs_refresh_properties() here since some callers of this function
435	 * (most notably zpool_enable_datasets()) may implicitly load our key
436	 * by loading the parent's key first.
437	 */
438	if (zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
439		zfs_refresh_properties(zhp);
440		keystatus = zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS);
441
442		/*
443		 * If the key is unavailable and MS_CRYPT is set give the
444		 * user a chance to enter the key. Otherwise just fail
445		 * immediately.
446		 */
447		if (keystatus == ZFS_KEYSTATUS_UNAVAILABLE) {
448			if (flags & MS_CRYPT) {
449				rc = zfs_crypto_get_encryption_root(zhp,
450				    &is_encroot, prop_encroot);
451				if (rc) {
452					zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
453					    "Failed to get encryption root for "
454					    "'%s'."), zfs_get_name(zhp));
455					return (rc);
456				}
457
458				if (!is_encroot) {
459					encroot_hp = zfs_open(hdl, prop_encroot,
460					    ZFS_TYPE_DATASET);
461					if (encroot_hp == NULL)
462						return (hdl->libzfs_error);
463				}
464
465				rc = zfs_crypto_load_key(encroot_hp,
466				    B_FALSE, NULL);
467
468				if (!is_encroot)
469					zfs_close(encroot_hp);
470				if (rc)
471					return (rc);
472			} else {
473				zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
474				    "encryption key not loaded"));
475				return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
476				    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
477				    mountpoint));
478			}
479		}
480
481	}
482
483	/*
484	 * Append zfsutil option so the mount helper allow the mount
485	 */
486	strlcat(mntopts, "," MNTOPT_ZFSUTIL, sizeof (mntopts));
487
488	/* Create the directory if it doesn't already exist */
489	if (lstat(mountpoint, &buf) != 0) {
490		if (mkdirp(mountpoint, 0755) != 0) {
491			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
492			    "failed to create mountpoint: %s"),
493			    strerror(errno));
494			return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
495			    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
496			    mountpoint));
497		}
498	}
499
500	/*
501	 * Overlay mounts are enabled by default but may be disabled
502	 * via the 'overlay' property. The -O flag remains for compatibility.
503	 */
504	if (!(flags & MS_OVERLAY)) {
505		if (zfs_prop_get(zhp, ZFS_PROP_OVERLAY, overlay,
506		    sizeof (overlay), NULL, NULL, 0, B_FALSE) == 0) {
507			if (strcmp(overlay, "on") == 0) {
508				flags |= MS_OVERLAY;
509			}
510		}
511	}
512
513	/*
514	 * Determine if the mountpoint is empty.  If so, refuse to perform the
515	 * mount.  We don't perform this check if 'remount' is
516	 * specified or if overlay option (-O) is given
517	 */
518	if ((flags & MS_OVERLAY) == 0 && !remount &&
519	    !dir_is_empty(mountpoint)) {
520		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
521		    "directory is not empty"));
522		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
523		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint));
524	}
525
526	/* perform the mount */
527	rc = do_mount(zhp, mountpoint, mntopts, flags);
528	if (rc) {
529		/*
530		 * Generic errors are nasty, but there are just way too many
531		 * from mount(), and they're well-understood.  We pick a few
532		 * common ones to improve upon.
533		 */
534		if (rc == EBUSY) {
535			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
536			    "mountpoint or dataset is busy"));
537		} else if (rc == EPERM) {
538			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
539			    "Insufficient privileges"));
540		} else if (rc == ENOTSUP) {
541			int spa_version;
542
543			VERIFY(zfs_spa_version(zhp, &spa_version) == 0);
544			zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
545			    "Can't mount a version %llu "
546			    "file system on a version %d pool. Pool must be"
547			    " upgraded to mount this file system."),
548			    (u_longlong_t)zfs_prop_get_int(zhp,
549			    ZFS_PROP_VERSION), spa_version);
550		} else {
551			zfs_error_aux(hdl, "%s", strerror(rc));
552		}
553		return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED,
554		    dgettext(TEXT_DOMAIN, "cannot mount '%s'"),
555		    zhp->zfs_name));
556	}
557
558	/* remove the mounted entry before re-adding on remount */
559	if (remount)
560		libzfs_mnttab_remove(hdl, zhp->zfs_name);
561
562	/* add the mounted entry into our cache */
563	libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, mntopts);
564	return (0);
565}
566
567/*
568 * Unmount a single filesystem.
569 */
570static int
571unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags)
572{
573	int error;
574
575	error = do_unmount(mountpoint, flags);
576	if (error != 0) {
577		int libzfs_err;
578
579		switch (error) {
580		case EBUSY:
581			libzfs_err = EZFS_BUSY;
582			break;
583		case EIO:
584			libzfs_err = EZFS_IO;
585			break;
586		case ENOENT:
587			libzfs_err = EZFS_NOENT;
588			break;
589		case ENOMEM:
590			libzfs_err = EZFS_NOMEM;
591			break;
592		case EPERM:
593			libzfs_err = EZFS_PERM;
594			break;
595		default:
596			libzfs_err = EZFS_UMOUNTFAILED;
597		}
598		return (zfs_error_fmt(hdl, libzfs_err,
599		    dgettext(TEXT_DOMAIN, "cannot unmount '%s'"),
600		    mountpoint));
601	}
602
603	return (0);
604}
605
606/*
607 * Unmount the given filesystem.
608 */
609int
610zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags)
611{
612	libzfs_handle_t *hdl = zhp->zfs_hdl;
613	struct mnttab entry;
614	char *mntpt = NULL;
615	boolean_t encroot, unmounted = B_FALSE;
616
617	/* check to see if we need to unmount the filesystem */
618	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
619	    libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) {
620		/*
621		 * mountpoint may have come from a call to
622		 * getmnt/getmntany if it isn't NULL. If it is NULL,
623		 * we know it comes from libzfs_mnttab_find which can
624		 * then get freed later. We strdup it to play it safe.
625		 */
626		if (mountpoint == NULL)
627			mntpt = zfs_strdup(hdl, entry.mnt_mountp);
628		else
629			mntpt = zfs_strdup(hdl, mountpoint);
630
631		/*
632		 * Unshare and unmount the filesystem
633		 */
634		if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) {
635			free(mntpt);
636			return (-1);
637		}
638		zfs_commit_all_shares();
639
640		if (unmount_one(hdl, mntpt, flags) != 0) {
641			free(mntpt);
642			(void) zfs_shareall(zhp);
643			zfs_commit_all_shares();
644			return (-1);
645		}
646
647		libzfs_mnttab_remove(hdl, zhp->zfs_name);
648		free(mntpt);
649		unmounted = B_TRUE;
650	}
651
652	/*
653	 * If the MS_CRYPT flag is provided we must ensure we attempt to
654	 * unload the dataset's key regardless of whether we did any work
655	 * to unmount it. We only do this for encryption roots.
656	 */
657	if ((flags & MS_CRYPT) != 0 &&
658	    zfs_prop_get_int(zhp, ZFS_PROP_ENCRYPTION) != ZIO_CRYPT_OFF) {
659		zfs_refresh_properties(zhp);
660
661		if (zfs_crypto_get_encryption_root(zhp, &encroot, NULL) != 0 &&
662		    unmounted) {
663			(void) zfs_mount(zhp, NULL, 0);
664			return (-1);
665		}
666
667		if (encroot && zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
668		    ZFS_KEYSTATUS_AVAILABLE &&
669		    zfs_crypto_unload_key(zhp) != 0) {
670			(void) zfs_mount(zhp, NULL, 0);
671			return (-1);
672		}
673	}
674
675	return (0);
676}
677
678/*
679 * Unmount this filesystem and any children inheriting the mountpoint property.
680 * To do this, just act like we're changing the mountpoint property, but don't
681 * remount the filesystems afterwards.
682 */
683int
684zfs_unmountall(zfs_handle_t *zhp, int flags)
685{
686	prop_changelist_t *clp;
687	int ret;
688
689	clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT,
690	    CL_GATHER_ITER_MOUNTED, flags);
691	if (clp == NULL)
692		return (-1);
693
694	ret = changelist_prefix(clp);
695	changelist_free(clp);
696
697	return (ret);
698}
699
700boolean_t
701zfs_is_shared(zfs_handle_t *zhp)
702{
703	zfs_share_type_t rc = 0;
704	zfs_share_proto_t *curr_proto;
705
706	if (ZFS_IS_VOLUME(zhp))
707		return (B_FALSE);
708
709	for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
710	    curr_proto++)
711		rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto);
712
713	return (rc ? B_TRUE : B_FALSE);
714}
715
716/*
717 * Unshare a filesystem by mountpoint.
718 */
719int
720unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint,
721    zfs_share_proto_t proto)
722{
723	int err;
724
725	err = sa_disable_share(mountpoint, proto_table[proto].p_name);
726	if (err != SA_OK) {
727		return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err,
728		    dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"),
729		    name, sa_errorstr(err)));
730	}
731	return (0);
732}
733
734/*
735 * Query libshare for the given mountpoint and protocol, returning
736 * a zfs_share_type_t value.
737 */
738zfs_share_type_t
739is_shared(const char *mountpoint, zfs_share_proto_t proto)
740{
741	if (sa_is_shared(mountpoint, proto_table[proto].p_name)) {
742		switch (proto) {
743		case PROTO_NFS:
744			return (SHARED_NFS);
745		case PROTO_SMB:
746			return (SHARED_SMB);
747		default:
748			return (SHARED_NOT_SHARED);
749		}
750	}
751	return (SHARED_NOT_SHARED);
752}
753
754/*
755 * Share the given filesystem according to the options in the specified
756 * protocol specific properties (sharenfs, sharesmb).  We rely
757 * on "libshare" to do the dirty work for us.
758 */
759int
760zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
761{
762	char mountpoint[ZFS_MAXPROPLEN];
763	char shareopts[ZFS_MAXPROPLEN];
764	char sourcestr[ZFS_MAXPROPLEN];
765	zfs_share_proto_t *curr_proto;
766	zprop_source_t sourcetype;
767	int err = 0;
768
769	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL, 0))
770		return (0);
771
772	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
773		/*
774		 * Return success if there are no share options.
775		 */
776		if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop,
777		    shareopts, sizeof (shareopts), &sourcetype, sourcestr,
778		    ZFS_MAXPROPLEN, B_FALSE) != 0 ||
779		    strcmp(shareopts, "off") == 0)
780			continue;
781
782		/*
783		 * If the 'zoned' property is set, then zfs_is_mountable()
784		 * will have already bailed out if we are in the global zone.
785		 * But local zones cannot be NFS servers, so we ignore it for
786		 * local zones as well.
787		 */
788		if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED))
789			continue;
790
791		err = sa_enable_share(zfs_get_name(zhp), mountpoint, shareopts,
792		    proto_table[*curr_proto].p_name);
793		if (err != SA_OK) {
794			return (zfs_error_fmt(zhp->zfs_hdl,
795			    proto_table[*curr_proto].p_share_err,
796			    dgettext(TEXT_DOMAIN, "cannot share '%s: %s'"),
797			    zfs_get_name(zhp), sa_errorstr(err)));
798		}
799
800	}
801	return (0);
802}
803
804int
805zfs_share(zfs_handle_t *zhp)
806{
807	assert(!ZFS_IS_VOLUME(zhp));
808	return (zfs_share_proto(zhp, share_all_proto));
809}
810
811int
812zfs_unshare(zfs_handle_t *zhp)
813{
814	assert(!ZFS_IS_VOLUME(zhp));
815	return (zfs_unshareall(zhp));
816}
817
818/*
819 * Check to see if the filesystem is currently shared.
820 */
821zfs_share_type_t
822zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto)
823{
824	char *mountpoint;
825	zfs_share_type_t rc;
826
827	if (!zfs_is_mounted(zhp, &mountpoint))
828		return (SHARED_NOT_SHARED);
829
830	if ((rc = is_shared(mountpoint, proto))
831	    != SHARED_NOT_SHARED) {
832		if (where != NULL)
833			*where = mountpoint;
834		else
835			free(mountpoint);
836		return (rc);
837	} else {
838		free(mountpoint);
839		return (SHARED_NOT_SHARED);
840	}
841}
842
843boolean_t
844zfs_is_shared_nfs(zfs_handle_t *zhp, char **where)
845{
846	return (zfs_is_shared_proto(zhp, where,
847	    PROTO_NFS) != SHARED_NOT_SHARED);
848}
849
850boolean_t
851zfs_is_shared_smb(zfs_handle_t *zhp, char **where)
852{
853	return (zfs_is_shared_proto(zhp, where,
854	    PROTO_SMB) != SHARED_NOT_SHARED);
855}
856
857/*
858 * zfs_parse_options(options, proto)
859 *
860 * Call the legacy parse interface to get the protocol specific
861 * options using the NULL arg to indicate that this is a "parse" only.
862 */
863int
864zfs_parse_options(char *options, zfs_share_proto_t proto)
865{
866	return (sa_validate_shareopts(options, proto_table[proto].p_name));
867}
868
869void
870zfs_commit_proto(zfs_share_proto_t *proto)
871{
872	zfs_share_proto_t *curr_proto;
873	for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) {
874		sa_commit_shares(proto_table[*curr_proto].p_name);
875	}
876}
877
878void
879zfs_commit_nfs_shares(void)
880{
881	zfs_commit_proto(nfs_only);
882}
883
884void
885zfs_commit_smb_shares(void)
886{
887	zfs_commit_proto(smb_only);
888}
889
890void
891zfs_commit_all_shares(void)
892{
893	zfs_commit_proto(share_all_proto);
894}
895
896void
897zfs_commit_shares(const char *proto)
898{
899	if (proto == NULL)
900		zfs_commit_proto(share_all_proto);
901	else if (strcmp(proto, "nfs") == 0)
902		zfs_commit_proto(nfs_only);
903	else if (strcmp(proto, "smb") == 0)
904		zfs_commit_proto(smb_only);
905}
906
907int
908zfs_share_nfs(zfs_handle_t *zhp)
909{
910	return (zfs_share_proto(zhp, nfs_only));
911}
912
913int
914zfs_share_smb(zfs_handle_t *zhp)
915{
916	return (zfs_share_proto(zhp, smb_only));
917}
918
919int
920zfs_shareall(zfs_handle_t *zhp)
921{
922	return (zfs_share_proto(zhp, share_all_proto));
923}
924
925/*
926 * Unshare the given filesystem.
927 */
928int
929zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint,
930    zfs_share_proto_t *proto)
931{
932	libzfs_handle_t *hdl = zhp->zfs_hdl;
933	struct mnttab entry;
934	char *mntpt = NULL;
935
936	/* check to see if need to unmount the filesystem */
937	if (mountpoint != NULL)
938		mntpt = zfs_strdup(hdl, mountpoint);
939
940	if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) &&
941	    libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) {
942		zfs_share_proto_t *curr_proto;
943
944		if (mountpoint == NULL)
945			mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp);
946
947		for (curr_proto = proto; *curr_proto != PROTO_END;
948		    curr_proto++) {
949
950			if (is_shared(mntpt, *curr_proto)) {
951				if (unshare_one(hdl, zhp->zfs_name,
952				    mntpt, *curr_proto) != 0) {
953					if (mntpt != NULL)
954						free(mntpt);
955					return (-1);
956				}
957			}
958		}
959	}
960	if (mntpt != NULL)
961		free(mntpt);
962
963	return (0);
964}
965
966int
967zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint)
968{
969	return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
970}
971
972int
973zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint)
974{
975	return (zfs_unshare_proto(zhp, mountpoint, smb_only));
976}
977
978/*
979 * Same as zfs_unmountall(), but for NFS and SMB unshares.
980 */
981static int
982zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto)
983{
984	prop_changelist_t *clp;
985	int ret;
986
987	clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0);
988	if (clp == NULL)
989		return (-1);
990
991	ret = changelist_unshare(clp, proto);
992	changelist_free(clp);
993
994	return (ret);
995}
996
997int
998zfs_unshareall_nfs(zfs_handle_t *zhp)
999{
1000	return (zfs_unshareall_proto(zhp, nfs_only));
1001}
1002
1003int
1004zfs_unshareall_smb(zfs_handle_t *zhp)
1005{
1006	return (zfs_unshareall_proto(zhp, smb_only));
1007}
1008
1009int
1010zfs_unshareall(zfs_handle_t *zhp)
1011{
1012	return (zfs_unshareall_proto(zhp, share_all_proto));
1013}
1014
1015int
1016zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint)
1017{
1018	return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1019}
1020
1021int
1022zfs_unshareall_bytype(zfs_handle_t *zhp, const char *mountpoint,
1023    const char *proto)
1024{
1025	if (proto == NULL)
1026		return (zfs_unshare_proto(zhp, mountpoint, share_all_proto));
1027	if (strcmp(proto, "nfs") == 0)
1028		return (zfs_unshare_proto(zhp, mountpoint, nfs_only));
1029	else if (strcmp(proto, "smb") == 0)
1030		return (zfs_unshare_proto(zhp, mountpoint, smb_only));
1031	else
1032		return (1);
1033}
1034
1035/*
1036 * Remove the mountpoint associated with the current dataset, if necessary.
1037 * We only remove the underlying directory if:
1038 *
1039 *	- The mountpoint is not 'none' or 'legacy'
1040 *	- The mountpoint is non-empty
1041 *	- The mountpoint is the default or inherited
1042 *	- The 'zoned' property is set, or we're in a local zone
1043 *
1044 * Any other directories we leave alone.
1045 */
1046void
1047remove_mountpoint(zfs_handle_t *zhp)
1048{
1049	char mountpoint[ZFS_MAXPROPLEN];
1050	zprop_source_t source;
1051
1052	if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint),
1053	    &source, 0))
1054		return;
1055
1056	if (source == ZPROP_SRC_DEFAULT ||
1057	    source == ZPROP_SRC_INHERITED) {
1058		/*
1059		 * Try to remove the directory, silently ignoring any errors.
1060		 * The filesystem may have since been removed or moved around,
1061		 * and this error isn't really useful to the administrator in
1062		 * any way.
1063		 */
1064		(void) rmdir(mountpoint);
1065	}
1066}
1067
1068/*
1069 * Add the given zfs handle to the cb_handles array, dynamically reallocating
1070 * the array if it is out of space.
1071 */
1072void
1073libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp)
1074{
1075	if (cbp->cb_alloc == cbp->cb_used) {
1076		size_t newsz;
1077		zfs_handle_t **newhandles;
1078
1079		newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64;
1080		newhandles = zfs_realloc(zhp->zfs_hdl,
1081		    cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *),
1082		    newsz * sizeof (zfs_handle_t *));
1083		cbp->cb_handles = newhandles;
1084		cbp->cb_alloc = newsz;
1085	}
1086	cbp->cb_handles[cbp->cb_used++] = zhp;
1087}
1088
1089/*
1090 * Recursive helper function used during file system enumeration
1091 */
1092static int
1093zfs_iter_cb(zfs_handle_t *zhp, void *data)
1094{
1095	get_all_cb_t *cbp = data;
1096
1097	if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) {
1098		zfs_close(zhp);
1099		return (0);
1100	}
1101
1102	if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) {
1103		zfs_close(zhp);
1104		return (0);
1105	}
1106
1107	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1108	    ZFS_KEYSTATUS_UNAVAILABLE) {
1109		zfs_close(zhp);
1110		return (0);
1111	}
1112
1113	/*
1114	 * If this filesystem is inconsistent and has a receive resume
1115	 * token, we can not mount it.
1116	 */
1117	if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) &&
1118	    zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN,
1119	    NULL, 0, NULL, NULL, 0, B_TRUE) == 0) {
1120		zfs_close(zhp);
1121		return (0);
1122	}
1123
1124	libzfs_add_handle(cbp, zhp);
1125	if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) {
1126		zfs_close(zhp);
1127		return (-1);
1128	}
1129	return (0);
1130}
1131
1132/*
1133 * Sort comparator that compares two mountpoint paths. We sort these paths so
1134 * that subdirectories immediately follow their parents. This means that we
1135 * effectively treat the '/' character as the lowest value non-nul char.
1136 * Since filesystems from non-global zones can have the same mountpoint
1137 * as other filesystems, the comparator sorts global zone filesystems to
1138 * the top of the list. This means that the global zone will traverse the
1139 * filesystem list in the correct order and can stop when it sees the
1140 * first zoned filesystem. In a non-global zone, only the delegated
1141 * filesystems are seen.
1142 *
1143 * An example sorted list using this comparator would look like:
1144 *
1145 * /foo
1146 * /foo/bar
1147 * /foo/bar/baz
1148 * /foo/baz
1149 * /foo.bar
1150 * /foo (NGZ1)
1151 * /foo (NGZ2)
1152 *
1153 * The mounting code depends on this ordering to deterministically iterate
1154 * over filesystems in order to spawn parallel mount tasks.
1155 */
1156static int
1157mountpoint_cmp(const void *arga, const void *argb)
1158{
1159	zfs_handle_t *const *zap = arga;
1160	zfs_handle_t *za = *zap;
1161	zfs_handle_t *const *zbp = argb;
1162	zfs_handle_t *zb = *zbp;
1163	char mounta[MAXPATHLEN];
1164	char mountb[MAXPATHLEN];
1165	const char *a = mounta;
1166	const char *b = mountb;
1167	boolean_t gota, gotb;
1168	uint64_t zoneda, zonedb;
1169
1170	zoneda = zfs_prop_get_int(za, ZFS_PROP_ZONED);
1171	zonedb = zfs_prop_get_int(zb, ZFS_PROP_ZONED);
1172	if (zoneda && !zonedb)
1173		return (1);
1174	if (!zoneda && zonedb)
1175		return (-1);
1176
1177	gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM);
1178	if (gota) {
1179		verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta,
1180		    sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0);
1181	}
1182	gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM);
1183	if (gotb) {
1184		verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb,
1185		    sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0);
1186	}
1187
1188	if (gota && gotb) {
1189		while (*a != '\0' && (*a == *b)) {
1190			a++;
1191			b++;
1192		}
1193		if (*a == *b)
1194			return (0);
1195		if (*a == '\0')
1196			return (-1);
1197		if (*b == '\0')
1198			return (1);
1199		if (*a == '/')
1200			return (-1);
1201		if (*b == '/')
1202			return (1);
1203		return (*a < *b ? -1 : *a > *b);
1204	}
1205
1206	if (gota)
1207		return (-1);
1208	if (gotb)
1209		return (1);
1210
1211	/*
1212	 * If neither filesystem has a mountpoint, revert to sorting by
1213	 * dataset name.
1214	 */
1215	return (strcmp(zfs_get_name(za), zfs_get_name(zb)));
1216}
1217
1218/*
1219 * Return true if path2 is a child of path1 or path2 equals path1 or
1220 * path1 is "/" (path2 is always a child of "/").
1221 */
1222static boolean_t
1223libzfs_path_contains(const char *path1, const char *path2)
1224{
1225	return (strcmp(path1, path2) == 0 || strcmp(path1, "/") == 0 ||
1226	    (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'));
1227}
1228
1229/*
1230 * Given a mountpoint specified by idx in the handles array, find the first
1231 * non-descendent of that mountpoint and return its index. Descendant paths
1232 * start with the parent's path. This function relies on the ordering
1233 * enforced by mountpoint_cmp().
1234 */
1235static int
1236non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx)
1237{
1238	char parent[ZFS_MAXPROPLEN];
1239	char child[ZFS_MAXPROPLEN];
1240	int i;
1241
1242	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent,
1243	    sizeof (parent), NULL, NULL, 0, B_FALSE) == 0);
1244
1245	for (i = idx + 1; i < num_handles; i++) {
1246		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child,
1247		    sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1248		if (!libzfs_path_contains(parent, child))
1249			break;
1250	}
1251	return (i);
1252}
1253
1254typedef struct mnt_param {
1255	libzfs_handle_t	*mnt_hdl;
1256	tpool_t		*mnt_tp;
1257	zfs_handle_t	**mnt_zhps; /* filesystems to mount */
1258	size_t		mnt_num_handles;
1259	int		mnt_idx;	/* Index of selected entry to mount */
1260	zfs_iter_f	mnt_func;
1261	void		*mnt_data;
1262} mnt_param_t;
1263
1264/*
1265 * Allocate and populate the parameter struct for mount function, and
1266 * schedule mounting of the entry selected by idx.
1267 */
1268static void
1269zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles,
1270    size_t num_handles, int idx, zfs_iter_f func, void *data, tpool_t *tp)
1271{
1272	mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t));
1273
1274	mnt_param->mnt_hdl = hdl;
1275	mnt_param->mnt_tp = tp;
1276	mnt_param->mnt_zhps = handles;
1277	mnt_param->mnt_num_handles = num_handles;
1278	mnt_param->mnt_idx = idx;
1279	mnt_param->mnt_func = func;
1280	mnt_param->mnt_data = data;
1281
1282	(void) tpool_dispatch(tp, zfs_mount_task, (void*)mnt_param);
1283}
1284
1285/*
1286 * This is the structure used to keep state of mounting or sharing operations
1287 * during a call to zpool_enable_datasets().
1288 */
1289typedef struct mount_state {
1290	/*
1291	 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1292	 * could update this variable concurrently, no synchronization is
1293	 * needed as it's only ever set to -1.
1294	 */
1295	int		ms_mntstatus;
1296	int		ms_mntflags;
1297	const char	*ms_mntopts;
1298} mount_state_t;
1299
1300static int
1301zfs_mount_one(zfs_handle_t *zhp, void *arg)
1302{
1303	mount_state_t *ms = arg;
1304	int ret = 0;
1305
1306	/*
1307	 * don't attempt to mount encrypted datasets with
1308	 * unloaded keys
1309	 */
1310	if (zfs_prop_get_int(zhp, ZFS_PROP_KEYSTATUS) ==
1311	    ZFS_KEYSTATUS_UNAVAILABLE)
1312		return (0);
1313
1314	if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0)
1315		ret = ms->ms_mntstatus = -1;
1316	return (ret);
1317}
1318
1319static int
1320zfs_share_one(zfs_handle_t *zhp, void *arg)
1321{
1322	mount_state_t *ms = arg;
1323	int ret = 0;
1324
1325	if (zfs_share(zhp) != 0)
1326		ret = ms->ms_mntstatus = -1;
1327	return (ret);
1328}
1329
1330/*
1331 * Thread pool function to mount one file system. On completion, it finds and
1332 * schedules its children to be mounted. This depends on the sorting done in
1333 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1334 * each descending from the previous) will have no parallelism since we always
1335 * have to wait for the parent to finish mounting before we can schedule
1336 * its children.
1337 */
1338static void
1339zfs_mount_task(void *arg)
1340{
1341	mnt_param_t *mp = arg;
1342	int idx = mp->mnt_idx;
1343	zfs_handle_t **handles = mp->mnt_zhps;
1344	size_t num_handles = mp->mnt_num_handles;
1345	char mountpoint[ZFS_MAXPROPLEN];
1346
1347	verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint,
1348	    sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0);
1349
1350	if (mp->mnt_func(handles[idx], mp->mnt_data) != 0)
1351		return;
1352
1353	/*
1354	 * We dispatch tasks to mount filesystems with mountpoints underneath
1355	 * this one. We do this by dispatching the next filesystem with a
1356	 * descendant mountpoint of the one we just mounted, then skip all of
1357	 * its descendants, dispatch the next descendant mountpoint, and so on.
1358	 * The non_descendant_idx() function skips over filesystems that are
1359	 * descendants of the filesystem we just dispatched.
1360	 */
1361	for (int i = idx + 1; i < num_handles;
1362	    i = non_descendant_idx(handles, num_handles, i)) {
1363		char child[ZFS_MAXPROPLEN];
1364		verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT,
1365		    child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0);
1366
1367		if (!libzfs_path_contains(mountpoint, child))
1368			break; /* not a descendant, return */
1369		zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i,
1370		    mp->mnt_func, mp->mnt_data, mp->mnt_tp);
1371	}
1372	free(mp);
1373}
1374
1375/*
1376 * Issue the func callback for each ZFS handle contained in the handles
1377 * array. This function is used to mount all datasets, and so this function
1378 * guarantees that filesystems for parent mountpoints are called before their
1379 * children. As such, before issuing any callbacks, we first sort the array
1380 * of handles by mountpoint.
1381 *
1382 * Callbacks are issued in one of two ways:
1383 *
1384 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT
1385 *    environment variable is set, then we issue callbacks sequentially.
1386 *
1387 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT
1388 *    environment variable is not set, then we use a tpool to dispatch threads
1389 *    to mount filesystems in parallel. This function dispatches tasks to mount
1390 *    the filesystems at the top-level mountpoints, and these tasks in turn
1391 *    are responsible for recursively mounting filesystems in their children
1392 *    mountpoints.
1393 */
1394void
1395zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles,
1396    size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel)
1397{
1398	zoneid_t zoneid = getzoneid();
1399
1400	/*
1401	 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1402	 * variable that can be used as a convenience to do a/b comparison
1403	 * of serial vs. parallel mounting.
1404	 */
1405	boolean_t serial_mount = !parallel ||
1406	    (getenv("ZFS_SERIAL_MOUNT") != NULL);
1407
1408	/*
1409	 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1410	 * of how these are sorted.
1411	 */
1412	qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp);
1413
1414	if (serial_mount) {
1415		for (int i = 0; i < num_handles; i++) {
1416			func(handles[i], data);
1417		}
1418		return;
1419	}
1420
1421	/*
1422	 * Issue the callback function for each dataset using a parallel
1423	 * algorithm that uses a thread pool to manage threads.
1424	 */
1425	tpool_t *tp = tpool_create(1, mount_tp_nthr, 0, NULL);
1426
1427	/*
1428	 * There may be multiple "top level" mountpoints outside of the pool's
1429	 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1430	 * these.
1431	 */
1432	for (int i = 0; i < num_handles;
1433	    i = non_descendant_idx(handles, num_handles, i)) {
1434		/*
1435		 * Since the mountpoints have been sorted so that the zoned
1436		 * filesystems are at the end, a zoned filesystem seen from
1437		 * the global zone means that we're done.
1438		 */
1439		if (zoneid == GLOBAL_ZONEID &&
1440		    zfs_prop_get_int(handles[i], ZFS_PROP_ZONED))
1441			break;
1442		zfs_dispatch_mount(hdl, handles, num_handles, i, func, data,
1443		    tp);
1444	}
1445
1446	tpool_wait(tp);	/* wait for all scheduled mounts to complete */
1447	tpool_destroy(tp);
1448}
1449
1450/*
1451 * Mount and share all datasets within the given pool.  This assumes that no
1452 * datasets within the pool are currently mounted.
1453 */
1454#pragma weak zpool_mount_datasets = zpool_enable_datasets
1455int
1456zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
1457{
1458	get_all_cb_t cb = { 0 };
1459	mount_state_t ms = { 0 };
1460	zfs_handle_t *zfsp;
1461	int ret = 0;
1462
1463	if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name,
1464	    ZFS_TYPE_DATASET)) == NULL)
1465		goto out;
1466
1467	/*
1468	 * Gather all non-snapshot datasets within the pool. Start by adding
1469	 * the root filesystem for this pool to the list, and then iterate
1470	 * over all child filesystems.
1471	 */
1472	libzfs_add_handle(&cb, zfsp);
1473	if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0)
1474		goto out;
1475
1476	/*
1477	 * Mount all filesystems
1478	 */
1479	ms.ms_mntopts = mntopts;
1480	ms.ms_mntflags = flags;
1481	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1482	    zfs_mount_one, &ms, B_TRUE);
1483	if (ms.ms_mntstatus != 0)
1484		ret = ms.ms_mntstatus;
1485
1486	/*
1487	 * Share all filesystems that need to be shared. This needs to be
1488	 * a separate pass because libshare is not mt-safe, and so we need
1489	 * to share serially.
1490	 */
1491	ms.ms_mntstatus = 0;
1492	zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used,
1493	    zfs_share_one, &ms, B_FALSE);
1494	if (ms.ms_mntstatus != 0)
1495		ret = ms.ms_mntstatus;
1496	else
1497		zfs_commit_all_shares();
1498
1499out:
1500	for (int i = 0; i < cb.cb_used; i++)
1501		zfs_close(cb.cb_handles[i]);
1502	free(cb.cb_handles);
1503
1504	return (ret);
1505}
1506
1507static int
1508mountpoint_compare(const void *a, const void *b)
1509{
1510	const char *mounta = *((char **)a);
1511	const char *mountb = *((char **)b);
1512
1513	return (strcmp(mountb, mounta));
1514}
1515
1516/* alias for 2002/240 */
1517#pragma weak zpool_unmount_datasets = zpool_disable_datasets
1518/*
1519 * Unshare and unmount all datasets within the given pool.  We don't want to
1520 * rely on traversing the DSL to discover the filesystems within the pool,
1521 * because this may be expensive (if not all of them are mounted), and can fail
1522 * arbitrarily (on I/O error, for example).  Instead, we walk /proc/self/mounts
1523 * and gather all the filesystems that are currently mounted.
1524 */
1525int
1526zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force)
1527{
1528	int used, alloc;
1529	struct mnttab entry;
1530	size_t namelen;
1531	char **mountpoints = NULL;
1532	zfs_handle_t **datasets = NULL;
1533	libzfs_handle_t *hdl = zhp->zpool_hdl;
1534	int i;
1535	int ret = -1;
1536	int flags = (force ? MS_FORCE : 0);
1537
1538	namelen = strlen(zhp->zpool_name);
1539
1540	/* Reopen MNTTAB to prevent reading stale data from open file */
1541	if (freopen(MNTTAB, "re", hdl->libzfs_mnttab) == NULL)
1542		return (ENOENT);
1543
1544	used = alloc = 0;
1545	while (getmntent(hdl->libzfs_mnttab, &entry) == 0) {
1546		/*
1547		 * Ignore non-ZFS entries.
1548		 */
1549		if (entry.mnt_fstype == NULL ||
1550		    strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0)
1551			continue;
1552
1553		/*
1554		 * Ignore filesystems not within this pool.
1555		 */
1556		if (entry.mnt_mountp == NULL ||
1557		    strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 ||
1558		    (entry.mnt_special[namelen] != '/' &&
1559		    entry.mnt_special[namelen] != '\0'))
1560			continue;
1561
1562		/*
1563		 * At this point we've found a filesystem within our pool.  Add
1564		 * it to our growing list.
1565		 */
1566		if (used == alloc) {
1567			if (alloc == 0) {
1568				if ((mountpoints = zfs_alloc(hdl,
1569				    8 * sizeof (void *))) == NULL)
1570					goto out;
1571
1572				if ((datasets = zfs_alloc(hdl,
1573				    8 * sizeof (void *))) == NULL)
1574					goto out;
1575
1576				alloc = 8;
1577			} else {
1578				void *ptr;
1579
1580				if ((ptr = zfs_realloc(hdl, mountpoints,
1581				    alloc * sizeof (void *),
1582				    alloc * 2 * sizeof (void *))) == NULL)
1583					goto out;
1584				mountpoints = ptr;
1585
1586				if ((ptr = zfs_realloc(hdl, datasets,
1587				    alloc * sizeof (void *),
1588				    alloc * 2 * sizeof (void *))) == NULL)
1589					goto out;
1590				datasets = ptr;
1591
1592				alloc *= 2;
1593			}
1594		}
1595
1596		if ((mountpoints[used] = zfs_strdup(hdl,
1597		    entry.mnt_mountp)) == NULL)
1598			goto out;
1599
1600		/*
1601		 * This is allowed to fail, in case there is some I/O error.  It
1602		 * is only used to determine if we need to remove the underlying
1603		 * mountpoint, so failure is not fatal.
1604		 */
1605		datasets[used] = make_dataset_handle(hdl, entry.mnt_special);
1606
1607		used++;
1608	}
1609
1610	/*
1611	 * At this point, we have the entire list of filesystems, so sort it by
1612	 * mountpoint.
1613	 */
1614	qsort(mountpoints, used, sizeof (char *), mountpoint_compare);
1615
1616	/*
1617	 * Walk through and first unshare everything.
1618	 */
1619	for (i = 0; i < used; i++) {
1620		zfs_share_proto_t *curr_proto;
1621		for (curr_proto = share_all_proto; *curr_proto != PROTO_END;
1622		    curr_proto++) {
1623			if (is_shared(mountpoints[i], *curr_proto) &&
1624			    unshare_one(hdl, mountpoints[i],
1625			    mountpoints[i], *curr_proto) != 0)
1626				goto out;
1627		}
1628	}
1629	zfs_commit_all_shares();
1630
1631	/*
1632	 * Now unmount everything, removing the underlying directories as
1633	 * appropriate.
1634	 */
1635	for (i = 0; i < used; i++) {
1636		if (unmount_one(hdl, mountpoints[i], flags) != 0)
1637			goto out;
1638	}
1639
1640	for (i = 0; i < used; i++) {
1641		if (datasets[i])
1642			remove_mountpoint(datasets[i]);
1643	}
1644
1645	ret = 0;
1646out:
1647	for (i = 0; i < used; i++) {
1648		if (datasets[i])
1649			zfs_close(datasets[i]);
1650		free(mountpoints[i]);
1651	}
1652	free(datasets);
1653	free(mountpoints);
1654
1655	return (ret);
1656}
1657