1/*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1990, 1993, 1994
5 *	The Regents of the University of California.  All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Margo Seltzer.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35#if defined(LIBC_SCCS) && !defined(lint)
36static char sccsid[] = "@(#)hash_bigkey.c	8.3 (Berkeley) 5/31/94";
37#endif /* LIBC_SCCS and not lint */
38#include <sys/cdefs.h>
39__FBSDID("$FreeBSD$");
40
41/*
42 * PACKAGE: hash
43 * DESCRIPTION:
44 *	Big key/data handling for the hashing package.
45 *
46 * ROUTINES:
47 * External
48 *	__big_keydata
49 *	__big_split
50 *	__big_insert
51 *	__big_return
52 *	__big_delete
53 *	__find_last_page
54 * Internal
55 *	collect_key
56 *	collect_data
57 */
58
59#include <sys/param.h>
60
61#include <errno.h>
62#include <stdio.h>
63#include <stdlib.h>
64#include <string.h>
65
66#ifdef DEBUG
67#include <assert.h>
68#endif
69
70#include <db.h>
71#include "hash.h"
72#include "page.h"
73#include "extern.h"
74
75static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
76static int collect_data(HTAB *, BUFHEAD *, int, int);
77
78/*
79 * Big_insert
80 *
81 * You need to do an insert and the key/data pair is too big
82 *
83 * Returns:
84 * 0 ==> OK
85 *-1 ==> ERROR
86 */
87int
88__big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
89{
90	u_int16_t *p;
91	int key_size, n;
92	unsigned int val_size;
93	u_int16_t space, move_bytes, off;
94	char *cp, *key_data, *val_data;
95
96	cp = bufp->page;		/* Character pointer of p. */
97	p = (u_int16_t *)cp;
98
99	key_data = (char *)key->data;
100	key_size = key->size;
101	val_data = (char *)val->data;
102	val_size = val->size;
103
104	/* First move the Key */
105	for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
106	    space = FREESPACE(p) - BIGOVERHEAD) {
107		move_bytes = MIN(space, key_size);
108		off = OFFSET(p) - move_bytes;
109		memmove(cp + off, key_data, move_bytes);
110		key_size -= move_bytes;
111		key_data += move_bytes;
112		n = p[0];
113		p[++n] = off;
114		p[0] = ++n;
115		FREESPACE(p) = off - PAGE_META(n);
116		OFFSET(p) = off;
117		p[n] = PARTIAL_KEY;
118		bufp = __add_ovflpage(hashp, bufp);
119		if (!bufp)
120			return (-1);
121		n = p[0];
122		if (!key_size) {
123			space = FREESPACE(p);
124			if (space) {
125				move_bytes = MIN(space, val_size);
126				/*
127				 * If the data would fit exactly in the
128				 * remaining space, we must overflow it to the
129				 * next page; otherwise the invariant that the
130				 * data must end on a page with FREESPACE
131				 * non-zero would fail.
132				 */
133				if (space == val_size && val_size == val->size)
134					goto toolarge;
135				off = OFFSET(p) - move_bytes;
136				memmove(cp + off, val_data, move_bytes);
137				val_data += move_bytes;
138				val_size -= move_bytes;
139				p[n] = off;
140				p[n - 2] = FULL_KEY_DATA;
141				FREESPACE(p) = FREESPACE(p) - move_bytes;
142				OFFSET(p) = off;
143			} else {
144			toolarge:
145				p[n - 2] = FULL_KEY;
146			}
147		}
148		p = (u_int16_t *)bufp->page;
149		cp = bufp->page;
150		bufp->flags |= BUF_MOD;
151	}
152
153	/* Now move the data */
154	for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
155	    space = FREESPACE(p) - BIGOVERHEAD) {
156		move_bytes = MIN(space, val_size);
157		/*
158		 * Here's the hack to make sure that if the data ends on the
159		 * same page as the key ends, FREESPACE is at least one.
160		 */
161		if (space == val_size && val_size == val->size)
162			move_bytes--;
163		off = OFFSET(p) - move_bytes;
164		memmove(cp + off, val_data, move_bytes);
165		val_size -= move_bytes;
166		val_data += move_bytes;
167		n = p[0];
168		p[++n] = off;
169		p[0] = ++n;
170		FREESPACE(p) = off - PAGE_META(n);
171		OFFSET(p) = off;
172		if (val_size) {
173			p[n] = FULL_KEY;
174			bufp = __add_ovflpage(hashp, bufp);
175			if (!bufp)
176				return (-1);
177			cp = bufp->page;
178			p = (u_int16_t *)cp;
179		} else
180			p[n] = FULL_KEY_DATA;
181		bufp->flags |= BUF_MOD;
182	}
183	return (0);
184}
185
186/*
187 * Called when bufp's page  contains a partial key (index should be 1)
188 *
189 * All pages in the big key/data pair except bufp are freed.  We cannot
190 * free bufp because the page pointing to it is lost and we can't get rid
191 * of its pointer.
192 *
193 * Returns:
194 * 0 => OK
195 *-1 => ERROR
196 */
197int
198__big_delete(HTAB *hashp, BUFHEAD *bufp)
199{
200	BUFHEAD *last_bfp, *rbufp;
201	u_int16_t *bp, pageno;
202	int key_done, n;
203
204	rbufp = bufp;
205	last_bfp = NULL;
206	bp = (u_int16_t *)bufp->page;
207	pageno = 0;
208	key_done = 0;
209
210	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
211		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
212			key_done = 1;
213
214		/*
215		 * If there is freespace left on a FULL_KEY_DATA page, then
216		 * the data is short and fits entirely on this page, and this
217		 * is the last page.
218		 */
219		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
220			break;
221		pageno = bp[bp[0] - 1];
222		rbufp->flags |= BUF_MOD;
223		rbufp = __get_buf(hashp, pageno, rbufp, 0);
224		if (last_bfp)
225			__free_ovflpage(hashp, last_bfp);
226		last_bfp = rbufp;
227		if (!rbufp)
228			return (-1);		/* Error. */
229		bp = (u_int16_t *)rbufp->page;
230	}
231
232	/*
233	 * If we get here then rbufp points to the last page of the big
234	 * key/data pair.  Bufp points to the first one -- it should now be
235	 * empty pointing to the next page after this pair.  Can't free it
236	 * because we don't have the page pointing to it.
237	 */
238
239	/* This is information from the last page of the pair. */
240	n = bp[0];
241	pageno = bp[n - 1];
242
243	/* Now, bp is the first page of the pair. */
244	bp = (u_int16_t *)bufp->page;
245	if (n > 2) {
246		/* There is an overflow page. */
247		bp[1] = pageno;
248		bp[2] = OVFLPAGE;
249		bufp->ovfl = rbufp->ovfl;
250	} else
251		/* This is the last page. */
252		bufp->ovfl = NULL;
253	n -= 2;
254	bp[0] = n;
255	FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
256	OFFSET(bp) = hashp->BSIZE;
257
258	bufp->flags |= BUF_MOD;
259	if (rbufp)
260		__free_ovflpage(hashp, rbufp);
261	if (last_bfp && last_bfp != rbufp)
262		__free_ovflpage(hashp, last_bfp);
263
264	hashp->NKEYS--;
265	return (0);
266}
267/*
268 * Returns:
269 *  0 = key not found
270 * -1 = get next overflow page
271 * -2 means key not found and this is big key/data
272 * -3 error
273 */
274int
275__find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
276{
277	u_int16_t *bp;
278	char *p;
279	int ksize;
280	u_int16_t bytes;
281	char *kkey;
282
283	bp = (u_int16_t *)bufp->page;
284	p = bufp->page;
285	ksize = size;
286	kkey = key;
287
288	for (bytes = hashp->BSIZE - bp[ndx];
289	    bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
290	    bytes = hashp->BSIZE - bp[ndx]) {
291		if (memcmp(p + bp[ndx], kkey, bytes))
292			return (-2);
293		kkey += bytes;
294		ksize -= bytes;
295		bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
296		if (!bufp)
297			return (-3);
298		p = bufp->page;
299		bp = (u_int16_t *)p;
300		ndx = 1;
301	}
302
303	if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
304#ifdef HASH_STATISTICS
305		++hash_collisions;
306#endif
307		return (-2);
308	} else
309		return (ndx);
310}
311
312/*
313 * Given the buffer pointer of the first overflow page of a big pair,
314 * find the end of the big pair
315 *
316 * This will set bpp to the buffer header of the last page of the big pair.
317 * It will return the pageno of the overflow page following the last page
318 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
319 * bucket)
320 */
321u_int16_t
322__find_last_page(HTAB *hashp, BUFHEAD **bpp)
323{
324	BUFHEAD *bufp;
325	u_int16_t *bp, pageno;
326	int n;
327
328	bufp = *bpp;
329	bp = (u_int16_t *)bufp->page;
330	for (;;) {
331		n = bp[0];
332
333		/*
334		 * This is the last page if: the tag is FULL_KEY_DATA and
335		 * either only 2 entries OVFLPAGE marker is explicit there
336		 * is freespace on the page.
337		 */
338		if (bp[2] == FULL_KEY_DATA &&
339		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
340			break;
341
342		pageno = bp[n - 1];
343		bufp = __get_buf(hashp, pageno, bufp, 0);
344		if (!bufp)
345			return (0);	/* Need to indicate an error! */
346		bp = (u_int16_t *)bufp->page;
347	}
348
349	*bpp = bufp;
350	if (bp[0] > 2)
351		return (bp[3]);
352	else
353		return (0);
354}
355
356/*
357 * Return the data for the key/data pair that begins on this page at this
358 * index (index should always be 1).
359 */
360int
361__big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
362{
363	BUFHEAD *save_p;
364	u_int16_t *bp, len, off, save_addr;
365	char *tp;
366
367	bp = (u_int16_t *)bufp->page;
368	while (bp[ndx + 1] == PARTIAL_KEY) {
369		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
370		if (!bufp)
371			return (-1);
372		bp = (u_int16_t *)bufp->page;
373		ndx = 1;
374	}
375
376	if (bp[ndx + 1] == FULL_KEY) {
377		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
378		if (!bufp)
379			return (-1);
380		bp = (u_int16_t *)bufp->page;
381		save_p = bufp;
382		save_addr = save_p->addr;
383		off = bp[1];
384		len = 0;
385	} else
386		if (!FREESPACE(bp)) {
387			/*
388			 * This is a hack.  We can't distinguish between
389			 * FULL_KEY_DATA that contains complete data or
390			 * incomplete data, so we require that if the data
391			 * is complete, there is at least 1 byte of free
392			 * space left.
393			 */
394			off = bp[bp[0]];
395			len = bp[1] - off;
396			save_p = bufp;
397			save_addr = bufp->addr;
398			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
399			if (!bufp)
400				return (-1);
401			bp = (u_int16_t *)bufp->page;
402		} else {
403			/* The data is all on one page. */
404			tp = (char *)bp;
405			off = bp[bp[0]];
406			val->data = (u_char *)tp + off;
407			val->size = bp[1] - off;
408			if (set_current) {
409				if (bp[0] == 2) {	/* No more buckets in
410							 * chain */
411					hashp->cpage = NULL;
412					hashp->cbucket++;
413					hashp->cndx = 1;
414				} else {
415					hashp->cpage = __get_buf(hashp,
416					    bp[bp[0] - 1], bufp, 0);
417					if (!hashp->cpage)
418						return (-1);
419					hashp->cndx = 1;
420					if (!((u_int16_t *)
421					    hashp->cpage->page)[0]) {
422						hashp->cbucket++;
423						hashp->cpage = NULL;
424					}
425				}
426			}
427			return (0);
428		}
429
430	val->size = (size_t)collect_data(hashp, bufp, (int)len, set_current);
431	if (val->size == (size_t)-1)
432		return (-1);
433	if (save_p->addr != save_addr) {
434		/* We are pretty short on buffers. */
435		errno = EINVAL;			/* OUT OF BUFFERS */
436		return (-1);
437	}
438	memmove(hashp->tmp_buf, (save_p->page) + off, len);
439	val->data = (u_char *)hashp->tmp_buf;
440	return (0);
441}
442/*
443 * Count how big the total datasize is by recursing through the pages.  Then
444 * allocate a buffer and copy the data as you recurse up.
445 */
446static int
447collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
448{
449	u_int16_t *bp;
450	char *p;
451	BUFHEAD *xbp;
452	u_int16_t save_addr;
453	int mylen, totlen;
454
455	p = bufp->page;
456	bp = (u_int16_t *)p;
457	mylen = hashp->BSIZE - bp[1];
458	save_addr = bufp->addr;
459
460	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
461		totlen = len + mylen;
462		if (hashp->tmp_buf)
463			free(hashp->tmp_buf);
464		if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
465			return (-1);
466		if (set) {
467			hashp->cndx = 1;
468			if (bp[0] == 2) {	/* No more buckets in chain */
469				hashp->cpage = NULL;
470				hashp->cbucket++;
471			} else {
472				hashp->cpage =
473				    __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
474				if (!hashp->cpage)
475					return (-1);
476				else if (!((u_int16_t *)hashp->cpage->page)[0]) {
477					hashp->cbucket++;
478					hashp->cpage = NULL;
479				}
480			}
481		}
482	} else {
483		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
484		if (!xbp || ((totlen =
485		    collect_data(hashp, xbp, len + mylen, set)) < 1))
486			return (-1);
487	}
488	if (bufp->addr != save_addr) {
489		errno = EINVAL;			/* Out of buffers. */
490		return (-1);
491	}
492	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
493	return (totlen);
494}
495
496/*
497 * Fill in the key and data for this big pair.
498 */
499int
500__big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
501{
502	key->size = (size_t)collect_key(hashp, bufp, 0, val, set);
503	if (key->size == (size_t)-1)
504		return (-1);
505	key->data = (u_char *)hashp->tmp_key;
506	return (0);
507}
508
509/*
510 * Count how big the total key size is by recursing through the pages.  Then
511 * collect the data, allocate a buffer and copy the key as you recurse up.
512 */
513static int
514collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
515{
516	BUFHEAD *xbp;
517	char *p;
518	int mylen, totlen;
519	u_int16_t *bp, save_addr;
520
521	p = bufp->page;
522	bp = (u_int16_t *)p;
523	mylen = hashp->BSIZE - bp[1];
524
525	save_addr = bufp->addr;
526	totlen = len + mylen;
527	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
528		if (hashp->tmp_key != NULL)
529			free(hashp->tmp_key);
530		if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
531			return (-1);
532		if (__big_return(hashp, bufp, 1, val, set))
533			return (-1);
534	} else {
535		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
536		if (!xbp || ((totlen =
537		    collect_key(hashp, xbp, totlen, val, set)) < 1))
538			return (-1);
539	}
540	if (bufp->addr != save_addr) {
541		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
542		return (-1);
543	}
544	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
545	return (totlen);
546}
547
548/*
549 * Returns:
550 *  0 => OK
551 * -1 => error
552 */
553int
554__big_split(HTAB *hashp,
555    BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
556    BUFHEAD *np,	/* Pointer to new bucket page */
557    BUFHEAD *big_keyp,	/* Pointer to first page containing the big key/data */
558    int addr,		/* Address of big_keyp */
559    u_int32_t obucket,	/* Old Bucket */
560    SPLIT_RETURN *ret)
561{
562	BUFHEAD *bp, *tmpp;
563	DBT key, val;
564	u_int32_t change;
565	u_int16_t free_space, n, off, *tp;
566
567	bp = big_keyp;
568
569	/* Now figure out where the big key/data goes */
570	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
571		return (-1);
572	change = (__call_hash(hashp, key.data, key.size) != obucket);
573
574	if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) {
575		if (!(ret->nextp =
576		    __get_buf(hashp, ret->next_addr, big_keyp, 0)))
577			return (-1);
578	} else
579		ret->nextp = NULL;
580
581	/* Now make one of np/op point to the big key/data pair */
582#ifdef DEBUG
583	assert(np->ovfl == NULL);
584#endif
585	if (change)
586		tmpp = np;
587	else
588		tmpp = op;
589
590	tmpp->flags |= BUF_MOD;
591#ifdef DEBUG1
592	(void)fprintf(stderr,
593	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
594	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
595#endif
596	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
597	tp = (u_int16_t *)tmpp->page;
598#ifdef DEBUG
599	assert(FREESPACE(tp) >= OVFLSIZE);
600#endif
601	n = tp[0];
602	off = OFFSET(tp);
603	free_space = FREESPACE(tp);
604	tp[++n] = (u_int16_t)addr;
605	tp[++n] = OVFLPAGE;
606	tp[0] = n;
607	OFFSET(tp) = off;
608	FREESPACE(tp) = free_space - OVFLSIZE;
609
610	/*
611	 * Finally, set the new and old return values. BIG_KEYP contains a
612	 * pointer to the last page of the big key_data pair. Make sure that
613	 * big_keyp has no following page (2 elements) or create an empty
614	 * following page.
615	 */
616
617	ret->newp = np;
618	ret->oldp = op;
619
620	tp = (u_int16_t *)big_keyp->page;
621	big_keyp->flags |= BUF_MOD;
622	if (tp[0] > 2) {
623		/*
624		 * There may be either one or two offsets on this page.  If
625		 * there is one, then the overflow page is linked on normally
626		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
627		 * the second offset and needs to get stuffed in after the
628		 * next overflow page is added.
629		 */
630		n = tp[4];
631		free_space = FREESPACE(tp);
632		off = OFFSET(tp);
633		tp[0] -= 2;
634		FREESPACE(tp) = free_space + OVFLSIZE;
635		OFFSET(tp) = off;
636		tmpp = __add_ovflpage(hashp, big_keyp);
637		if (!tmpp)
638			return (-1);
639		tp[4] = n;
640	} else
641		tmpp = big_keyp;
642
643	if (change)
644		ret->newp = tmpp;
645	else
646		ret->oldp = tmpp;
647	return (0);
648}
649