1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com)
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <sys/cdefs.h>
30__FBSDID("$FreeBSD$");
31
32#include "opt_bhyve_snapshot.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/smp.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/pcpu.h>
40#include <sys/proc.h>
41#include <sys/smr.h>
42#include <sys/sysctl.h>
43
44#include <vm/vm.h>
45#include <vm/pmap.h>
46
47#include <machine/cpufunc.h>
48#include <machine/psl.h>
49#include <machine/md_var.h>
50#include <machine/reg.h>
51#include <machine/specialreg.h>
52#include <machine/smp.h>
53#include <machine/vmm.h>
54#include <machine/vmm_dev.h>
55#include <machine/vmm_instruction_emul.h>
56#include <machine/vmm_snapshot.h>
57
58#include "vmm_lapic.h"
59#include "vmm_stat.h"
60#include "vmm_ktr.h"
61#include "vmm_ioport.h"
62#include "vatpic.h"
63#include "vlapic.h"
64#include "vlapic_priv.h"
65
66#include "x86.h"
67#include "vmcb.h"
68#include "svm.h"
69#include "svm_softc.h"
70#include "svm_msr.h"
71#include "npt.h"
72
73SYSCTL_DECL(_hw_vmm);
74SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
75    NULL);
76
77/*
78 * SVM CPUID function 0x8000_000A, edx bit decoding.
79 */
80#define AMD_CPUID_SVM_NP		BIT(0)  /* Nested paging or RVI */
81#define AMD_CPUID_SVM_LBR		BIT(1)  /* Last branch virtualization */
82#define AMD_CPUID_SVM_SVML		BIT(2)  /* SVM lock */
83#define AMD_CPUID_SVM_NRIP_SAVE		BIT(3)  /* Next RIP is saved */
84#define AMD_CPUID_SVM_TSC_RATE		BIT(4)  /* TSC rate control. */
85#define AMD_CPUID_SVM_VMCB_CLEAN	BIT(5)  /* VMCB state caching */
86#define AMD_CPUID_SVM_FLUSH_BY_ASID	BIT(6)  /* Flush by ASID */
87#define AMD_CPUID_SVM_DECODE_ASSIST	BIT(7)  /* Decode assist */
88#define AMD_CPUID_SVM_PAUSE_INC		BIT(10) /* Pause intercept filter. */
89#define AMD_CPUID_SVM_PAUSE_FTH		BIT(12) /* Pause filter threshold */
90#define	AMD_CPUID_SVM_AVIC		BIT(13)	/* AVIC present */
91
92#define	VMCB_CACHE_DEFAULT	(VMCB_CACHE_ASID 	|	\
93				VMCB_CACHE_IOPM		|	\
94				VMCB_CACHE_I		|	\
95				VMCB_CACHE_TPR		|	\
96				VMCB_CACHE_CR2		|	\
97				VMCB_CACHE_CR		|	\
98				VMCB_CACHE_DR		|	\
99				VMCB_CACHE_DT		|	\
100				VMCB_CACHE_SEG		|	\
101				VMCB_CACHE_NP)
102
103static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT;
104SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean,
105    0, NULL);
106
107static MALLOC_DEFINE(M_SVM, "svm", "svm");
108static MALLOC_DEFINE(M_SVM_VLAPIC, "svm-vlapic", "svm-vlapic");
109
110static uint32_t svm_feature = ~0U;	/* AMD SVM features. */
111SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, features, CTLFLAG_RDTUN, &svm_feature, 0,
112    "SVM features advertised by CPUID.8000000AH:EDX");
113
114static int disable_npf_assist;
115SYSCTL_INT(_hw_vmm_svm, OID_AUTO, disable_npf_assist, CTLFLAG_RWTUN,
116    &disable_npf_assist, 0, NULL);
117
118/* Maximum ASIDs supported by the processor */
119static uint32_t nasid;
120SYSCTL_UINT(_hw_vmm_svm, OID_AUTO, num_asids, CTLFLAG_RDTUN, &nasid, 0,
121    "Number of ASIDs supported by this processor");
122
123/* Current ASID generation for each host cpu */
124static struct asid asid[MAXCPU];
125
126/*
127 * SVM host state saved area of size 4KB for each core.
128 */
129static uint8_t hsave[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
130
131static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery");
132static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry");
133static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window");
134
135static int svm_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
136static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val);
137
138static __inline int
139flush_by_asid(void)
140{
141
142	return (svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID);
143}
144
145static __inline int
146decode_assist(void)
147{
148
149	return (svm_feature & AMD_CPUID_SVM_DECODE_ASSIST);
150}
151
152static void
153svm_disable(void *arg __unused)
154{
155	uint64_t efer;
156
157	efer = rdmsr(MSR_EFER);
158	efer &= ~EFER_SVM;
159	wrmsr(MSR_EFER, efer);
160}
161
162/*
163 * Disable SVM on all CPUs.
164 */
165static int
166svm_modcleanup(void)
167{
168
169	smp_rendezvous(NULL, svm_disable, NULL, NULL);
170	return (0);
171}
172
173/*
174 * Verify that all the features required by bhyve are available.
175 */
176static int
177check_svm_features(void)
178{
179	u_int regs[4];
180
181	/* CPUID Fn8000_000A is for SVM */
182	do_cpuid(0x8000000A, regs);
183	svm_feature &= regs[3];
184
185	/*
186	 * The number of ASIDs can be configured to be less than what is
187	 * supported by the hardware but not more.
188	 */
189	if (nasid == 0 || nasid > regs[1])
190		nasid = regs[1];
191	KASSERT(nasid > 1, ("Insufficient ASIDs for guests: %#x", nasid));
192
193	/* bhyve requires the Nested Paging feature */
194	if (!(svm_feature & AMD_CPUID_SVM_NP)) {
195		printf("SVM: Nested Paging feature not available.\n");
196		return (ENXIO);
197	}
198
199	/* bhyve requires the NRIP Save feature */
200	if (!(svm_feature & AMD_CPUID_SVM_NRIP_SAVE)) {
201		printf("SVM: NRIP Save feature not available.\n");
202		return (ENXIO);
203	}
204
205	return (0);
206}
207
208static void
209svm_enable(void *arg __unused)
210{
211	uint64_t efer;
212
213	efer = rdmsr(MSR_EFER);
214	efer |= EFER_SVM;
215	wrmsr(MSR_EFER, efer);
216
217	wrmsr(MSR_VM_HSAVE_PA, vtophys(hsave[curcpu]));
218}
219
220/*
221 * Return 1 if SVM is enabled on this processor and 0 otherwise.
222 */
223static int
224svm_available(void)
225{
226	uint64_t msr;
227
228	/* Section 15.4 Enabling SVM from APM2. */
229	if ((amd_feature2 & AMDID2_SVM) == 0) {
230		printf("SVM: not available.\n");
231		return (0);
232	}
233
234	msr = rdmsr(MSR_VM_CR);
235	if ((msr & VM_CR_SVMDIS) != 0) {
236		printf("SVM: disabled by BIOS.\n");
237		return (0);
238	}
239
240	return (1);
241}
242
243static int
244svm_modinit(int ipinum)
245{
246	int error, cpu;
247
248	if (!svm_available())
249		return (ENXIO);
250
251	error = check_svm_features();
252	if (error)
253		return (error);
254
255	vmcb_clean &= VMCB_CACHE_DEFAULT;
256
257	for (cpu = 0; cpu < MAXCPU; cpu++) {
258		/*
259		 * Initialize the host ASIDs to their "highest" valid values.
260		 *
261		 * The next ASID allocation will rollover both 'gen' and 'num'
262		 * and start off the sequence at {1,1}.
263		 */
264		asid[cpu].gen = ~0UL;
265		asid[cpu].num = nasid - 1;
266	}
267
268	svm_msr_init();
269	svm_npt_init(ipinum);
270
271	/* Enable SVM on all CPUs */
272	smp_rendezvous(NULL, svm_enable, NULL, NULL);
273
274	return (0);
275}
276
277static void
278svm_modresume(void)
279{
280
281	svm_enable(NULL);
282}
283
284#ifdef BHYVE_SNAPSHOT
285int
286svm_set_tsc_offset(struct svm_softc *sc, int vcpu, uint64_t offset)
287{
288	int error;
289	struct vmcb_ctrl *ctrl;
290
291	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
292	ctrl->tsc_offset = offset;
293
294	svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
295	VCPU_CTR1(sc->vm, vcpu, "tsc offset changed to %#lx", offset);
296
297	error = vm_set_tsc_offset(sc->vm, vcpu, offset);
298
299	return (error);
300}
301#endif
302
303/* Pentium compatible MSRs */
304#define MSR_PENTIUM_START 	0
305#define MSR_PENTIUM_END 	0x1FFF
306/* AMD 6th generation and Intel compatible MSRs */
307#define MSR_AMD6TH_START 	0xC0000000UL
308#define MSR_AMD6TH_END 		0xC0001FFFUL
309/* AMD 7th and 8th generation compatible MSRs */
310#define MSR_AMD7TH_START 	0xC0010000UL
311#define MSR_AMD7TH_END 		0xC0011FFFUL
312
313/*
314 * Get the index and bit position for a MSR in permission bitmap.
315 * Two bits are used for each MSR: lower bit for read and higher bit for write.
316 */
317static int
318svm_msr_index(uint64_t msr, int *index, int *bit)
319{
320	uint32_t base, off;
321
322	*index = -1;
323	*bit = (msr % 4) * 2;
324	base = 0;
325
326	if (msr >= MSR_PENTIUM_START && msr <= MSR_PENTIUM_END) {
327		*index = msr / 4;
328		return (0);
329	}
330
331	base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1);
332	if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) {
333		off = (msr - MSR_AMD6TH_START);
334		*index = (off + base) / 4;
335		return (0);
336	}
337
338	base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1);
339	if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) {
340		off = (msr - MSR_AMD7TH_START);
341		*index = (off + base) / 4;
342		return (0);
343	}
344
345	return (EINVAL);
346}
347
348/*
349 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor.
350 */
351static void
352svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write)
353{
354	int index, bit, error;
355
356	error = svm_msr_index(msr, &index, &bit);
357	KASSERT(error == 0, ("%s: invalid msr %#lx", __func__, msr));
358	KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE,
359	    ("%s: invalid index %d for msr %#lx", __func__, index, msr));
360	KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d "
361	    "msr %#lx", __func__, bit, msr));
362
363	if (read)
364		perm_bitmap[index] &= ~(1UL << bit);
365
366	if (write)
367		perm_bitmap[index] &= ~(2UL << bit);
368}
369
370static void
371svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr)
372{
373
374	svm_msr_perm(perm_bitmap, msr, true, true);
375}
376
377static void
378svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr)
379{
380
381	svm_msr_perm(perm_bitmap, msr, true, false);
382}
383
384static __inline int
385svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask)
386{
387	struct vmcb_ctrl *ctrl;
388
389	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
390
391	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
392	return (ctrl->intercept[idx] & bitmask ? 1 : 0);
393}
394
395static __inline void
396svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask,
397    int enabled)
398{
399	struct vmcb_ctrl *ctrl;
400	uint32_t oldval;
401
402	KASSERT(idx >=0 && idx < 5, ("invalid intercept index %d", idx));
403
404	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
405	oldval = ctrl->intercept[idx];
406
407	if (enabled)
408		ctrl->intercept[idx] |= bitmask;
409	else
410		ctrl->intercept[idx] &= ~bitmask;
411
412	if (ctrl->intercept[idx] != oldval) {
413		svm_set_dirty(sc, vcpu, VMCB_CACHE_I);
414		VCPU_CTR3(sc->vm, vcpu, "intercept[%d] modified "
415		    "from %#x to %#x", idx, oldval, ctrl->intercept[idx]);
416	}
417}
418
419static __inline void
420svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
421{
422
423	svm_set_intercept(sc, vcpu, off, bitmask, 0);
424}
425
426static __inline void
427svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask)
428{
429
430	svm_set_intercept(sc, vcpu, off, bitmask, 1);
431}
432
433static void
434vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa,
435    uint64_t msrpm_base_pa, uint64_t np_pml4)
436{
437	struct vmcb_ctrl *ctrl;
438	struct vmcb_state *state;
439	uint32_t mask;
440	int n;
441
442	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
443	state = svm_get_vmcb_state(sc, vcpu);
444
445	ctrl->iopm_base_pa = iopm_base_pa;
446	ctrl->msrpm_base_pa = msrpm_base_pa;
447
448	/* Enable nested paging */
449	ctrl->np_enable = 1;
450	ctrl->n_cr3 = np_pml4;
451
452	/*
453	 * Intercept accesses to the control registers that are not shadowed
454	 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8.
455	 */
456	for (n = 0; n < 16; n++) {
457		mask = (BIT(n) << 16) | BIT(n);
458		if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8)
459			svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
460		else
461			svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask);
462	}
463
464	/*
465	 * Intercept everything when tracing guest exceptions otherwise
466	 * just intercept machine check exception.
467	 */
468	if (vcpu_trace_exceptions(sc->vm, vcpu)) {
469		for (n = 0; n < 32; n++) {
470			/*
471			 * Skip unimplemented vectors in the exception bitmap.
472			 */
473			if (n == 2 || n == 9) {
474				continue;
475			}
476			svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n));
477		}
478	} else {
479		svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC));
480	}
481
482	/* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */
483	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO);
484	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR);
485	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID);
486	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR);
487	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT);
488	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI);
489	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI);
490	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN);
491	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
492	    VMCB_INTCPT_FERR_FREEZE);
493	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD);
494	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA);
495
496	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR);
497	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT);
498
499	/*
500	 * Intercept SVM instructions since AMD enables them in guests otherwise.
501	 * Non-intercepted VMMCALL causes #UD, skip it.
502	 */
503	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD);
504	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE);
505	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI);
506	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI);
507	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT);
508	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_ICEBP);
509
510	/*
511	 * From section "Canonicalization and Consistency Checks" in APMv2
512	 * the VMRUN intercept bit must be set to pass the consistency check.
513	 */
514	svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN);
515
516	/*
517	 * The ASID will be set to a non-zero value just before VMRUN.
518	 */
519	ctrl->asid = 0;
520
521	/*
522	 * Section 15.21.1, Interrupt Masking in EFLAGS
523	 * Section 15.21.2, Virtualizing APIC.TPR
524	 *
525	 * This must be set for %rflag and %cr8 isolation of guest and host.
526	 */
527	ctrl->v_intr_masking = 1;
528
529	/* Enable Last Branch Record aka LBR for debugging */
530	ctrl->lbr_virt_en = 1;
531	state->dbgctl = BIT(0);
532
533	/* EFER_SVM must always be set when the guest is executing */
534	state->efer = EFER_SVM;
535
536	/* Set up the PAT to power-on state */
537	state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK)	|
538	    PAT_VALUE(1, PAT_WRITE_THROUGH)	|
539	    PAT_VALUE(2, PAT_UNCACHED)		|
540	    PAT_VALUE(3, PAT_UNCACHEABLE)	|
541	    PAT_VALUE(4, PAT_WRITE_BACK)	|
542	    PAT_VALUE(5, PAT_WRITE_THROUGH)	|
543	    PAT_VALUE(6, PAT_UNCACHED)		|
544	    PAT_VALUE(7, PAT_UNCACHEABLE);
545
546	/* Set up DR6/7 to power-on state */
547	state->dr6 = DBREG_DR6_RESERVED1;
548	state->dr7 = DBREG_DR7_RESERVED1;
549}
550
551/*
552 * Initialize a virtual machine.
553 */
554static void *
555svm_init(struct vm *vm, pmap_t pmap)
556{
557	struct svm_softc *svm_sc;
558	struct svm_vcpu *vcpu;
559	vm_paddr_t msrpm_pa, iopm_pa, pml4_pa;
560	int i;
561	uint16_t maxcpus;
562
563	svm_sc = malloc(sizeof (*svm_sc), M_SVM, M_WAITOK | M_ZERO);
564	if (((uintptr_t)svm_sc & PAGE_MASK) != 0)
565		panic("malloc of svm_softc not aligned on page boundary");
566
567	svm_sc->msr_bitmap = contigmalloc(SVM_MSR_BITMAP_SIZE, M_SVM,
568	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
569	if (svm_sc->msr_bitmap == NULL)
570		panic("contigmalloc of SVM MSR bitmap failed");
571	svm_sc->iopm_bitmap = contigmalloc(SVM_IO_BITMAP_SIZE, M_SVM,
572	    M_WAITOK, 0, ~(vm_paddr_t)0, PAGE_SIZE, 0);
573	if (svm_sc->iopm_bitmap == NULL)
574		panic("contigmalloc of SVM IO bitmap failed");
575
576	svm_sc->vm = vm;
577	svm_sc->nptp = (vm_offset_t)vtophys(pmap->pm_pmltop);
578
579	/*
580	 * Intercept read and write accesses to all MSRs.
581	 */
582	memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE);
583
584	/*
585	 * Access to the following MSRs is redirected to the VMCB when the
586	 * guest is executing. Therefore it is safe to allow the guest to
587	 * read/write these MSRs directly without hypervisor involvement.
588	 */
589	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE);
590	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE);
591	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE);
592
593	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR);
594	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR);
595	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR);
596	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK);
597	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR);
598	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR);
599	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR);
600	svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT);
601
602	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC);
603
604	/*
605	 * Intercept writes to make sure that the EFER_SVM bit is not cleared.
606	 */
607	svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER);
608
609	/* Intercept access to all I/O ports. */
610	memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE);
611
612	iopm_pa = vtophys(svm_sc->iopm_bitmap);
613	msrpm_pa = vtophys(svm_sc->msr_bitmap);
614	pml4_pa = svm_sc->nptp;
615	maxcpus = vm_get_maxcpus(svm_sc->vm);
616	for (i = 0; i < maxcpus; i++) {
617		vcpu = svm_get_vcpu(svm_sc, i);
618		vcpu->nextrip = ~0;
619		vcpu->lastcpu = NOCPU;
620		vcpu->vmcb_pa = vtophys(&vcpu->vmcb);
621		vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa);
622		svm_msr_guest_init(svm_sc, i);
623	}
624	return (svm_sc);
625}
626
627/*
628 * Collateral for a generic SVM VM-exit.
629 */
630static void
631vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2)
632{
633
634	vme->exitcode = VM_EXITCODE_SVM;
635	vme->u.svm.exitcode = code;
636	vme->u.svm.exitinfo1 = info1;
637	vme->u.svm.exitinfo2 = info2;
638}
639
640static int
641svm_cpl(struct vmcb_state *state)
642{
643
644	/*
645	 * From APMv2:
646	 *   "Retrieve the CPL from the CPL field in the VMCB, not
647	 *    from any segment DPL"
648	 */
649	return (state->cpl);
650}
651
652static enum vm_cpu_mode
653svm_vcpu_mode(struct vmcb *vmcb)
654{
655	struct vmcb_segment seg;
656	struct vmcb_state *state;
657	int error;
658
659	state = &vmcb->state;
660
661	if (state->efer & EFER_LMA) {
662		error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
663		KASSERT(error == 0, ("%s: vmcb_seg(cs) error %d", __func__,
664		    error));
665
666		/*
667		 * Section 4.8.1 for APM2, check if Code Segment has
668		 * Long attribute set in descriptor.
669		 */
670		if (seg.attrib & VMCB_CS_ATTRIB_L)
671			return (CPU_MODE_64BIT);
672		else
673			return (CPU_MODE_COMPATIBILITY);
674	} else  if (state->cr0 & CR0_PE) {
675		return (CPU_MODE_PROTECTED);
676	} else {
677		return (CPU_MODE_REAL);
678	}
679}
680
681static enum vm_paging_mode
682svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer)
683{
684
685	if ((cr0 & CR0_PG) == 0)
686		return (PAGING_MODE_FLAT);
687	if ((cr4 & CR4_PAE) == 0)
688		return (PAGING_MODE_32);
689	if (efer & EFER_LME)
690		return (PAGING_MODE_64);
691	else
692		return (PAGING_MODE_PAE);
693}
694
695/*
696 * ins/outs utility routines
697 */
698static uint64_t
699svm_inout_str_index(struct svm_regctx *regs, int in)
700{
701	uint64_t val;
702
703	val = in ? regs->sctx_rdi : regs->sctx_rsi;
704
705	return (val);
706}
707
708static uint64_t
709svm_inout_str_count(struct svm_regctx *regs, int rep)
710{
711	uint64_t val;
712
713	val = rep ? regs->sctx_rcx : 1;
714
715	return (val);
716}
717
718static void
719svm_inout_str_seginfo(struct svm_softc *svm_sc, int vcpu, int64_t info1,
720    int in, struct vm_inout_str *vis)
721{
722	int error, s;
723
724	if (in) {
725		vis->seg_name = VM_REG_GUEST_ES;
726	} else {
727		/* The segment field has standard encoding */
728		s = (info1 >> 10) & 0x7;
729		vis->seg_name = vm_segment_name(s);
730	}
731
732	error = svm_getdesc(svm_sc, vcpu, vis->seg_name, &vis->seg_desc);
733	KASSERT(error == 0, ("%s: svm_getdesc error %d", __func__, error));
734}
735
736static int
737svm_inout_str_addrsize(uint64_t info1)
738{
739        uint32_t size;
740
741        size = (info1 >> 7) & 0x7;
742        switch (size) {
743        case 1:
744                return (2);     /* 16 bit */
745        case 2:
746                return (4);     /* 32 bit */
747        case 4:
748                return (8);     /* 64 bit */
749        default:
750                panic("%s: invalid size encoding %d", __func__, size);
751        }
752}
753
754static void
755svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging)
756{
757	struct vmcb_state *state;
758
759	state = &vmcb->state;
760	paging->cr3 = state->cr3;
761	paging->cpl = svm_cpl(state);
762	paging->cpu_mode = svm_vcpu_mode(vmcb);
763	paging->paging_mode = svm_paging_mode(state->cr0, state->cr4,
764	    state->efer);
765}
766
767#define	UNHANDLED 0
768
769/*
770 * Handle guest I/O intercept.
771 */
772static int
773svm_handle_io(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
774{
775	struct vmcb_ctrl *ctrl;
776	struct vmcb_state *state;
777	struct svm_regctx *regs;
778	struct vm_inout_str *vis;
779	uint64_t info1;
780	int inout_string;
781
782	state = svm_get_vmcb_state(svm_sc, vcpu);
783	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
784	regs  = svm_get_guest_regctx(svm_sc, vcpu);
785
786	info1 = ctrl->exitinfo1;
787	inout_string = info1 & BIT(2) ? 1 : 0;
788
789	/*
790	 * The effective segment number in EXITINFO1[12:10] is populated
791	 * only if the processor has the DecodeAssist capability.
792	 *
793	 * XXX this is not specified explicitly in APMv2 but can be verified
794	 * empirically.
795	 */
796	if (inout_string && !decode_assist())
797		return (UNHANDLED);
798
799	vmexit->exitcode 	= VM_EXITCODE_INOUT;
800	vmexit->u.inout.in 	= (info1 & BIT(0)) ? 1 : 0;
801	vmexit->u.inout.string 	= inout_string;
802	vmexit->u.inout.rep 	= (info1 & BIT(3)) ? 1 : 0;
803	vmexit->u.inout.bytes 	= (info1 >> 4) & 0x7;
804	vmexit->u.inout.port 	= (uint16_t)(info1 >> 16);
805	vmexit->u.inout.eax 	= (uint32_t)(state->rax);
806
807	if (inout_string) {
808		vmexit->exitcode = VM_EXITCODE_INOUT_STR;
809		vis = &vmexit->u.inout_str;
810		svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &vis->paging);
811		vis->rflags = state->rflags;
812		vis->cr0 = state->cr0;
813		vis->index = svm_inout_str_index(regs, vmexit->u.inout.in);
814		vis->count = svm_inout_str_count(regs, vmexit->u.inout.rep);
815		vis->addrsize = svm_inout_str_addrsize(info1);
816		svm_inout_str_seginfo(svm_sc, vcpu, info1,
817		    vmexit->u.inout.in, vis);
818	}
819
820	return (UNHANDLED);
821}
822
823static int
824npf_fault_type(uint64_t exitinfo1)
825{
826
827	if (exitinfo1 & VMCB_NPF_INFO1_W)
828		return (VM_PROT_WRITE);
829	else if (exitinfo1 & VMCB_NPF_INFO1_ID)
830		return (VM_PROT_EXECUTE);
831	else
832		return (VM_PROT_READ);
833}
834
835static bool
836svm_npf_emul_fault(uint64_t exitinfo1)
837{
838
839	if (exitinfo1 & VMCB_NPF_INFO1_ID) {
840		return (false);
841	}
842
843	if (exitinfo1 & VMCB_NPF_INFO1_GPT) {
844		return (false);
845	}
846
847	if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) {
848		return (false);
849	}
850
851	return (true);
852}
853
854static void
855svm_handle_inst_emul(struct vmcb *vmcb, uint64_t gpa, struct vm_exit *vmexit)
856{
857	struct vm_guest_paging *paging;
858	struct vmcb_segment seg;
859	struct vmcb_ctrl *ctrl;
860	char *inst_bytes;
861	int error, inst_len;
862
863	ctrl = &vmcb->ctrl;
864	paging = &vmexit->u.inst_emul.paging;
865
866	vmexit->exitcode = VM_EXITCODE_INST_EMUL;
867	vmexit->u.inst_emul.gpa = gpa;
868	vmexit->u.inst_emul.gla = VIE_INVALID_GLA;
869	svm_paging_info(vmcb, paging);
870
871	error = vmcb_seg(vmcb, VM_REG_GUEST_CS, &seg);
872	KASSERT(error == 0, ("%s: vmcb_seg(CS) error %d", __func__, error));
873
874	switch(paging->cpu_mode) {
875	case CPU_MODE_REAL:
876		vmexit->u.inst_emul.cs_base = seg.base;
877		vmexit->u.inst_emul.cs_d = 0;
878		break;
879	case CPU_MODE_PROTECTED:
880	case CPU_MODE_COMPATIBILITY:
881		vmexit->u.inst_emul.cs_base = seg.base;
882
883		/*
884		 * Section 4.8.1 of APM2, Default Operand Size or D bit.
885		 */
886		vmexit->u.inst_emul.cs_d = (seg.attrib & VMCB_CS_ATTRIB_D) ?
887		    1 : 0;
888		break;
889	default:
890		vmexit->u.inst_emul.cs_base = 0;
891		vmexit->u.inst_emul.cs_d = 0;
892		break;
893	}
894
895	/*
896	 * Copy the instruction bytes into 'vie' if available.
897	 */
898	if (decode_assist() && !disable_npf_assist) {
899		inst_len = ctrl->inst_len;
900		inst_bytes = ctrl->inst_bytes;
901	} else {
902		inst_len = 0;
903		inst_bytes = NULL;
904	}
905	vie_init(&vmexit->u.inst_emul.vie, inst_bytes, inst_len);
906}
907
908#ifdef KTR
909static const char *
910intrtype_to_str(int intr_type)
911{
912	switch (intr_type) {
913	case VMCB_EVENTINJ_TYPE_INTR:
914		return ("hwintr");
915	case VMCB_EVENTINJ_TYPE_NMI:
916		return ("nmi");
917	case VMCB_EVENTINJ_TYPE_INTn:
918		return ("swintr");
919	case VMCB_EVENTINJ_TYPE_EXCEPTION:
920		return ("exception");
921	default:
922		panic("%s: unknown intr_type %d", __func__, intr_type);
923	}
924}
925#endif
926
927/*
928 * Inject an event to vcpu as described in section 15.20, "Event injection".
929 */
930static void
931svm_eventinject(struct svm_softc *sc, int vcpu, int intr_type, int vector,
932		 uint32_t error, bool ec_valid)
933{
934	struct vmcb_ctrl *ctrl;
935
936	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
937
938	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0,
939	    ("%s: event already pending %#lx", __func__, ctrl->eventinj));
940
941	KASSERT(vector >=0 && vector <= 255, ("%s: invalid vector %d",
942	    __func__, vector));
943
944	switch (intr_type) {
945	case VMCB_EVENTINJ_TYPE_INTR:
946	case VMCB_EVENTINJ_TYPE_NMI:
947	case VMCB_EVENTINJ_TYPE_INTn:
948		break;
949	case VMCB_EVENTINJ_TYPE_EXCEPTION:
950		if (vector >= 0 && vector <= 31 && vector != 2)
951			break;
952		/* FALLTHROUGH */
953	default:
954		panic("%s: invalid intr_type/vector: %d/%d", __func__,
955		    intr_type, vector);
956	}
957	ctrl->eventinj = vector | (intr_type << 8) | VMCB_EVENTINJ_VALID;
958	if (ec_valid) {
959		ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID;
960		ctrl->eventinj |= (uint64_t)error << 32;
961		VCPU_CTR3(sc->vm, vcpu, "Injecting %s at vector %d errcode %#x",
962		    intrtype_to_str(intr_type), vector, error);
963	} else {
964		VCPU_CTR2(sc->vm, vcpu, "Injecting %s at vector %d",
965		    intrtype_to_str(intr_type), vector);
966	}
967}
968
969static void
970svm_update_virqinfo(struct svm_softc *sc, int vcpu)
971{
972	struct vm *vm;
973	struct vlapic *vlapic;
974	struct vmcb_ctrl *ctrl;
975
976	vm = sc->vm;
977	vlapic = vm_lapic(vm, vcpu);
978	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
979
980	/* Update %cr8 in the emulated vlapic */
981	vlapic_set_cr8(vlapic, ctrl->v_tpr);
982
983	/* Virtual interrupt injection is not used. */
984	KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid "
985	    "v_intr_vector %d", __func__, ctrl->v_intr_vector));
986}
987
988static void
989svm_save_intinfo(struct svm_softc *svm_sc, int vcpu)
990{
991	struct vmcb_ctrl *ctrl;
992	uint64_t intinfo;
993
994	ctrl  = svm_get_vmcb_ctrl(svm_sc, vcpu);
995	intinfo = ctrl->exitintinfo;
996	if (!VMCB_EXITINTINFO_VALID(intinfo))
997		return;
998
999	/*
1000	 * From APMv2, Section "Intercepts during IDT interrupt delivery"
1001	 *
1002	 * If a #VMEXIT happened during event delivery then record the event
1003	 * that was being delivered.
1004	 */
1005	VCPU_CTR2(svm_sc->vm, vcpu, "SVM:Pending INTINFO(0x%lx), vector=%d.\n",
1006		intinfo, VMCB_EXITINTINFO_VECTOR(intinfo));
1007	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1);
1008	vm_exit_intinfo(svm_sc->vm, vcpu, intinfo);
1009}
1010
1011#ifdef INVARIANTS
1012static __inline int
1013vintr_intercept_enabled(struct svm_softc *sc, int vcpu)
1014{
1015
1016	return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1017	    VMCB_INTCPT_VINTR));
1018}
1019#endif
1020
1021static __inline void
1022enable_intr_window_exiting(struct svm_softc *sc, int vcpu)
1023{
1024	struct vmcb_ctrl *ctrl;
1025
1026	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1027
1028	if (ctrl->v_irq && ctrl->v_intr_vector == 0) {
1029		KASSERT(ctrl->v_ign_tpr, ("%s: invalid v_ign_tpr", __func__));
1030		KASSERT(vintr_intercept_enabled(sc, vcpu),
1031		    ("%s: vintr intercept should be enabled", __func__));
1032		return;
1033	}
1034
1035	VCPU_CTR0(sc->vm, vcpu, "Enable intr window exiting");
1036	ctrl->v_irq = 1;
1037	ctrl->v_ign_tpr = 1;
1038	ctrl->v_intr_vector = 0;
1039	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1040	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1041}
1042
1043static __inline void
1044disable_intr_window_exiting(struct svm_softc *sc, int vcpu)
1045{
1046	struct vmcb_ctrl *ctrl;
1047
1048	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1049
1050	if (!ctrl->v_irq && ctrl->v_intr_vector == 0) {
1051		KASSERT(!vintr_intercept_enabled(sc, vcpu),
1052		    ("%s: vintr intercept should be disabled", __func__));
1053		return;
1054	}
1055
1056	VCPU_CTR0(sc->vm, vcpu, "Disable intr window exiting");
1057	ctrl->v_irq = 0;
1058	ctrl->v_intr_vector = 0;
1059	svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1060	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR);
1061}
1062
1063static int
1064svm_modify_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t val)
1065{
1066	struct vmcb_ctrl *ctrl;
1067	int oldval, newval;
1068
1069	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1070	oldval = ctrl->intr_shadow;
1071	newval = val ? 1 : 0;
1072	if (newval != oldval) {
1073		ctrl->intr_shadow = newval;
1074		VCPU_CTR1(sc->vm, vcpu, "Setting intr_shadow to %d", newval);
1075	}
1076	return (0);
1077}
1078
1079static int
1080svm_get_intr_shadow(struct svm_softc *sc, int vcpu, uint64_t *val)
1081{
1082	struct vmcb_ctrl *ctrl;
1083
1084	ctrl = svm_get_vmcb_ctrl(sc, vcpu);
1085	*val = ctrl->intr_shadow;
1086	return (0);
1087}
1088
1089/*
1090 * Once an NMI is injected it blocks delivery of further NMIs until the handler
1091 * executes an IRET. The IRET intercept is enabled when an NMI is injected to
1092 * to track when the vcpu is done handling the NMI.
1093 */
1094static int
1095nmi_blocked(struct svm_softc *sc, int vcpu)
1096{
1097	int blocked;
1098
1099	blocked = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
1100	    VMCB_INTCPT_IRET);
1101	return (blocked);
1102}
1103
1104static void
1105enable_nmi_blocking(struct svm_softc *sc, int vcpu)
1106{
1107
1108	KASSERT(!nmi_blocked(sc, vcpu), ("vNMI already blocked"));
1109	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking enabled");
1110	svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1111}
1112
1113static void
1114clear_nmi_blocking(struct svm_softc *sc, int vcpu)
1115{
1116	int error;
1117
1118	KASSERT(nmi_blocked(sc, vcpu), ("vNMI already unblocked"));
1119	VCPU_CTR0(sc->vm, vcpu, "vNMI blocking cleared");
1120	/*
1121	 * When the IRET intercept is cleared the vcpu will attempt to execute
1122	 * the "iret" when it runs next. However, it is possible to inject
1123	 * another NMI into the vcpu before the "iret" has actually executed.
1124	 *
1125	 * For e.g. if the "iret" encounters a #NPF when accessing the stack
1126	 * it will trap back into the hypervisor. If an NMI is pending for
1127	 * the vcpu it will be injected into the guest.
1128	 *
1129	 * XXX this needs to be fixed
1130	 */
1131	svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET);
1132
1133	/*
1134	 * Set 'intr_shadow' to prevent an NMI from being injected on the
1135	 * immediate VMRUN.
1136	 */
1137	error = svm_modify_intr_shadow(sc, vcpu, 1);
1138	KASSERT(!error, ("%s: error %d setting intr_shadow", __func__, error));
1139}
1140
1141#define	EFER_MBZ_BITS	0xFFFFFFFFFFFF0200UL
1142
1143static int
1144svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval, bool *retu)
1145{
1146	struct vm_exit *vme;
1147	struct vmcb_state *state;
1148	uint64_t changed, lma, oldval;
1149	int error;
1150
1151	state = svm_get_vmcb_state(sc, vcpu);
1152
1153	oldval = state->efer;
1154	VCPU_CTR2(sc->vm, vcpu, "wrmsr(efer) %#lx/%#lx", oldval, newval);
1155
1156	newval &= ~0xFE;		/* clear the Read-As-Zero (RAZ) bits */
1157	changed = oldval ^ newval;
1158
1159	if (newval & EFER_MBZ_BITS)
1160		goto gpf;
1161
1162	/* APMv2 Table 14-5 "Long-Mode Consistency Checks" */
1163	if (changed & EFER_LME) {
1164		if (state->cr0 & CR0_PG)
1165			goto gpf;
1166	}
1167
1168	/* EFER.LMA = EFER.LME & CR0.PG */
1169	if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0)
1170		lma = EFER_LMA;
1171	else
1172		lma = 0;
1173
1174	if ((newval & EFER_LMA) != lma)
1175		goto gpf;
1176
1177	if (newval & EFER_NXE) {
1178		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE))
1179			goto gpf;
1180	}
1181
1182	/*
1183	 * XXX bhyve does not enforce segment limits in 64-bit mode. Until
1184	 * this is fixed flag guest attempt to set EFER_LMSLE as an error.
1185	 */
1186	if (newval & EFER_LMSLE) {
1187		vme = vm_exitinfo(sc->vm, vcpu);
1188		vm_exit_svm(vme, VMCB_EXIT_MSR, 1, 0);
1189		*retu = true;
1190		return (0);
1191	}
1192
1193	if (newval & EFER_FFXSR) {
1194		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR))
1195			goto gpf;
1196	}
1197
1198	if (newval & EFER_TCE) {
1199		if (!vm_cpuid_capability(sc->vm, vcpu, VCC_TCE))
1200			goto gpf;
1201	}
1202
1203	error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval);
1204	KASSERT(error == 0, ("%s: error %d updating efer", __func__, error));
1205	return (0);
1206gpf:
1207	vm_inject_gp(sc->vm, vcpu);
1208	return (0);
1209}
1210
1211static int
1212emulate_wrmsr(struct svm_softc *sc, int vcpu, u_int num, uint64_t val,
1213    bool *retu)
1214{
1215	int error;
1216
1217	if (lapic_msr(num))
1218		error = lapic_wrmsr(sc->vm, vcpu, num, val, retu);
1219	else if (num == MSR_EFER)
1220		error = svm_write_efer(sc, vcpu, val, retu);
1221	else
1222		error = svm_wrmsr(sc, vcpu, num, val, retu);
1223
1224	return (error);
1225}
1226
1227static int
1228emulate_rdmsr(struct svm_softc *sc, int vcpu, u_int num, bool *retu)
1229{
1230	struct vmcb_state *state;
1231	struct svm_regctx *ctx;
1232	uint64_t result;
1233	int error;
1234
1235	if (lapic_msr(num))
1236		error = lapic_rdmsr(sc->vm, vcpu, num, &result, retu);
1237	else
1238		error = svm_rdmsr(sc, vcpu, num, &result, retu);
1239
1240	if (error == 0) {
1241		state = svm_get_vmcb_state(sc, vcpu);
1242		ctx = svm_get_guest_regctx(sc, vcpu);
1243		state->rax = result & 0xffffffff;
1244		ctx->sctx_rdx = result >> 32;
1245	}
1246
1247	return (error);
1248}
1249
1250#ifdef KTR
1251static const char *
1252exit_reason_to_str(uint64_t reason)
1253{
1254	int i;
1255	static char reasonbuf[32];
1256	static const struct {
1257		int reason;
1258		const char *str;
1259	} reasons[] = {
1260		{ .reason = VMCB_EXIT_INVALID,	.str = "invalvmcb" },
1261		{ .reason = VMCB_EXIT_SHUTDOWN,	.str = "shutdown" },
1262		{ .reason = VMCB_EXIT_NPF, 	.str = "nptfault" },
1263		{ .reason = VMCB_EXIT_PAUSE,	.str = "pause" },
1264		{ .reason = VMCB_EXIT_HLT,	.str = "hlt" },
1265		{ .reason = VMCB_EXIT_CPUID,	.str = "cpuid" },
1266		{ .reason = VMCB_EXIT_IO,	.str = "inout" },
1267		{ .reason = VMCB_EXIT_MC,	.str = "mchk" },
1268		{ .reason = VMCB_EXIT_INTR,	.str = "extintr" },
1269		{ .reason = VMCB_EXIT_NMI,	.str = "nmi" },
1270		{ .reason = VMCB_EXIT_VINTR,	.str = "vintr" },
1271		{ .reason = VMCB_EXIT_MSR,	.str = "msr" },
1272		{ .reason = VMCB_EXIT_IRET,	.str = "iret" },
1273		{ .reason = VMCB_EXIT_MONITOR,	.str = "monitor" },
1274		{ .reason = VMCB_EXIT_MWAIT,	.str = "mwait" },
1275		{ .reason = VMCB_EXIT_VMRUN,	.str = "vmrun" },
1276		{ .reason = VMCB_EXIT_VMMCALL,	.str = "vmmcall" },
1277		{ .reason = VMCB_EXIT_VMLOAD,	.str = "vmload" },
1278		{ .reason = VMCB_EXIT_VMSAVE,	.str = "vmsave" },
1279		{ .reason = VMCB_EXIT_STGI,	.str = "stgi" },
1280		{ .reason = VMCB_EXIT_CLGI,	.str = "clgi" },
1281		{ .reason = VMCB_EXIT_SKINIT,	.str = "skinit" },
1282		{ .reason = VMCB_EXIT_ICEBP,	.str = "icebp" },
1283		{ .reason = VMCB_EXIT_INVD,	.str = "invd" },
1284		{ .reason = VMCB_EXIT_INVLPGA,	.str = "invlpga" },
1285	};
1286
1287	for (i = 0; i < nitems(reasons); i++) {
1288		if (reasons[i].reason == reason)
1289			return (reasons[i].str);
1290	}
1291	snprintf(reasonbuf, sizeof(reasonbuf), "%#lx", reason);
1292	return (reasonbuf);
1293}
1294#endif	/* KTR */
1295
1296/*
1297 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs
1298 * that are due to instruction intercepts as well as MSR and IOIO intercepts
1299 * and exceptions caused by INT3, INTO and BOUND instructions.
1300 *
1301 * Return 1 if the nRIP is valid and 0 otherwise.
1302 */
1303static int
1304nrip_valid(uint64_t exitcode)
1305{
1306	switch (exitcode) {
1307	case 0x00 ... 0x0F:	/* read of CR0 through CR15 */
1308	case 0x10 ... 0x1F:	/* write of CR0 through CR15 */
1309	case 0x20 ... 0x2F:	/* read of DR0 through DR15 */
1310	case 0x30 ... 0x3F:	/* write of DR0 through DR15 */
1311	case 0x43:		/* INT3 */
1312	case 0x44:		/* INTO */
1313	case 0x45:		/* BOUND */
1314	case 0x65 ... 0x7C:	/* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */
1315	case 0x80 ... 0x8D:	/* VMEXIT_VMRUN ... VMEXIT_XSETBV */
1316		return (1);
1317	default:
1318		return (0);
1319	}
1320}
1321
1322static int
1323svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit)
1324{
1325	struct vmcb *vmcb;
1326	struct vmcb_state *state;
1327	struct vmcb_ctrl *ctrl;
1328	struct svm_regctx *ctx;
1329	uint64_t code, info1, info2, val;
1330	uint32_t eax, ecx, edx;
1331	int error, errcode_valid, handled, idtvec, reflect;
1332	bool retu;
1333
1334	ctx = svm_get_guest_regctx(svm_sc, vcpu);
1335	vmcb = svm_get_vmcb(svm_sc, vcpu);
1336	state = &vmcb->state;
1337	ctrl = &vmcb->ctrl;
1338
1339	handled = 0;
1340	code = ctrl->exitcode;
1341	info1 = ctrl->exitinfo1;
1342	info2 = ctrl->exitinfo2;
1343
1344	vmexit->exitcode = VM_EXITCODE_BOGUS;
1345	vmexit->rip = state->rip;
1346	vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0;
1347
1348	vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1);
1349
1350	/*
1351	 * #VMEXIT(INVALID) needs to be handled early because the VMCB is
1352	 * in an inconsistent state and can trigger assertions that would
1353	 * never happen otherwise.
1354	 */
1355	if (code == VMCB_EXIT_INVALID) {
1356		vm_exit_svm(vmexit, code, info1, info2);
1357		return (0);
1358	}
1359
1360	KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event "
1361	    "injection valid bit is set %#lx", __func__, ctrl->eventinj));
1362
1363	KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15,
1364	    ("invalid inst_length %d: code (%#lx), info1 (%#lx), info2 (%#lx)",
1365	    vmexit->inst_length, code, info1, info2));
1366
1367	svm_update_virqinfo(svm_sc, vcpu);
1368	svm_save_intinfo(svm_sc, vcpu);
1369
1370	switch (code) {
1371	case VMCB_EXIT_IRET:
1372		/*
1373		 * Restart execution at "iret" but with the intercept cleared.
1374		 */
1375		vmexit->inst_length = 0;
1376		clear_nmi_blocking(svm_sc, vcpu);
1377		handled = 1;
1378		break;
1379	case VMCB_EXIT_VINTR:	/* interrupt window exiting */
1380		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1);
1381		handled = 1;
1382		break;
1383	case VMCB_EXIT_INTR:	/* external interrupt */
1384		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1);
1385		handled = 1;
1386		break;
1387	case VMCB_EXIT_NMI:	/* external NMI */
1388		handled = 1;
1389		break;
1390	case 0x40 ... 0x5F:
1391		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1);
1392		reflect = 1;
1393		idtvec = code - 0x40;
1394		switch (idtvec) {
1395		case IDT_MC:
1396			/*
1397			 * Call the machine check handler by hand. Also don't
1398			 * reflect the machine check back into the guest.
1399			 */
1400			reflect = 0;
1401			VCPU_CTR0(svm_sc->vm, vcpu, "Vectoring to MCE handler");
1402			__asm __volatile("int $18");
1403			break;
1404		case IDT_PF:
1405			error = svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2,
1406			    info2);
1407			KASSERT(error == 0, ("%s: error %d updating cr2",
1408			    __func__, error));
1409			/* fallthru */
1410		case IDT_NP:
1411		case IDT_SS:
1412		case IDT_GP:
1413		case IDT_AC:
1414		case IDT_TS:
1415			errcode_valid = 1;
1416			break;
1417
1418		case IDT_DF:
1419			errcode_valid = 1;
1420			info1 = 0;
1421			break;
1422
1423		case IDT_BP:
1424		case IDT_OF:
1425		case IDT_BR:
1426			/*
1427			 * The 'nrip' field is populated for INT3, INTO and
1428			 * BOUND exceptions and this also implies that
1429			 * 'inst_length' is non-zero.
1430			 *
1431			 * Reset 'inst_length' to zero so the guest %rip at
1432			 * event injection is identical to what it was when
1433			 * the exception originally happened.
1434			 */
1435			VCPU_CTR2(svm_sc->vm, vcpu, "Reset inst_length from %d "
1436			    "to zero before injecting exception %d",
1437			    vmexit->inst_length, idtvec);
1438			vmexit->inst_length = 0;
1439			/* fallthru */
1440		default:
1441			errcode_valid = 0;
1442			info1 = 0;
1443			break;
1444		}
1445		KASSERT(vmexit->inst_length == 0, ("invalid inst_length (%d) "
1446		    "when reflecting exception %d into guest",
1447		    vmexit->inst_length, idtvec));
1448
1449		if (reflect) {
1450			/* Reflect the exception back into the guest */
1451			VCPU_CTR2(svm_sc->vm, vcpu, "Reflecting exception "
1452			    "%d/%#x into the guest", idtvec, (int)info1);
1453			error = vm_inject_exception(svm_sc->vm, vcpu, idtvec,
1454			    errcode_valid, info1, 0);
1455			KASSERT(error == 0, ("%s: vm_inject_exception error %d",
1456			    __func__, error));
1457		}
1458		handled = 1;
1459		break;
1460	case VMCB_EXIT_MSR:	/* MSR access. */
1461		eax = state->rax;
1462		ecx = ctx->sctx_rcx;
1463		edx = ctx->sctx_rdx;
1464		retu = false;
1465
1466		if (info1) {
1467			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1);
1468			val = (uint64_t)edx << 32 | eax;
1469			VCPU_CTR2(svm_sc->vm, vcpu, "wrmsr %#x val %#lx",
1470			    ecx, val);
1471			if (emulate_wrmsr(svm_sc, vcpu, ecx, val, &retu)) {
1472				vmexit->exitcode = VM_EXITCODE_WRMSR;
1473				vmexit->u.msr.code = ecx;
1474				vmexit->u.msr.wval = val;
1475			} else if (!retu) {
1476				handled = 1;
1477			} else {
1478				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1479				    ("emulate_wrmsr retu with bogus exitcode"));
1480			}
1481		} else {
1482			VCPU_CTR1(svm_sc->vm, vcpu, "rdmsr %#x", ecx);
1483			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1);
1484			if (emulate_rdmsr(svm_sc, vcpu, ecx, &retu)) {
1485				vmexit->exitcode = VM_EXITCODE_RDMSR;
1486				vmexit->u.msr.code = ecx;
1487			} else if (!retu) {
1488				handled = 1;
1489			} else {
1490				KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
1491				    ("emulate_rdmsr retu with bogus exitcode"));
1492			}
1493		}
1494		break;
1495	case VMCB_EXIT_IO:
1496		handled = svm_handle_io(svm_sc, vcpu, vmexit);
1497		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1);
1498		break;
1499	case VMCB_EXIT_CPUID:
1500		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1);
1501		handled = x86_emulate_cpuid(svm_sc->vm, vcpu, &state->rax,
1502		    &ctx->sctx_rbx, &ctx->sctx_rcx, &ctx->sctx_rdx);
1503		break;
1504	case VMCB_EXIT_HLT:
1505		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1);
1506		vmexit->exitcode = VM_EXITCODE_HLT;
1507		vmexit->u.hlt.rflags = state->rflags;
1508		break;
1509	case VMCB_EXIT_PAUSE:
1510		vmexit->exitcode = VM_EXITCODE_PAUSE;
1511		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1);
1512		break;
1513	case VMCB_EXIT_NPF:
1514		/* EXITINFO2 contains the faulting guest physical address */
1515		if (info1 & VMCB_NPF_INFO1_RSV) {
1516			VCPU_CTR2(svm_sc->vm, vcpu, "nested page fault with "
1517			    "reserved bits set: info1(%#lx) info2(%#lx)",
1518			    info1, info2);
1519		} else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) {
1520			vmexit->exitcode = VM_EXITCODE_PAGING;
1521			vmexit->u.paging.gpa = info2;
1522			vmexit->u.paging.fault_type = npf_fault_type(info1);
1523			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
1524			VCPU_CTR3(svm_sc->vm, vcpu, "nested page fault "
1525			    "on gpa %#lx/%#lx at rip %#lx",
1526			    info2, info1, state->rip);
1527		} else if (svm_npf_emul_fault(info1)) {
1528			svm_handle_inst_emul(vmcb, info2, vmexit);
1529			vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INST_EMUL, 1);
1530			VCPU_CTR3(svm_sc->vm, vcpu, "inst_emul fault "
1531			    "for gpa %#lx/%#lx at rip %#lx",
1532			    info2, info1, state->rip);
1533		}
1534		break;
1535	case VMCB_EXIT_MONITOR:
1536		vmexit->exitcode = VM_EXITCODE_MONITOR;
1537		break;
1538	case VMCB_EXIT_MWAIT:
1539		vmexit->exitcode = VM_EXITCODE_MWAIT;
1540		break;
1541	case VMCB_EXIT_SHUTDOWN:
1542	case VMCB_EXIT_VMRUN:
1543	case VMCB_EXIT_VMMCALL:
1544	case VMCB_EXIT_VMLOAD:
1545	case VMCB_EXIT_VMSAVE:
1546	case VMCB_EXIT_STGI:
1547	case VMCB_EXIT_CLGI:
1548	case VMCB_EXIT_SKINIT:
1549	case VMCB_EXIT_ICEBP:
1550	case VMCB_EXIT_INVD:
1551	case VMCB_EXIT_INVLPGA:
1552		vm_inject_ud(svm_sc->vm, vcpu);
1553		handled = 1;
1554		break;
1555	default:
1556		vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1);
1557		break;
1558	}
1559
1560	VCPU_CTR4(svm_sc->vm, vcpu, "%s %s vmexit at %#lx/%d",
1561	    handled ? "handled" : "unhandled", exit_reason_to_str(code),
1562	    vmexit->rip, vmexit->inst_length);
1563
1564	if (handled) {
1565		vmexit->rip += vmexit->inst_length;
1566		vmexit->inst_length = 0;
1567		state->rip = vmexit->rip;
1568	} else {
1569		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
1570			/*
1571			 * If this VM exit was not claimed by anybody then
1572			 * treat it as a generic SVM exit.
1573			 */
1574			vm_exit_svm(vmexit, code, info1, info2);
1575		} else {
1576			/*
1577			 * The exitcode and collateral have been populated.
1578			 * The VM exit will be processed further in userland.
1579			 */
1580		}
1581	}
1582	return (handled);
1583}
1584
1585static void
1586svm_inj_intinfo(struct svm_softc *svm_sc, int vcpu)
1587{
1588	uint64_t intinfo;
1589
1590	if (!vm_entry_intinfo(svm_sc->vm, vcpu, &intinfo))
1591		return;
1592
1593	KASSERT(VMCB_EXITINTINFO_VALID(intinfo), ("%s: entry intinfo is not "
1594	    "valid: %#lx", __func__, intinfo));
1595
1596	svm_eventinject(svm_sc, vcpu, VMCB_EXITINTINFO_TYPE(intinfo),
1597		VMCB_EXITINTINFO_VECTOR(intinfo),
1598		VMCB_EXITINTINFO_EC(intinfo),
1599		VMCB_EXITINTINFO_EC_VALID(intinfo));
1600	vmm_stat_incr(svm_sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1);
1601	VCPU_CTR1(svm_sc->vm, vcpu, "Injected entry intinfo: %#lx", intinfo);
1602}
1603
1604/*
1605 * Inject event to virtual cpu.
1606 */
1607static void
1608svm_inj_interrupts(struct svm_softc *sc, int vcpu, struct vlapic *vlapic)
1609{
1610	struct vmcb_ctrl *ctrl;
1611	struct vmcb_state *state;
1612	struct svm_vcpu *vcpustate;
1613	uint8_t v_tpr;
1614	int vector, need_intr_window;
1615	int extint_pending;
1616
1617	state = svm_get_vmcb_state(sc, vcpu);
1618	ctrl  = svm_get_vmcb_ctrl(sc, vcpu);
1619	vcpustate = svm_get_vcpu(sc, vcpu);
1620
1621	need_intr_window = 0;
1622
1623	if (vcpustate->nextrip != state->rip) {
1624		ctrl->intr_shadow = 0;
1625		VCPU_CTR2(sc->vm, vcpu, "Guest interrupt blocking "
1626		    "cleared due to rip change: %#lx/%#lx",
1627		    vcpustate->nextrip, state->rip);
1628	}
1629
1630	/*
1631	 * Inject pending events or exceptions for this vcpu.
1632	 *
1633	 * An event might be pending because the previous #VMEXIT happened
1634	 * during event delivery (i.e. ctrl->exitintinfo).
1635	 *
1636	 * An event might also be pending because an exception was injected
1637	 * by the hypervisor (e.g. #PF during instruction emulation).
1638	 */
1639	svm_inj_intinfo(sc, vcpu);
1640
1641	/* NMI event has priority over interrupts. */
1642	if (vm_nmi_pending(sc->vm, vcpu)) {
1643		if (nmi_blocked(sc, vcpu)) {
1644			/*
1645			 * Can't inject another NMI if the guest has not
1646			 * yet executed an "iret" after the last NMI.
1647			 */
1648			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due "
1649			    "to NMI-blocking");
1650		} else if (ctrl->intr_shadow) {
1651			/*
1652			 * Can't inject an NMI if the vcpu is in an intr_shadow.
1653			 */
1654			VCPU_CTR0(sc->vm, vcpu, "Cannot inject NMI due to "
1655			    "interrupt shadow");
1656			need_intr_window = 1;
1657			goto done;
1658		} else if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1659			/*
1660			 * If there is already an exception/interrupt pending
1661			 * then defer the NMI until after that.
1662			 */
1663			VCPU_CTR1(sc->vm, vcpu, "Cannot inject NMI due to "
1664			    "eventinj %#lx", ctrl->eventinj);
1665
1666			/*
1667			 * Use self-IPI to trigger a VM-exit as soon as
1668			 * possible after the event injection is completed.
1669			 *
1670			 * This works only if the external interrupt exiting
1671			 * is at a lower priority than the event injection.
1672			 *
1673			 * Although not explicitly specified in APMv2 the
1674			 * relative priorities were verified empirically.
1675			 */
1676			ipi_cpu(curcpu, IPI_AST);	/* XXX vmm_ipinum? */
1677		} else {
1678			vm_nmi_clear(sc->vm, vcpu);
1679
1680			/* Inject NMI, vector number is not used */
1681			svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_NMI,
1682			    IDT_NMI, 0, false);
1683
1684			/* virtual NMI blocking is now in effect */
1685			enable_nmi_blocking(sc, vcpu);
1686
1687			VCPU_CTR0(sc->vm, vcpu, "Injecting vNMI");
1688		}
1689	}
1690
1691	extint_pending = vm_extint_pending(sc->vm, vcpu);
1692	if (!extint_pending) {
1693		if (!vlapic_pending_intr(vlapic, &vector))
1694			goto done;
1695		KASSERT(vector >= 16 && vector <= 255,
1696		    ("invalid vector %d from local APIC", vector));
1697	} else {
1698		/* Ask the legacy pic for a vector to inject */
1699		vatpic_pending_intr(sc->vm, &vector);
1700		KASSERT(vector >= 0 && vector <= 255,
1701		    ("invalid vector %d from INTR", vector));
1702	}
1703
1704	/*
1705	 * If the guest has disabled interrupts or is in an interrupt shadow
1706	 * then we cannot inject the pending interrupt.
1707	 */
1708	if ((state->rflags & PSL_I) == 0) {
1709		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1710		    "rflags %#lx", vector, state->rflags);
1711		need_intr_window = 1;
1712		goto done;
1713	}
1714
1715	if (ctrl->intr_shadow) {
1716		VCPU_CTR1(sc->vm, vcpu, "Cannot inject vector %d due to "
1717		    "interrupt shadow", vector);
1718		need_intr_window = 1;
1719		goto done;
1720	}
1721
1722	if (ctrl->eventinj & VMCB_EVENTINJ_VALID) {
1723		VCPU_CTR2(sc->vm, vcpu, "Cannot inject vector %d due to "
1724		    "eventinj %#lx", vector, ctrl->eventinj);
1725		need_intr_window = 1;
1726		goto done;
1727	}
1728
1729	svm_eventinject(sc, vcpu, VMCB_EVENTINJ_TYPE_INTR, vector, 0, false);
1730
1731	if (!extint_pending) {
1732		vlapic_intr_accepted(vlapic, vector);
1733	} else {
1734		vm_extint_clear(sc->vm, vcpu);
1735		vatpic_intr_accepted(sc->vm, vector);
1736	}
1737
1738	/*
1739	 * Force a VM-exit as soon as the vcpu is ready to accept another
1740	 * interrupt. This is done because the PIC might have another vector
1741	 * that it wants to inject. Also, if the APIC has a pending interrupt
1742	 * that was preempted by the ExtInt then it allows us to inject the
1743	 * APIC vector as soon as possible.
1744	 */
1745	need_intr_window = 1;
1746done:
1747	/*
1748	 * The guest can modify the TPR by writing to %CR8. In guest mode
1749	 * the processor reflects this write to V_TPR without hypervisor
1750	 * intervention.
1751	 *
1752	 * The guest can also modify the TPR by writing to it via the memory
1753	 * mapped APIC page. In this case, the write will be emulated by the
1754	 * hypervisor. For this reason V_TPR must be updated before every
1755	 * VMRUN.
1756	 */
1757	v_tpr = vlapic_get_cr8(vlapic);
1758	KASSERT(v_tpr <= 15, ("invalid v_tpr %#x", v_tpr));
1759	if (ctrl->v_tpr != v_tpr) {
1760		VCPU_CTR2(sc->vm, vcpu, "VMCB V_TPR changed from %#x to %#x",
1761		    ctrl->v_tpr, v_tpr);
1762		ctrl->v_tpr = v_tpr;
1763		svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR);
1764	}
1765
1766	if (need_intr_window) {
1767		/*
1768		 * We use V_IRQ in conjunction with the VINTR intercept to
1769		 * trap into the hypervisor as soon as a virtual interrupt
1770		 * can be delivered.
1771		 *
1772		 * Since injected events are not subject to intercept checks
1773		 * we need to ensure that the V_IRQ is not actually going to
1774		 * be delivered on VM entry. The KASSERT below enforces this.
1775		 */
1776		KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 ||
1777		    (state->rflags & PSL_I) == 0 || ctrl->intr_shadow,
1778		    ("Bogus intr_window_exiting: eventinj (%#lx), "
1779		    "intr_shadow (%u), rflags (%#lx)",
1780		    ctrl->eventinj, ctrl->intr_shadow, state->rflags));
1781		enable_intr_window_exiting(sc, vcpu);
1782	} else {
1783		disable_intr_window_exiting(sc, vcpu);
1784	}
1785}
1786
1787static __inline void
1788restore_host_tss(void)
1789{
1790	struct system_segment_descriptor *tss_sd;
1791
1792	/*
1793	 * The TSS descriptor was in use prior to launching the guest so it
1794	 * has been marked busy.
1795	 *
1796	 * 'ltr' requires the descriptor to be marked available so change the
1797	 * type to "64-bit available TSS".
1798	 */
1799	tss_sd = PCPU_GET(tss);
1800	tss_sd->sd_type = SDT_SYSTSS;
1801	ltr(GSEL(GPROC0_SEL, SEL_KPL));
1802}
1803
1804static void
1805svm_pmap_activate(struct svm_softc *sc, int vcpuid, pmap_t pmap)
1806{
1807	struct svm_vcpu *vcpustate;
1808	struct vmcb_ctrl *ctrl;
1809	long eptgen;
1810	int cpu;
1811	bool alloc_asid;
1812
1813	cpu = curcpu;
1814	CPU_SET_ATOMIC(cpu, &pmap->pm_active);
1815	smr_enter(pmap->pm_eptsmr);
1816
1817	vcpustate = svm_get_vcpu(sc, vcpuid);
1818	ctrl = svm_get_vmcb_ctrl(sc, vcpuid);
1819
1820	/*
1821	 * The TLB entries associated with the vcpu's ASID are not valid
1822	 * if either of the following conditions is true:
1823	 *
1824	 * 1. The vcpu's ASID generation is different than the host cpu's
1825	 *    ASID generation. This happens when the vcpu migrates to a new
1826	 *    host cpu. It can also happen when the number of vcpus executing
1827	 *    on a host cpu is greater than the number of ASIDs available.
1828	 *
1829	 * 2. The pmap generation number is different than the value cached in
1830	 *    the 'vcpustate'. This happens when the host invalidates pages
1831	 *    belonging to the guest.
1832	 *
1833	 *	asidgen		eptgen	      Action
1834	 *	mismatch	mismatch
1835	 *	   0		   0		(a)
1836	 *	   0		   1		(b1) or (b2)
1837	 *	   1		   0		(c)
1838	 *	   1		   1		(d)
1839	 *
1840	 * (a) There is no mismatch in eptgen or ASID generation and therefore
1841	 *     no further action is needed.
1842	 *
1843	 * (b1) If the cpu supports FlushByAsid then the vcpu's ASID is
1844	 *      retained and the TLB entries associated with this ASID
1845	 *      are flushed by VMRUN.
1846	 *
1847	 * (b2) If the cpu does not support FlushByAsid then a new ASID is
1848	 *      allocated.
1849	 *
1850	 * (c) A new ASID is allocated.
1851	 *
1852	 * (d) A new ASID is allocated.
1853	 */
1854
1855	alloc_asid = false;
1856	eptgen = atomic_load_long(&pmap->pm_eptgen);
1857	ctrl->tlb_ctrl = VMCB_TLB_FLUSH_NOTHING;
1858
1859	if (vcpustate->asid.gen != asid[cpu].gen) {
1860		alloc_asid = true;	/* (c) and (d) */
1861	} else if (vcpustate->eptgen != eptgen) {
1862		if (flush_by_asid())
1863			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;	/* (b1) */
1864		else
1865			alloc_asid = true;			/* (b2) */
1866	} else {
1867		/*
1868		 * This is the common case (a).
1869		 */
1870		KASSERT(!alloc_asid, ("ASID allocation not necessary"));
1871		KASSERT(ctrl->tlb_ctrl == VMCB_TLB_FLUSH_NOTHING,
1872		    ("Invalid VMCB tlb_ctrl: %#x", ctrl->tlb_ctrl));
1873	}
1874
1875	if (alloc_asid) {
1876		if (++asid[cpu].num >= nasid) {
1877			asid[cpu].num = 1;
1878			if (++asid[cpu].gen == 0)
1879				asid[cpu].gen = 1;
1880			/*
1881			 * If this cpu does not support "flush-by-asid"
1882			 * then flush the entire TLB on a generation
1883			 * bump. Subsequent ASID allocation in this
1884			 * generation can be done without a TLB flush.
1885			 */
1886			if (!flush_by_asid())
1887				ctrl->tlb_ctrl = VMCB_TLB_FLUSH_ALL;
1888		}
1889		vcpustate->asid.gen = asid[cpu].gen;
1890		vcpustate->asid.num = asid[cpu].num;
1891
1892		ctrl->asid = vcpustate->asid.num;
1893		svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID);
1894		/*
1895		 * If this cpu supports "flush-by-asid" then the TLB
1896		 * was not flushed after the generation bump. The TLB
1897		 * is flushed selectively after every new ASID allocation.
1898		 */
1899		if (flush_by_asid())
1900			ctrl->tlb_ctrl = VMCB_TLB_FLUSH_GUEST;
1901	}
1902	vcpustate->eptgen = eptgen;
1903
1904	KASSERT(ctrl->asid != 0, ("Guest ASID must be non-zero"));
1905	KASSERT(ctrl->asid == vcpustate->asid.num,
1906	    ("ASID mismatch: %u/%u", ctrl->asid, vcpustate->asid.num));
1907}
1908
1909static void
1910svm_pmap_deactivate(pmap_t pmap)
1911{
1912	smr_exit(pmap->pm_eptsmr);
1913	CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
1914}
1915
1916static __inline void
1917disable_gintr(void)
1918{
1919
1920	__asm __volatile("clgi");
1921}
1922
1923static __inline void
1924enable_gintr(void)
1925{
1926
1927        __asm __volatile("stgi");
1928}
1929
1930static __inline void
1931svm_dr_enter_guest(struct svm_regctx *gctx)
1932{
1933
1934	/* Save host control debug registers. */
1935	gctx->host_dr7 = rdr7();
1936	gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
1937
1938	/*
1939	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
1940	 * exceptions in the host based on the guest DRx values.  The
1941	 * guest DR6, DR7, and DEBUGCTL are saved/restored in the
1942	 * VMCB.
1943	 */
1944	load_dr7(0);
1945	wrmsr(MSR_DEBUGCTLMSR, 0);
1946
1947	/* Save host debug registers. */
1948	gctx->host_dr0 = rdr0();
1949	gctx->host_dr1 = rdr1();
1950	gctx->host_dr2 = rdr2();
1951	gctx->host_dr3 = rdr3();
1952	gctx->host_dr6 = rdr6();
1953
1954	/* Restore guest debug registers. */
1955	load_dr0(gctx->sctx_dr0);
1956	load_dr1(gctx->sctx_dr1);
1957	load_dr2(gctx->sctx_dr2);
1958	load_dr3(gctx->sctx_dr3);
1959}
1960
1961static __inline void
1962svm_dr_leave_guest(struct svm_regctx *gctx)
1963{
1964
1965	/* Save guest debug registers. */
1966	gctx->sctx_dr0 = rdr0();
1967	gctx->sctx_dr1 = rdr1();
1968	gctx->sctx_dr2 = rdr2();
1969	gctx->sctx_dr3 = rdr3();
1970
1971	/*
1972	 * Restore host debug registers.  Restore DR7 and DEBUGCTL
1973	 * last.
1974	 */
1975	load_dr0(gctx->host_dr0);
1976	load_dr1(gctx->host_dr1);
1977	load_dr2(gctx->host_dr2);
1978	load_dr3(gctx->host_dr3);
1979	load_dr6(gctx->host_dr6);
1980	wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl);
1981	load_dr7(gctx->host_dr7);
1982}
1983
1984/*
1985 * Start vcpu with specified RIP.
1986 */
1987static int
1988svm_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
1989	struct vm_eventinfo *evinfo)
1990{
1991	struct svm_regctx *gctx;
1992	struct svm_softc *svm_sc;
1993	struct svm_vcpu *vcpustate;
1994	struct vmcb_state *state;
1995	struct vmcb_ctrl *ctrl;
1996	struct vm_exit *vmexit;
1997	struct vlapic *vlapic;
1998	struct vm *vm;
1999	uint64_t vmcb_pa;
2000	int handled;
2001	uint16_t ldt_sel;
2002
2003	svm_sc = arg;
2004	vm = svm_sc->vm;
2005
2006	vcpustate = svm_get_vcpu(svm_sc, vcpu);
2007	state = svm_get_vmcb_state(svm_sc, vcpu);
2008	ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu);
2009	vmexit = vm_exitinfo(vm, vcpu);
2010	vlapic = vm_lapic(vm, vcpu);
2011
2012	gctx = svm_get_guest_regctx(svm_sc, vcpu);
2013	vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa;
2014
2015	if (vcpustate->lastcpu != curcpu) {
2016		/*
2017		 * Force new ASID allocation by invalidating the generation.
2018		 */
2019		vcpustate->asid.gen = 0;
2020
2021		/*
2022		 * Invalidate the VMCB state cache by marking all fields dirty.
2023		 */
2024		svm_set_dirty(svm_sc, vcpu, 0xffffffff);
2025
2026		/*
2027		 * XXX
2028		 * Setting 'vcpustate->lastcpu' here is bit premature because
2029		 * we may return from this function without actually executing
2030		 * the VMRUN  instruction. This could happen if a rendezvous
2031		 * or an AST is pending on the first time through the loop.
2032		 *
2033		 * This works for now but any new side-effects of vcpu
2034		 * migration should take this case into account.
2035		 */
2036		vcpustate->lastcpu = curcpu;
2037		vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1);
2038	}
2039
2040	svm_msr_guest_enter(svm_sc, vcpu);
2041
2042	/* Update Guest RIP */
2043	state->rip = rip;
2044
2045	do {
2046		/*
2047		 * Disable global interrupts to guarantee atomicity during
2048		 * loading of guest state. This includes not only the state
2049		 * loaded by the "vmrun" instruction but also software state
2050		 * maintained by the hypervisor: suspended and rendezvous
2051		 * state, NPT generation number, vlapic interrupts etc.
2052		 */
2053		disable_gintr();
2054
2055		if (vcpu_suspended(evinfo)) {
2056			enable_gintr();
2057			vm_exit_suspended(vm, vcpu, state->rip);
2058			break;
2059		}
2060
2061		if (vcpu_rendezvous_pending(evinfo)) {
2062			enable_gintr();
2063			vm_exit_rendezvous(vm, vcpu, state->rip);
2064			break;
2065		}
2066
2067		if (vcpu_reqidle(evinfo)) {
2068			enable_gintr();
2069			vm_exit_reqidle(vm, vcpu, state->rip);
2070			break;
2071		}
2072
2073		/* We are asked to give the cpu by scheduler. */
2074		if (vcpu_should_yield(vm, vcpu)) {
2075			enable_gintr();
2076			vm_exit_astpending(vm, vcpu, state->rip);
2077			break;
2078		}
2079
2080		if (vcpu_debugged(vm, vcpu)) {
2081			enable_gintr();
2082			vm_exit_debug(vm, vcpu, state->rip);
2083			break;
2084		}
2085
2086		/*
2087		 * #VMEXIT resumes the host with the guest LDTR, so
2088		 * save the current LDT selector so it can be restored
2089		 * after an exit.  The userspace hypervisor probably
2090		 * doesn't use a LDT, but save and restore it to be
2091		 * safe.
2092		 */
2093		ldt_sel = sldt();
2094
2095		svm_inj_interrupts(svm_sc, vcpu, vlapic);
2096
2097		/*
2098		 * Check the pmap generation and the ASID generation to
2099		 * ensure that the vcpu does not use stale TLB mappings.
2100		 */
2101		svm_pmap_activate(svm_sc, vcpu, pmap);
2102
2103		ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty;
2104		vcpustate->dirty = 0;
2105		VCPU_CTR1(vm, vcpu, "vmcb clean %#x", ctrl->vmcb_clean);
2106
2107		/* Launch Virtual Machine. */
2108		VCPU_CTR1(vm, vcpu, "Resume execution at %#lx", state->rip);
2109		svm_dr_enter_guest(gctx);
2110		svm_launch(vmcb_pa, gctx, get_pcpu());
2111		svm_dr_leave_guest(gctx);
2112
2113		svm_pmap_deactivate(pmap);
2114
2115		/*
2116		 * The host GDTR and IDTR is saved by VMRUN and restored
2117		 * automatically on #VMEXIT. However, the host TSS needs
2118		 * to be restored explicitly.
2119		 */
2120		restore_host_tss();
2121
2122		/* Restore host LDTR. */
2123		lldt(ldt_sel);
2124
2125		/* #VMEXIT disables interrupts so re-enable them here. */
2126		enable_gintr();
2127
2128		/* Update 'nextrip' */
2129		vcpustate->nextrip = state->rip;
2130
2131		/* Handle #VMEXIT and if required return to user space. */
2132		handled = svm_vmexit(svm_sc, vcpu, vmexit);
2133	} while (handled);
2134
2135	svm_msr_guest_exit(svm_sc, vcpu);
2136
2137	return (0);
2138}
2139
2140static void
2141svm_cleanup(void *arg)
2142{
2143	struct svm_softc *sc = arg;
2144
2145	contigfree(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE, M_SVM);
2146	contigfree(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE, M_SVM);
2147	free(sc, M_SVM);
2148}
2149
2150static register_t *
2151swctx_regptr(struct svm_regctx *regctx, int reg)
2152{
2153
2154	switch (reg) {
2155	case VM_REG_GUEST_RBX:
2156		return (&regctx->sctx_rbx);
2157	case VM_REG_GUEST_RCX:
2158		return (&regctx->sctx_rcx);
2159	case VM_REG_GUEST_RDX:
2160		return (&regctx->sctx_rdx);
2161	case VM_REG_GUEST_RDI:
2162		return (&regctx->sctx_rdi);
2163	case VM_REG_GUEST_RSI:
2164		return (&regctx->sctx_rsi);
2165	case VM_REG_GUEST_RBP:
2166		return (&regctx->sctx_rbp);
2167	case VM_REG_GUEST_R8:
2168		return (&regctx->sctx_r8);
2169	case VM_REG_GUEST_R9:
2170		return (&regctx->sctx_r9);
2171	case VM_REG_GUEST_R10:
2172		return (&regctx->sctx_r10);
2173	case VM_REG_GUEST_R11:
2174		return (&regctx->sctx_r11);
2175	case VM_REG_GUEST_R12:
2176		return (&regctx->sctx_r12);
2177	case VM_REG_GUEST_R13:
2178		return (&regctx->sctx_r13);
2179	case VM_REG_GUEST_R14:
2180		return (&regctx->sctx_r14);
2181	case VM_REG_GUEST_R15:
2182		return (&regctx->sctx_r15);
2183	case VM_REG_GUEST_DR0:
2184		return (&regctx->sctx_dr0);
2185	case VM_REG_GUEST_DR1:
2186		return (&regctx->sctx_dr1);
2187	case VM_REG_GUEST_DR2:
2188		return (&regctx->sctx_dr2);
2189	case VM_REG_GUEST_DR3:
2190		return (&regctx->sctx_dr3);
2191	default:
2192		return (NULL);
2193	}
2194}
2195
2196static int
2197svm_getreg(void *arg, int vcpu, int ident, uint64_t *val)
2198{
2199	struct svm_softc *svm_sc;
2200	register_t *reg;
2201
2202	svm_sc = arg;
2203
2204	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2205		return (svm_get_intr_shadow(svm_sc, vcpu, val));
2206	}
2207
2208	if (vmcb_read(svm_sc, vcpu, ident, val) == 0) {
2209		return (0);
2210	}
2211
2212	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2213
2214	if (reg != NULL) {
2215		*val = *reg;
2216		return (0);
2217	}
2218
2219	VCPU_CTR1(svm_sc->vm, vcpu, "svm_getreg: unknown register %#x", ident);
2220	return (EINVAL);
2221}
2222
2223static int
2224svm_setreg(void *arg, int vcpu, int ident, uint64_t val)
2225{
2226	struct svm_softc *svm_sc;
2227	register_t *reg;
2228
2229	svm_sc = arg;
2230
2231	if (ident == VM_REG_GUEST_INTR_SHADOW) {
2232		return (svm_modify_intr_shadow(svm_sc, vcpu, val));
2233	}
2234
2235	/* Do not permit user write access to VMCB fields by offset. */
2236	if (!VMCB_ACCESS_OK(ident)) {
2237		if (vmcb_write(svm_sc, vcpu, ident, val) == 0) {
2238			return (0);
2239		}
2240	}
2241
2242	reg = swctx_regptr(svm_get_guest_regctx(svm_sc, vcpu), ident);
2243
2244	if (reg != NULL) {
2245		*reg = val;
2246		return (0);
2247	}
2248
2249	if (ident == VM_REG_GUEST_ENTRY_INST_LENGTH) {
2250		/* Ignore. */
2251		return (0);
2252	}
2253
2254	/*
2255	 * XXX deal with CR3 and invalidate TLB entries tagged with the
2256	 * vcpu's ASID. This needs to be treated differently depending on
2257	 * whether 'running' is true/false.
2258	 */
2259
2260	VCPU_CTR1(svm_sc->vm, vcpu, "svm_setreg: unknown register %#x", ident);
2261	return (EINVAL);
2262}
2263
2264static int
2265svm_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2266{
2267	return (vmcb_getdesc(arg, vcpu, reg, desc));
2268}
2269
2270static int
2271svm_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2272{
2273	return (vmcb_setdesc(arg, vcpu, reg, desc));
2274}
2275
2276#ifdef BHYVE_SNAPSHOT
2277static int
2278svm_snapshot_reg(void *arg, int vcpu, int ident,
2279		 struct vm_snapshot_meta *meta)
2280{
2281	int ret;
2282	uint64_t val;
2283
2284	if (meta->op == VM_SNAPSHOT_SAVE) {
2285		ret = svm_getreg(arg, vcpu, ident, &val);
2286		if (ret != 0)
2287			goto done;
2288
2289		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2290	} else if (meta->op == VM_SNAPSHOT_RESTORE) {
2291		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2292
2293		ret = svm_setreg(arg, vcpu, ident, val);
2294		if (ret != 0)
2295			goto done;
2296	} else {
2297		ret = EINVAL;
2298		goto done;
2299	}
2300
2301done:
2302	return (ret);
2303}
2304#endif
2305
2306static int
2307svm_setcap(void *arg, int vcpu, int type, int val)
2308{
2309	struct svm_softc *sc;
2310	int error;
2311
2312	sc = arg;
2313	error = 0;
2314	switch (type) {
2315	case VM_CAP_HALT_EXIT:
2316		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2317		    VMCB_INTCPT_HLT, val);
2318		break;
2319	case VM_CAP_PAUSE_EXIT:
2320		svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2321		    VMCB_INTCPT_PAUSE, val);
2322		break;
2323	case VM_CAP_UNRESTRICTED_GUEST:
2324		/* Unrestricted guest execution cannot be disabled in SVM */
2325		if (val == 0)
2326			error = EINVAL;
2327		break;
2328	default:
2329		error = ENOENT;
2330		break;
2331	}
2332	return (error);
2333}
2334
2335static int
2336svm_getcap(void *arg, int vcpu, int type, int *retval)
2337{
2338	struct svm_softc *sc;
2339	int error;
2340
2341	sc = arg;
2342	error = 0;
2343
2344	switch (type) {
2345	case VM_CAP_HALT_EXIT:
2346		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2347		    VMCB_INTCPT_HLT);
2348		break;
2349	case VM_CAP_PAUSE_EXIT:
2350		*retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT,
2351		    VMCB_INTCPT_PAUSE);
2352		break;
2353	case VM_CAP_UNRESTRICTED_GUEST:
2354		*retval = 1;	/* unrestricted guest is always enabled */
2355		break;
2356	default:
2357		error = ENOENT;
2358		break;
2359	}
2360	return (error);
2361}
2362
2363static struct vmspace *
2364svm_vmspace_alloc(vm_offset_t min, vm_offset_t max)
2365{
2366	return (svm_npt_alloc(min, max));
2367}
2368
2369static void
2370svm_vmspace_free(struct vmspace *vmspace)
2371{
2372	svm_npt_free(vmspace);
2373}
2374
2375static struct vlapic *
2376svm_vlapic_init(void *arg, int vcpuid)
2377{
2378	struct svm_softc *svm_sc;
2379	struct vlapic *vlapic;
2380
2381	svm_sc = arg;
2382	vlapic = malloc(sizeof(struct vlapic), M_SVM_VLAPIC, M_WAITOK | M_ZERO);
2383	vlapic->vm = svm_sc->vm;
2384	vlapic->vcpuid = vcpuid;
2385	vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid];
2386
2387	vlapic_init(vlapic);
2388
2389	return (vlapic);
2390}
2391
2392static void
2393svm_vlapic_cleanup(void *arg, struct vlapic *vlapic)
2394{
2395
2396        vlapic_cleanup(vlapic);
2397        free(vlapic, M_SVM_VLAPIC);
2398}
2399
2400#ifdef BHYVE_SNAPSHOT
2401static int
2402svm_snapshot(void *arg, struct vm_snapshot_meta *meta)
2403{
2404	/* struct svm_softc is AMD's representation for SVM softc */
2405	struct svm_softc *sc;
2406	struct svm_vcpu *vcpu;
2407	struct vmcb *vmcb;
2408	uint64_t val;
2409	int i;
2410	int ret;
2411
2412	sc = arg;
2413
2414	KASSERT(sc != NULL, ("%s: arg was NULL", __func__));
2415
2416	SNAPSHOT_VAR_OR_LEAVE(sc->nptp, meta, ret, done);
2417
2418	for (i = 0; i < VM_MAXCPU; i++) {
2419		vcpu = &sc->vcpu[i];
2420		vmcb = &vcpu->vmcb;
2421
2422		/* VMCB fields for virtual cpu i */
2423		SNAPSHOT_VAR_OR_LEAVE(vmcb->ctrl.v_tpr, meta, ret, done);
2424		val = vmcb->ctrl.v_tpr;
2425		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2426		vmcb->ctrl.v_tpr = val;
2427
2428		SNAPSHOT_VAR_OR_LEAVE(vmcb->ctrl.asid, meta, ret, done);
2429		val = vmcb->ctrl.np_enable;
2430		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2431		vmcb->ctrl.np_enable = val;
2432
2433		val = vmcb->ctrl.intr_shadow;
2434		SNAPSHOT_VAR_OR_LEAVE(val, meta, ret, done);
2435		vmcb->ctrl.intr_shadow = val;
2436		SNAPSHOT_VAR_OR_LEAVE(vmcb->ctrl.tlb_ctrl, meta, ret, done);
2437
2438		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad1,
2439				      sizeof(vmcb->state.pad1),
2440				      meta, ret, done);
2441		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cpl, meta, ret, done);
2442		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad2,
2443				      sizeof(vmcb->state.pad2),
2444				      meta, ret, done);
2445		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.efer, meta, ret, done);
2446		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad3,
2447				      sizeof(vmcb->state.pad3),
2448				      meta, ret, done);
2449		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr4, meta, ret, done);
2450		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr3, meta, ret, done);
2451		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr0, meta, ret, done);
2452		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.dr7, meta, ret, done);
2453		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.dr6, meta, ret, done);
2454		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rflags, meta, ret, done);
2455		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rip, meta, ret, done);
2456		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad4,
2457				      sizeof(vmcb->state.pad4),
2458				      meta, ret, done);
2459		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rsp, meta, ret, done);
2460		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad5,
2461				      sizeof(vmcb->state.pad5),
2462				      meta, ret, done);
2463		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.rax, meta, ret, done);
2464		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.star, meta, ret, done);
2465		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.lstar, meta, ret, done);
2466		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cstar, meta, ret, done);
2467		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sfmask, meta, ret, done);
2468		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.kernelgsbase,
2469				      meta, ret, done);
2470		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sysenter_cs, meta, ret, done);
2471		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sysenter_esp,
2472				      meta, ret, done);
2473		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.sysenter_eip,
2474				      meta, ret, done);
2475		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.cr2, meta, ret, done);
2476		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad6,
2477				      sizeof(vmcb->state.pad6),
2478				      meta, ret, done);
2479		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.g_pat, meta, ret, done);
2480		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.dbgctl, meta, ret, done);
2481		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.br_from, meta, ret, done);
2482		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.br_to, meta, ret, done);
2483		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.int_from, meta, ret, done);
2484		SNAPSHOT_VAR_OR_LEAVE(vmcb->state.int_to, meta, ret, done);
2485		SNAPSHOT_BUF_OR_LEAVE(vmcb->state.pad7,
2486				      sizeof(vmcb->state.pad7),
2487				      meta, ret, done);
2488
2489		/* Snapshot swctx for virtual cpu i */
2490		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbp, meta, ret, done);
2491		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rbx, meta, ret, done);
2492		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rcx, meta, ret, done);
2493		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdx, meta, ret, done);
2494		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rdi, meta, ret, done);
2495		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_rsi, meta, ret, done);
2496		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r8, meta, ret, done);
2497		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r9, meta, ret, done);
2498		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r10, meta, ret, done);
2499		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r11, meta, ret, done);
2500		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r12, meta, ret, done);
2501		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r13, meta, ret, done);
2502		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r14, meta, ret, done);
2503		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_r15, meta, ret, done);
2504		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr0, meta, ret, done);
2505		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr1, meta, ret, done);
2506		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr2, meta, ret, done);
2507		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.sctx_dr3, meta, ret, done);
2508
2509		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr0, meta, ret, done);
2510		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr1, meta, ret, done);
2511		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr2, meta, ret, done);
2512		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr3, meta, ret, done);
2513		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr6, meta, ret, done);
2514		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_dr7, meta, ret, done);
2515		SNAPSHOT_VAR_OR_LEAVE(vcpu->swctx.host_debugctl, meta, ret,
2516				      done);
2517
2518		/* Restore other svm_vcpu struct fields */
2519
2520		/* Restore NEXTRIP field */
2521		SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
2522
2523		/* Restore lastcpu field */
2524		SNAPSHOT_VAR_OR_LEAVE(vcpu->lastcpu, meta, ret, done);
2525		SNAPSHOT_VAR_OR_LEAVE(vcpu->dirty, meta, ret, done);
2526
2527		/* Restore EPTGEN field - EPT is Extended Page Tabel */
2528		SNAPSHOT_VAR_OR_LEAVE(vcpu->eptgen, meta, ret, done);
2529
2530		SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.gen, meta, ret, done);
2531		SNAPSHOT_VAR_OR_LEAVE(vcpu->asid.num, meta, ret, done);
2532
2533		/* Set all caches dirty */
2534		if (meta->op == VM_SNAPSHOT_RESTORE) {
2535			svm_set_dirty(sc, i, VMCB_CACHE_ASID);
2536			svm_set_dirty(sc, i, VMCB_CACHE_IOPM);
2537			svm_set_dirty(sc, i, VMCB_CACHE_I);
2538			svm_set_dirty(sc, i, VMCB_CACHE_TPR);
2539			svm_set_dirty(sc, i, VMCB_CACHE_CR2);
2540			svm_set_dirty(sc, i, VMCB_CACHE_CR);
2541			svm_set_dirty(sc, i, VMCB_CACHE_DT);
2542			svm_set_dirty(sc, i, VMCB_CACHE_SEG);
2543			svm_set_dirty(sc, i, VMCB_CACHE_NP);
2544		}
2545	}
2546
2547	if (meta->op == VM_SNAPSHOT_RESTORE)
2548		flush_by_asid();
2549
2550done:
2551	return (ret);
2552}
2553
2554static int
2555svm_vmcx_snapshot(void *arg, struct vm_snapshot_meta *meta, int vcpu)
2556{
2557	struct vmcb *vmcb;
2558	struct svm_softc *sc;
2559	int err, running, hostcpu;
2560
2561	sc = (struct svm_softc *)arg;
2562	err = 0;
2563
2564	KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
2565	vmcb = svm_get_vmcb(sc, vcpu);
2566
2567	running = vcpu_is_running(sc->vm, vcpu, &hostcpu);
2568	if (running && hostcpu !=curcpu) {
2569		printf("%s: %s%d is running", __func__, vm_name(sc->vm), vcpu);
2570		return (EINVAL);
2571	}
2572
2573	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR0, meta);
2574	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR2, meta);
2575	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR3, meta);
2576	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CR4, meta);
2577
2578	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_DR7, meta);
2579
2580	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RAX, meta);
2581
2582	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RSP, meta);
2583	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RIP, meta);
2584	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_RFLAGS, meta);
2585
2586	/* Guest segments */
2587	/* ES */
2588	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_ES, meta);
2589	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_ES, meta);
2590
2591	/* CS */
2592	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_CS, meta);
2593	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_CS, meta);
2594
2595	/* SS */
2596	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_SS, meta);
2597	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_SS, meta);
2598
2599	/* DS */
2600	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_DS, meta);
2601	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_DS, meta);
2602
2603	/* FS */
2604	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_FS, meta);
2605	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_FS, meta);
2606
2607	/* GS */
2608	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_GS, meta);
2609	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_GS, meta);
2610
2611	/* TR */
2612	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_TR, meta);
2613	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_TR, meta);
2614
2615	/* LDTR */
2616	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_LDTR, meta);
2617	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_LDTR, meta);
2618
2619	/* EFER */
2620	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_EFER, meta);
2621
2622	/* IDTR and GDTR */
2623	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_IDTR, meta);
2624	err += vmcb_snapshot_desc(sc, vcpu, VM_REG_GUEST_GDTR, meta);
2625
2626	/* Specific AMD registers */
2627	err += vmcb_snapshot_any(sc, vcpu,
2628				VMCB_ACCESS(VMCB_OFF_SYSENTER_CS, 8), meta);
2629	err += vmcb_snapshot_any(sc, vcpu,
2630				VMCB_ACCESS(VMCB_OFF_SYSENTER_ESP, 8), meta);
2631	err += vmcb_snapshot_any(sc, vcpu,
2632				VMCB_ACCESS(VMCB_OFF_SYSENTER_EIP, 8), meta);
2633
2634	err += vmcb_snapshot_any(sc, vcpu,
2635				VMCB_ACCESS(VMCB_OFF_NPT_BASE, 8), meta);
2636
2637	err += vmcb_snapshot_any(sc, vcpu,
2638				VMCB_ACCESS(VMCB_OFF_CR_INTERCEPT, 4), meta);
2639	err += vmcb_snapshot_any(sc, vcpu,
2640				VMCB_ACCESS(VMCB_OFF_DR_INTERCEPT, 4), meta);
2641	err += vmcb_snapshot_any(sc, vcpu,
2642				VMCB_ACCESS(VMCB_OFF_EXC_INTERCEPT, 4), meta);
2643	err += vmcb_snapshot_any(sc, vcpu,
2644				VMCB_ACCESS(VMCB_OFF_INST1_INTERCEPT, 4), meta);
2645	err += vmcb_snapshot_any(sc, vcpu,
2646				VMCB_ACCESS(VMCB_OFF_INST2_INTERCEPT, 4), meta);
2647
2648	err += vmcb_snapshot_any(sc, vcpu,
2649				VMCB_ACCESS(VMCB_OFF_TLB_CTRL, 4), meta);
2650
2651	err += vmcb_snapshot_any(sc, vcpu,
2652				VMCB_ACCESS(VMCB_OFF_EXITINFO1, 8), meta);
2653	err += vmcb_snapshot_any(sc, vcpu,
2654				VMCB_ACCESS(VMCB_OFF_EXITINFO2, 8), meta);
2655	err += vmcb_snapshot_any(sc, vcpu,
2656				VMCB_ACCESS(VMCB_OFF_EXITINTINFO, 8), meta);
2657
2658	err += vmcb_snapshot_any(sc, vcpu,
2659				VMCB_ACCESS(VMCB_OFF_VIRQ, 8), meta);
2660
2661	err += vmcb_snapshot_any(sc, vcpu,
2662				VMCB_ACCESS(VMCB_OFF_GUEST_PAT, 8), meta);
2663
2664	err += vmcb_snapshot_any(sc, vcpu,
2665				VMCB_ACCESS(VMCB_OFF_AVIC_BAR, 8), meta);
2666	err += vmcb_snapshot_any(sc, vcpu,
2667				VMCB_ACCESS(VMCB_OFF_AVIC_PAGE, 8), meta);
2668	err += vmcb_snapshot_any(sc, vcpu,
2669				VMCB_ACCESS(VMCB_OFF_AVIC_LT, 8), meta);
2670	err += vmcb_snapshot_any(sc, vcpu,
2671				VMCB_ACCESS(VMCB_OFF_AVIC_PT, 8), meta);
2672
2673	err += vmcb_snapshot_any(sc, vcpu,
2674				VMCB_ACCESS(VMCB_OFF_IO_PERM, 8), meta);
2675	err += vmcb_snapshot_any(sc, vcpu,
2676				VMCB_ACCESS(VMCB_OFF_MSR_PERM, 8), meta);
2677
2678	err += vmcb_snapshot_any(sc, vcpu,
2679				VMCB_ACCESS(VMCB_OFF_ASID, 4), meta);
2680
2681	err += vmcb_snapshot_any(sc, vcpu,
2682				VMCB_ACCESS(VMCB_OFF_EXIT_REASON, 8), meta);
2683
2684	err += svm_snapshot_reg(sc, vcpu, VM_REG_GUEST_INTR_SHADOW, meta);
2685
2686	return (err);
2687}
2688
2689static int
2690svm_restore_tsc(void *arg, int vcpu, uint64_t offset)
2691{
2692	int err;
2693
2694	err = svm_set_tsc_offset(arg, vcpu, offset);
2695
2696	return (err);
2697}
2698#endif
2699
2700const struct vmm_ops vmm_ops_amd = {
2701	.modinit	= svm_modinit,
2702	.modcleanup	= svm_modcleanup,
2703	.modresume	= svm_modresume,
2704	.init		= svm_init,
2705	.run		= svm_run,
2706	.cleanup	= svm_cleanup,
2707	.getreg		= svm_getreg,
2708	.setreg		= svm_setreg,
2709	.getdesc	= svm_getdesc,
2710	.setdesc	= svm_setdesc,
2711	.getcap		= svm_getcap,
2712	.setcap		= svm_setcap,
2713	.vmspace_alloc	= svm_vmspace_alloc,
2714	.vmspace_free	= svm_vmspace_free,
2715	.vlapic_init	= svm_vlapic_init,
2716	.vlapic_cleanup	= svm_vlapic_cleanup,
2717#ifdef BHYVE_SNAPSHOT
2718	.snapshot	= svm_snapshot,
2719	.vmcx_snapshot	= svm_vmcx_snapshot,
2720	.restore_tsc	= svm_restore_tsc,
2721#endif
2722};
2723