Automatically generated by Pod::Man 4.14 (Pod::Simple 3.42)

Standard preamble:
========================================================================
..
..
.. Set up some character translations and predefined strings. \*(-- will
give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
double quote, and \*(R" will give a right double quote. \*(C+ will
give a nicer C++. Capital omega is used to do unbreakable dashes and
therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
nothing in troff, for use with C<>.
.tr \(*W- . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\}
Escape single quotes in literal strings from groff's Unicode transform.

If the F register is >0, we'll generate index entries on stderr for
titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
entries marked with X<> in POD. Of course, you'll have to process the
output yourself in some meaningful fashion.

Avoid warning from groff about undefined register 'F'.
.. .nr rF 0 . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF
Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] .\} . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents . \" corrections for vroff . \" for low resolution devices (crt and lpr) \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} ========================================================================

Title "PKEYUTL 1"
PKEYUTL 1 "2021-03-25" "1.1.1k" "OpenSSL"
For nroff, turn off justification. Always turn off hyphenation; it makes
way too many mistakes in technical documents.
"NAME"
openssl-pkeyutl, pkeyutl - public key algorithm utility
"SYNOPSIS"
Header "SYNOPSIS" \fBopenssl pkeyutl [-help] [-in file] [-out file] [-sigfile file] [-inkey file] [-keyform PEM|DER|ENGINE] [-passin arg] [-peerkey file] [-peerform PEM|DER|ENGINE] [-pubin] [-certin] [-rev] [-sign] [-verify] [-verifyrecover] [-encrypt] [-decrypt] [-derive] [-kdf algorithm] [-kdflen length] [-pkeyopt opt:value] [-hexdump] [-asn1parse] [-rand file...] [-writerand file] [-engine id] [-engine_impl]
"DESCRIPTION"
Header "DESCRIPTION" The pkeyutl command can be used to perform low-level public key operations using any supported algorithm.
"OPTIONS"
Header "OPTIONS"
"-help" 4
Item "-help" Print out a usage message.
"-in filename" 4
Item "-in filename" This specifies the input filename to read data from or standard input if this option is not specified.
"-out filename" 4
Item "-out filename" Specifies the output filename to write to or standard output by default.
"-sigfile file" 4
Item "-sigfile file" Signature file, required for verify operations only
"-inkey file" 4
Item "-inkey file" The input key file, by default it should be a private key.
"-keyform PEM|DER|ENGINE" 4
Item "-keyform PEM|DER|ENGINE" The key format \s-1PEM, DER\s0 or \s-1ENGINE.\s0 Default is \s-1PEM.\s0
"-passin arg" 4
Item "-passin arg" The input key password source. For more information about the format of arg see \*(L"Pass Phrase Options\*(R" in openssl\|(1).
"-peerkey file" 4
Item "-peerkey file" The peer key file, used by key derivation (agreement) operations.
"-peerform PEM|DER|ENGINE" 4
Item "-peerform PEM|DER|ENGINE" The peer key format \s-1PEM, DER\s0 or \s-1ENGINE.\s0 Default is \s-1PEM.\s0
"-pubin" 4
Item "-pubin" The input file is a public key.
"-certin" 4
Item "-certin" The input is a certificate containing a public key.
"-rev" 4
Item "-rev" Reverse the order of the input buffer. This is useful for some libraries (such as CryptoAPI) which represent the buffer in little endian format.
"-sign" 4
Item "-sign" Sign the input data (which must be a hash) and output the signed result. This requires a private key.
"-verify" 4
Item "-verify" Verify the input data (which must be a hash) against the signature file and indicate if the verification succeeded or failed.
"-verifyrecover" 4
Item "-verifyrecover" Verify the input data (which must be a hash) and output the recovered data.
"-encrypt" 4
Item "-encrypt" Encrypt the input data using a public key.
"-decrypt" 4
Item "-decrypt" Decrypt the input data using a private key.
"-derive" 4
Item "-derive" Derive a shared secret using the peer key.
"-kdf algorithm" 4
Item "-kdf algorithm" Use key derivation function algorithm. The supported algorithms are at present \s-1TLS1-PRF\s0 and \s-1HKDF\s0. Note: additional parameters and the \s-1KDF\s0 output length will normally have to be set for this to work. See EVP_PKEY_CTX_set_hkdf_md\|(3) and EVP_PKEY_CTX_set_tls1_prf_md\|(3) for the supported string parameters of each algorithm.
"-kdflen length" 4
Item "-kdflen length" Set the output length for \s-1KDF.\s0
"-pkeyopt opt:value" 4
Item "-pkeyopt opt:value" Public key options specified as opt:value. See \s-1NOTES\s0 below for more details.
"-hexdump" 4
Item "-hexdump" hex dump the output data.
"-asn1parse" 4
Item "-asn1parse" Parse the \s-1ASN.1\s0 output data, this is useful when combined with the \fB-verifyrecover option when an \s-1ASN1\s0 structure is signed.
"-rand file..." 4
Item "-rand file..." A file or files containing random data used to seed the random number generator. Multiple files can be specified separated by an OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS, and : for all others.
"[-writerand file]" 4
Item "[-writerand file]" Writes random data to the specified file upon exit. This can be used with a subsequent -rand flag.
"-engine id" 4
Item "-engine id" Specifying an engine (by its unique id string) will cause pkeyutl to attempt to obtain a functional reference to the specified engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.
"-engine_impl" 4
Item "-engine_impl" When used with the -engine option, it specifies to also use engine id for crypto operations.
"NOTES"
Header "NOTES" The operations and options supported vary according to the key algorithm and its implementation. The OpenSSL operations and options are indicated below.

Unless otherwise mentioned all algorithms support the digest:alg option which specifies the digest in use for sign, verify and verifyrecover operations. The value alg should represent a digest name as used in the \fBEVP_get_digestbyname() function for example sha1. This value is not used to hash the input data. It is used (by some algorithms) for sanity-checking the lengths of data passed in to the pkeyutl and for creating the structures that make up the signature (e.g. DigestInfo in \s-1RSASSA\s0 PKCS#1 v1.5 signatures).

This utility does not hash the input data but rather it will use the data directly as input to the signature algorithm. Depending on the key type, signature type, and mode of padding, the maximum acceptable lengths of input data differ. The signed data can't be longer than the key modulus with \s-1RSA.\s0 In case of \s-1ECDSA\s0 and \s-1DSA\s0 the data shouldn't be longer than the field size, otherwise it will be silently truncated to the field size. In any event the input size must not be larger than the largest supported digest size.

In other words, if the value of digest is sha1 the input should be the 20 bytes long binary encoding of the \s-1SHA-1\s0 hash function output.

The Ed25519 and Ed448 signature algorithms are not supported by this utility. They accept non-hashed input, but this utility can only be used to sign hashed input.

"RSA ALGORITHM"
Header "RSA ALGORITHM" The \s-1RSA\s0 algorithm generally supports the encrypt, decrypt, sign, verify and verifyrecover operations. However, some padding modes support only a subset of these operations. The following additional \fBpkeyopt values are supported:
"rsa_padding_mode:mode" 4
Item "rsa_padding_mode:mode" This sets the \s-1RSA\s0 padding mode. Acceptable values for mode are pkcs1 for PKCS#1 padding, sslv23 for SSLv23 padding, none for no padding, oaep for \s-1OAEP\s0 mode, x931 for X9.31 mode and pss for \s-1PSS.\s0 .Sp In PKCS#1 padding if the message digest is not set then the supplied data is signed or verified directly instead of using a DigestInfo structure. If a digest is set then the a DigestInfo structure is used and its the length must correspond to the digest type. .Sp For oaep mode only encryption and decryption is supported. .Sp For x931 if the digest type is set it is used to format the block data otherwise the first byte is used to specify the X9.31 digest \s-1ID.\s0 Sign, verify and verifyrecover are can be performed in this mode. .Sp For pss mode only sign and verify are supported and the digest type must be specified.
"rsa_pss_saltlen:len" 4
Item "rsa_pss_saltlen:len" For pss mode only this option specifies the salt length. Three special values are supported: \*(L"digest\*(R" sets the salt length to the digest length, \*(L"max\*(R" sets the salt length to the maximum permissible value. When verifying \*(L"auto\*(R" causes the salt length to be automatically determined based on the \fB\s-1PSS\s0 block structure.
"rsa_mgf1_md:digest" 4
Item "rsa_mgf1_md:digest" For \s-1PSS\s0 and \s-1OAEP\s0 padding sets the \s-1MGF1\s0 digest. If the \s-1MGF1\s0 digest is not explicitly set in \s-1PSS\s0 mode then the signing digest is used.
"RSA-PSS ALGORITHM"
Header "RSA-PSS ALGORITHM" The RSA-PSS algorithm is a restricted version of the \s-1RSA\s0 algorithm which only supports the sign and verify operations with \s-1PSS\s0 padding. The following additional pkeyopt values are supported:
"rsa_padding_mode:mode, rsa_pss_saltlen:len, rsa_mgf1_md:digest" 4
Item "rsa_padding_mode:mode, rsa_pss_saltlen:len, rsa_mgf1_md:digest" These have the same meaning as the \s-1RSA\s0 algorithm with some additional restrictions. The padding mode can only be set to pss which is the default value. .Sp If the key has parameter restrictions than the digest, \s-1MGF1\s0 digest and salt length are set to the values specified in the parameters. The digest and \s-1MG\s0 cannot be changed and the salt length cannot be set to a value less than the minimum restriction.
"DSA ALGORITHM"
Header "DSA ALGORITHM" The \s-1DSA\s0 algorithm supports signing and verification operations only. Currently there are no additional -pkeyopt options other than digest. The \s-1SHA1\s0 digest is assumed by default.
"DH ALGORITHM"
Header "DH ALGORITHM" The \s-1DH\s0 algorithm only supports the derivation operation and no additional \fB-pkeyopt options.
"EC ALGORITHM"
Header "EC ALGORITHM" The \s-1EC\s0 algorithm supports sign, verify and derive operations. The sign and verify operations use \s-1ECDSA\s0 and derive uses \s-1ECDH. SHA1\s0 is assumed by default for the -pkeyopt digest option.
"X25519 and X448 ALGORITHMS"
Header "X25519 and X448 ALGORITHMS" The X25519 and X448 algorithms support key derivation only. Currently there are no additional options.
"EXAMPLES"
Header "EXAMPLES" Sign some data using a private key:

.Vb 1 openssl pkeyutl -sign -in file -inkey key.pem -out sig .Ve

Recover the signed data (e.g. if an \s-1RSA\s0 key is used):

.Vb 1 openssl pkeyutl -verifyrecover -in sig -inkey key.pem .Ve

Verify the signature (e.g. a \s-1DSA\s0 key):

.Vb 1 openssl pkeyutl -verify -in file -sigfile sig -inkey key.pem .Ve

Sign data using a message digest value (this is currently only valid for \s-1RSA\s0):

.Vb 1 openssl pkeyutl -sign -in file -inkey key.pem -out sig -pkeyopt digest:sha256 .Ve

Derive a shared secret value:

.Vb 1 openssl pkeyutl -derive -inkey key.pem -peerkey pubkey.pem -out secret .Ve

Hexdump 48 bytes of \s-1TLS1 PRF\s0 using digest \s-1SHA256\s0 and shared secret and seed consisting of the single byte 0xFF:

.Vb 2 openssl pkeyutl -kdf TLS1-PRF -kdflen 48 -pkeyopt md:SHA256 \e -pkeyopt hexsecret:ff -pkeyopt hexseed:ff -hexdump .Ve

"SEE ALSO"
Header "SEE ALSO" \fBgenpkey\|(1), pkey\|(1), rsautl\|(1) \fBdgst\|(1), rsa\|(1), genrsa\|(1), \fBEVP_PKEY_CTX_set_hkdf_md\|(3), EVP_PKEY_CTX_set_tls1_prf_md\|(3)
"COPYRIGHT"
Header "COPYRIGHT" Copyright 2006-2021 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.