1/*
2 * Copyright 2013-2014 Andrew Turner.
3 * Copyright 2013-2014 Ian Lepore.
4 * Copyright 2013-2014 Rui Paulo.
5 * Copyright 2013 Eitan Adler.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are
10 * met:
11 *
12 *  1. Redistributions of source code must retain the above copyright
13 *     notice, this list of conditions and the following disclaimer.
14 *  2. Redistributions in binary form must reproduce the above copyright
15 *     notice, this list of conditions and the following disclaimer in the
16 *     documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
25 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
26 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
27 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
28 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD$");
33
34#include <sys/param.h>
35#include <sys/kernel.h>
36#include <sys/linker.h>
37#include <sys/malloc.h>
38#include <sys/queue.h>
39#include <sys/systm.h>
40
41#include <machine/machdep.h>
42#include <machine/stack.h>
43
44#include "linker_if.h"
45
46/*
47 * Definitions for the instruction interpreter.
48 *
49 * The ARM EABI specifies how to perform the frame unwinding in the
50 * Exception Handling ABI for the ARM Architecture document. To perform
51 * the unwind we need to know the initial frame pointer, stack pointer,
52 * link register and program counter. We then find the entry within the
53 * index table that points to the function the program counter is within.
54 * This gives us either a list of three instructions to process, a 31-bit
55 * relative offset to a table of instructions, or a value telling us
56 * we can't unwind any further.
57 *
58 * When we have the instructions to process we need to decode them
59 * following table 4 in section 9.3. This describes a collection of bit
60 * patterns to encode that steps to take to update the stack pointer and
61 * link register to the correct values at the start of the function.
62 */
63
64/* A special case when we are unable to unwind past this function */
65#define	EXIDX_CANTUNWIND	1
66
67/*
68 * Entry types.
69 * These are the only entry types that have been seen in the kernel.
70 */
71#define	ENTRY_MASK	0xff000000
72#define	ENTRY_ARM_SU16	0x80000000
73#define	ENTRY_ARM_LU16	0x81000000
74
75/* Instruction masks. */
76#define	INSN_VSP_MASK		0xc0
77#define	INSN_VSP_SIZE_MASK	0x3f
78#define	INSN_STD_MASK		0xf0
79#define	INSN_STD_DATA_MASK	0x0f
80#define	INSN_POP_TYPE_MASK	0x08
81#define	INSN_POP_COUNT_MASK	0x07
82#define	INSN_VSP_LARGE_INC_MASK	0xff
83
84/* Instruction definitions */
85#define	INSN_VSP_INC		0x00
86#define	INSN_VSP_DEC		0x40
87#define	INSN_POP_MASKED		0x80
88#define	INSN_VSP_REG		0x90
89#define	INSN_POP_COUNT		0xa0
90#define	INSN_FINISH		0xb0
91#define	INSN_POP_REGS		0xb1
92#define	INSN_VSP_LARGE_INC	0xb2
93
94/* An item in the exception index table */
95struct unwind_idx {
96	uint32_t offset;
97	uint32_t insn;
98};
99
100/*
101 * Local cache of unwind info for loaded modules.
102 *
103 * To unwind the stack through the code in a loaded module, we need to access
104 * the module's exidx unwind data.  To locate that data, one must search the
105 * elf section headers for the SHT_ARM_EXIDX section.  Those headers are
106 * available at the time the module is being loaded, but are discarded by time
107 * the load process has completed.  Code in kern/link_elf.c locates the data we
108 * need and stores it into the linker_file structure before calling the arm
109 * machdep routine for handling loaded modules (in arm/elf_machdep.c).  That
110 * function calls into this code to pass along the unwind info, which we save
111 * into one of these module_info structures.
112 *
113 * Because we have to help stack(9) gather stack info at any time, including in
114 * contexts where sleeping is not allowed, we cannot use linker_file_foreach()
115 * to walk the kernel's list of linker_file structs, because doing so requires
116 * acquiring an exclusive sx_lock.  So instead, we keep a local list of these
117 * structures, one for each loaded module (and one for the kernel itself that we
118 * synthesize at init time).  New entries are added to the end of this list as
119 * needed, but entries are never deleted from the list.  Instead, they are
120 * cleared out in-place to mark them as unused.  That means the code doing stack
121 * unwinding can always safely walk the list without locking, because the
122 * structure of the list never changes in a way that would cause the walker to
123 * follow a bad link.
124 *
125 * A cleared-out entry on the list has module start=UINTPTR_MAX and end=0, so
126 * start <= addr < end cannot be true for any value of addr being searched for.
127 * We also don't have to worry about races where we look up the unwind info just
128 * before a module is unloaded and try to access it concurrently with or just
129 * after the unloading happens in another thread, because that means the path of
130 * execution leads through a now-unloaded module, and that's already well into
131 * undefined-behavior territory.
132 *
133 * List entries marked as unused get reused when new modules are loaded.  We
134 * don't worry about holding a few unused bytes of memory in the list after
135 * unloading a module.
136 */
137struct module_info {
138	uintptr_t	module_start;   /* Start of loaded module */
139	uintptr_t	module_end;     /* End of loaded module */
140	uintptr_t	exidx_start;    /* Start of unwind data */
141	uintptr_t	exidx_end;      /* End of unwind data */
142	STAILQ_ENTRY(module_info)
143			link;           /* Link to next entry */
144};
145static STAILQ_HEAD(, module_info) module_list;
146
147/*
148 * Hide ugly casting in somewhat-less-ugly macros.
149 *  CADDR - cast a pointer or number to caddr_t.
150 *  UADDR - cast a pointer or number to uintptr_t.
151 */
152#define	CADDR(addr)	((caddr_t)(void*)(uintptr_t)(addr))
153#define	UADDR(addr)	((uintptr_t)(addr))
154
155/*
156 * Clear the info in an existing module_info entry on the list.  The
157 * module_start/end addresses are set to values that cannot match any real
158 * memory address.  The entry remains on the list, but will be ignored until it
159 * is populated with new data.
160 */
161static void
162clear_module_info(struct module_info *info)
163{
164	info->module_start = UINTPTR_MAX;
165	info->module_end   = 0;
166}
167
168/*
169 * Populate an existing module_info entry (which is already on the list) with
170 * the info for a new module.
171 */
172static void
173populate_module_info(struct module_info *info, linker_file_t lf)
174{
175
176	/*
177	 * Careful!  The module_start and module_end fields must not be set
178	 * until all other data in the structure is valid.
179	 */
180	info->exidx_start  = UADDR(lf->exidx_addr);
181	info->exidx_end    = UADDR(lf->exidx_addr) + lf->exidx_size;
182	info->module_start = UADDR(lf->address);
183	info->module_end   = UADDR(lf->address) + lf->size;
184}
185
186/*
187 * Create a new empty module_info entry and add it to the tail of the list.
188 */
189static struct module_info *
190create_module_info(void)
191{
192	struct module_info *info;
193
194	info = malloc(sizeof(*info), M_CACHE, M_WAITOK | M_ZERO);
195	clear_module_info(info);
196	STAILQ_INSERT_TAIL(&module_list, info, link);
197	return (info);
198}
199
200/*
201 * Search for a module_info entry on the list whose address range contains the
202 * given address.  If the search address is zero (no module will be loaded at
203 * zero), then we're looking for an empty item to reuse, which is indicated by
204 * module_start being set to UINTPTR_MAX in the entry.
205 */
206static struct module_info *
207find_module_info(uintptr_t addr)
208{
209	struct module_info *info;
210
211	STAILQ_FOREACH(info, &module_list, link) {
212		if ((addr >= info->module_start && addr < info->module_end) ||
213		    (addr == 0 && info->module_start == UINTPTR_MAX))
214			return (info);
215	}
216	return (NULL);
217}
218
219/*
220 * Handle the loading of a new module by populating a module_info for it.  This
221 * is called for both preloaded and dynamically loaded modules.
222 */
223void
224unwind_module_loaded(struct linker_file *lf)
225{
226	struct module_info *info;
227
228	/*
229	 * A module that contains only data may have no unwind info; don't
230	 * create any module info for it.
231	 */
232	if (lf->exidx_size == 0)
233		return;
234
235	/*
236	 * Find an unused entry in the existing list to reuse.  If we don't find
237	 * one, create a new one and link it into the list.  This is the only
238	 * place the module_list is modified.  Adding a new entry to the list
239	 * will not perturb any other threads currently walking the list.  This
240	 * function is invoked while kern_linker is still holding its lock
241	 * to prevent its module list from being modified, so we don't have to
242	 * worry about racing other threads doing an insert concurrently.
243	 */
244	if ((info = find_module_info(0)) == NULL) {
245		info = create_module_info();
246	}
247	populate_module_info(info, lf);
248}
249
250/* Handle the unloading of a module. */
251void
252unwind_module_unloaded(struct linker_file *lf)
253{
254	struct module_info *info;
255
256	/*
257	 * A module that contains only data may have no unwind info and there
258	 * won't be a list entry for it.
259	 */
260	if (lf->exidx_size == 0)
261		return;
262
263	/*
264	 * When a module is unloaded, we clear the info out of its entry in the
265	 * module list, making that entry available for later reuse.
266	 */
267	if ((info = find_module_info(UADDR(lf->address))) == NULL) {
268		printf("arm unwind: module '%s' not on list at unload time\n",
269		    lf->filename);
270		return;
271	}
272	clear_module_info(info);
273}
274
275/*
276 * Initialization must run fairly early, as soon as malloc(9) is available, and
277 * definitely before witness, which uses stack(9).  We synthesize a module_info
278 * entry for the kernel, because unwind_module_loaded() doesn't get called for
279 * it.  Also, it is unlike other modules in that the elf metadata for locating
280 * the unwind tables might be stripped, so instead we have to use the
281 * _exidx_start/end symbols created by ldscript.arm.
282 */
283static int
284module_info_init(void *arg __unused)
285{
286	struct linker_file thekernel;
287
288	STAILQ_INIT(&module_list);
289
290	thekernel.filename   = "kernel";
291	thekernel.address    = CADDR(&_start);
292	thekernel.size       = UADDR(&_end) - UADDR(&_start);
293	thekernel.exidx_addr = CADDR(&_exidx_start);
294	thekernel.exidx_size = UADDR(&_exidx_end) - UADDR(&_exidx_start);
295	populate_module_info(create_module_info(), &thekernel);
296
297	return (0);
298}
299SYSINIT(unwind_init, SI_SUB_KMEM, SI_ORDER_ANY, module_info_init, NULL);
300
301/* Expand a 31-bit signed value to a 32-bit signed value */
302static __inline int32_t
303expand_prel31(uint32_t prel31)
304{
305
306	return ((int32_t)(prel31 & 0x7fffffffu) << 1) / 2;
307}
308
309/*
310 * Perform a binary search of the index table to find the function
311 * with the largest address that doesn't exceed addr.
312 */
313static struct unwind_idx *
314find_index(uint32_t addr)
315{
316	struct module_info *info;
317	unsigned int min, mid, max;
318	struct unwind_idx *start;
319	struct unwind_idx *item;
320	int32_t prel31_addr;
321	uint32_t func_addr;
322
323	info = find_module_info(addr);
324	if (info == NULL)
325		return NULL;
326
327	min = 0;
328	max = (info->exidx_end - info->exidx_start) / sizeof(struct unwind_idx);
329	start = (struct unwind_idx *)CADDR(info->exidx_start);
330
331	while (min != max) {
332		mid = min + (max - min + 1) / 2;
333
334		item = &start[mid];
335
336		prel31_addr = expand_prel31(item->offset);
337		func_addr = (uint32_t)&item->offset + prel31_addr;
338
339		if (func_addr <= addr) {
340			min = mid;
341		} else {
342			max = mid - 1;
343		}
344	}
345
346	return &start[min];
347}
348
349/* Reads the next byte from the instruction list */
350static uint8_t
351unwind_exec_read_byte(struct unwind_state *state)
352{
353	uint8_t insn;
354
355	/* Read the unwind instruction */
356	insn = (*state->insn) >> (state->byte * 8);
357
358	/* Update the location of the next instruction */
359	if (state->byte == 0) {
360		state->byte = 3;
361		state->insn++;
362		state->entries--;
363	} else
364		state->byte--;
365
366	return insn;
367}
368
369/* Executes the next instruction on the list */
370static int
371unwind_exec_insn(struct unwind_state *state)
372{
373	unsigned int insn;
374	uint32_t *vsp = (uint32_t *)state->registers[SP];
375	int update_vsp = 0;
376
377	/* This should never happen */
378	if (state->entries == 0)
379		return 1;
380
381	/* Read the next instruction */
382	insn = unwind_exec_read_byte(state);
383
384	if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
385		state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
386
387	} else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
388		state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
389
390	} else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
391		unsigned int mask, reg;
392
393		/* Load the mask */
394		mask = unwind_exec_read_byte(state);
395		mask |= (insn & INSN_STD_DATA_MASK) << 8;
396
397		/* We have a refuse to unwind instruction */
398		if (mask == 0)
399			return 1;
400
401		/* Update SP */
402		update_vsp = 1;
403
404		/* Load the registers */
405		for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
406			if (mask & 1) {
407				state->registers[reg] = *vsp++;
408				state->update_mask |= 1 << reg;
409
410				/* If we have updated SP kep its value */
411				if (reg == SP)
412					update_vsp = 0;
413			}
414		}
415
416	} else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
417	    ((insn & INSN_STD_DATA_MASK) != 13) &&
418	    ((insn & INSN_STD_DATA_MASK) != 15)) {
419		/* sp = register */
420		state->registers[SP] =
421		    state->registers[insn & INSN_STD_DATA_MASK];
422
423	} else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
424		unsigned int count, reg;
425
426		/* Read how many registers to load */
427		count = insn & INSN_POP_COUNT_MASK;
428
429		/* Update sp */
430		update_vsp = 1;
431
432		/* Pop the registers */
433		for (reg = 4; reg <= 4 + count; reg++) {
434			state->registers[reg] = *vsp++;
435			state->update_mask |= 1 << reg;
436		}
437
438		/* Check if we are in the pop r14 version */
439		if ((insn & INSN_POP_TYPE_MASK) != 0) {
440			state->registers[14] = *vsp++;
441		}
442
443	} else if (insn == INSN_FINISH) {
444		/* Stop processing */
445		state->entries = 0;
446
447	} else if (insn == INSN_POP_REGS) {
448		unsigned int mask, reg;
449
450		mask = unwind_exec_read_byte(state);
451		if (mask == 0 || (mask & 0xf0) != 0)
452			return 1;
453
454		/* Update SP */
455		update_vsp = 1;
456
457		/* Load the registers */
458		for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
459			if (mask & 1) {
460				state->registers[reg] = *vsp++;
461				state->update_mask |= 1 << reg;
462			}
463		}
464
465	} else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
466		unsigned int uleb128;
467
468		/* Read the increment value */
469		uleb128 = unwind_exec_read_byte(state);
470
471		state->registers[SP] += 0x204 + (uleb128 << 2);
472
473	} else {
474		/* We hit a new instruction that needs to be implemented */
475#if 0
476		db_printf("Unhandled instruction %.2x\n", insn);
477#endif
478		return 1;
479	}
480
481	if (update_vsp) {
482		state->registers[SP] = (uint32_t)vsp;
483	}
484
485#if 0
486	db_printf("fp = %08x, sp = %08x, lr = %08x, pc = %08x\n",
487	    state->registers[FP], state->registers[SP], state->registers[LR],
488	    state->registers[PC]);
489#endif
490
491	return 0;
492}
493
494/* Performs the unwind of a function */
495static int
496unwind_tab(struct unwind_state *state)
497{
498	uint32_t entry;
499
500	/* Set PC to a known value */
501	state->registers[PC] = 0;
502
503	/* Read the personality */
504	entry = *state->insn & ENTRY_MASK;
505
506	if (entry == ENTRY_ARM_SU16) {
507		state->byte = 2;
508		state->entries = 1;
509	} else if (entry == ENTRY_ARM_LU16) {
510		state->byte = 1;
511		state->entries = ((*state->insn >> 16) & 0xFF) + 1;
512	} else {
513#if 0
514		db_printf("Unknown entry: %x\n", entry);
515#endif
516		return 1;
517	}
518
519	while (state->entries > 0) {
520		if (unwind_exec_insn(state) != 0)
521			return 1;
522	}
523
524	/*
525	 * The program counter was not updated, load it from the link register.
526	 */
527	if (state->registers[PC] == 0) {
528		state->registers[PC] = state->registers[LR];
529
530		/*
531		 * If the program counter changed, flag it in the update mask.
532		 */
533		if (state->start_pc != state->registers[PC])
534			state->update_mask |= 1 << PC;
535	}
536
537	return 0;
538}
539
540/*
541 * Unwind a single stack frame.
542 * Return 0 on success or 1 if the stack cannot be unwound any further.
543 *
544 * XXX The can_lock argument is no longer germane; a sweep of callers should be
545 * made to remove it after this new code has proven itself for a while.
546 */
547int
548unwind_stack_one(struct unwind_state *state, int can_lock __unused)
549{
550	struct unwind_idx *index;
551
552	/* Reset the mask of updated registers */
553	state->update_mask = 0;
554
555	/* The pc value is correct and will be overwritten, save it */
556	state->start_pc = state->registers[PC];
557
558	/* Find the item to run */
559	index = find_index(state->start_pc);
560	if (index == NULL || index->insn == EXIDX_CANTUNWIND)
561		return 1;
562
563	if (index->insn & (1U << 31)) {
564		/* The data is within the instruction */
565		state->insn = &index->insn;
566	} else {
567		/* A prel31 offset to the unwind table */
568		state->insn = (uint32_t *)
569		    ((uintptr_t)&index->insn +
570		     expand_prel31(index->insn));
571	}
572
573	/* Run the unwind function, return its finished/not-finished status. */
574	return (unwind_tab(state));
575}
576