1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 * Copyright (c) 2018 Joyent, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD$");
34
35#include "opt_bhyve_snapshot.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/smp.h>
40#include <sys/kernel.h>
41#include <sys/malloc.h>
42#include <sys/pcpu.h>
43#include <sys/proc.h>
44#include <sys/smr.h>
45#include <sys/sysctl.h>
46
47#include <vm/vm.h>
48#include <vm/pmap.h>
49
50#include <machine/psl.h>
51#include <machine/cpufunc.h>
52#include <machine/md_var.h>
53#include <machine/reg.h>
54#include <machine/segments.h>
55#include <machine/smp.h>
56#include <machine/specialreg.h>
57#include <machine/vmparam.h>
58
59#include <machine/vmm.h>
60#include <machine/vmm_dev.h>
61#include <machine/vmm_instruction_emul.h>
62#include <machine/vmm_snapshot.h>
63
64#include "vmm_lapic.h"
65#include "vmm_host.h"
66#include "vmm_ioport.h"
67#include "vmm_ktr.h"
68#include "vmm_stat.h"
69#include "vatpic.h"
70#include "vlapic.h"
71#include "vlapic_priv.h"
72
73#include "ept.h"
74#include "vmx_cpufunc.h"
75#include "vmx.h"
76#include "vmx_msr.h"
77#include "x86.h"
78#include "vmx_controls.h"
79
80#define	PINBASED_CTLS_ONE_SETTING					\
81	(PINBASED_EXTINT_EXITING	|				\
82	 PINBASED_NMI_EXITING		|				\
83	 PINBASED_VIRTUAL_NMI)
84#define	PINBASED_CTLS_ZERO_SETTING	0
85
86#define PROCBASED_CTLS_WINDOW_SETTING					\
87	(PROCBASED_INT_WINDOW_EXITING	|				\
88	 PROCBASED_NMI_WINDOW_EXITING)
89
90#define	PROCBASED_CTLS_ONE_SETTING					\
91	(PROCBASED_SECONDARY_CONTROLS	|				\
92	 PROCBASED_MWAIT_EXITING	|				\
93	 PROCBASED_MONITOR_EXITING	|				\
94	 PROCBASED_IO_EXITING		|				\
95	 PROCBASED_MSR_BITMAPS		|				\
96	 PROCBASED_CTLS_WINDOW_SETTING	|				\
97	 PROCBASED_CR8_LOAD_EXITING	|				\
98	 PROCBASED_CR8_STORE_EXITING)
99#define	PROCBASED_CTLS_ZERO_SETTING	\
100	(PROCBASED_CR3_LOAD_EXITING |	\
101	PROCBASED_CR3_STORE_EXITING |	\
102	PROCBASED_IO_BITMAPS)
103
104#define	PROCBASED_CTLS2_ONE_SETTING	PROCBASED2_ENABLE_EPT
105#define	PROCBASED_CTLS2_ZERO_SETTING	0
106
107#define	VM_EXIT_CTLS_ONE_SETTING					\
108	(VM_EXIT_SAVE_DEBUG_CONTROLS		|			\
109	VM_EXIT_HOST_LMA			|			\
110	VM_EXIT_SAVE_EFER			|			\
111	VM_EXIT_LOAD_EFER			|			\
112	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
113
114#define	VM_EXIT_CTLS_ZERO_SETTING	0
115
116#define	VM_ENTRY_CTLS_ONE_SETTING					\
117	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
118	VM_ENTRY_LOAD_EFER)
119
120#define	VM_ENTRY_CTLS_ZERO_SETTING					\
121	(VM_ENTRY_INTO_SMM			|			\
122	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
123
124#define	HANDLED		1
125#define	UNHANDLED	0
126
127static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
128static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
129
130SYSCTL_DECL(_hw_vmm);
131SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
132    NULL);
133
134int vmxon_enabled[MAXCPU];
135static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
136
137static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
138static uint32_t exit_ctls, entry_ctls;
139
140static uint64_t cr0_ones_mask, cr0_zeros_mask;
141SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
142	     &cr0_ones_mask, 0, NULL);
143SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
144	     &cr0_zeros_mask, 0, NULL);
145
146static uint64_t cr4_ones_mask, cr4_zeros_mask;
147SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
148	     &cr4_ones_mask, 0, NULL);
149SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
150	     &cr4_zeros_mask, 0, NULL);
151
152static int vmx_initialized;
153SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
154	   &vmx_initialized, 0, "Intel VMX initialized");
155
156/*
157 * Optional capabilities
158 */
159static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
160    CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
161    NULL);
162
163static int cap_halt_exit;
164SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
165    "HLT triggers a VM-exit");
166
167static int cap_pause_exit;
168SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
169    0, "PAUSE triggers a VM-exit");
170
171static int cap_rdpid;
172SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
173    "Guests are allowed to use RDPID");
174
175static int cap_rdtscp;
176SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
177    "Guests are allowed to use RDTSCP");
178
179static int cap_unrestricted_guest;
180SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
181    &cap_unrestricted_guest, 0, "Unrestricted guests");
182
183static int cap_monitor_trap;
184SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
185    &cap_monitor_trap, 0, "Monitor trap flag");
186
187static int cap_invpcid;
188SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
189    0, "Guests are allowed to use INVPCID");
190
191static int tpr_shadowing;
192SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD,
193    &tpr_shadowing, 0, "TPR shadowing support");
194
195static int virtual_interrupt_delivery;
196SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
197    &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
198
199static int posted_interrupts;
200SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
201    &posted_interrupts, 0, "APICv posted interrupt support");
202
203static int pirvec = -1;
204SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
205    &pirvec, 0, "APICv posted interrupt vector");
206
207static struct unrhdr *vpid_unr;
208static u_int vpid_alloc_failed;
209SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
210	    &vpid_alloc_failed, 0, NULL);
211
212int guest_l1d_flush;
213SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
214    &guest_l1d_flush, 0, NULL);
215int guest_l1d_flush_sw;
216SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
217    &guest_l1d_flush_sw, 0, NULL);
218
219static struct msr_entry msr_load_list[1] __aligned(16);
220
221/*
222 * The definitions of SDT probes for VMX.
223 */
224
225SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
226    "struct vmx *", "int", "struct vm_exit *");
227
228SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
229    "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
230
231SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
232    "struct vmx *", "int", "struct vm_exit *", "uint64_t");
233
234SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
235    "struct vmx *", "int", "struct vm_exit *", "uint32_t");
236
237SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
238    "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
239
240SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
241    "struct vmx *", "int", "struct vm_exit *");
242
243SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
244    "struct vmx *", "int", "struct vm_exit *");
245
246SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
247    "struct vmx *", "int", "struct vm_exit *");
248
249SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
250    "struct vmx *", "int", "struct vm_exit *");
251
252SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
253    "struct vmx *", "int", "struct vm_exit *", "uint32_t");
254
255SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
256    "struct vmx *", "int", "struct vm_exit *");
257
258SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
259    "struct vmx *", "int", "struct vm_exit *");
260
261SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
262    "struct vmx *", "int", "struct vm_exit *");
263
264SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
265    "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
266
267SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
268    "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
269
270SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
271    "struct vmx *", "int", "struct vm_exit *", "uint64_t");
272
273SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
274    "struct vmx *", "int", "struct vm_exit *");
275
276SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
277    "struct vmx *", "int", "struct vm_exit *");
278
279SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
280    "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
281
282SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
283    "struct vmx *", "int", "struct vm_exit *");
284
285SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
286    "struct vmx *", "int", "struct vm_exit *");
287
288SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
289    "struct vmx *", "int", "struct vm_exit *");
290
291SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
292    "struct vmx *", "int", "struct vm_exit *");
293
294SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
295    "struct vmx *", "int", "struct vm_exit *", "uint32_t");
296
297SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
298    "struct vmx *", "int", "struct vm_exit *", "int");
299
300/*
301 * Use the last page below 4GB as the APIC access address. This address is
302 * occupied by the boot firmware so it is guaranteed that it will not conflict
303 * with a page in system memory.
304 */
305#define	APIC_ACCESS_ADDRESS	0xFFFFF000
306
307static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
308static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
309static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
310static void vmx_inject_pir(struct vlapic *vlapic);
311#ifdef BHYVE_SNAPSHOT
312static int vmx_restore_tsc(void *arg, int vcpu, uint64_t now);
313#endif
314
315static inline bool
316host_has_rdpid(void)
317{
318	return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
319}
320
321static inline bool
322host_has_rdtscp(void)
323{
324	return ((amd_feature & AMDID_RDTSCP) != 0);
325}
326
327#ifdef KTR
328static const char *
329exit_reason_to_str(int reason)
330{
331	static char reasonbuf[32];
332
333	switch (reason) {
334	case EXIT_REASON_EXCEPTION:
335		return "exception";
336	case EXIT_REASON_EXT_INTR:
337		return "extint";
338	case EXIT_REASON_TRIPLE_FAULT:
339		return "triplefault";
340	case EXIT_REASON_INIT:
341		return "init";
342	case EXIT_REASON_SIPI:
343		return "sipi";
344	case EXIT_REASON_IO_SMI:
345		return "iosmi";
346	case EXIT_REASON_SMI:
347		return "smi";
348	case EXIT_REASON_INTR_WINDOW:
349		return "intrwindow";
350	case EXIT_REASON_NMI_WINDOW:
351		return "nmiwindow";
352	case EXIT_REASON_TASK_SWITCH:
353		return "taskswitch";
354	case EXIT_REASON_CPUID:
355		return "cpuid";
356	case EXIT_REASON_GETSEC:
357		return "getsec";
358	case EXIT_REASON_HLT:
359		return "hlt";
360	case EXIT_REASON_INVD:
361		return "invd";
362	case EXIT_REASON_INVLPG:
363		return "invlpg";
364	case EXIT_REASON_RDPMC:
365		return "rdpmc";
366	case EXIT_REASON_RDTSC:
367		return "rdtsc";
368	case EXIT_REASON_RSM:
369		return "rsm";
370	case EXIT_REASON_VMCALL:
371		return "vmcall";
372	case EXIT_REASON_VMCLEAR:
373		return "vmclear";
374	case EXIT_REASON_VMLAUNCH:
375		return "vmlaunch";
376	case EXIT_REASON_VMPTRLD:
377		return "vmptrld";
378	case EXIT_REASON_VMPTRST:
379		return "vmptrst";
380	case EXIT_REASON_VMREAD:
381		return "vmread";
382	case EXIT_REASON_VMRESUME:
383		return "vmresume";
384	case EXIT_REASON_VMWRITE:
385		return "vmwrite";
386	case EXIT_REASON_VMXOFF:
387		return "vmxoff";
388	case EXIT_REASON_VMXON:
389		return "vmxon";
390	case EXIT_REASON_CR_ACCESS:
391		return "craccess";
392	case EXIT_REASON_DR_ACCESS:
393		return "draccess";
394	case EXIT_REASON_INOUT:
395		return "inout";
396	case EXIT_REASON_RDMSR:
397		return "rdmsr";
398	case EXIT_REASON_WRMSR:
399		return "wrmsr";
400	case EXIT_REASON_INVAL_VMCS:
401		return "invalvmcs";
402	case EXIT_REASON_INVAL_MSR:
403		return "invalmsr";
404	case EXIT_REASON_MWAIT:
405		return "mwait";
406	case EXIT_REASON_MTF:
407		return "mtf";
408	case EXIT_REASON_MONITOR:
409		return "monitor";
410	case EXIT_REASON_PAUSE:
411		return "pause";
412	case EXIT_REASON_MCE_DURING_ENTRY:
413		return "mce-during-entry";
414	case EXIT_REASON_TPR:
415		return "tpr";
416	case EXIT_REASON_APIC_ACCESS:
417		return "apic-access";
418	case EXIT_REASON_GDTR_IDTR:
419		return "gdtridtr";
420	case EXIT_REASON_LDTR_TR:
421		return "ldtrtr";
422	case EXIT_REASON_EPT_FAULT:
423		return "eptfault";
424	case EXIT_REASON_EPT_MISCONFIG:
425		return "eptmisconfig";
426	case EXIT_REASON_INVEPT:
427		return "invept";
428	case EXIT_REASON_RDTSCP:
429		return "rdtscp";
430	case EXIT_REASON_VMX_PREEMPT:
431		return "vmxpreempt";
432	case EXIT_REASON_INVVPID:
433		return "invvpid";
434	case EXIT_REASON_WBINVD:
435		return "wbinvd";
436	case EXIT_REASON_XSETBV:
437		return "xsetbv";
438	case EXIT_REASON_APIC_WRITE:
439		return "apic-write";
440	default:
441		snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
442		return (reasonbuf);
443	}
444}
445#endif	/* KTR */
446
447static int
448vmx_allow_x2apic_msrs(struct vmx *vmx)
449{
450	int i, error;
451
452	error = 0;
453
454	/*
455	 * Allow readonly access to the following x2APIC MSRs from the guest.
456	 */
457	error += guest_msr_ro(vmx, MSR_APIC_ID);
458	error += guest_msr_ro(vmx, MSR_APIC_VERSION);
459	error += guest_msr_ro(vmx, MSR_APIC_LDR);
460	error += guest_msr_ro(vmx, MSR_APIC_SVR);
461
462	for (i = 0; i < 8; i++)
463		error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
464
465	for (i = 0; i < 8; i++)
466		error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
467
468	for (i = 0; i < 8; i++)
469		error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
470
471	error += guest_msr_ro(vmx, MSR_APIC_ESR);
472	error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
473	error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
474	error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
475	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
476	error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
477	error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
478	error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
479	error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
480	error += guest_msr_ro(vmx, MSR_APIC_ICR);
481
482	/*
483	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
484	 *
485	 * These registers get special treatment described in the section
486	 * "Virtualizing MSR-Based APIC Accesses".
487	 */
488	error += guest_msr_rw(vmx, MSR_APIC_TPR);
489	error += guest_msr_rw(vmx, MSR_APIC_EOI);
490	error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
491
492	return (error);
493}
494
495u_long
496vmx_fix_cr0(u_long cr0)
497{
498
499	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
500}
501
502u_long
503vmx_fix_cr4(u_long cr4)
504{
505
506	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
507}
508
509static void
510vpid_free(int vpid)
511{
512	if (vpid < 0 || vpid > 0xffff)
513		panic("vpid_free: invalid vpid %d", vpid);
514
515	/*
516	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
517	 * the unit number allocator.
518	 */
519
520	if (vpid > VM_MAXCPU)
521		free_unr(vpid_unr, vpid);
522}
523
524static void
525vpid_alloc(uint16_t *vpid, int num)
526{
527	int i, x;
528
529	if (num <= 0 || num > VM_MAXCPU)
530		panic("invalid number of vpids requested: %d", num);
531
532	/*
533	 * If the "enable vpid" execution control is not enabled then the
534	 * VPID is required to be 0 for all vcpus.
535	 */
536	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
537		for (i = 0; i < num; i++)
538			vpid[i] = 0;
539		return;
540	}
541
542	/*
543	 * Allocate a unique VPID for each vcpu from the unit number allocator.
544	 */
545	for (i = 0; i < num; i++) {
546		x = alloc_unr(vpid_unr);
547		if (x == -1)
548			break;
549		else
550			vpid[i] = x;
551	}
552
553	if (i < num) {
554		atomic_add_int(&vpid_alloc_failed, 1);
555
556		/*
557		 * If the unit number allocator does not have enough unique
558		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
559		 *
560		 * These VPIDs are not be unique across VMs but this does not
561		 * affect correctness because the combined mappings are also
562		 * tagged with the EP4TA which is unique for each VM.
563		 *
564		 * It is still sub-optimal because the invvpid will invalidate
565		 * combined mappings for a particular VPID across all EP4TAs.
566		 */
567		while (i-- > 0)
568			vpid_free(vpid[i]);
569
570		for (i = 0; i < num; i++)
571			vpid[i] = i + 1;
572	}
573}
574
575static void
576vpid_init(void)
577{
578	/*
579	 * VPID 0 is required when the "enable VPID" execution control is
580	 * disabled.
581	 *
582	 * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
583	 * unit number allocator does not have sufficient unique VPIDs to
584	 * satisfy the allocation.
585	 *
586	 * The remaining VPIDs are managed by the unit number allocator.
587	 */
588	vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
589}
590
591static void
592vmx_disable(void *arg __unused)
593{
594	struct invvpid_desc invvpid_desc = { 0 };
595	struct invept_desc invept_desc = { 0 };
596
597	if (vmxon_enabled[curcpu]) {
598		/*
599		 * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
600		 *
601		 * VMXON or VMXOFF are not required to invalidate any TLB
602		 * caching structures. This prevents potential retention of
603		 * cached information in the TLB between distinct VMX episodes.
604		 */
605		invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
606		invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
607		vmxoff();
608	}
609	load_cr4(rcr4() & ~CR4_VMXE);
610}
611
612static int
613vmx_modcleanup(void)
614{
615
616	if (pirvec >= 0)
617		lapic_ipi_free(pirvec);
618
619	if (vpid_unr != NULL) {
620		delete_unrhdr(vpid_unr);
621		vpid_unr = NULL;
622	}
623
624	if (nmi_flush_l1d_sw == 1)
625		nmi_flush_l1d_sw = 0;
626
627	smp_rendezvous(NULL, vmx_disable, NULL, NULL);
628
629	return (0);
630}
631
632static void
633vmx_enable(void *arg __unused)
634{
635	int error;
636	uint64_t feature_control;
637
638	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
639	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
640	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
641		wrmsr(MSR_IA32_FEATURE_CONTROL,
642		    feature_control | IA32_FEATURE_CONTROL_VMX_EN |
643		    IA32_FEATURE_CONTROL_LOCK);
644	}
645
646	load_cr4(rcr4() | CR4_VMXE);
647
648	*(uint32_t *)vmxon_region[curcpu] = vmx_revision();
649	error = vmxon(vmxon_region[curcpu]);
650	if (error == 0)
651		vmxon_enabled[curcpu] = 1;
652}
653
654static void
655vmx_modresume(void)
656{
657
658	if (vmxon_enabled[curcpu])
659		vmxon(vmxon_region[curcpu]);
660}
661
662static int
663vmx_modinit(int ipinum)
664{
665	int error;
666	uint64_t basic, fixed0, fixed1, feature_control;
667	uint32_t tmp, procbased2_vid_bits;
668
669	/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
670	if (!(cpu_feature2 & CPUID2_VMX)) {
671		printf("vmx_modinit: processor does not support VMX "
672		    "operation\n");
673		return (ENXIO);
674	}
675
676	/*
677	 * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
678	 * are set (bits 0 and 2 respectively).
679	 */
680	feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
681	if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
682	    (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
683		printf("vmx_modinit: VMX operation disabled by BIOS\n");
684		return (ENXIO);
685	}
686
687	/*
688	 * Verify capabilities MSR_VMX_BASIC:
689	 * - bit 54 indicates support for INS/OUTS decoding
690	 */
691	basic = rdmsr(MSR_VMX_BASIC);
692	if ((basic & (1UL << 54)) == 0) {
693		printf("vmx_modinit: processor does not support desired basic "
694		    "capabilities\n");
695		return (EINVAL);
696	}
697
698	/* Check support for primary processor-based VM-execution controls */
699	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
700			       MSR_VMX_TRUE_PROCBASED_CTLS,
701			       PROCBASED_CTLS_ONE_SETTING,
702			       PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
703	if (error) {
704		printf("vmx_modinit: processor does not support desired "
705		    "primary processor-based controls\n");
706		return (error);
707	}
708
709	/* Clear the processor-based ctl bits that are set on demand */
710	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
711
712	/* Check support for secondary processor-based VM-execution controls */
713	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
714			       MSR_VMX_PROCBASED_CTLS2,
715			       PROCBASED_CTLS2_ONE_SETTING,
716			       PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
717	if (error) {
718		printf("vmx_modinit: processor does not support desired "
719		    "secondary processor-based controls\n");
720		return (error);
721	}
722
723	/* Check support for VPID */
724	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
725			       PROCBASED2_ENABLE_VPID, 0, &tmp);
726	if (error == 0)
727		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
728
729	/* Check support for pin-based VM-execution controls */
730	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
731			       MSR_VMX_TRUE_PINBASED_CTLS,
732			       PINBASED_CTLS_ONE_SETTING,
733			       PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
734	if (error) {
735		printf("vmx_modinit: processor does not support desired "
736		    "pin-based controls\n");
737		return (error);
738	}
739
740	/* Check support for VM-exit controls */
741	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
742			       VM_EXIT_CTLS_ONE_SETTING,
743			       VM_EXIT_CTLS_ZERO_SETTING,
744			       &exit_ctls);
745	if (error) {
746		printf("vmx_modinit: processor does not support desired "
747		    "exit controls\n");
748		return (error);
749	}
750
751	/* Check support for VM-entry controls */
752	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
753	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
754	    &entry_ctls);
755	if (error) {
756		printf("vmx_modinit: processor does not support desired "
757		    "entry controls\n");
758		return (error);
759	}
760
761	/*
762	 * Check support for optional features by testing them
763	 * as individual bits
764	 */
765	cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
766					MSR_VMX_TRUE_PROCBASED_CTLS,
767					PROCBASED_HLT_EXITING, 0,
768					&tmp) == 0);
769
770	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
771					MSR_VMX_PROCBASED_CTLS,
772					PROCBASED_MTF, 0,
773					&tmp) == 0);
774
775	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
776					 MSR_VMX_TRUE_PROCBASED_CTLS,
777					 PROCBASED_PAUSE_EXITING, 0,
778					 &tmp) == 0);
779
780	/*
781	 * Check support for RDPID and/or RDTSCP.
782	 *
783	 * Support a pass-through-based implementation of these via the
784	 * "enable RDTSCP" VM-execution control and the "RDTSC exiting"
785	 * VM-execution control.
786	 *
787	 * The "enable RDTSCP" VM-execution control applies to both RDPID
788	 * and RDTSCP (see SDM volume 3, section 25.3, "Changes to
789	 * Instruction Behavior in VMX Non-root operation"); this is why
790	 * only this VM-execution control needs to be enabled in order to
791	 * enable passing through whichever of RDPID and/or RDTSCP are
792	 * supported by the host.
793	 *
794	 * The "RDTSC exiting" VM-execution control applies to both RDTSC
795	 * and RDTSCP (again, per SDM volume 3, section 25.3), and is
796	 * already set up for RDTSC and RDTSCP pass-through by the current
797	 * implementation of RDTSC.
798	 *
799	 * Although RDPID and RDTSCP are optional capabilities, since there
800	 * does not currently seem to be a use case for enabling/disabling
801	 * these via libvmmapi, choose not to support this and, instead,
802	 * just statically always enable or always disable this support
803	 * across all vCPUs on all VMs. (Note that there may be some
804	 * complications to providing this functionality, e.g., the MSR
805	 * bitmap is currently per-VM rather than per-vCPU while the
806	 * capability API wants to be able to control capabilities on a
807	 * per-vCPU basis).
808	 */
809	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
810			       MSR_VMX_PROCBASED_CTLS2,
811			       PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
812	cap_rdpid = error == 0 && host_has_rdpid();
813	cap_rdtscp = error == 0 && host_has_rdtscp();
814	if (cap_rdpid || cap_rdtscp)
815		procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
816
817	cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
818					MSR_VMX_PROCBASED_CTLS2,
819					PROCBASED2_UNRESTRICTED_GUEST, 0,
820				        &tmp) == 0);
821
822	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
823	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
824	    &tmp) == 0);
825
826	/*
827	 * Check support for TPR shadow.
828	 */
829	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
830	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
831	    &tmp);
832	if (error == 0) {
833		tpr_shadowing = 1;
834		TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
835		    &tpr_shadowing);
836	}
837
838	if (tpr_shadowing) {
839		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
840		procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
841		procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
842	}
843
844	/*
845	 * Check support for virtual interrupt delivery.
846	 */
847	procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
848	    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
849	    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
850	    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
851
852	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
853	    procbased2_vid_bits, 0, &tmp);
854	if (error == 0 && tpr_shadowing) {
855		virtual_interrupt_delivery = 1;
856		TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
857		    &virtual_interrupt_delivery);
858	}
859
860	if (virtual_interrupt_delivery) {
861		procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
862		procbased_ctls2 |= procbased2_vid_bits;
863		procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
864
865		/*
866		 * Check for Posted Interrupts only if Virtual Interrupt
867		 * Delivery is enabled.
868		 */
869		error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
870		    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
871		    &tmp);
872		if (error == 0) {
873			pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
874			    &IDTVEC(justreturn));
875			if (pirvec < 0) {
876				if (bootverbose) {
877					printf("vmx_modinit: unable to "
878					    "allocate posted interrupt "
879					    "vector\n");
880				}
881			} else {
882				posted_interrupts = 1;
883				TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
884				    &posted_interrupts);
885			}
886		}
887	}
888
889	if (posted_interrupts)
890		    pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
891
892	/* Initialize EPT */
893	error = ept_init(ipinum);
894	if (error) {
895		printf("vmx_modinit: ept initialization failed (%d)\n", error);
896		return (error);
897	}
898
899	guest_l1d_flush = (cpu_ia32_arch_caps &
900	    IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
901	TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
902
903	/*
904	 * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
905	 * available.  Otherwise fall back to the software flush
906	 * method which loads enough data from the kernel text to
907	 * flush existing L1D content, both on VMX entry and on NMI
908	 * return.
909	 */
910	if (guest_l1d_flush) {
911		if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
912			guest_l1d_flush_sw = 1;
913			TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
914			    &guest_l1d_flush_sw);
915		}
916		if (guest_l1d_flush_sw) {
917			if (nmi_flush_l1d_sw <= 1)
918				nmi_flush_l1d_sw = 1;
919		} else {
920			msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
921			msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
922		}
923	}
924
925	/*
926	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
927	 */
928	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
929	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
930	cr0_ones_mask = fixed0 & fixed1;
931	cr0_zeros_mask = ~fixed0 & ~fixed1;
932
933	/*
934	 * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
935	 * if unrestricted guest execution is allowed.
936	 */
937	if (cap_unrestricted_guest)
938		cr0_ones_mask &= ~(CR0_PG | CR0_PE);
939
940	/*
941	 * Do not allow the guest to set CR0_NW or CR0_CD.
942	 */
943	cr0_zeros_mask |= (CR0_NW | CR0_CD);
944
945	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
946	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
947	cr4_ones_mask = fixed0 & fixed1;
948	cr4_zeros_mask = ~fixed0 & ~fixed1;
949
950	vpid_init();
951
952	vmx_msr_init();
953
954	/* enable VMX operation */
955	smp_rendezvous(NULL, vmx_enable, NULL, NULL);
956
957	vmx_initialized = 1;
958
959	return (0);
960}
961
962static void
963vmx_trigger_hostintr(int vector)
964{
965	uintptr_t func;
966	struct gate_descriptor *gd;
967
968	gd = &idt[vector];
969
970	KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
971	    "invalid vector %d", vector));
972	KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
973	    vector));
974	KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
975	    "has invalid type %d", vector, gd->gd_type));
976	KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
977	    "has invalid dpl %d", vector, gd->gd_dpl));
978	KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
979	    "for vector %d has invalid selector %d", vector, gd->gd_selector));
980	KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
981	    "IST %d", vector, gd->gd_ist));
982
983	func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
984	vmx_call_isr(func);
985}
986
987static int
988vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
989{
990	int error, mask_ident, shadow_ident;
991	uint64_t mask_value;
992
993	if (which != 0 && which != 4)
994		panic("vmx_setup_cr_shadow: unknown cr%d", which);
995
996	if (which == 0) {
997		mask_ident = VMCS_CR0_MASK;
998		mask_value = cr0_ones_mask | cr0_zeros_mask;
999		shadow_ident = VMCS_CR0_SHADOW;
1000	} else {
1001		mask_ident = VMCS_CR4_MASK;
1002		mask_value = cr4_ones_mask | cr4_zeros_mask;
1003		shadow_ident = VMCS_CR4_SHADOW;
1004	}
1005
1006	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
1007	if (error)
1008		return (error);
1009
1010	error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
1011	if (error)
1012		return (error);
1013
1014	return (0);
1015}
1016#define	vmx_setup_cr0_shadow(vmcs,init)	vmx_setup_cr_shadow(0, (vmcs), (init))
1017#define	vmx_setup_cr4_shadow(vmcs,init)	vmx_setup_cr_shadow(4, (vmcs), (init))
1018
1019static void *
1020vmx_init(struct vm *vm, pmap_t pmap)
1021{
1022	uint16_t vpid[VM_MAXCPU];
1023	int i, error;
1024	struct vmx *vmx;
1025	struct vmcs *vmcs;
1026	uint32_t exc_bitmap;
1027	uint16_t maxcpus;
1028
1029	vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
1030	if ((uintptr_t)vmx & PAGE_MASK) {
1031		panic("malloc of struct vmx not aligned on %d byte boundary",
1032		      PAGE_SIZE);
1033	}
1034	vmx->vm = vm;
1035
1036	vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
1037
1038	/*
1039	 * Clean up EPTP-tagged guest physical and combined mappings
1040	 *
1041	 * VMX transitions are not required to invalidate any guest physical
1042	 * mappings. So, it may be possible for stale guest physical mappings
1043	 * to be present in the processor TLBs.
1044	 *
1045	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
1046	 */
1047	ept_invalidate_mappings(vmx->eptp);
1048
1049	msr_bitmap_initialize(vmx->msr_bitmap);
1050
1051	/*
1052	 * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
1053	 * The guest FSBASE and GSBASE are saved and restored during
1054	 * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
1055	 * always restored from the vmcs host state area on vm-exit.
1056	 *
1057	 * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
1058	 * how they are saved/restored so can be directly accessed by the
1059	 * guest.
1060	 *
1061	 * MSR_EFER is saved and restored in the guest VMCS area on a
1062	 * VM exit and entry respectively. It is also restored from the
1063	 * host VMCS area on a VM exit.
1064	 *
1065	 * The TSC MSR is exposed read-only. Writes are disallowed as
1066	 * that will impact the host TSC.  If the guest does a write
1067	 * the "use TSC offsetting" execution control is enabled and the
1068	 * difference between the host TSC and the guest TSC is written
1069	 * into the TSC offset in the VMCS.
1070	 *
1071	 * Guest TSC_AUX support is enabled if any of guest RDPID and/or
1072	 * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
1073	 * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
1074	 * supported). If guest TSC_AUX support is enabled, TSC_AUX is
1075	 * exposed read-only so that the VMM can do one fewer MSR read per
1076	 * exit than if this register were exposed read-write; the guest
1077	 * restore value can be updated during guest writes (expected to be
1078	 * rare) instead of during all exits (common).
1079	 */
1080	if (guest_msr_rw(vmx, MSR_GSBASE) ||
1081	    guest_msr_rw(vmx, MSR_FSBASE) ||
1082	    guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
1083	    guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
1084	    guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
1085	    guest_msr_rw(vmx, MSR_EFER) ||
1086	    guest_msr_ro(vmx, MSR_TSC) ||
1087	    ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
1088		panic("vmx_init: error setting guest msr access");
1089
1090	vpid_alloc(vpid, VM_MAXCPU);
1091
1092	if (virtual_interrupt_delivery) {
1093		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
1094		    APIC_ACCESS_ADDRESS);
1095		/* XXX this should really return an error to the caller */
1096		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1097	}
1098
1099	maxcpus = vm_get_maxcpus(vm);
1100	for (i = 0; i < maxcpus; i++) {
1101		vmcs = &vmx->vmcs[i];
1102		vmcs->identifier = vmx_revision();
1103		error = vmclear(vmcs);
1104		if (error != 0) {
1105			panic("vmx_init: vmclear error %d on vcpu %d\n",
1106			      error, i);
1107		}
1108
1109		vmx_msr_guest_init(vmx, i);
1110
1111		error = vmcs_init(vmcs);
1112		KASSERT(error == 0, ("vmcs_init error %d", error));
1113
1114		VMPTRLD(vmcs);
1115		error = 0;
1116		error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
1117		error += vmwrite(VMCS_EPTP, vmx->eptp);
1118		error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1119		error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1120		error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1121		error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1122		error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1123		error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1124		error += vmwrite(VMCS_VPID, vpid[i]);
1125
1126		if (guest_l1d_flush && !guest_l1d_flush_sw) {
1127			vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1128			    (vm_offset_t)&msr_load_list[0]));
1129			vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1130			    nitems(msr_load_list));
1131			vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1132			vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1133		}
1134
1135		/* exception bitmap */
1136		if (vcpu_trace_exceptions(vm, i))
1137			exc_bitmap = 0xffffffff;
1138		else
1139			exc_bitmap = 1 << IDT_MC;
1140		error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1141
1142		vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
1143		error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1144
1145		if (tpr_shadowing) {
1146			error += vmwrite(VMCS_VIRTUAL_APIC,
1147			    vtophys(&vmx->apic_page[i]));
1148		}
1149
1150		if (virtual_interrupt_delivery) {
1151			error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1152			error += vmwrite(VMCS_EOI_EXIT0, 0);
1153			error += vmwrite(VMCS_EOI_EXIT1, 0);
1154			error += vmwrite(VMCS_EOI_EXIT2, 0);
1155			error += vmwrite(VMCS_EOI_EXIT3, 0);
1156		}
1157		if (posted_interrupts) {
1158			error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1159			error += vmwrite(VMCS_PIR_DESC,
1160			    vtophys(&vmx->pir_desc[i]));
1161		}
1162		VMCLEAR(vmcs);
1163		KASSERT(error == 0, ("vmx_init: error customizing the vmcs"));
1164
1165		vmx->cap[i].set = 0;
1166		vmx->cap[i].set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
1167		vmx->cap[i].set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
1168		vmx->cap[i].proc_ctls = procbased_ctls;
1169		vmx->cap[i].proc_ctls2 = procbased_ctls2;
1170		vmx->cap[i].exc_bitmap = exc_bitmap;
1171
1172		vmx->state[i].nextrip = ~0;
1173		vmx->state[i].lastcpu = NOCPU;
1174		vmx->state[i].vpid = vpid[i];
1175
1176		/*
1177		 * Set up the CR0/4 shadows, and init the read shadow
1178		 * to the power-on register value from the Intel Sys Arch.
1179		 *  CR0 - 0x60000010
1180		 *  CR4 - 0
1181		 */
1182		error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1183		if (error != 0)
1184			panic("vmx_setup_cr0_shadow %d", error);
1185
1186		error = vmx_setup_cr4_shadow(vmcs, 0);
1187		if (error != 0)
1188			panic("vmx_setup_cr4_shadow %d", error);
1189
1190		vmx->ctx[i].pmap = pmap;
1191	}
1192
1193	return (vmx);
1194}
1195
1196static int
1197vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1198{
1199	int handled;
1200
1201	handled = x86_emulate_cpuid(vm, vcpu, (uint64_t *)&vmxctx->guest_rax,
1202	    (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
1203	    (uint64_t *)&vmxctx->guest_rdx);
1204	return (handled);
1205}
1206
1207static __inline void
1208vmx_run_trace(struct vmx *vmx, int vcpu)
1209{
1210#ifdef KTR
1211	VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1212#endif
1213}
1214
1215static __inline void
1216vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1217	       int handled)
1218{
1219#ifdef KTR
1220	VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1221		 handled ? "handled" : "unhandled",
1222		 exit_reason_to_str(exit_reason), rip);
1223#endif
1224}
1225
1226static __inline void
1227vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1228{
1229#ifdef KTR
1230	VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1231#endif
1232}
1233
1234static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1235static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1236
1237/*
1238 * Invalidate guest mappings identified by its vpid from the TLB.
1239 */
1240static __inline void
1241vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1242{
1243	struct vmxstate *vmxstate;
1244	struct invvpid_desc invvpid_desc;
1245
1246	vmxstate = &vmx->state[vcpu];
1247	if (vmxstate->vpid == 0)
1248		return;
1249
1250	if (!running) {
1251		/*
1252		 * Set the 'lastcpu' to an invalid host cpu.
1253		 *
1254		 * This will invalidate TLB entries tagged with the vcpu's
1255		 * vpid the next time it runs via vmx_set_pcpu_defaults().
1256		 */
1257		vmxstate->lastcpu = NOCPU;
1258		return;
1259	}
1260
1261	KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1262	    "critical section", __func__, vcpu));
1263
1264	/*
1265	 * Invalidate all mappings tagged with 'vpid'
1266	 *
1267	 * We do this because this vcpu was executing on a different host
1268	 * cpu when it last ran. We do not track whether it invalidated
1269	 * mappings associated with its 'vpid' during that run. So we must
1270	 * assume that the mappings associated with 'vpid' on 'curcpu' are
1271	 * stale and invalidate them.
1272	 *
1273	 * Note that we incur this penalty only when the scheduler chooses to
1274	 * move the thread associated with this vcpu between host cpus.
1275	 *
1276	 * Note also that this will invalidate mappings tagged with 'vpid'
1277	 * for "all" EP4TAs.
1278	 */
1279	if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) {
1280		invvpid_desc._res1 = 0;
1281		invvpid_desc._res2 = 0;
1282		invvpid_desc.vpid = vmxstate->vpid;
1283		invvpid_desc.linear_addr = 0;
1284		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1285		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1286	} else {
1287		/*
1288		 * The invvpid can be skipped if an invept is going to
1289		 * be performed before entering the guest. The invept
1290		 * will invalidate combined mappings tagged with
1291		 * 'vmx->eptp' for all vpids.
1292		 */
1293		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1294	}
1295}
1296
1297static void
1298vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1299{
1300	struct vmxstate *vmxstate;
1301
1302	vmxstate = &vmx->state[vcpu];
1303	if (vmxstate->lastcpu == curcpu)
1304		return;
1305
1306	vmxstate->lastcpu = curcpu;
1307
1308	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1309
1310	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1311	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1312	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1313	vmx_invvpid(vmx, vcpu, pmap, 1);
1314}
1315
1316/*
1317 * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1318 */
1319CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1320
1321static void __inline
1322vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1323{
1324
1325	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1326		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1327		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1328		VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1329	}
1330}
1331
1332static void __inline
1333vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1334{
1335
1336	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1337	    ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1338	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1339	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1340	VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1341}
1342
1343static void __inline
1344vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1345{
1346
1347	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1348		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1349		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1350		VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1351	}
1352}
1353
1354static void __inline
1355vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1356{
1357
1358	KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1359	    ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1360	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1361	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1362	VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1363}
1364
1365int
1366vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1367{
1368	int error;
1369
1370	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1371		vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1372		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1373		VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1374	}
1375
1376	error = vmwrite(VMCS_TSC_OFFSET, offset);
1377#ifdef BHYVE_SNAPSHOT
1378	if (error == 0)
1379		error = vm_set_tsc_offset(vmx->vm, vcpu, offset);
1380#endif
1381	return (error);
1382}
1383
1384#define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1385			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1386#define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1387			 VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1388
1389static void
1390vmx_inject_nmi(struct vmx *vmx, int vcpu)
1391{
1392	uint32_t gi, info;
1393
1394	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1395	KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1396	    "interruptibility-state %#x", gi));
1397
1398	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1399	KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1400	    "VM-entry interruption information %#x", info));
1401
1402	/*
1403	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1404	 * or the VMCS entry check will fail.
1405	 */
1406	info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1407	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1408
1409	VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1410
1411	/* Clear the request */
1412	vm_nmi_clear(vmx->vm, vcpu);
1413}
1414
1415static void
1416vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1417    uint64_t guestrip)
1418{
1419	int vector, need_nmi_exiting, extint_pending;
1420	uint64_t rflags, entryinfo;
1421	uint32_t gi, info;
1422
1423	if (vmx->state[vcpu].nextrip != guestrip) {
1424		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1425		if (gi & HWINTR_BLOCKING) {
1426			VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1427			    "cleared due to rip change: %#lx/%#lx",
1428			    vmx->state[vcpu].nextrip, guestrip);
1429			gi &= ~HWINTR_BLOCKING;
1430			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1431		}
1432	}
1433
1434	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1435		KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1436		    "intinfo is not valid: %#lx", __func__, entryinfo));
1437
1438		info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1439		KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1440		     "pending exception: %#lx/%#x", __func__, entryinfo, info));
1441
1442		info = entryinfo;
1443		vector = info & 0xff;
1444		if (vector == IDT_BP || vector == IDT_OF) {
1445			/*
1446			 * VT-x requires #BP and #OF to be injected as software
1447			 * exceptions.
1448			 */
1449			info &= ~VMCS_INTR_T_MASK;
1450			info |= VMCS_INTR_T_SWEXCEPTION;
1451		}
1452
1453		if (info & VMCS_INTR_DEL_ERRCODE)
1454			vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1455
1456		vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1457	}
1458
1459	if (vm_nmi_pending(vmx->vm, vcpu)) {
1460		/*
1461		 * If there are no conditions blocking NMI injection then
1462		 * inject it directly here otherwise enable "NMI window
1463		 * exiting" to inject it as soon as we can.
1464		 *
1465		 * We also check for STI_BLOCKING because some implementations
1466		 * don't allow NMI injection in this case. If we are running
1467		 * on a processor that doesn't have this restriction it will
1468		 * immediately exit and the NMI will be injected in the
1469		 * "NMI window exiting" handler.
1470		 */
1471		need_nmi_exiting = 1;
1472		gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1473		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1474			info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1475			if ((info & VMCS_INTR_VALID) == 0) {
1476				vmx_inject_nmi(vmx, vcpu);
1477				need_nmi_exiting = 0;
1478			} else {
1479				VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1480				    "due to VM-entry intr info %#x", info);
1481			}
1482		} else {
1483			VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1484			    "Guest Interruptibility-state %#x", gi);
1485		}
1486
1487		if (need_nmi_exiting)
1488			vmx_set_nmi_window_exiting(vmx, vcpu);
1489	}
1490
1491	extint_pending = vm_extint_pending(vmx->vm, vcpu);
1492
1493	if (!extint_pending && virtual_interrupt_delivery) {
1494		vmx_inject_pir(vlapic);
1495		return;
1496	}
1497
1498	/*
1499	 * If interrupt-window exiting is already in effect then don't bother
1500	 * checking for pending interrupts. This is just an optimization and
1501	 * not needed for correctness.
1502	 */
1503	if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1504		VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1505		    "pending int_window_exiting");
1506		return;
1507	}
1508
1509	if (!extint_pending) {
1510		/* Ask the local apic for a vector to inject */
1511		if (!vlapic_pending_intr(vlapic, &vector))
1512			return;
1513
1514		/*
1515		 * From the Intel SDM, Volume 3, Section "Maskable
1516		 * Hardware Interrupts":
1517		 * - maskable interrupt vectors [16,255] can be delivered
1518		 *   through the local APIC.
1519		*/
1520		KASSERT(vector >= 16 && vector <= 255,
1521		    ("invalid vector %d from local APIC", vector));
1522	} else {
1523		/* Ask the legacy pic for a vector to inject */
1524		vatpic_pending_intr(vmx->vm, &vector);
1525
1526		/*
1527		 * From the Intel SDM, Volume 3, Section "Maskable
1528		 * Hardware Interrupts":
1529		 * - maskable interrupt vectors [0,255] can be delivered
1530		 *   through the INTR pin.
1531		 */
1532		KASSERT(vector >= 0 && vector <= 255,
1533		    ("invalid vector %d from INTR", vector));
1534	}
1535
1536	/* Check RFLAGS.IF and the interruptibility state of the guest */
1537	rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1538	if ((rflags & PSL_I) == 0) {
1539		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1540		    "rflags %#lx", vector, rflags);
1541		goto cantinject;
1542	}
1543
1544	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1545	if (gi & HWINTR_BLOCKING) {
1546		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1547		    "Guest Interruptibility-state %#x", vector, gi);
1548		goto cantinject;
1549	}
1550
1551	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1552	if (info & VMCS_INTR_VALID) {
1553		/*
1554		 * This is expected and could happen for multiple reasons:
1555		 * - A vectoring VM-entry was aborted due to astpending
1556		 * - A VM-exit happened during event injection.
1557		 * - An exception was injected above.
1558		 * - An NMI was injected above or after "NMI window exiting"
1559		 */
1560		VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1561		    "VM-entry intr info %#x", vector, info);
1562		goto cantinject;
1563	}
1564
1565	/* Inject the interrupt */
1566	info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1567	info |= vector;
1568	vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1569
1570	if (!extint_pending) {
1571		/* Update the Local APIC ISR */
1572		vlapic_intr_accepted(vlapic, vector);
1573	} else {
1574		vm_extint_clear(vmx->vm, vcpu);
1575		vatpic_intr_accepted(vmx->vm, vector);
1576
1577		/*
1578		 * After we accepted the current ExtINT the PIC may
1579		 * have posted another one.  If that is the case, set
1580		 * the Interrupt Window Exiting execution control so
1581		 * we can inject that one too.
1582		 *
1583		 * Also, interrupt window exiting allows us to inject any
1584		 * pending APIC vector that was preempted by the ExtINT
1585		 * as soon as possible. This applies both for the software
1586		 * emulated vlapic and the hardware assisted virtual APIC.
1587		 */
1588		vmx_set_int_window_exiting(vmx, vcpu);
1589	}
1590
1591	VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1592
1593	return;
1594
1595cantinject:
1596	/*
1597	 * Set the Interrupt Window Exiting execution control so we can inject
1598	 * the interrupt as soon as blocking condition goes away.
1599	 */
1600	vmx_set_int_window_exiting(vmx, vcpu);
1601}
1602
1603/*
1604 * If the Virtual NMIs execution control is '1' then the logical processor
1605 * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1606 * the VMCS. An IRET instruction in VMX non-root operation will remove any
1607 * virtual-NMI blocking.
1608 *
1609 * This unblocking occurs even if the IRET causes a fault. In this case the
1610 * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1611 */
1612static void
1613vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1614{
1615	uint32_t gi;
1616
1617	VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1618	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1619	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1620	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1621}
1622
1623static void
1624vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1625{
1626	uint32_t gi;
1627
1628	VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1629	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1630	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1631	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1632}
1633
1634static void
1635vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1636{
1637	uint32_t gi;
1638
1639	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1640	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1641	    ("NMI blocking is not in effect %#x", gi));
1642}
1643
1644static int
1645vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1646{
1647	struct vmxctx *vmxctx;
1648	uint64_t xcrval;
1649	const struct xsave_limits *limits;
1650
1651	vmxctx = &vmx->ctx[vcpu];
1652	limits = vmm_get_xsave_limits();
1653
1654	/*
1655	 * Note that the processor raises a GP# fault on its own if
1656	 * xsetbv is executed for CPL != 0, so we do not have to
1657	 * emulate that fault here.
1658	 */
1659
1660	/* Only xcr0 is supported. */
1661	if (vmxctx->guest_rcx != 0) {
1662		vm_inject_gp(vmx->vm, vcpu);
1663		return (HANDLED);
1664	}
1665
1666	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1667	if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1668		vm_inject_ud(vmx->vm, vcpu);
1669		return (HANDLED);
1670	}
1671
1672	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1673	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1674		vm_inject_gp(vmx->vm, vcpu);
1675		return (HANDLED);
1676	}
1677
1678	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1679		vm_inject_gp(vmx->vm, vcpu);
1680		return (HANDLED);
1681	}
1682
1683	/* AVX (YMM_Hi128) requires SSE. */
1684	if (xcrval & XFEATURE_ENABLED_AVX &&
1685	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1686		vm_inject_gp(vmx->vm, vcpu);
1687		return (HANDLED);
1688	}
1689
1690	/*
1691	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1692	 * ZMM_Hi256, and Hi16_ZMM.
1693	 */
1694	if (xcrval & XFEATURE_AVX512 &&
1695	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1696	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1697		vm_inject_gp(vmx->vm, vcpu);
1698		return (HANDLED);
1699	}
1700
1701	/*
1702	 * Intel MPX requires both bound register state flags to be
1703	 * set.
1704	 */
1705	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1706	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1707		vm_inject_gp(vmx->vm, vcpu);
1708		return (HANDLED);
1709	}
1710
1711	/*
1712	 * This runs "inside" vmrun() with the guest's FPU state, so
1713	 * modifying xcr0 directly modifies the guest's xcr0, not the
1714	 * host's.
1715	 */
1716	load_xcr(0, xcrval);
1717	return (HANDLED);
1718}
1719
1720static uint64_t
1721vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1722{
1723	const struct vmxctx *vmxctx;
1724
1725	vmxctx = &vmx->ctx[vcpu];
1726
1727	switch (ident) {
1728	case 0:
1729		return (vmxctx->guest_rax);
1730	case 1:
1731		return (vmxctx->guest_rcx);
1732	case 2:
1733		return (vmxctx->guest_rdx);
1734	case 3:
1735		return (vmxctx->guest_rbx);
1736	case 4:
1737		return (vmcs_read(VMCS_GUEST_RSP));
1738	case 5:
1739		return (vmxctx->guest_rbp);
1740	case 6:
1741		return (vmxctx->guest_rsi);
1742	case 7:
1743		return (vmxctx->guest_rdi);
1744	case 8:
1745		return (vmxctx->guest_r8);
1746	case 9:
1747		return (vmxctx->guest_r9);
1748	case 10:
1749		return (vmxctx->guest_r10);
1750	case 11:
1751		return (vmxctx->guest_r11);
1752	case 12:
1753		return (vmxctx->guest_r12);
1754	case 13:
1755		return (vmxctx->guest_r13);
1756	case 14:
1757		return (vmxctx->guest_r14);
1758	case 15:
1759		return (vmxctx->guest_r15);
1760	default:
1761		panic("invalid vmx register %d", ident);
1762	}
1763}
1764
1765static void
1766vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1767{
1768	struct vmxctx *vmxctx;
1769
1770	vmxctx = &vmx->ctx[vcpu];
1771
1772	switch (ident) {
1773	case 0:
1774		vmxctx->guest_rax = regval;
1775		break;
1776	case 1:
1777		vmxctx->guest_rcx = regval;
1778		break;
1779	case 2:
1780		vmxctx->guest_rdx = regval;
1781		break;
1782	case 3:
1783		vmxctx->guest_rbx = regval;
1784		break;
1785	case 4:
1786		vmcs_write(VMCS_GUEST_RSP, regval);
1787		break;
1788	case 5:
1789		vmxctx->guest_rbp = regval;
1790		break;
1791	case 6:
1792		vmxctx->guest_rsi = regval;
1793		break;
1794	case 7:
1795		vmxctx->guest_rdi = regval;
1796		break;
1797	case 8:
1798		vmxctx->guest_r8 = regval;
1799		break;
1800	case 9:
1801		vmxctx->guest_r9 = regval;
1802		break;
1803	case 10:
1804		vmxctx->guest_r10 = regval;
1805		break;
1806	case 11:
1807		vmxctx->guest_r11 = regval;
1808		break;
1809	case 12:
1810		vmxctx->guest_r12 = regval;
1811		break;
1812	case 13:
1813		vmxctx->guest_r13 = regval;
1814		break;
1815	case 14:
1816		vmxctx->guest_r14 = regval;
1817		break;
1818	case 15:
1819		vmxctx->guest_r15 = regval;
1820		break;
1821	default:
1822		panic("invalid vmx register %d", ident);
1823	}
1824}
1825
1826static int
1827vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1828{
1829	uint64_t crval, regval;
1830
1831	/* We only handle mov to %cr0 at this time */
1832	if ((exitqual & 0xf0) != 0x00)
1833		return (UNHANDLED);
1834
1835	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1836
1837	vmcs_write(VMCS_CR0_SHADOW, regval);
1838
1839	crval = regval | cr0_ones_mask;
1840	crval &= ~cr0_zeros_mask;
1841	vmcs_write(VMCS_GUEST_CR0, crval);
1842
1843	if (regval & CR0_PG) {
1844		uint64_t efer, entry_ctls;
1845
1846		/*
1847		 * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1848		 * the "IA-32e mode guest" bit in VM-entry control must be
1849		 * equal.
1850		 */
1851		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1852		if (efer & EFER_LME) {
1853			efer |= EFER_LMA;
1854			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1855			entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1856			entry_ctls |= VM_ENTRY_GUEST_LMA;
1857			vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1858		}
1859	}
1860
1861	return (HANDLED);
1862}
1863
1864static int
1865vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1866{
1867	uint64_t crval, regval;
1868
1869	/* We only handle mov to %cr4 at this time */
1870	if ((exitqual & 0xf0) != 0x00)
1871		return (UNHANDLED);
1872
1873	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1874
1875	vmcs_write(VMCS_CR4_SHADOW, regval);
1876
1877	crval = regval | cr4_ones_mask;
1878	crval &= ~cr4_zeros_mask;
1879	vmcs_write(VMCS_GUEST_CR4, crval);
1880
1881	return (HANDLED);
1882}
1883
1884static int
1885vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1886{
1887	struct vlapic *vlapic;
1888	uint64_t cr8;
1889	int regnum;
1890
1891	/* We only handle mov %cr8 to/from a register at this time. */
1892	if ((exitqual & 0xe0) != 0x00) {
1893		return (UNHANDLED);
1894	}
1895
1896	vlapic = vm_lapic(vmx->vm, vcpu);
1897	regnum = (exitqual >> 8) & 0xf;
1898	if (exitqual & 0x10) {
1899		cr8 = vlapic_get_cr8(vlapic);
1900		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1901	} else {
1902		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1903		vlapic_set_cr8(vlapic, cr8);
1904	}
1905
1906	return (HANDLED);
1907}
1908
1909/*
1910 * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1911 */
1912static int
1913vmx_cpl(void)
1914{
1915	uint32_t ssar;
1916
1917	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1918	return ((ssar >> 5) & 0x3);
1919}
1920
1921static enum vm_cpu_mode
1922vmx_cpu_mode(void)
1923{
1924	uint32_t csar;
1925
1926	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1927		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1928		if (csar & 0x2000)
1929			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1930		else
1931			return (CPU_MODE_COMPATIBILITY);
1932	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1933		return (CPU_MODE_PROTECTED);
1934	} else {
1935		return (CPU_MODE_REAL);
1936	}
1937}
1938
1939static enum vm_paging_mode
1940vmx_paging_mode(void)
1941{
1942	uint64_t cr4;
1943
1944	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1945		return (PAGING_MODE_FLAT);
1946	cr4 = vmcs_read(VMCS_GUEST_CR4);
1947	if (!(cr4 & CR4_PAE))
1948		return (PAGING_MODE_32);
1949	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
1950		if (!(cr4 & CR4_LA57))
1951			return (PAGING_MODE_64);
1952		return (PAGING_MODE_64_LA57);
1953	} else
1954		return (PAGING_MODE_PAE);
1955}
1956
1957static uint64_t
1958inout_str_index(struct vmx *vmx, int vcpuid, int in)
1959{
1960	uint64_t val;
1961	int error;
1962	enum vm_reg_name reg;
1963
1964	reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1965	error = vmx_getreg(vmx, vcpuid, reg, &val);
1966	KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1967	return (val);
1968}
1969
1970static uint64_t
1971inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1972{
1973	uint64_t val;
1974	int error;
1975
1976	if (rep) {
1977		error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1978		KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1979	} else {
1980		val = 1;
1981	}
1982	return (val);
1983}
1984
1985static int
1986inout_str_addrsize(uint32_t inst_info)
1987{
1988	uint32_t size;
1989
1990	size = (inst_info >> 7) & 0x7;
1991	switch (size) {
1992	case 0:
1993		return (2);	/* 16 bit */
1994	case 1:
1995		return (4);	/* 32 bit */
1996	case 2:
1997		return (8);	/* 64 bit */
1998	default:
1999		panic("%s: invalid size encoding %d", __func__, size);
2000	}
2001}
2002
2003static void
2004inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
2005    struct vm_inout_str *vis)
2006{
2007	int error, s;
2008
2009	if (in) {
2010		vis->seg_name = VM_REG_GUEST_ES;
2011	} else {
2012		s = (inst_info >> 15) & 0x7;
2013		vis->seg_name = vm_segment_name(s);
2014	}
2015
2016	error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
2017	KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
2018}
2019
2020static void
2021vmx_paging_info(struct vm_guest_paging *paging)
2022{
2023	paging->cr3 = vmcs_guest_cr3();
2024	paging->cpl = vmx_cpl();
2025	paging->cpu_mode = vmx_cpu_mode();
2026	paging->paging_mode = vmx_paging_mode();
2027}
2028
2029static void
2030vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
2031{
2032	struct vm_guest_paging *paging;
2033	uint32_t csar;
2034
2035	paging = &vmexit->u.inst_emul.paging;
2036
2037	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
2038	vmexit->inst_length = 0;
2039	vmexit->u.inst_emul.gpa = gpa;
2040	vmexit->u.inst_emul.gla = gla;
2041	vmx_paging_info(paging);
2042	switch (paging->cpu_mode) {
2043	case CPU_MODE_REAL:
2044		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2045		vmexit->u.inst_emul.cs_d = 0;
2046		break;
2047	case CPU_MODE_PROTECTED:
2048	case CPU_MODE_COMPATIBILITY:
2049		vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2050		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
2051		vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
2052		break;
2053	default:
2054		vmexit->u.inst_emul.cs_base = 0;
2055		vmexit->u.inst_emul.cs_d = 0;
2056		break;
2057	}
2058	vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
2059}
2060
2061static int
2062ept_fault_type(uint64_t ept_qual)
2063{
2064	int fault_type;
2065
2066	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
2067		fault_type = VM_PROT_WRITE;
2068	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
2069		fault_type = VM_PROT_EXECUTE;
2070	else
2071		fault_type= VM_PROT_READ;
2072
2073	return (fault_type);
2074}
2075
2076static bool
2077ept_emulation_fault(uint64_t ept_qual)
2078{
2079	int read, write;
2080
2081	/* EPT fault on an instruction fetch doesn't make sense here */
2082	if (ept_qual & EPT_VIOLATION_INST_FETCH)
2083		return (false);
2084
2085	/* EPT fault must be a read fault or a write fault */
2086	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
2087	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
2088	if ((read | write) == 0)
2089		return (false);
2090
2091	/*
2092	 * The EPT violation must have been caused by accessing a
2093	 * guest-physical address that is a translation of a guest-linear
2094	 * address.
2095	 */
2096	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
2097	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
2098		return (false);
2099	}
2100
2101	return (true);
2102}
2103
2104static __inline int
2105apic_access_virtualization(struct vmx *vmx, int vcpuid)
2106{
2107	uint32_t proc_ctls2;
2108
2109	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2110	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2111}
2112
2113static __inline int
2114x2apic_virtualization(struct vmx *vmx, int vcpuid)
2115{
2116	uint32_t proc_ctls2;
2117
2118	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2119	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2120}
2121
2122static int
2123vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
2124    uint64_t qual)
2125{
2126	int error, handled, offset;
2127	uint32_t *apic_regs, vector;
2128	bool retu;
2129
2130	handled = HANDLED;
2131	offset = APIC_WRITE_OFFSET(qual);
2132
2133	if (!apic_access_virtualization(vmx, vcpuid)) {
2134		/*
2135		 * In general there should not be any APIC write VM-exits
2136		 * unless APIC-access virtualization is enabled.
2137		 *
2138		 * However self-IPI virtualization can legitimately trigger
2139		 * an APIC-write VM-exit so treat it specially.
2140		 */
2141		if (x2apic_virtualization(vmx, vcpuid) &&
2142		    offset == APIC_OFFSET_SELF_IPI) {
2143			apic_regs = (uint32_t *)(vlapic->apic_page);
2144			vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2145			vlapic_self_ipi_handler(vlapic, vector);
2146			return (HANDLED);
2147		} else
2148			return (UNHANDLED);
2149	}
2150
2151	switch (offset) {
2152	case APIC_OFFSET_ID:
2153		vlapic_id_write_handler(vlapic);
2154		break;
2155	case APIC_OFFSET_LDR:
2156		vlapic_ldr_write_handler(vlapic);
2157		break;
2158	case APIC_OFFSET_DFR:
2159		vlapic_dfr_write_handler(vlapic);
2160		break;
2161	case APIC_OFFSET_SVR:
2162		vlapic_svr_write_handler(vlapic);
2163		break;
2164	case APIC_OFFSET_ESR:
2165		vlapic_esr_write_handler(vlapic);
2166		break;
2167	case APIC_OFFSET_ICR_LOW:
2168		retu = false;
2169		error = vlapic_icrlo_write_handler(vlapic, &retu);
2170		if (error != 0 || retu)
2171			handled = UNHANDLED;
2172		break;
2173	case APIC_OFFSET_CMCI_LVT:
2174	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2175		vlapic_lvt_write_handler(vlapic, offset);
2176		break;
2177	case APIC_OFFSET_TIMER_ICR:
2178		vlapic_icrtmr_write_handler(vlapic);
2179		break;
2180	case APIC_OFFSET_TIMER_DCR:
2181		vlapic_dcr_write_handler(vlapic);
2182		break;
2183	default:
2184		handled = UNHANDLED;
2185		break;
2186	}
2187	return (handled);
2188}
2189
2190static bool
2191apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2192{
2193
2194	if (apic_access_virtualization(vmx, vcpuid) &&
2195	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2196		return (true);
2197	else
2198		return (false);
2199}
2200
2201static int
2202vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2203{
2204	uint64_t qual;
2205	int access_type, offset, allowed;
2206
2207	if (!apic_access_virtualization(vmx, vcpuid))
2208		return (UNHANDLED);
2209
2210	qual = vmexit->u.vmx.exit_qualification;
2211	access_type = APIC_ACCESS_TYPE(qual);
2212	offset = APIC_ACCESS_OFFSET(qual);
2213
2214	allowed = 0;
2215	if (access_type == 0) {
2216		/*
2217		 * Read data access to the following registers is expected.
2218		 */
2219		switch (offset) {
2220		case APIC_OFFSET_APR:
2221		case APIC_OFFSET_PPR:
2222		case APIC_OFFSET_RRR:
2223		case APIC_OFFSET_CMCI_LVT:
2224		case APIC_OFFSET_TIMER_CCR:
2225			allowed = 1;
2226			break;
2227		default:
2228			break;
2229		}
2230	} else if (access_type == 1) {
2231		/*
2232		 * Write data access to the following registers is expected.
2233		 */
2234		switch (offset) {
2235		case APIC_OFFSET_VER:
2236		case APIC_OFFSET_APR:
2237		case APIC_OFFSET_PPR:
2238		case APIC_OFFSET_RRR:
2239		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2240		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2241		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2242		case APIC_OFFSET_CMCI_LVT:
2243		case APIC_OFFSET_TIMER_CCR:
2244			allowed = 1;
2245			break;
2246		default:
2247			break;
2248		}
2249	}
2250
2251	if (allowed) {
2252		vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2253		    VIE_INVALID_GLA);
2254	}
2255
2256	/*
2257	 * Regardless of whether the APIC-access is allowed this handler
2258	 * always returns UNHANDLED:
2259	 * - if the access is allowed then it is handled by emulating the
2260	 *   instruction that caused the VM-exit (outside the critical section)
2261	 * - if the access is not allowed then it will be converted to an
2262	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2263	 */
2264	return (UNHANDLED);
2265}
2266
2267static enum task_switch_reason
2268vmx_task_switch_reason(uint64_t qual)
2269{
2270	int reason;
2271
2272	reason = (qual >> 30) & 0x3;
2273	switch (reason) {
2274	case 0:
2275		return (TSR_CALL);
2276	case 1:
2277		return (TSR_IRET);
2278	case 2:
2279		return (TSR_JMP);
2280	case 3:
2281		return (TSR_IDT_GATE);
2282	default:
2283		panic("%s: invalid reason %d", __func__, reason);
2284	}
2285}
2286
2287static int
2288emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2289{
2290	int error;
2291
2292	if (lapic_msr(num))
2293		error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2294	else
2295		error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2296
2297	return (error);
2298}
2299
2300static int
2301emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2302{
2303	struct vmxctx *vmxctx;
2304	uint64_t result;
2305	uint32_t eax, edx;
2306	int error;
2307
2308	if (lapic_msr(num))
2309		error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2310	else
2311		error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2312
2313	if (error == 0) {
2314		eax = result;
2315		vmxctx = &vmx->ctx[vcpuid];
2316		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2317		KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2318
2319		edx = result >> 32;
2320		error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2321		KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2322	}
2323
2324	return (error);
2325}
2326
2327static int
2328vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2329{
2330	int error, errcode, errcode_valid, handled, in;
2331	struct vmxctx *vmxctx;
2332	struct vlapic *vlapic;
2333	struct vm_inout_str *vis;
2334	struct vm_task_switch *ts;
2335	uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2336	uint32_t intr_type, intr_vec, reason;
2337	uint64_t exitintinfo, qual, gpa;
2338	bool retu;
2339
2340	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2341	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2342
2343	handled = UNHANDLED;
2344	vmxctx = &vmx->ctx[vcpu];
2345
2346	qual = vmexit->u.vmx.exit_qualification;
2347	reason = vmexit->u.vmx.exit_reason;
2348	vmexit->exitcode = VM_EXITCODE_BOGUS;
2349
2350	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2351	SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2352
2353	/*
2354	 * VM-entry failures during or after loading guest state.
2355	 *
2356	 * These VM-exits are uncommon but must be handled specially
2357	 * as most VM-exit fields are not populated as usual.
2358	 */
2359	if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2360		VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2361		__asm __volatile("int $18");
2362		return (1);
2363	}
2364
2365	/*
2366	 * VM exits that can be triggered during event delivery need to
2367	 * be handled specially by re-injecting the event if the IDT
2368	 * vectoring information field's valid bit is set.
2369	 *
2370	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2371	 * for details.
2372	 */
2373	idtvec_info = vmcs_idt_vectoring_info();
2374	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2375		idtvec_info &= ~(1 << 12); /* clear undefined bit */
2376		exitintinfo = idtvec_info;
2377		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2378			idtvec_err = vmcs_idt_vectoring_err();
2379			exitintinfo |= (uint64_t)idtvec_err << 32;
2380		}
2381		error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2382		KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2383		    __func__, error));
2384
2385		/*
2386		 * If 'virtual NMIs' are being used and the VM-exit
2387		 * happened while injecting an NMI during the previous
2388		 * VM-entry, then clear "blocking by NMI" in the
2389		 * Guest Interruptibility-State so the NMI can be
2390		 * reinjected on the subsequent VM-entry.
2391		 *
2392		 * However, if the NMI was being delivered through a task
2393		 * gate, then the new task must start execution with NMIs
2394		 * blocked so don't clear NMI blocking in this case.
2395		 */
2396		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2397		if (intr_type == VMCS_INTR_T_NMI) {
2398			if (reason != EXIT_REASON_TASK_SWITCH)
2399				vmx_clear_nmi_blocking(vmx, vcpu);
2400			else
2401				vmx_assert_nmi_blocking(vmx, vcpu);
2402		}
2403
2404		/*
2405		 * Update VM-entry instruction length if the event being
2406		 * delivered was a software interrupt or software exception.
2407		 */
2408		if (intr_type == VMCS_INTR_T_SWINTR ||
2409		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2410		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2411			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2412		}
2413	}
2414
2415	switch (reason) {
2416	case EXIT_REASON_TASK_SWITCH:
2417		ts = &vmexit->u.task_switch;
2418		ts->tsssel = qual & 0xffff;
2419		ts->reason = vmx_task_switch_reason(qual);
2420		ts->ext = 0;
2421		ts->errcode_valid = 0;
2422		vmx_paging_info(&ts->paging);
2423		/*
2424		 * If the task switch was due to a CALL, JMP, IRET, software
2425		 * interrupt (INT n) or software exception (INT3, INTO),
2426		 * then the saved %rip references the instruction that caused
2427		 * the task switch. The instruction length field in the VMCS
2428		 * is valid in this case.
2429		 *
2430		 * In all other cases (e.g., NMI, hardware exception) the
2431		 * saved %rip is one that would have been saved in the old TSS
2432		 * had the task switch completed normally so the instruction
2433		 * length field is not needed in this case and is explicitly
2434		 * set to 0.
2435		 */
2436		if (ts->reason == TSR_IDT_GATE) {
2437			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2438			    ("invalid idtvec_info %#x for IDT task switch",
2439			    idtvec_info));
2440			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2441			if (intr_type != VMCS_INTR_T_SWINTR &&
2442			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2443			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2444				/* Task switch triggered by external event */
2445				ts->ext = 1;
2446				vmexit->inst_length = 0;
2447				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2448					ts->errcode_valid = 1;
2449					ts->errcode = vmcs_idt_vectoring_err();
2450				}
2451			}
2452		}
2453		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2454		SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2455		VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2456		    "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2457		    ts->ext ? "external" : "internal",
2458		    ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2459		break;
2460	case EXIT_REASON_CR_ACCESS:
2461		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2462		SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2463		switch (qual & 0xf) {
2464		case 0:
2465			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2466			break;
2467		case 4:
2468			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2469			break;
2470		case 8:
2471			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2472			break;
2473		}
2474		break;
2475	case EXIT_REASON_RDMSR:
2476		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2477		retu = false;
2478		ecx = vmxctx->guest_rcx;
2479		VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2480		SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2481		error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2482		if (error) {
2483			vmexit->exitcode = VM_EXITCODE_RDMSR;
2484			vmexit->u.msr.code = ecx;
2485		} else if (!retu) {
2486			handled = HANDLED;
2487		} else {
2488			/* Return to userspace with a valid exitcode */
2489			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2490			    ("emulate_rdmsr retu with bogus exitcode"));
2491		}
2492		break;
2493	case EXIT_REASON_WRMSR:
2494		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2495		retu = false;
2496		eax = vmxctx->guest_rax;
2497		ecx = vmxctx->guest_rcx;
2498		edx = vmxctx->guest_rdx;
2499		VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2500		    ecx, (uint64_t)edx << 32 | eax);
2501		SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2502		    (uint64_t)edx << 32 | eax);
2503		error = emulate_wrmsr(vmx, vcpu, ecx,
2504		    (uint64_t)edx << 32 | eax, &retu);
2505		if (error) {
2506			vmexit->exitcode = VM_EXITCODE_WRMSR;
2507			vmexit->u.msr.code = ecx;
2508			vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2509		} else if (!retu) {
2510			handled = HANDLED;
2511		} else {
2512			/* Return to userspace with a valid exitcode */
2513			KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2514			    ("emulate_wrmsr retu with bogus exitcode"));
2515		}
2516		break;
2517	case EXIT_REASON_HLT:
2518		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2519		SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2520		vmexit->exitcode = VM_EXITCODE_HLT;
2521		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2522		if (virtual_interrupt_delivery)
2523			vmexit->u.hlt.intr_status =
2524			    vmcs_read(VMCS_GUEST_INTR_STATUS);
2525		else
2526			vmexit->u.hlt.intr_status = 0;
2527		break;
2528	case EXIT_REASON_MTF:
2529		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2530		SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2531		vmexit->exitcode = VM_EXITCODE_MTRAP;
2532		vmexit->inst_length = 0;
2533		break;
2534	case EXIT_REASON_PAUSE:
2535		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2536		SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2537		vmexit->exitcode = VM_EXITCODE_PAUSE;
2538		break;
2539	case EXIT_REASON_INTR_WINDOW:
2540		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2541		SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2542		vmx_clear_int_window_exiting(vmx, vcpu);
2543		return (1);
2544	case EXIT_REASON_EXT_INTR:
2545		/*
2546		 * External interrupts serve only to cause VM exits and allow
2547		 * the host interrupt handler to run.
2548		 *
2549		 * If this external interrupt triggers a virtual interrupt
2550		 * to a VM, then that state will be recorded by the
2551		 * host interrupt handler in the VM's softc. We will inject
2552		 * this virtual interrupt during the subsequent VM enter.
2553		 */
2554		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2555		SDT_PROBE4(vmm, vmx, exit, interrupt,
2556		    vmx, vcpu, vmexit, intr_info);
2557
2558		/*
2559		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2560		 * This appears to be a bug in VMware Fusion?
2561		 */
2562		if (!(intr_info & VMCS_INTR_VALID))
2563			return (1);
2564		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2565		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2566		    ("VM exit interruption info invalid: %#x", intr_info));
2567		vmx_trigger_hostintr(intr_info & 0xff);
2568
2569		/*
2570		 * This is special. We want to treat this as an 'handled'
2571		 * VM-exit but not increment the instruction pointer.
2572		 */
2573		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2574		return (1);
2575	case EXIT_REASON_NMI_WINDOW:
2576		SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2577		/* Exit to allow the pending virtual NMI to be injected */
2578		if (vm_nmi_pending(vmx->vm, vcpu))
2579			vmx_inject_nmi(vmx, vcpu);
2580		vmx_clear_nmi_window_exiting(vmx, vcpu);
2581		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2582		return (1);
2583	case EXIT_REASON_INOUT:
2584		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2585		vmexit->exitcode = VM_EXITCODE_INOUT;
2586		vmexit->u.inout.bytes = (qual & 0x7) + 1;
2587		vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2588		vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2589		vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2590		vmexit->u.inout.port = (uint16_t)(qual >> 16);
2591		vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2592		if (vmexit->u.inout.string) {
2593			inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2594			vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2595			vis = &vmexit->u.inout_str;
2596			vmx_paging_info(&vis->paging);
2597			vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2598			vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2599			vis->index = inout_str_index(vmx, vcpu, in);
2600			vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2601			vis->addrsize = inout_str_addrsize(inst_info);
2602			inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2603		}
2604		SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2605		break;
2606	case EXIT_REASON_CPUID:
2607		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2608		SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2609		handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2610		break;
2611	case EXIT_REASON_EXCEPTION:
2612		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2613		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2614		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2615		    ("VM exit interruption info invalid: %#x", intr_info));
2616
2617		intr_vec = intr_info & 0xff;
2618		intr_type = intr_info & VMCS_INTR_T_MASK;
2619
2620		/*
2621		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2622		 * fault encountered during the execution of IRET then we must
2623		 * restore the state of "virtual-NMI blocking" before resuming
2624		 * the guest.
2625		 *
2626		 * See "Resuming Guest Software after Handling an Exception".
2627		 * See "Information for VM Exits Due to Vectored Events".
2628		 */
2629		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2630		    (intr_vec != IDT_DF) &&
2631		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2632			vmx_restore_nmi_blocking(vmx, vcpu);
2633
2634		/*
2635		 * The NMI has already been handled in vmx_exit_handle_nmi().
2636		 */
2637		if (intr_type == VMCS_INTR_T_NMI)
2638			return (1);
2639
2640		/*
2641		 * Call the machine check handler by hand. Also don't reflect
2642		 * the machine check back into the guest.
2643		 */
2644		if (intr_vec == IDT_MC) {
2645			VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2646			__asm __volatile("int $18");
2647			return (1);
2648		}
2649
2650		/*
2651		 * If the hypervisor has requested user exits for
2652		 * debug exceptions, bounce them out to userland.
2653		 */
2654		if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
2655		    (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2656			vmexit->exitcode = VM_EXITCODE_BPT;
2657			vmexit->u.bpt.inst_length = vmexit->inst_length;
2658			vmexit->inst_length = 0;
2659			break;
2660		}
2661
2662		if (intr_vec == IDT_PF) {
2663			error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2664			KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2665			    __func__, error));
2666		}
2667
2668		/*
2669		 * Software exceptions exhibit trap-like behavior. This in
2670		 * turn requires populating the VM-entry instruction length
2671		 * so that the %rip in the trap frame is past the INT3/INTO
2672		 * instruction.
2673		 */
2674		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2675			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2676
2677		/* Reflect all other exceptions back into the guest */
2678		errcode_valid = errcode = 0;
2679		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2680			errcode_valid = 1;
2681			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2682		}
2683		VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2684		    "the guest", intr_vec, errcode);
2685		SDT_PROBE5(vmm, vmx, exit, exception,
2686		    vmx, vcpu, vmexit, intr_vec, errcode);
2687		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2688		    errcode_valid, errcode, 0);
2689		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2690		    __func__, error));
2691		return (1);
2692
2693	case EXIT_REASON_EPT_FAULT:
2694		/*
2695		 * If 'gpa' lies within the address space allocated to
2696		 * memory then this must be a nested page fault otherwise
2697		 * this must be an instruction that accesses MMIO space.
2698		 */
2699		gpa = vmcs_gpa();
2700		if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2701		    apic_access_fault(vmx, vcpu, gpa)) {
2702			vmexit->exitcode = VM_EXITCODE_PAGING;
2703			vmexit->inst_length = 0;
2704			vmexit->u.paging.gpa = gpa;
2705			vmexit->u.paging.fault_type = ept_fault_type(qual);
2706			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2707			SDT_PROBE5(vmm, vmx, exit, nestedfault,
2708			    vmx, vcpu, vmexit, gpa, qual);
2709		} else if (ept_emulation_fault(qual)) {
2710			vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2711			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2712			SDT_PROBE4(vmm, vmx, exit, mmiofault,
2713			    vmx, vcpu, vmexit, gpa);
2714		}
2715		/*
2716		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2717		 * EPT fault during the execution of IRET then we must restore
2718		 * the state of "virtual-NMI blocking" before resuming.
2719		 *
2720		 * See description of "NMI unblocking due to IRET" in
2721		 * "Exit Qualification for EPT Violations".
2722		 */
2723		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2724		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2725			vmx_restore_nmi_blocking(vmx, vcpu);
2726		break;
2727	case EXIT_REASON_VIRTUALIZED_EOI:
2728		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2729		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2730		SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2731		vmexit->inst_length = 0;	/* trap-like */
2732		break;
2733	case EXIT_REASON_APIC_ACCESS:
2734		SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2735		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2736		break;
2737	case EXIT_REASON_APIC_WRITE:
2738		/*
2739		 * APIC-write VM exit is trap-like so the %rip is already
2740		 * pointing to the next instruction.
2741		 */
2742		vmexit->inst_length = 0;
2743		vlapic = vm_lapic(vmx->vm, vcpu);
2744		SDT_PROBE4(vmm, vmx, exit, apicwrite,
2745		    vmx, vcpu, vmexit, vlapic);
2746		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2747		break;
2748	case EXIT_REASON_XSETBV:
2749		SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2750		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2751		break;
2752	case EXIT_REASON_MONITOR:
2753		SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2754		vmexit->exitcode = VM_EXITCODE_MONITOR;
2755		break;
2756	case EXIT_REASON_MWAIT:
2757		SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2758		vmexit->exitcode = VM_EXITCODE_MWAIT;
2759		break;
2760	case EXIT_REASON_TPR:
2761		vlapic = vm_lapic(vmx->vm, vcpu);
2762		vlapic_sync_tpr(vlapic);
2763		vmexit->inst_length = 0;
2764		handled = HANDLED;
2765		break;
2766	case EXIT_REASON_VMCALL:
2767	case EXIT_REASON_VMCLEAR:
2768	case EXIT_REASON_VMLAUNCH:
2769	case EXIT_REASON_VMPTRLD:
2770	case EXIT_REASON_VMPTRST:
2771	case EXIT_REASON_VMREAD:
2772	case EXIT_REASON_VMRESUME:
2773	case EXIT_REASON_VMWRITE:
2774	case EXIT_REASON_VMXOFF:
2775	case EXIT_REASON_VMXON:
2776		SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2777		vmexit->exitcode = VM_EXITCODE_VMINSN;
2778		break;
2779	default:
2780		SDT_PROBE4(vmm, vmx, exit, unknown,
2781		    vmx, vcpu, vmexit, reason);
2782		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2783		break;
2784	}
2785
2786	if (handled) {
2787		/*
2788		 * It is possible that control is returned to userland
2789		 * even though we were able to handle the VM exit in the
2790		 * kernel.
2791		 *
2792		 * In such a case we want to make sure that the userland
2793		 * restarts guest execution at the instruction *after*
2794		 * the one we just processed. Therefore we update the
2795		 * guest rip in the VMCS and in 'vmexit'.
2796		 */
2797		vmexit->rip += vmexit->inst_length;
2798		vmexit->inst_length = 0;
2799		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2800	} else {
2801		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2802			/*
2803			 * If this VM exit was not claimed by anybody then
2804			 * treat it as a generic VMX exit.
2805			 */
2806			vmexit->exitcode = VM_EXITCODE_VMX;
2807			vmexit->u.vmx.status = VM_SUCCESS;
2808			vmexit->u.vmx.inst_type = 0;
2809			vmexit->u.vmx.inst_error = 0;
2810		} else {
2811			/*
2812			 * The exitcode and collateral have been populated.
2813			 * The VM exit will be processed further in userland.
2814			 */
2815		}
2816	}
2817
2818	SDT_PROBE4(vmm, vmx, exit, return,
2819	    vmx, vcpu, vmexit, handled);
2820	return (handled);
2821}
2822
2823static __inline void
2824vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2825{
2826
2827	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2828	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2829	    vmxctx->inst_fail_status));
2830
2831	vmexit->inst_length = 0;
2832	vmexit->exitcode = VM_EXITCODE_VMX;
2833	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2834	vmexit->u.vmx.inst_error = vmcs_instruction_error();
2835	vmexit->u.vmx.exit_reason = ~0;
2836	vmexit->u.vmx.exit_qualification = ~0;
2837
2838	switch (rc) {
2839	case VMX_VMRESUME_ERROR:
2840	case VMX_VMLAUNCH_ERROR:
2841		vmexit->u.vmx.inst_type = rc;
2842		break;
2843	default:
2844		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2845	}
2846}
2847
2848/*
2849 * If the NMI-exiting VM execution control is set to '1' then an NMI in
2850 * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2851 * sufficient to simply vector to the NMI handler via a software interrupt.
2852 * However, this must be done before maskable interrupts are enabled
2853 * otherwise the "iret" issued by an interrupt handler will incorrectly
2854 * clear NMI blocking.
2855 */
2856static __inline void
2857vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2858{
2859	uint32_t intr_info;
2860
2861	KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2862
2863	if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2864		return;
2865
2866	intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2867	KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2868	    ("VM exit interruption info invalid: %#x", intr_info));
2869
2870	if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2871		KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2872		    "to NMI has invalid vector: %#x", intr_info));
2873		VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2874		__asm __volatile("int $2");
2875	}
2876}
2877
2878static __inline void
2879vmx_dr_enter_guest(struct vmxctx *vmxctx)
2880{
2881	register_t rflags;
2882
2883	/* Save host control debug registers. */
2884	vmxctx->host_dr7 = rdr7();
2885	vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2886
2887	/*
2888	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2889	 * exceptions in the host based on the guest DRx values.  The
2890	 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2891	 */
2892	load_dr7(0);
2893	wrmsr(MSR_DEBUGCTLMSR, 0);
2894
2895	/*
2896	 * Disable single stepping the kernel to avoid corrupting the
2897	 * guest DR6.  A debugger might still be able to corrupt the
2898	 * guest DR6 by setting a breakpoint after this point and then
2899	 * single stepping.
2900	 */
2901	rflags = read_rflags();
2902	vmxctx->host_tf = rflags & PSL_T;
2903	write_rflags(rflags & ~PSL_T);
2904
2905	/* Save host debug registers. */
2906	vmxctx->host_dr0 = rdr0();
2907	vmxctx->host_dr1 = rdr1();
2908	vmxctx->host_dr2 = rdr2();
2909	vmxctx->host_dr3 = rdr3();
2910	vmxctx->host_dr6 = rdr6();
2911
2912	/* Restore guest debug registers. */
2913	load_dr0(vmxctx->guest_dr0);
2914	load_dr1(vmxctx->guest_dr1);
2915	load_dr2(vmxctx->guest_dr2);
2916	load_dr3(vmxctx->guest_dr3);
2917	load_dr6(vmxctx->guest_dr6);
2918}
2919
2920static __inline void
2921vmx_dr_leave_guest(struct vmxctx *vmxctx)
2922{
2923
2924	/* Save guest debug registers. */
2925	vmxctx->guest_dr0 = rdr0();
2926	vmxctx->guest_dr1 = rdr1();
2927	vmxctx->guest_dr2 = rdr2();
2928	vmxctx->guest_dr3 = rdr3();
2929	vmxctx->guest_dr6 = rdr6();
2930
2931	/*
2932	 * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2933	 * PSL_T last.
2934	 */
2935	load_dr0(vmxctx->host_dr0);
2936	load_dr1(vmxctx->host_dr1);
2937	load_dr2(vmxctx->host_dr2);
2938	load_dr3(vmxctx->host_dr3);
2939	load_dr6(vmxctx->host_dr6);
2940	wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2941	load_dr7(vmxctx->host_dr7);
2942	write_rflags(read_rflags() | vmxctx->host_tf);
2943}
2944
2945static __inline void
2946vmx_pmap_activate(struct vmx *vmx, pmap_t pmap)
2947{
2948	long eptgen;
2949	int cpu;
2950
2951	cpu = curcpu;
2952
2953	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
2954	smr_enter(pmap->pm_eptsmr);
2955	eptgen = atomic_load_long(&pmap->pm_eptgen);
2956	if (eptgen != vmx->eptgen[cpu]) {
2957		vmx->eptgen[cpu] = eptgen;
2958		invept(INVEPT_TYPE_SINGLE_CONTEXT,
2959		    (struct invept_desc){ .eptp = vmx->eptp, ._res = 0 });
2960	}
2961}
2962
2963static __inline void
2964vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap)
2965{
2966	smr_exit(pmap->pm_eptsmr);
2967	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2968}
2969
2970static int
2971vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2972    struct vm_eventinfo *evinfo)
2973{
2974	int rc, handled, launched;
2975	struct vmx *vmx;
2976	struct vm *vm;
2977	struct vmxctx *vmxctx;
2978	struct vmcs *vmcs;
2979	struct vm_exit *vmexit;
2980	struct vlapic *vlapic;
2981	uint32_t exit_reason;
2982	struct region_descriptor gdtr, idtr;
2983	uint16_t ldt_sel;
2984
2985	vmx = arg;
2986	vm = vmx->vm;
2987	vmcs = &vmx->vmcs[vcpu];
2988	vmxctx = &vmx->ctx[vcpu];
2989	vlapic = vm_lapic(vm, vcpu);
2990	vmexit = vm_exitinfo(vm, vcpu);
2991	launched = 0;
2992
2993	KASSERT(vmxctx->pmap == pmap,
2994	    ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2995
2996	vmx_msr_guest_enter(vmx, vcpu);
2997
2998	VMPTRLD(vmcs);
2999
3000	/*
3001	 * XXX
3002	 * We do this every time because we may setup the virtual machine
3003	 * from a different process than the one that actually runs it.
3004	 *
3005	 * If the life of a virtual machine was spent entirely in the context
3006	 * of a single process we could do this once in vmx_init().
3007	 */
3008	vmcs_write(VMCS_HOST_CR3, rcr3());
3009
3010	vmcs_write(VMCS_GUEST_RIP, rip);
3011	vmx_set_pcpu_defaults(vmx, vcpu, pmap);
3012	do {
3013		KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
3014		    "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
3015
3016		handled = UNHANDLED;
3017		/*
3018		 * Interrupts are disabled from this point on until the
3019		 * guest starts executing. This is done for the following
3020		 * reasons:
3021		 *
3022		 * If an AST is asserted on this thread after the check below,
3023		 * then the IPI_AST notification will not be lost, because it
3024		 * will cause a VM exit due to external interrupt as soon as
3025		 * the guest state is loaded.
3026		 *
3027		 * A posted interrupt after 'vmx_inject_interrupts()' will
3028		 * not be "lost" because it will be held pending in the host
3029		 * APIC because interrupts are disabled. The pending interrupt
3030		 * will be recognized as soon as the guest state is loaded.
3031		 *
3032		 * The same reasoning applies to the IPI generated by
3033		 * pmap_invalidate_ept().
3034		 */
3035		disable_intr();
3036		vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
3037
3038		/*
3039		 * Check for vcpu suspension after injecting events because
3040		 * vmx_inject_interrupts() can suspend the vcpu due to a
3041		 * triple fault.
3042		 */
3043		if (vcpu_suspended(evinfo)) {
3044			enable_intr();
3045			vm_exit_suspended(vmx->vm, vcpu, rip);
3046			break;
3047		}
3048
3049		if (vcpu_rendezvous_pending(evinfo)) {
3050			enable_intr();
3051			vm_exit_rendezvous(vmx->vm, vcpu, rip);
3052			break;
3053		}
3054
3055		if (vcpu_reqidle(evinfo)) {
3056			enable_intr();
3057			vm_exit_reqidle(vmx->vm, vcpu, rip);
3058			break;
3059		}
3060
3061		if (vcpu_should_yield(vm, vcpu)) {
3062			enable_intr();
3063			vm_exit_astpending(vmx->vm, vcpu, rip);
3064			vmx_astpending_trace(vmx, vcpu, rip);
3065			handled = HANDLED;
3066			break;
3067		}
3068
3069		if (vcpu_debugged(vm, vcpu)) {
3070			enable_intr();
3071			vm_exit_debug(vmx->vm, vcpu, rip);
3072			break;
3073		}
3074
3075		/*
3076		 * If TPR Shadowing is enabled, the TPR Threshold
3077		 * must be updated right before entering the guest.
3078		 */
3079		if (tpr_shadowing && !virtual_interrupt_delivery) {
3080			if ((vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
3081				vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3082			}
3083		}
3084
3085		/*
3086		 * VM exits restore the base address but not the
3087		 * limits of GDTR and IDTR.  The VMCS only stores the
3088		 * base address, so VM exits set the limits to 0xffff.
3089		 * Save and restore the full GDTR and IDTR to restore
3090		 * the limits.
3091		 *
3092		 * The VMCS does not save the LDTR at all, and VM
3093		 * exits clear LDTR as if a NULL selector were loaded.
3094		 * The userspace hypervisor probably doesn't use a
3095		 * LDT, but save and restore it to be safe.
3096		 */
3097		sgdt(&gdtr);
3098		sidt(&idtr);
3099		ldt_sel = sldt();
3100
3101		/*
3102		 * The TSC_AUX MSR must be saved/restored while interrupts
3103		 * are disabled so that it is not possible for the guest
3104		 * TSC_AUX MSR value to be overwritten by the resume
3105		 * portion of the IPI_SUSPEND codepath. This is why the
3106		 * transition of this MSR is handled separately from those
3107		 * handled by vmx_msr_guest_{enter,exit}(), which are ok to
3108		 * be transitioned with preemption disabled but interrupts
3109		 * enabled.
3110		 *
3111		 * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
3112		 * anywhere in this loop so long as they happen with
3113		 * interrupts disabled. This location is chosen for
3114		 * simplicity.
3115		 */
3116		vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
3117
3118		vmx_dr_enter_guest(vmxctx);
3119
3120		/*
3121		 * Mark the EPT as active on this host CPU and invalidate
3122		 * EPTP-tagged TLB entries if required.
3123		 */
3124		vmx_pmap_activate(vmx, pmap);
3125
3126		vmx_run_trace(vmx, vcpu);
3127		rc = vmx_enter_guest(vmxctx, vmx, launched);
3128
3129		vmx_pmap_deactivate(vmx, pmap);
3130		vmx_dr_leave_guest(vmxctx);
3131		vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
3132
3133		bare_lgdt(&gdtr);
3134		lidt(&idtr);
3135		lldt(ldt_sel);
3136
3137		/* Collect some information for VM exit processing */
3138		vmexit->rip = rip = vmcs_guest_rip();
3139		vmexit->inst_length = vmexit_instruction_length();
3140		vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
3141		vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
3142
3143		/* Update 'nextrip' */
3144		vmx->state[vcpu].nextrip = rip;
3145
3146		if (rc == VMX_GUEST_VMEXIT) {
3147			vmx_exit_handle_nmi(vmx, vcpu, vmexit);
3148			enable_intr();
3149			handled = vmx_exit_process(vmx, vcpu, vmexit);
3150		} else {
3151			enable_intr();
3152			vmx_exit_inst_error(vmxctx, rc, vmexit);
3153		}
3154		launched = 1;
3155		vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
3156		rip = vmexit->rip;
3157	} while (handled);
3158
3159	/*
3160	 * If a VM exit has been handled then the exitcode must be BOGUS
3161	 * If a VM exit is not handled then the exitcode must not be BOGUS
3162	 */
3163	if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
3164	    (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
3165		panic("Mismatch between handled (%d) and exitcode (%d)",
3166		      handled, vmexit->exitcode);
3167	}
3168
3169	if (!handled)
3170		vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
3171
3172	VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
3173	    vmexit->exitcode);
3174
3175	VMCLEAR(vmcs);
3176	vmx_msr_guest_exit(vmx, vcpu);
3177
3178	return (0);
3179}
3180
3181static void
3182vmx_cleanup(void *arg)
3183{
3184	int i;
3185	struct vmx *vmx = arg;
3186	uint16_t maxcpus;
3187
3188	if (apic_access_virtualization(vmx, 0))
3189		vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3190
3191	maxcpus = vm_get_maxcpus(vmx->vm);
3192	for (i = 0; i < maxcpus; i++)
3193		vpid_free(vmx->state[i].vpid);
3194
3195	free(vmx, M_VMX);
3196
3197	return;
3198}
3199
3200static register_t *
3201vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3202{
3203
3204	switch (reg) {
3205	case VM_REG_GUEST_RAX:
3206		return (&vmxctx->guest_rax);
3207	case VM_REG_GUEST_RBX:
3208		return (&vmxctx->guest_rbx);
3209	case VM_REG_GUEST_RCX:
3210		return (&vmxctx->guest_rcx);
3211	case VM_REG_GUEST_RDX:
3212		return (&vmxctx->guest_rdx);
3213	case VM_REG_GUEST_RSI:
3214		return (&vmxctx->guest_rsi);
3215	case VM_REG_GUEST_RDI:
3216		return (&vmxctx->guest_rdi);
3217	case VM_REG_GUEST_RBP:
3218		return (&vmxctx->guest_rbp);
3219	case VM_REG_GUEST_R8:
3220		return (&vmxctx->guest_r8);
3221	case VM_REG_GUEST_R9:
3222		return (&vmxctx->guest_r9);
3223	case VM_REG_GUEST_R10:
3224		return (&vmxctx->guest_r10);
3225	case VM_REG_GUEST_R11:
3226		return (&vmxctx->guest_r11);
3227	case VM_REG_GUEST_R12:
3228		return (&vmxctx->guest_r12);
3229	case VM_REG_GUEST_R13:
3230		return (&vmxctx->guest_r13);
3231	case VM_REG_GUEST_R14:
3232		return (&vmxctx->guest_r14);
3233	case VM_REG_GUEST_R15:
3234		return (&vmxctx->guest_r15);
3235	case VM_REG_GUEST_CR2:
3236		return (&vmxctx->guest_cr2);
3237	case VM_REG_GUEST_DR0:
3238		return (&vmxctx->guest_dr0);
3239	case VM_REG_GUEST_DR1:
3240		return (&vmxctx->guest_dr1);
3241	case VM_REG_GUEST_DR2:
3242		return (&vmxctx->guest_dr2);
3243	case VM_REG_GUEST_DR3:
3244		return (&vmxctx->guest_dr3);
3245	case VM_REG_GUEST_DR6:
3246		return (&vmxctx->guest_dr6);
3247	default:
3248		break;
3249	}
3250	return (NULL);
3251}
3252
3253static int
3254vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3255{
3256	register_t *regp;
3257
3258	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3259		*retval = *regp;
3260		return (0);
3261	} else
3262		return (EINVAL);
3263}
3264
3265static int
3266vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3267{
3268	register_t *regp;
3269
3270	if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3271		*regp = val;
3272		return (0);
3273	} else
3274		return (EINVAL);
3275}
3276
3277static int
3278vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
3279{
3280	uint64_t gi;
3281	int error;
3282
3283	error = vmcs_getreg(&vmx->vmcs[vcpu], running,
3284	    VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3285	*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3286	return (error);
3287}
3288
3289static int
3290vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
3291{
3292	struct vmcs *vmcs;
3293	uint64_t gi;
3294	int error, ident;
3295
3296	/*
3297	 * Forcing the vcpu into an interrupt shadow is not supported.
3298	 */
3299	if (val) {
3300		error = EINVAL;
3301		goto done;
3302	}
3303
3304	vmcs = &vmx->vmcs[vcpu];
3305	ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3306	error = vmcs_getreg(vmcs, running, ident, &gi);
3307	if (error == 0) {
3308		gi &= ~HWINTR_BLOCKING;
3309		error = vmcs_setreg(vmcs, running, ident, gi);
3310	}
3311done:
3312	VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
3313	    error ? "failed" : "succeeded");
3314	return (error);
3315}
3316
3317static int
3318vmx_shadow_reg(int reg)
3319{
3320	int shreg;
3321
3322	shreg = -1;
3323
3324	switch (reg) {
3325	case VM_REG_GUEST_CR0:
3326		shreg = VMCS_CR0_SHADOW;
3327		break;
3328	case VM_REG_GUEST_CR4:
3329		shreg = VMCS_CR4_SHADOW;
3330		break;
3331	default:
3332		break;
3333	}
3334
3335	return (shreg);
3336}
3337
3338static int
3339vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3340{
3341	int running, hostcpu;
3342	struct vmx *vmx = arg;
3343
3344	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3345	if (running && hostcpu != curcpu)
3346		panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3347
3348	if (reg == VM_REG_GUEST_INTR_SHADOW)
3349		return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
3350
3351	if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
3352		return (0);
3353
3354	return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
3355}
3356
3357static int
3358vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3359{
3360	int error, hostcpu, running, shadow;
3361	uint64_t ctls;
3362	pmap_t pmap;
3363	struct vmx *vmx = arg;
3364
3365	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3366	if (running && hostcpu != curcpu)
3367		panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3368
3369	if (reg == VM_REG_GUEST_INTR_SHADOW)
3370		return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
3371
3372	if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
3373		return (0);
3374
3375	/* Do not permit user write access to VMCS fields by offset. */
3376	if (reg < 0)
3377		return (EINVAL);
3378
3379	error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
3380
3381	if (error == 0) {
3382		/*
3383		 * If the "load EFER" VM-entry control is 1 then the
3384		 * value of EFER.LMA must be identical to "IA-32e mode guest"
3385		 * bit in the VM-entry control.
3386		 */
3387		if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3388		    (reg == VM_REG_GUEST_EFER)) {
3389			vmcs_getreg(&vmx->vmcs[vcpu], running,
3390				    VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3391			if (val & EFER_LMA)
3392				ctls |= VM_ENTRY_GUEST_LMA;
3393			else
3394				ctls &= ~VM_ENTRY_GUEST_LMA;
3395			vmcs_setreg(&vmx->vmcs[vcpu], running,
3396				    VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3397		}
3398
3399		shadow = vmx_shadow_reg(reg);
3400		if (shadow > 0) {
3401			/*
3402			 * Store the unmodified value in the shadow
3403			 */
3404			error = vmcs_setreg(&vmx->vmcs[vcpu], running,
3405				    VMCS_IDENT(shadow), val);
3406		}
3407
3408		if (reg == VM_REG_GUEST_CR3) {
3409			/*
3410			 * Invalidate the guest vcpu's TLB mappings to emulate
3411			 * the behavior of updating %cr3.
3412			 *
3413			 * XXX the processor retains global mappings when %cr3
3414			 * is updated but vmx_invvpid() does not.
3415			 */
3416			pmap = vmx->ctx[vcpu].pmap;
3417			vmx_invvpid(vmx, vcpu, pmap, running);
3418		}
3419	}
3420
3421	return (error);
3422}
3423
3424static int
3425vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3426{
3427	int hostcpu, running;
3428	struct vmx *vmx = arg;
3429
3430	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3431	if (running && hostcpu != curcpu)
3432		panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3433
3434	return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
3435}
3436
3437static int
3438vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3439{
3440	int hostcpu, running;
3441	struct vmx *vmx = arg;
3442
3443	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3444	if (running && hostcpu != curcpu)
3445		panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3446
3447	return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
3448}
3449
3450static int
3451vmx_getcap(void *arg, int vcpu, int type, int *retval)
3452{
3453	struct vmx *vmx = arg;
3454	int vcap;
3455	int ret;
3456
3457	ret = ENOENT;
3458
3459	vcap = vmx->cap[vcpu].set;
3460
3461	switch (type) {
3462	case VM_CAP_HALT_EXIT:
3463		if (cap_halt_exit)
3464			ret = 0;
3465		break;
3466	case VM_CAP_PAUSE_EXIT:
3467		if (cap_pause_exit)
3468			ret = 0;
3469		break;
3470	case VM_CAP_MTRAP_EXIT:
3471		if (cap_monitor_trap)
3472			ret = 0;
3473		break;
3474	case VM_CAP_RDPID:
3475		if (cap_rdpid)
3476			ret = 0;
3477		break;
3478	case VM_CAP_RDTSCP:
3479		if (cap_rdtscp)
3480			ret = 0;
3481		break;
3482	case VM_CAP_UNRESTRICTED_GUEST:
3483		if (cap_unrestricted_guest)
3484			ret = 0;
3485		break;
3486	case VM_CAP_ENABLE_INVPCID:
3487		if (cap_invpcid)
3488			ret = 0;
3489		break;
3490	case VM_CAP_BPT_EXIT:
3491		ret = 0;
3492		break;
3493	default:
3494		break;
3495	}
3496
3497	if (ret == 0)
3498		*retval = (vcap & (1 << type)) ? 1 : 0;
3499
3500	return (ret);
3501}
3502
3503static int
3504vmx_setcap(void *arg, int vcpu, int type, int val)
3505{
3506	struct vmx *vmx = arg;
3507	struct vmcs *vmcs = &vmx->vmcs[vcpu];
3508	uint32_t baseval;
3509	uint32_t *pptr;
3510	int error;
3511	int flag;
3512	int reg;
3513	int retval;
3514
3515	retval = ENOENT;
3516	pptr = NULL;
3517
3518	switch (type) {
3519	case VM_CAP_HALT_EXIT:
3520		if (cap_halt_exit) {
3521			retval = 0;
3522			pptr = &vmx->cap[vcpu].proc_ctls;
3523			baseval = *pptr;
3524			flag = PROCBASED_HLT_EXITING;
3525			reg = VMCS_PRI_PROC_BASED_CTLS;
3526		}
3527		break;
3528	case VM_CAP_MTRAP_EXIT:
3529		if (cap_monitor_trap) {
3530			retval = 0;
3531			pptr = &vmx->cap[vcpu].proc_ctls;
3532			baseval = *pptr;
3533			flag = PROCBASED_MTF;
3534			reg = VMCS_PRI_PROC_BASED_CTLS;
3535		}
3536		break;
3537	case VM_CAP_PAUSE_EXIT:
3538		if (cap_pause_exit) {
3539			retval = 0;
3540			pptr = &vmx->cap[vcpu].proc_ctls;
3541			baseval = *pptr;
3542			flag = PROCBASED_PAUSE_EXITING;
3543			reg = VMCS_PRI_PROC_BASED_CTLS;
3544		}
3545		break;
3546	case VM_CAP_RDPID:
3547	case VM_CAP_RDTSCP:
3548		if (cap_rdpid || cap_rdtscp)
3549			/*
3550			 * Choose not to support enabling/disabling
3551			 * RDPID/RDTSCP via libvmmapi since, as per the
3552			 * discussion in vmx_modinit(), RDPID/RDTSCP are
3553			 * either always enabled or always disabled.
3554			 */
3555			error = EOPNOTSUPP;
3556		break;
3557	case VM_CAP_UNRESTRICTED_GUEST:
3558		if (cap_unrestricted_guest) {
3559			retval = 0;
3560			pptr = &vmx->cap[vcpu].proc_ctls2;
3561			baseval = *pptr;
3562			flag = PROCBASED2_UNRESTRICTED_GUEST;
3563			reg = VMCS_SEC_PROC_BASED_CTLS;
3564		}
3565		break;
3566	case VM_CAP_ENABLE_INVPCID:
3567		if (cap_invpcid) {
3568			retval = 0;
3569			pptr = &vmx->cap[vcpu].proc_ctls2;
3570			baseval = *pptr;
3571			flag = PROCBASED2_ENABLE_INVPCID;
3572			reg = VMCS_SEC_PROC_BASED_CTLS;
3573		}
3574		break;
3575	case VM_CAP_BPT_EXIT:
3576		retval = 0;
3577
3578		/* Don't change the bitmap if we are tracing all exceptions. */
3579		if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3580			pptr = &vmx->cap[vcpu].exc_bitmap;
3581			baseval = *pptr;
3582			flag = (1 << IDT_BP);
3583			reg = VMCS_EXCEPTION_BITMAP;
3584		}
3585		break;
3586	default:
3587		break;
3588	}
3589
3590	if (retval)
3591		return (retval);
3592
3593	if (pptr != NULL) {
3594		if (val) {
3595			baseval |= flag;
3596		} else {
3597			baseval &= ~flag;
3598		}
3599		VMPTRLD(vmcs);
3600		error = vmwrite(reg, baseval);
3601		VMCLEAR(vmcs);
3602
3603		if (error)
3604			return (error);
3605
3606		/*
3607		 * Update optional stored flags, and record
3608		 * setting
3609		 */
3610		*pptr = baseval;
3611	}
3612
3613	if (val) {
3614		vmx->cap[vcpu].set |= (1 << type);
3615	} else {
3616		vmx->cap[vcpu].set &= ~(1 << type);
3617	}
3618
3619	return (0);
3620}
3621
3622static struct vmspace *
3623vmx_vmspace_alloc(vm_offset_t min, vm_offset_t max)
3624{
3625	return (ept_vmspace_alloc(min, max));
3626}
3627
3628static void
3629vmx_vmspace_free(struct vmspace *vmspace)
3630{
3631	ept_vmspace_free(vmspace);
3632}
3633
3634struct vlapic_vtx {
3635	struct vlapic	vlapic;
3636	struct pir_desc	*pir_desc;
3637	struct vmx	*vmx;
3638	u_int	pending_prio;
3639};
3640
3641#define VPR_PRIO_BIT(vpr)	(1 << ((vpr) >> 4))
3642
3643#define	VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)	\
3644do {									\
3645	VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",	\
3646	    level ? "level" : "edge", vector);				\
3647	VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);	\
3648	VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);	\
3649	VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);	\
3650	VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);	\
3651	VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3652} while (0)
3653
3654/*
3655 * vlapic->ops handlers that utilize the APICv hardware assist described in
3656 * Chapter 29 of the Intel SDM.
3657 */
3658static int
3659vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3660{
3661	struct vlapic_vtx *vlapic_vtx;
3662	struct pir_desc *pir_desc;
3663	uint64_t mask;
3664	int idx, notify = 0;
3665
3666	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3667	pir_desc = vlapic_vtx->pir_desc;
3668
3669	/*
3670	 * Keep track of interrupt requests in the PIR descriptor. This is
3671	 * because the virtual APIC page pointed to by the VMCS cannot be
3672	 * modified if the vcpu is running.
3673	 */
3674	idx = vector / 64;
3675	mask = 1UL << (vector % 64);
3676	atomic_set_long(&pir_desc->pir[idx], mask);
3677
3678	/*
3679	 * A notification is required whenever the 'pending' bit makes a
3680	 * transition from 0->1.
3681	 *
3682	 * Even if the 'pending' bit is already asserted, notification about
3683	 * the incoming interrupt may still be necessary.  For example, if a
3684	 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3685	 * the 0->1 'pending' transition with a notification, but the vCPU
3686	 * would ignore the interrupt for the time being.  The same vCPU would
3687	 * need to then be notified if a high-priority interrupt arrived which
3688	 * satisfied the PPR.
3689	 *
3690	 * The priorities of interrupts injected while 'pending' is asserted
3691	 * are tracked in a custom bitfield 'pending_prio'.  Should the
3692	 * to-be-injected interrupt exceed the priorities already present, the
3693	 * notification is sent.  The priorities recorded in 'pending_prio' are
3694	 * cleared whenever the 'pending' bit makes another 0->1 transition.
3695	 */
3696	if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3697		notify = 1;
3698		vlapic_vtx->pending_prio = 0;
3699	} else {
3700		const u_int old_prio = vlapic_vtx->pending_prio;
3701		const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3702
3703		if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3704			atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3705			notify = 1;
3706		}
3707	}
3708
3709	VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3710	    level, "vmx_set_intr_ready");
3711	return (notify);
3712}
3713
3714static int
3715vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3716{
3717	struct vlapic_vtx *vlapic_vtx;
3718	struct pir_desc *pir_desc;
3719	struct LAPIC *lapic;
3720	uint64_t pending, pirval;
3721	uint32_t ppr, vpr;
3722	int i;
3723
3724	/*
3725	 * This function is only expected to be called from the 'HLT' exit
3726	 * handler which does not care about the vector that is pending.
3727	 */
3728	KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3729
3730	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3731	pir_desc = vlapic_vtx->pir_desc;
3732
3733	pending = atomic_load_acq_long(&pir_desc->pending);
3734	if (!pending) {
3735		/*
3736		 * While a virtual interrupt may have already been
3737		 * processed the actual delivery maybe pending the
3738		 * interruptibility of the guest.  Recognize a pending
3739		 * interrupt by reevaluating virtual interrupts
3740		 * following Section 29.2.1 in the Intel SDM Volume 3.
3741		 */
3742		struct vm_exit *vmexit;
3743		uint8_t rvi, ppr;
3744
3745		vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
3746		KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3747		    ("vmx_pending_intr: exitcode not 'HLT'"));
3748		rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3749		lapic = vlapic->apic_page;
3750		ppr = lapic->ppr & APIC_TPR_INT;
3751		if (rvi > ppr) {
3752			return (1);
3753		}
3754
3755		return (0);
3756	}
3757
3758	/*
3759	 * If there is an interrupt pending then it will be recognized only
3760	 * if its priority is greater than the processor priority.
3761	 *
3762	 * Special case: if the processor priority is zero then any pending
3763	 * interrupt will be recognized.
3764	 */
3765	lapic = vlapic->apic_page;
3766	ppr = lapic->ppr & APIC_TPR_INT;
3767	if (ppr == 0)
3768		return (1);
3769
3770	VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3771	    lapic->ppr);
3772
3773	vpr = 0;
3774	for (i = 3; i >= 0; i--) {
3775		pirval = pir_desc->pir[i];
3776		if (pirval != 0) {
3777			vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3778			break;
3779		}
3780	}
3781
3782	/*
3783	 * If the highest-priority pending interrupt falls short of the
3784	 * processor priority of this vCPU, ensure that 'pending_prio' does not
3785	 * have any stale bits which would preclude a higher-priority interrupt
3786	 * from incurring a notification later.
3787	 */
3788	if (vpr <= ppr) {
3789		const u_int prio_bit = VPR_PRIO_BIT(vpr);
3790		const u_int old = vlapic_vtx->pending_prio;
3791
3792		if (old > prio_bit && (old & prio_bit) == 0) {
3793			vlapic_vtx->pending_prio = prio_bit;
3794		}
3795		return (0);
3796	}
3797	return (1);
3798}
3799
3800static void
3801vmx_intr_accepted(struct vlapic *vlapic, int vector)
3802{
3803
3804	panic("vmx_intr_accepted: not expected to be called");
3805}
3806
3807static void
3808vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3809{
3810	struct vlapic_vtx *vlapic_vtx;
3811	struct vmx *vmx;
3812	struct vmcs *vmcs;
3813	uint64_t mask, val;
3814
3815	KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3816	KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3817	    ("vmx_set_tmr: vcpu cannot be running"));
3818
3819	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3820	vmx = vlapic_vtx->vmx;
3821	vmcs = &vmx->vmcs[vlapic->vcpuid];
3822	mask = 1UL << (vector % 64);
3823
3824	VMPTRLD(vmcs);
3825	val = vmcs_read(VMCS_EOI_EXIT(vector));
3826	if (level)
3827		val |= mask;
3828	else
3829		val &= ~mask;
3830	vmcs_write(VMCS_EOI_EXIT(vector), val);
3831	VMCLEAR(vmcs);
3832}
3833
3834static void
3835vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3836{
3837	struct vmx *vmx;
3838	struct vmcs *vmcs;
3839	uint32_t proc_ctls;
3840	int vcpuid;
3841
3842	vcpuid = vlapic->vcpuid;
3843	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3844	vmcs = &vmx->vmcs[vcpuid];
3845
3846	proc_ctls = vmx->cap[vcpuid].proc_ctls;
3847	proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3848	proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3849	proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3850	vmx->cap[vcpuid].proc_ctls = proc_ctls;
3851
3852	VMPTRLD(vmcs);
3853	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3854	VMCLEAR(vmcs);
3855}
3856
3857static void
3858vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3859{
3860	struct vmx *vmx;
3861	struct vmcs *vmcs;
3862	uint32_t proc_ctls2;
3863	int vcpuid, error;
3864
3865	vcpuid = vlapic->vcpuid;
3866	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3867	vmcs = &vmx->vmcs[vcpuid];
3868
3869	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3870	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3871	    ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3872
3873	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3874	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3875	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3876
3877	VMPTRLD(vmcs);
3878	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3879	VMCLEAR(vmcs);
3880
3881	if (vlapic->vcpuid == 0) {
3882		/*
3883		 * The nested page table mappings are shared by all vcpus
3884		 * so unmap the APIC access page just once.
3885		 */
3886		error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3887		KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3888		    __func__, error));
3889
3890		/*
3891		 * The MSR bitmap is shared by all vcpus so modify it only
3892		 * once in the context of vcpu 0.
3893		 */
3894		error = vmx_allow_x2apic_msrs(vmx);
3895		KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3896		    __func__, error));
3897	}
3898}
3899
3900static void
3901vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3902{
3903
3904	ipi_cpu(hostcpu, pirvec);
3905}
3906
3907/*
3908 * Transfer the pending interrupts in the PIR descriptor to the IRR
3909 * in the virtual APIC page.
3910 */
3911static void
3912vmx_inject_pir(struct vlapic *vlapic)
3913{
3914	struct vlapic_vtx *vlapic_vtx;
3915	struct pir_desc *pir_desc;
3916	struct LAPIC *lapic;
3917	uint64_t val, pirval;
3918	int rvi, pirbase = -1;
3919	uint16_t intr_status_old, intr_status_new;
3920
3921	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3922	pir_desc = vlapic_vtx->pir_desc;
3923	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3924		VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3925		    "no posted interrupt pending");
3926		return;
3927	}
3928
3929	pirval = 0;
3930	pirbase = -1;
3931	lapic = vlapic->apic_page;
3932
3933	val = atomic_readandclear_long(&pir_desc->pir[0]);
3934	if (val != 0) {
3935		lapic->irr0 |= val;
3936		lapic->irr1 |= val >> 32;
3937		pirbase = 0;
3938		pirval = val;
3939	}
3940
3941	val = atomic_readandclear_long(&pir_desc->pir[1]);
3942	if (val != 0) {
3943		lapic->irr2 |= val;
3944		lapic->irr3 |= val >> 32;
3945		pirbase = 64;
3946		pirval = val;
3947	}
3948
3949	val = atomic_readandclear_long(&pir_desc->pir[2]);
3950	if (val != 0) {
3951		lapic->irr4 |= val;
3952		lapic->irr5 |= val >> 32;
3953		pirbase = 128;
3954		pirval = val;
3955	}
3956
3957	val = atomic_readandclear_long(&pir_desc->pir[3]);
3958	if (val != 0) {
3959		lapic->irr6 |= val;
3960		lapic->irr7 |= val >> 32;
3961		pirbase = 192;
3962		pirval = val;
3963	}
3964
3965	VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3966
3967	/*
3968	 * Update RVI so the processor can evaluate pending virtual
3969	 * interrupts on VM-entry.
3970	 *
3971	 * It is possible for pirval to be 0 here, even though the
3972	 * pending bit has been set. The scenario is:
3973	 * CPU-Y is sending a posted interrupt to CPU-X, which
3974	 * is running a guest and processing posted interrupts in h/w.
3975	 * CPU-X will eventually exit and the state seen in s/w is
3976	 * the pending bit set, but no PIR bits set.
3977	 *
3978	 *      CPU-X                      CPU-Y
3979	 *   (vm running)                (host running)
3980	 *   rx posted interrupt
3981	 *   CLEAR pending bit
3982	 *				 SET PIR bit
3983	 *   READ/CLEAR PIR bits
3984	 *				 SET pending bit
3985	 *   (vm exit)
3986	 *   pending bit set, PIR 0
3987	 */
3988	if (pirval != 0) {
3989		rvi = pirbase + flsl(pirval) - 1;
3990		intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3991		intr_status_new = (intr_status_old & 0xFF00) | rvi;
3992		if (intr_status_new > intr_status_old) {
3993			vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3994			VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3995			    "guest_intr_status changed from 0x%04x to 0x%04x",
3996			    intr_status_old, intr_status_new);
3997		}
3998	}
3999}
4000
4001static struct vlapic *
4002vmx_vlapic_init(void *arg, int vcpuid)
4003{
4004	struct vmx *vmx;
4005	struct vlapic *vlapic;
4006	struct vlapic_vtx *vlapic_vtx;
4007
4008	vmx = arg;
4009
4010	vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
4011	vlapic->vm = vmx->vm;
4012	vlapic->vcpuid = vcpuid;
4013	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
4014
4015	vlapic_vtx = (struct vlapic_vtx *)vlapic;
4016	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
4017	vlapic_vtx->vmx = vmx;
4018
4019	if (tpr_shadowing) {
4020		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
4021	}
4022
4023	if (virtual_interrupt_delivery) {
4024		vlapic->ops.set_intr_ready = vmx_set_intr_ready;
4025		vlapic->ops.pending_intr = vmx_pending_intr;
4026		vlapic->ops.intr_accepted = vmx_intr_accepted;
4027		vlapic->ops.set_tmr = vmx_set_tmr;
4028		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
4029	}
4030
4031	if (posted_interrupts)
4032		vlapic->ops.post_intr = vmx_post_intr;
4033
4034	vlapic_init(vlapic);
4035
4036	return (vlapic);
4037}
4038
4039static void
4040vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
4041{
4042
4043	vlapic_cleanup(vlapic);
4044	free(vlapic, M_VLAPIC);
4045}
4046
4047#ifdef BHYVE_SNAPSHOT
4048static int
4049vmx_snapshot(void *arg, struct vm_snapshot_meta *meta)
4050{
4051	struct vmx *vmx;
4052	struct vmxctx *vmxctx;
4053	int i;
4054	int ret;
4055
4056	vmx = arg;
4057
4058	KASSERT(vmx != NULL, ("%s: arg was NULL", __func__));
4059
4060	for (i = 0; i < VM_MAXCPU; i++) {
4061		SNAPSHOT_BUF_OR_LEAVE(vmx->guest_msrs[i],
4062		      sizeof(vmx->guest_msrs[i]), meta, ret, done);
4063
4064		vmxctx = &vmx->ctx[i];
4065		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, ret, done);
4066		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, ret, done);
4067		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, ret, done);
4068		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, ret, done);
4069		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, ret, done);
4070		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, ret, done);
4071		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, ret, done);
4072		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, ret, done);
4073		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, ret, done);
4074		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, ret, done);
4075		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, ret, done);
4076		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, ret, done);
4077		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, ret, done);
4078		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, ret, done);
4079		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, ret, done);
4080		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, ret, done);
4081		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, ret, done);
4082		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, ret, done);
4083		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, ret, done);
4084		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, ret, done);
4085		SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, ret, done);
4086	}
4087
4088done:
4089	return (ret);
4090}
4091
4092static int
4093vmx_vmcx_snapshot(void *arg, struct vm_snapshot_meta *meta, int vcpu)
4094{
4095	struct vmcs *vmcs;
4096	struct vmx *vmx;
4097	int err, run, hostcpu;
4098
4099	vmx = (struct vmx *)arg;
4100	err = 0;
4101
4102	KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4103	vmcs = &vmx->vmcs[vcpu];
4104
4105	run = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4106	if (run && hostcpu != curcpu) {
4107		printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4108		return (EINVAL);
4109	}
4110
4111	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
4112	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
4113	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
4114	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
4115	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
4116	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
4117	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
4118
4119	/* Guest segments */
4120	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
4121	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
4122
4123	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
4124	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
4125
4126	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
4127	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
4128
4129	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
4130	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
4131
4132	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
4133	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
4134
4135	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
4136	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
4137
4138	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
4139	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
4140
4141	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
4142	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
4143
4144	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
4145
4146	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
4147	err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
4148
4149	/* Guest page tables */
4150	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
4151	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
4152	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
4153	err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
4154
4155	/* Other guest state */
4156	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
4157	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
4158	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
4159	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
4160	err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
4161	err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
4162	err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
4163
4164	return (err);
4165}
4166
4167static int
4168vmx_restore_tsc(void *arg, int vcpu, uint64_t offset)
4169{
4170	struct vmcs *vmcs;
4171	struct vmx *vmx = (struct vmx *)arg;
4172	int error, running, hostcpu;
4173
4174	KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4175	vmcs = &vmx->vmcs[vcpu];
4176
4177	running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4178	if (running && hostcpu != curcpu) {
4179		printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4180		return (EINVAL);
4181	}
4182
4183	if (!running)
4184		VMPTRLD(vmcs);
4185
4186	error = vmx_set_tsc_offset(vmx, vcpu, offset);
4187
4188	if (!running)
4189		VMCLEAR(vmcs);
4190	return (error);
4191}
4192#endif
4193
4194const struct vmm_ops vmm_ops_intel = {
4195	.modinit	= vmx_modinit,
4196	.modcleanup	= vmx_modcleanup,
4197	.modresume	= vmx_modresume,
4198	.init		= vmx_init,
4199	.run		= vmx_run,
4200	.cleanup	= vmx_cleanup,
4201	.getreg		= vmx_getreg,
4202	.setreg		= vmx_setreg,
4203	.getdesc	= vmx_getdesc,
4204	.setdesc	= vmx_setdesc,
4205	.getcap		= vmx_getcap,
4206	.setcap		= vmx_setcap,
4207	.vmspace_alloc	= vmx_vmspace_alloc,
4208	.vmspace_free	= vmx_vmspace_free,
4209	.vlapic_init	= vmx_vlapic_init,
4210	.vlapic_cleanup	= vmx_vlapic_cleanup,
4211#ifdef BHYVE_SNAPSHOT
4212	.snapshot	= vmx_snapshot,
4213	.vmcx_snapshot	= vmx_vmcx_snapshot,
4214	.restore_tsc	= vmx_restore_tsc,
4215#endif
4216};
4217