1/*
2** $Id: lgc.c $
3** Garbage Collector
4** See Copyright Notice in lua.h
5*/
6
7#define lgc_c
8#define LUA_CORE
9
10#include "lprefix.h"
11
12#include <stdio.h>
13#include <string.h>
14
15
16#include "lua.h"
17
18#include "ldebug.h"
19#include "ldo.h"
20#include "lfunc.h"
21#include "lgc.h"
22#include "lmem.h"
23#include "lobject.h"
24#include "lstate.h"
25#include "lstring.h"
26#include "ltable.h"
27#include "ltm.h"
28
29
30/*
31** Maximum number of elements to sweep in each single step.
32** (Large enough to dissipate fixed overheads but small enough
33** to allow small steps for the collector.)
34*/
35#define GCSWEEPMAX	100
36
37/*
38** Maximum number of finalizers to call in each single step.
39*/
40#define GCFINMAX	10
41
42
43/*
44** Cost of calling one finalizer.
45*/
46#define GCFINALIZECOST	50
47
48
49/*
50** The equivalent, in bytes, of one unit of "work" (visiting a slot,
51** sweeping an object, etc.)
52*/
53#define WORK2MEM	sizeof(TValue)
54
55
56/*
57** macro to adjust 'pause': 'pause' is actually used like
58** 'pause / PAUSEADJ' (value chosen by tests)
59*/
60#define PAUSEADJ		100
61
62
63/* mask with all color bits */
64#define maskcolors	(bitmask(BLACKBIT) | WHITEBITS)
65
66/* mask with all GC bits */
67#define maskgcbits      (maskcolors | AGEBITS)
68
69
70/* macro to erase all color bits then set only the current white bit */
71#define makewhite(g,x)	\
72  (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
73
74/* make an object gray (neither white nor black) */
75#define set2gray(x)	resetbits(x->marked, maskcolors)
76
77
78/* make an object black (coming from any color) */
79#define set2black(x)  \
80  (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
81
82
83#define valiswhite(x)   (iscollectable(x) && iswhite(gcvalue(x)))
84
85#define keyiswhite(n)   (keyiscollectable(n) && iswhite(gckey(n)))
86
87
88/*
89** Protected access to objects in values
90*/
91#define gcvalueN(o)     (iscollectable(o) ? gcvalue(o) : NULL)
92
93
94#define markvalue(g,o) { checkliveness(g->mainthread,o); \
95  if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
96
97#define markkey(g, n)	{ if keyiswhite(n) reallymarkobject(g,gckey(n)); }
98
99#define markobject(g,t)	{ if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
100
101/*
102** mark an object that can be NULL (either because it is really optional,
103** or it was stripped as debug info, or inside an uncompleted structure)
104*/
105#define markobjectN(g,t)	{ if (t) markobject(g,t); }
106
107static void reallymarkobject (global_State *g, GCObject *o);
108static lu_mem atomic (lua_State *L);
109static void entersweep (lua_State *L);
110
111
112/*
113** {======================================================
114** Generic functions
115** =======================================================
116*/
117
118
119/*
120** one after last element in a hash array
121*/
122#define gnodelast(h)	gnode(h, cast_sizet(sizenode(h)))
123
124
125static GCObject **getgclist (GCObject *o) {
126  switch (o->tt) {
127    case LUA_VTABLE: return &gco2t(o)->gclist;
128    case LUA_VLCL: return &gco2lcl(o)->gclist;
129    case LUA_VCCL: return &gco2ccl(o)->gclist;
130    case LUA_VTHREAD: return &gco2th(o)->gclist;
131    case LUA_VPROTO: return &gco2p(o)->gclist;
132    case LUA_VUSERDATA: {
133      Udata *u = gco2u(o);
134      lua_assert(u->nuvalue > 0);
135      return &u->gclist;
136    }
137    default: lua_assert(0); return 0;
138  }
139}
140
141
142/*
143** Link a collectable object 'o' with a known type into the list 'p'.
144** (Must be a macro to access the 'gclist' field in different types.)
145*/
146#define linkgclist(o,p)	linkgclist_(obj2gco(o), &(o)->gclist, &(p))
147
148static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
149  lua_assert(!isgray(o));  /* cannot be in a gray list */
150  *pnext = *list;
151  *list = o;
152  set2gray(o);  /* now it is */
153}
154
155
156/*
157** Link a generic collectable object 'o' into the list 'p'.
158*/
159#define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
160
161
162
163/*
164** Clear keys for empty entries in tables. If entry is empty, mark its
165** entry as dead. This allows the collection of the key, but keeps its
166** entry in the table: its removal could break a chain and could break
167** a table traversal.  Other places never manipulate dead keys, because
168** its associated empty value is enough to signal that the entry is
169** logically empty.
170*/
171static void clearkey (Node *n) {
172  lua_assert(isempty(gval(n)));
173  if (keyiscollectable(n))
174    setdeadkey(n);  /* unused key; remove it */
175}
176
177
178/*
179** tells whether a key or value can be cleared from a weak
180** table. Non-collectable objects are never removed from weak
181** tables. Strings behave as 'values', so are never removed too. for
182** other objects: if really collected, cannot keep them; for objects
183** being finalized, keep them in keys, but not in values
184*/
185static int iscleared (global_State *g, const GCObject *o) {
186  if (o == NULL) return 0;  /* non-collectable value */
187  else if (novariant(o->tt) == LUA_TSTRING) {
188    markobject(g, o);  /* strings are 'values', so are never weak */
189    return 0;
190  }
191  else return iswhite(o);
192}
193
194
195/*
196** Barrier that moves collector forward, that is, marks the white object
197** 'v' being pointed by the black object 'o'.  In the generational
198** mode, 'v' must also become old, if 'o' is old; however, it cannot
199** be changed directly to OLD, because it may still point to non-old
200** objects. So, it is marked as OLD0. In the next cycle it will become
201** OLD1, and in the next it will finally become OLD (regular old). By
202** then, any object it points to will also be old.  If called in the
203** incremental sweep phase, it clears the black object to white (sweep
204** it) to avoid other barrier calls for this same object. (That cannot
205** be done is generational mode, as its sweep does not distinguish
206** whites from deads.)
207*/
208void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
209  global_State *g = G(L);
210  lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
211  if (keepinvariant(g)) {  /* must keep invariant? */
212    reallymarkobject(g, v);  /* restore invariant */
213    if (isold(o)) {
214      lua_assert(!isold(v));  /* white object could not be old */
215      setage(v, G_OLD0);  /* restore generational invariant */
216    }
217  }
218  else {  /* sweep phase */
219    lua_assert(issweepphase(g));
220    if (g->gckind == KGC_INC)  /* incremental mode? */
221      makewhite(g, o);  /* mark 'o' as white to avoid other barriers */
222  }
223}
224
225
226/*
227** barrier that moves collector backward, that is, mark the black object
228** pointing to a white object as gray again.
229*/
230void luaC_barrierback_ (lua_State *L, GCObject *o) {
231  global_State *g = G(L);
232  lua_assert(isblack(o) && !isdead(g, o));
233  lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
234  if (getage(o) == G_TOUCHED2)  /* already in gray list? */
235    set2gray(o);  /* make it gray to become touched1 */
236  else  /* link it in 'grayagain' and paint it gray */
237    linkobjgclist(o, g->grayagain);
238  if (isold(o))  /* generational mode? */
239    setage(o, G_TOUCHED1);  /* touched in current cycle */
240}
241
242
243void luaC_fix (lua_State *L, GCObject *o) {
244  global_State *g = G(L);
245  lua_assert(g->allgc == o);  /* object must be 1st in 'allgc' list! */
246  set2gray(o);  /* they will be gray forever */
247  setage(o, G_OLD);  /* and old forever */
248  g->allgc = o->next;  /* remove object from 'allgc' list */
249  o->next = g->fixedgc;  /* link it to 'fixedgc' list */
250  g->fixedgc = o;
251}
252
253
254/*
255** create a new collectable object (with given type and size) and link
256** it to 'allgc' list.
257*/
258GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
259  global_State *g = G(L);
260  GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz));
261  o->marked = luaC_white(g);
262  o->tt = tt;
263  o->next = g->allgc;
264  g->allgc = o;
265  return o;
266}
267
268/* }====================================================== */
269
270
271
272/*
273** {======================================================
274** Mark functions
275** =======================================================
276*/
277
278
279/*
280** Mark an object.  Userdata with no user values, strings, and closed
281** upvalues are visited and turned black here.  Open upvalues are
282** already indirectly linked through their respective threads in the
283** 'twups' list, so they don't go to the gray list; nevertheless, they
284** are kept gray to avoid barriers, as their values will be revisited
285** by the thread or by 'remarkupvals'.  Other objects are added to the
286** gray list to be visited (and turned black) later.  Both userdata and
287** upvalues can call this function recursively, but this recursion goes
288** for at most two levels: An upvalue cannot refer to another upvalue
289** (only closures can), and a userdata's metatable must be a table.
290*/
291static void reallymarkobject (global_State *g, GCObject *o) {
292  switch (o->tt) {
293    case LUA_VSHRSTR:
294    case LUA_VLNGSTR: {
295      set2black(o);  /* nothing to visit */
296      break;
297    }
298    case LUA_VUPVAL: {
299      UpVal *uv = gco2upv(o);
300      if (upisopen(uv))
301        set2gray(uv);  /* open upvalues are kept gray */
302      else
303        set2black(uv);  /* closed upvalues are visited here */
304      markvalue(g, uv->v);  /* mark its content */
305      break;
306    }
307    case LUA_VUSERDATA: {
308      Udata *u = gco2u(o);
309      if (u->nuvalue == 0) {  /* no user values? */
310        markobjectN(g, u->metatable);  /* mark its metatable */
311        set2black(u);  /* nothing else to mark */
312        break;
313      }
314      /* else... */
315    }  /* FALLTHROUGH */
316    case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
317    case LUA_VTHREAD: case LUA_VPROTO: {
318      linkobjgclist(o, g->gray);  /* to be visited later */
319      break;
320    }
321    default: lua_assert(0); break;
322  }
323}
324
325
326/*
327** mark metamethods for basic types
328*/
329static void markmt (global_State *g) {
330  int i;
331  for (i=0; i < LUA_NUMTAGS; i++)
332    markobjectN(g, g->mt[i]);
333}
334
335
336/*
337** mark all objects in list of being-finalized
338*/
339static lu_mem markbeingfnz (global_State *g) {
340  GCObject *o;
341  lu_mem count = 0;
342  for (o = g->tobefnz; o != NULL; o = o->next) {
343    count++;
344    markobject(g, o);
345  }
346  return count;
347}
348
349
350/*
351** For each non-marked thread, simulates a barrier between each open
352** upvalue and its value. (If the thread is collected, the value will be
353** assigned to the upvalue, but then it can be too late for the barrier
354** to act. The "barrier" does not need to check colors: A non-marked
355** thread must be young; upvalues cannot be older than their threads; so
356** any visited upvalue must be young too.) Also removes the thread from
357** the list, as it was already visited. Removes also threads with no
358** upvalues, as they have nothing to be checked. (If the thread gets an
359** upvalue later, it will be linked in the list again.)
360*/
361static int remarkupvals (global_State *g) {
362  lua_State *thread;
363  lua_State **p = &g->twups;
364  int work = 0;  /* estimate of how much work was done here */
365  while ((thread = *p) != NULL) {
366    work++;
367    if (!iswhite(thread) && thread->openupval != NULL)
368      p = &thread->twups;  /* keep marked thread with upvalues in the list */
369    else {  /* thread is not marked or without upvalues */
370      UpVal *uv;
371      lua_assert(!isold(thread) || thread->openupval == NULL);
372      *p = thread->twups;  /* remove thread from the list */
373      thread->twups = thread;  /* mark that it is out of list */
374      for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
375        lua_assert(getage(uv) <= getage(thread));
376        work++;
377        if (!iswhite(uv)) {  /* upvalue already visited? */
378          lua_assert(upisopen(uv) && isgray(uv));
379          markvalue(g, uv->v);  /* mark its value */
380        }
381      }
382    }
383  }
384  return work;
385}
386
387
388static void cleargraylists (global_State *g) {
389  g->gray = g->grayagain = NULL;
390  g->weak = g->allweak = g->ephemeron = NULL;
391}
392
393
394/*
395** mark root set and reset all gray lists, to start a new collection
396*/
397static void restartcollection (global_State *g) {
398  cleargraylists(g);
399  markobject(g, g->mainthread);
400  markvalue(g, &g->l_registry);
401  markmt(g);
402  markbeingfnz(g);  /* mark any finalizing object left from previous cycle */
403}
404
405/* }====================================================== */
406
407
408/*
409** {======================================================
410** Traverse functions
411** =======================================================
412*/
413
414
415/*
416** Check whether object 'o' should be kept in the 'grayagain' list for
417** post-processing by 'correctgraylist'. (It could put all old objects
418** in the list and leave all the work to 'correctgraylist', but it is
419** more efficient to avoid adding elements that will be removed.) Only
420** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
421** back to a gray list, but then it must become OLD. (That is what
422** 'correctgraylist' does when it finds a TOUCHED2 object.)
423*/
424static void genlink (global_State *g, GCObject *o) {
425  lua_assert(isblack(o));
426  if (getage(o) == G_TOUCHED1) {  /* touched in this cycle? */
427    linkobjgclist(o, g->grayagain);  /* link it back in 'grayagain' */
428  }  /* everything else do not need to be linked back */
429  else if (getage(o) == G_TOUCHED2)
430    changeage(o, G_TOUCHED2, G_OLD);  /* advance age */
431}
432
433
434/*
435** Traverse a table with weak values and link it to proper list. During
436** propagate phase, keep it in 'grayagain' list, to be revisited in the
437** atomic phase. In the atomic phase, if table has any white value,
438** put it in 'weak' list, to be cleared.
439*/
440static void traverseweakvalue (global_State *g, Table *h) {
441  Node *n, *limit = gnodelast(h);
442  /* if there is array part, assume it may have white values (it is not
443     worth traversing it now just to check) */
444  int hasclears = (h->alimit > 0);
445  for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
446    if (isempty(gval(n)))  /* entry is empty? */
447      clearkey(n);  /* clear its key */
448    else {
449      lua_assert(!keyisnil(n));
450      markkey(g, n);
451      if (!hasclears && iscleared(g, gcvalueN(gval(n))))  /* a white value? */
452        hasclears = 1;  /* table will have to be cleared */
453    }
454  }
455  if (g->gcstate == GCSatomic && hasclears)
456    linkgclist(h, g->weak);  /* has to be cleared later */
457  else
458    linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
459}
460
461
462/*
463** Traverse an ephemeron table and link it to proper list. Returns true
464** iff any object was marked during this traversal (which implies that
465** convergence has to continue). During propagation phase, keep table
466** in 'grayagain' list, to be visited again in the atomic phase. In
467** the atomic phase, if table has any white->white entry, it has to
468** be revisited during ephemeron convergence (as that key may turn
469** black). Otherwise, if it has any white key, table has to be cleared
470** (in the atomic phase). In generational mode, some tables
471** must be kept in some gray list for post-processing; this is done
472** by 'genlink'.
473*/
474static int traverseephemeron (global_State *g, Table *h, int inv) {
475  int marked = 0;  /* true if an object is marked in this traversal */
476  int hasclears = 0;  /* true if table has white keys */
477  int hasww = 0;  /* true if table has entry "white-key -> white-value" */
478  unsigned int i;
479  unsigned int asize = luaH_realasize(h);
480  unsigned int nsize = sizenode(h);
481  /* traverse array part */
482  for (i = 0; i < asize; i++) {
483    if (valiswhite(&h->array[i])) {
484      marked = 1;
485      reallymarkobject(g, gcvalue(&h->array[i]));
486    }
487  }
488  /* traverse hash part; if 'inv', traverse descending
489     (see 'convergeephemerons') */
490  for (i = 0; i < nsize; i++) {
491    Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
492    if (isempty(gval(n)))  /* entry is empty? */
493      clearkey(n);  /* clear its key */
494    else if (iscleared(g, gckeyN(n))) {  /* key is not marked (yet)? */
495      hasclears = 1;  /* table must be cleared */
496      if (valiswhite(gval(n)))  /* value not marked yet? */
497        hasww = 1;  /* white-white entry */
498    }
499    else if (valiswhite(gval(n))) {  /* value not marked yet? */
500      marked = 1;
501      reallymarkobject(g, gcvalue(gval(n)));  /* mark it now */
502    }
503  }
504  /* link table into proper list */
505  if (g->gcstate == GCSpropagate)
506    linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
507  else if (hasww)  /* table has white->white entries? */
508    linkgclist(h, g->ephemeron);  /* have to propagate again */
509  else if (hasclears)  /* table has white keys? */
510    linkgclist(h, g->allweak);  /* may have to clean white keys */
511  else
512    genlink(g, obj2gco(h));  /* check whether collector still needs to see it */
513  return marked;
514}
515
516
517static void traversestrongtable (global_State *g, Table *h) {
518  Node *n, *limit = gnodelast(h);
519  unsigned int i;
520  unsigned int asize = luaH_realasize(h);
521  for (i = 0; i < asize; i++)  /* traverse array part */
522    markvalue(g, &h->array[i]);
523  for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
524    if (isempty(gval(n)))  /* entry is empty? */
525      clearkey(n);  /* clear its key */
526    else {
527      lua_assert(!keyisnil(n));
528      markkey(g, n);
529      markvalue(g, gval(n));
530    }
531  }
532  genlink(g, obj2gco(h));
533}
534
535
536static lu_mem traversetable (global_State *g, Table *h) {
537  const char *weakkey, *weakvalue;
538  const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
539  markobjectN(g, h->metatable);
540  if (mode && ttisstring(mode) &&  /* is there a weak mode? */
541      (cast_void(weakkey = strchr(svalue(mode), 'k')),
542       cast_void(weakvalue = strchr(svalue(mode), 'v')),
543       (weakkey || weakvalue))) {  /* is really weak? */
544    if (!weakkey)  /* strong keys? */
545      traverseweakvalue(g, h);
546    else if (!weakvalue)  /* strong values? */
547      traverseephemeron(g, h, 0);
548    else  /* all weak */
549      linkgclist(h, g->allweak);  /* nothing to traverse now */
550  }
551  else  /* not weak */
552    traversestrongtable(g, h);
553  return 1 + h->alimit + 2 * allocsizenode(h);
554}
555
556
557static int traverseudata (global_State *g, Udata *u) {
558  int i;
559  markobjectN(g, u->metatable);  /* mark its metatable */
560  for (i = 0; i < u->nuvalue; i++)
561    markvalue(g, &u->uv[i].uv);
562  genlink(g, obj2gco(u));
563  return 1 + u->nuvalue;
564}
565
566
567/*
568** Traverse a prototype. (While a prototype is being build, its
569** arrays can be larger than needed; the extra slots are filled with
570** NULL, so the use of 'markobjectN')
571*/
572static int traverseproto (global_State *g, Proto *f) {
573  int i;
574  markobjectN(g, f->source);
575  for (i = 0; i < f->sizek; i++)  /* mark literals */
576    markvalue(g, &f->k[i]);
577  for (i = 0; i < f->sizeupvalues; i++)  /* mark upvalue names */
578    markobjectN(g, f->upvalues[i].name);
579  for (i = 0; i < f->sizep; i++)  /* mark nested protos */
580    markobjectN(g, f->p[i]);
581  for (i = 0; i < f->sizelocvars; i++)  /* mark local-variable names */
582    markobjectN(g, f->locvars[i].varname);
583  return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
584}
585
586
587static int traverseCclosure (global_State *g, CClosure *cl) {
588  int i;
589  for (i = 0; i < cl->nupvalues; i++)  /* mark its upvalues */
590    markvalue(g, &cl->upvalue[i]);
591  return 1 + cl->nupvalues;
592}
593
594/*
595** Traverse a Lua closure, marking its prototype and its upvalues.
596** (Both can be NULL while closure is being created.)
597*/
598static int traverseLclosure (global_State *g, LClosure *cl) {
599  int i;
600  markobjectN(g, cl->p);  /* mark its prototype */
601  for (i = 0; i < cl->nupvalues; i++) {  /* visit its upvalues */
602    UpVal *uv = cl->upvals[i];
603    markobjectN(g, uv);  /* mark upvalue */
604  }
605  return 1 + cl->nupvalues;
606}
607
608
609/*
610** Traverse a thread, marking the elements in the stack up to its top
611** and cleaning the rest of the stack in the final traversal. That
612** ensures that the entire stack have valid (non-dead) objects.
613** Threads have no barriers. In gen. mode, old threads must be visited
614** at every cycle, because they might point to young objects.  In inc.
615** mode, the thread can still be modified before the end of the cycle,
616** and therefore it must be visited again in the atomic phase. To ensure
617** these visits, threads must return to a gray list if they are not new
618** (which can only happen in generational mode) or if the traverse is in
619** the propagate phase (which can only happen in incremental mode).
620*/
621static int traversethread (global_State *g, lua_State *th) {
622  UpVal *uv;
623  StkId o = th->stack;
624  if (isold(th) || g->gcstate == GCSpropagate)
625    linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
626  if (o == NULL)
627    return 1;  /* stack not completely built yet */
628  lua_assert(g->gcstate == GCSatomic ||
629             th->openupval == NULL || isintwups(th));
630  for (; o < th->top; o++)  /* mark live elements in the stack */
631    markvalue(g, s2v(o));
632  for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
633    markobject(g, uv);  /* open upvalues cannot be collected */
634  if (g->gcstate == GCSatomic) {  /* final traversal? */
635    for (; o < th->stack_last + EXTRA_STACK; o++)
636      setnilvalue(s2v(o));  /* clear dead stack slice */
637    /* 'remarkupvals' may have removed thread from 'twups' list */
638    if (!isintwups(th) && th->openupval != NULL) {
639      th->twups = g->twups;  /* link it back to the list */
640      g->twups = th;
641    }
642  }
643  else if (!g->gcemergency)
644    luaD_shrinkstack(th); /* do not change stack in emergency cycle */
645  return 1 + stacksize(th);
646}
647
648
649/*
650** traverse one gray object, turning it to black.
651*/
652static lu_mem propagatemark (global_State *g) {
653  GCObject *o = g->gray;
654  nw2black(o);
655  g->gray = *getgclist(o);  /* remove from 'gray' list */
656  switch (o->tt) {
657    case LUA_VTABLE: return traversetable(g, gco2t(o));
658    case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
659    case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
660    case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
661    case LUA_VPROTO: return traverseproto(g, gco2p(o));
662    case LUA_VTHREAD: return traversethread(g, gco2th(o));
663    default: lua_assert(0); return 0;
664  }
665}
666
667
668static lu_mem propagateall (global_State *g) {
669  lu_mem tot = 0;
670  while (g->gray)
671    tot += propagatemark(g);
672  return tot;
673}
674
675
676/*
677** Traverse all ephemeron tables propagating marks from keys to values.
678** Repeat until it converges, that is, nothing new is marked. 'dir'
679** inverts the direction of the traversals, trying to speed up
680** convergence on chains in the same table.
681**
682*/
683static void convergeephemerons (global_State *g) {
684  int changed;
685  int dir = 0;
686  do {
687    GCObject *w;
688    GCObject *next = g->ephemeron;  /* get ephemeron list */
689    g->ephemeron = NULL;  /* tables may return to this list when traversed */
690    changed = 0;
691    while ((w = next) != NULL) {  /* for each ephemeron table */
692      Table *h = gco2t(w);
693      next = h->gclist;  /* list is rebuilt during loop */
694      nw2black(h);  /* out of the list (for now) */
695      if (traverseephemeron(g, h, dir)) {  /* marked some value? */
696        propagateall(g);  /* propagate changes */
697        changed = 1;  /* will have to revisit all ephemeron tables */
698      }
699    }
700    dir = !dir;  /* invert direction next time */
701  } while (changed);  /* repeat until no more changes */
702}
703
704/* }====================================================== */
705
706
707/*
708** {======================================================
709** Sweep Functions
710** =======================================================
711*/
712
713
714/*
715** clear entries with unmarked keys from all weaktables in list 'l'
716*/
717static void clearbykeys (global_State *g, GCObject *l) {
718  for (; l; l = gco2t(l)->gclist) {
719    Table *h = gco2t(l);
720    Node *limit = gnodelast(h);
721    Node *n;
722    for (n = gnode(h, 0); n < limit; n++) {
723      if (iscleared(g, gckeyN(n)))  /* unmarked key? */
724        setempty(gval(n));  /* remove entry */
725      if (isempty(gval(n)))  /* is entry empty? */
726        clearkey(n);  /* clear its key */
727    }
728  }
729}
730
731
732/*
733** clear entries with unmarked values from all weaktables in list 'l' up
734** to element 'f'
735*/
736static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
737  for (; l != f; l = gco2t(l)->gclist) {
738    Table *h = gco2t(l);
739    Node *n, *limit = gnodelast(h);
740    unsigned int i;
741    unsigned int asize = luaH_realasize(h);
742    for (i = 0; i < asize; i++) {
743      TValue *o = &h->array[i];
744      if (iscleared(g, gcvalueN(o)))  /* value was collected? */
745        setempty(o);  /* remove entry */
746    }
747    for (n = gnode(h, 0); n < limit; n++) {
748      if (iscleared(g, gcvalueN(gval(n))))  /* unmarked value? */
749        setempty(gval(n));  /* remove entry */
750      if (isempty(gval(n)))  /* is entry empty? */
751        clearkey(n);  /* clear its key */
752    }
753  }
754}
755
756
757static void freeupval (lua_State *L, UpVal *uv) {
758  if (upisopen(uv))
759    luaF_unlinkupval(uv);
760  luaM_free(L, uv);
761}
762
763
764static void freeobj (lua_State *L, GCObject *o) {
765  switch (o->tt) {
766    case LUA_VPROTO:
767      luaF_freeproto(L, gco2p(o));
768      break;
769    case LUA_VUPVAL:
770      freeupval(L, gco2upv(o));
771      break;
772    case LUA_VLCL: {
773      LClosure *cl = gco2lcl(o);
774      luaM_freemem(L, cl, sizeLclosure(cl->nupvalues));
775      break;
776    }
777    case LUA_VCCL: {
778      CClosure *cl = gco2ccl(o);
779      luaM_freemem(L, cl, sizeCclosure(cl->nupvalues));
780      break;
781    }
782    case LUA_VTABLE:
783      luaH_free(L, gco2t(o));
784      break;
785    case LUA_VTHREAD:
786      luaE_freethread(L, gco2th(o));
787      break;
788    case LUA_VUSERDATA: {
789      Udata *u = gco2u(o);
790      luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
791      break;
792    }
793    case LUA_VSHRSTR: {
794      TString *ts = gco2ts(o);
795      luaS_remove(L, ts);  /* remove it from hash table */
796      luaM_freemem(L, ts, sizelstring(ts->shrlen));
797      break;
798    }
799    case LUA_VLNGSTR: {
800      TString *ts = gco2ts(o);
801      luaM_freemem(L, ts, sizelstring(ts->u.lnglen));
802      break;
803    }
804    default: lua_assert(0);
805  }
806}
807
808
809/*
810** sweep at most 'countin' elements from a list of GCObjects erasing dead
811** objects, where a dead object is one marked with the old (non current)
812** white; change all non-dead objects back to white, preparing for next
813** collection cycle. Return where to continue the traversal or NULL if
814** list is finished. ('*countout' gets the number of elements traversed.)
815*/
816static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
817                             int *countout) {
818  global_State *g = G(L);
819  int ow = otherwhite(g);
820  int i;
821  int white = luaC_white(g);  /* current white */
822  for (i = 0; *p != NULL && i < countin; i++) {
823    GCObject *curr = *p;
824    int marked = curr->marked;
825    if (isdeadm(ow, marked)) {  /* is 'curr' dead? */
826      *p = curr->next;  /* remove 'curr' from list */
827      freeobj(L, curr);  /* erase 'curr' */
828    }
829    else {  /* change mark to 'white' */
830      curr->marked = cast_byte((marked & ~maskgcbits) | white);
831      p = &curr->next;  /* go to next element */
832    }
833  }
834  if (countout)
835    *countout = i;  /* number of elements traversed */
836  return (*p == NULL) ? NULL : p;
837}
838
839
840/*
841** sweep a list until a live object (or end of list)
842*/
843static GCObject **sweeptolive (lua_State *L, GCObject **p) {
844  GCObject **old = p;
845  do {
846    p = sweeplist(L, p, 1, NULL);
847  } while (p == old);
848  return p;
849}
850
851/* }====================================================== */
852
853
854/*
855** {======================================================
856** Finalization
857** =======================================================
858*/
859
860/*
861** If possible, shrink string table.
862*/
863static void checkSizes (lua_State *L, global_State *g) {
864  if (!g->gcemergency) {
865    if (g->strt.nuse < g->strt.size / 4) {  /* string table too big? */
866      l_mem olddebt = g->GCdebt;
867      luaS_resize(L, g->strt.size / 2);
868      g->GCestimate += g->GCdebt - olddebt;  /* correct estimate */
869    }
870  }
871}
872
873
874/*
875** Get the next udata to be finalized from the 'tobefnz' list, and
876** link it back into the 'allgc' list.
877*/
878static GCObject *udata2finalize (global_State *g) {
879  GCObject *o = g->tobefnz;  /* get first element */
880  lua_assert(tofinalize(o));
881  g->tobefnz = o->next;  /* remove it from 'tobefnz' list */
882  o->next = g->allgc;  /* return it to 'allgc' list */
883  g->allgc = o;
884  resetbit(o->marked, FINALIZEDBIT);  /* object is "normal" again */
885  if (issweepphase(g))
886    makewhite(g, o);  /* "sweep" object */
887  else if (getage(o) == G_OLD1)
888    g->firstold1 = o;  /* it is the first OLD1 object in the list */
889  return o;
890}
891
892
893static void dothecall (lua_State *L, void *ud) {
894  UNUSED(ud);
895  luaD_callnoyield(L, L->top - 2, 0);
896}
897
898
899static void GCTM (lua_State *L) {
900  global_State *g = G(L);
901  const TValue *tm;
902  TValue v;
903  lua_assert(!g->gcemergency);
904  setgcovalue(L, &v, udata2finalize(g));
905  tm = luaT_gettmbyobj(L, &v, TM_GC);
906  if (!notm(tm)) {  /* is there a finalizer? */
907    int status;
908    lu_byte oldah = L->allowhook;
909    int running  = g->gcrunning;
910    L->allowhook = 0;  /* stop debug hooks during GC metamethod */
911    g->gcrunning = 0;  /* avoid GC steps */
912    setobj2s(L, L->top++, tm);  /* push finalizer... */
913    setobj2s(L, L->top++, &v);  /* ... and its argument */
914    L->ci->callstatus |= CIST_FIN;  /* will run a finalizer */
915    status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0);
916    L->ci->callstatus &= ~CIST_FIN;  /* not running a finalizer anymore */
917    L->allowhook = oldah;  /* restore hooks */
918    g->gcrunning = running;  /* restore state */
919    if (unlikely(status != LUA_OK)) {  /* error while running __gc? */
920      luaE_warnerror(L, "__gc metamethod");
921      L->top--;  /* pops error object */
922    }
923  }
924}
925
926
927/*
928** Call a few finalizers
929*/
930static int runafewfinalizers (lua_State *L, int n) {
931  global_State *g = G(L);
932  int i;
933  for (i = 0; i < n && g->tobefnz; i++)
934    GCTM(L);  /* call one finalizer */
935  return i;
936}
937
938
939/*
940** call all pending finalizers
941*/
942static void callallpendingfinalizers (lua_State *L) {
943  global_State *g = G(L);
944  while (g->tobefnz)
945    GCTM(L);
946}
947
948
949/*
950** find last 'next' field in list 'p' list (to add elements in its end)
951*/
952static GCObject **findlast (GCObject **p) {
953  while (*p != NULL)
954    p = &(*p)->next;
955  return p;
956}
957
958
959/*
960** Move all unreachable objects (or 'all' objects) that need
961** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
962** (Note that objects after 'finobjold1' cannot be white, so they
963** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
964** so the whole list is traversed.)
965*/
966static void separatetobefnz (global_State *g, int all) {
967  GCObject *curr;
968  GCObject **p = &g->finobj;
969  GCObject **lastnext = findlast(&g->tobefnz);
970  while ((curr = *p) != g->finobjold1) {  /* traverse all finalizable objects */
971    lua_assert(tofinalize(curr));
972    if (!(iswhite(curr) || all))  /* not being collected? */
973      p = &curr->next;  /* don't bother with it */
974    else {
975      if (curr == g->finobjsur)  /* removing 'finobjsur'? */
976        g->finobjsur = curr->next;  /* correct it */
977      *p = curr->next;  /* remove 'curr' from 'finobj' list */
978      curr->next = *lastnext;  /* link at the end of 'tobefnz' list */
979      *lastnext = curr;
980      lastnext = &curr->next;
981    }
982  }
983}
984
985
986/*
987** If pointer 'p' points to 'o', move it to the next element.
988*/
989static void checkpointer (GCObject **p, GCObject *o) {
990  if (o == *p)
991    *p = o->next;
992}
993
994
995/*
996** Correct pointers to objects inside 'allgc' list when
997** object 'o' is being removed from the list.
998*/
999static void correctpointers (global_State *g, GCObject *o) {
1000  checkpointer(&g->survival, o);
1001  checkpointer(&g->old1, o);
1002  checkpointer(&g->reallyold, o);
1003  checkpointer(&g->firstold1, o);
1004}
1005
1006
1007/*
1008** if object 'o' has a finalizer, remove it from 'allgc' list (must
1009** search the list to find it) and link it in 'finobj' list.
1010*/
1011void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
1012  global_State *g = G(L);
1013  if (tofinalize(o) ||                 /* obj. is already marked... */
1014      gfasttm(g, mt, TM_GC) == NULL)   /* or has no finalizer? */
1015    return;  /* nothing to be done */
1016  else {  /* move 'o' to 'finobj' list */
1017    GCObject **p;
1018    if (issweepphase(g)) {
1019      makewhite(g, o);  /* "sweep" object 'o' */
1020      if (g->sweepgc == &o->next)  /* should not remove 'sweepgc' object */
1021        g->sweepgc = sweeptolive(L, g->sweepgc);  /* change 'sweepgc' */
1022    }
1023    else
1024      correctpointers(g, o);
1025    /* search for pointer pointing to 'o' */
1026    for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
1027    *p = o->next;  /* remove 'o' from 'allgc' list */
1028    o->next = g->finobj;  /* link it in 'finobj' list */
1029    g->finobj = o;
1030    l_setbit(o->marked, FINALIZEDBIT);  /* mark it as such */
1031  }
1032}
1033
1034/* }====================================================== */
1035
1036
1037/*
1038** {======================================================
1039** Generational Collector
1040** =======================================================
1041*/
1042
1043static void setpause (global_State *g);
1044
1045
1046/*
1047** Sweep a list of objects to enter generational mode.  Deletes dead
1048** objects and turns the non dead to old. All non-dead threads---which
1049** are now old---must be in a gray list. Everything else is not in a
1050** gray list. Open upvalues are also kept gray.
1051*/
1052static void sweep2old (lua_State *L, GCObject **p) {
1053  GCObject *curr;
1054  global_State *g = G(L);
1055  while ((curr = *p) != NULL) {
1056    if (iswhite(curr)) {  /* is 'curr' dead? */
1057      lua_assert(isdead(g, curr));
1058      *p = curr->next;  /* remove 'curr' from list */
1059      freeobj(L, curr);  /* erase 'curr' */
1060    }
1061    else {  /* all surviving objects become old */
1062      setage(curr, G_OLD);
1063      if (curr->tt == LUA_VTHREAD) {  /* threads must be watched */
1064        lua_State *th = gco2th(curr);
1065        linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
1066      }
1067      else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
1068        set2gray(curr);  /* open upvalues are always gray */
1069      else  /* everything else is black */
1070        nw2black(curr);
1071      p = &curr->next;  /* go to next element */
1072    }
1073  }
1074}
1075
1076
1077/*
1078** Sweep for generational mode. Delete dead objects. (Because the
1079** collection is not incremental, there are no "new white" objects
1080** during the sweep. So, any white object must be dead.) For
1081** non-dead objects, advance their ages and clear the color of
1082** new objects. (Old objects keep their colors.)
1083** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1084** here, because these old-generation objects are usually not swept
1085** here.  They will all be advanced in 'correctgraylist'. That function
1086** will also remove objects turned white here from any gray list.
1087*/
1088static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
1089                            GCObject *limit, GCObject **pfirstold1) {
1090  static const lu_byte nextage[] = {
1091    G_SURVIVAL,  /* from G_NEW */
1092    G_OLD1,      /* from G_SURVIVAL */
1093    G_OLD1,      /* from G_OLD0 */
1094    G_OLD,       /* from G_OLD1 */
1095    G_OLD,       /* from G_OLD (do not change) */
1096    G_TOUCHED1,  /* from G_TOUCHED1 (do not change) */
1097    G_TOUCHED2   /* from G_TOUCHED2 (do not change) */
1098  };
1099  int white = luaC_white(g);
1100  GCObject *curr;
1101  while ((curr = *p) != limit) {
1102    if (iswhite(curr)) {  /* is 'curr' dead? */
1103      lua_assert(!isold(curr) && isdead(g, curr));
1104      *p = curr->next;  /* remove 'curr' from list */
1105      freeobj(L, curr);  /* erase 'curr' */
1106    }
1107    else {  /* correct mark and age */
1108      if (getage(curr) == G_NEW) {  /* new objects go back to white */
1109        int marked = curr->marked & ~maskgcbits;  /* erase GC bits */
1110        curr->marked = cast_byte(marked | G_SURVIVAL | white);
1111      }
1112      else {  /* all other objects will be old, and so keep their color */
1113        setage(curr, nextage[getage(curr)]);
1114        if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
1115          *pfirstold1 = curr;  /* first OLD1 object in the list */
1116      }
1117      p = &curr->next;  /* go to next element */
1118    }
1119  }
1120  return p;
1121}
1122
1123
1124/*
1125** Traverse a list making all its elements white and clearing their
1126** age. In incremental mode, all objects are 'new' all the time,
1127** except for fixed strings (which are always old).
1128*/
1129static void whitelist (global_State *g, GCObject *p) {
1130  int white = luaC_white(g);
1131  for (; p != NULL; p = p->next)
1132    p->marked = cast_byte((p->marked & ~maskgcbits) | white);
1133}
1134
1135
1136/*
1137** Correct a list of gray objects. Return pointer to where rest of the
1138** list should be linked.
1139** Because this correction is done after sweeping, young objects might
1140** be turned white and still be in the list. They are only removed.
1141** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1142** Non-white threads also remain on the list; 'TOUCHED2' objects become
1143** regular old; they and anything else are removed from the list.
1144*/
1145static GCObject **correctgraylist (GCObject **p) {
1146  GCObject *curr;
1147  while ((curr = *p) != NULL) {
1148    GCObject **next = getgclist(curr);
1149    if (iswhite(curr))
1150      goto remove;  /* remove all white objects */
1151    else if (getage(curr) == G_TOUCHED1) {  /* touched in this cycle? */
1152      lua_assert(isgray(curr));
1153      nw2black(curr);  /* make it black, for next barrier */
1154      changeage(curr, G_TOUCHED1, G_TOUCHED2);
1155      goto remain;  /* keep it in the list and go to next element */
1156    }
1157    else if (curr->tt == LUA_VTHREAD) {
1158      lua_assert(isgray(curr));
1159      goto remain;  /* keep non-white threads on the list */
1160    }
1161    else {  /* everything else is removed */
1162      lua_assert(isold(curr));  /* young objects should be white here */
1163      if (getage(curr) == G_TOUCHED2)  /* advance from TOUCHED2... */
1164        changeage(curr, G_TOUCHED2, G_OLD);  /* ... to OLD */
1165      nw2black(curr);  /* make object black (to be removed) */
1166      goto remove;
1167    }
1168    remove: *p = *next; continue;
1169    remain: p = next; continue;
1170  }
1171  return p;
1172}
1173
1174
1175/*
1176** Correct all gray lists, coalescing them into 'grayagain'.
1177*/
1178static void correctgraylists (global_State *g) {
1179  GCObject **list = correctgraylist(&g->grayagain);
1180  *list = g->weak; g->weak = NULL;
1181  list = correctgraylist(list);
1182  *list = g->allweak; g->allweak = NULL;
1183  list = correctgraylist(list);
1184  *list = g->ephemeron; g->ephemeron = NULL;
1185  correctgraylist(list);
1186}
1187
1188
1189/*
1190** Mark black 'OLD1' objects when starting a new young collection.
1191** Gray objects are already in some gray list, and so will be visited
1192** in the atomic step.
1193*/
1194static void markold (global_State *g, GCObject *from, GCObject *to) {
1195  GCObject *p;
1196  for (p = from; p != to; p = p->next) {
1197    if (getage(p) == G_OLD1) {
1198      lua_assert(!iswhite(p));
1199      changeage(p, G_OLD1, G_OLD);  /* now they are old */
1200      if (isblack(p))
1201        reallymarkobject(g, p);
1202    }
1203  }
1204}
1205
1206
1207/*
1208** Finish a young-generation collection.
1209*/
1210static void finishgencycle (lua_State *L, global_State *g) {
1211  correctgraylists(g);
1212  checkSizes(L, g);
1213  g->gcstate = GCSpropagate;  /* skip restart */
1214  if (!g->gcemergency)
1215    callallpendingfinalizers(L);
1216}
1217
1218
1219/*
1220** Does a young collection. First, mark 'OLD1' objects. Then does the
1221** atomic step. Then, sweep all lists and advance pointers. Finally,
1222** finish the collection.
1223*/
1224static void youngcollection (lua_State *L, global_State *g) {
1225  GCObject **psurvival;  /* to point to first non-dead survival object */
1226  GCObject *dummy;  /* dummy out parameter to 'sweepgen' */
1227  lua_assert(g->gcstate == GCSpropagate);
1228  if (g->firstold1) {  /* are there regular OLD1 objects? */
1229    markold(g, g->firstold1, g->reallyold);  /* mark them */
1230    g->firstold1 = NULL;  /* no more OLD1 objects (for now) */
1231  }
1232  markold(g, g->finobj, g->finobjrold);
1233  markold(g, g->tobefnz, NULL);
1234  atomic(L);
1235
1236  /* sweep nursery and get a pointer to its last live element */
1237  g->gcstate = GCSswpallgc;
1238  psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
1239  /* sweep 'survival' */
1240  sweepgen(L, g, psurvival, g->old1, &g->firstold1);
1241  g->reallyold = g->old1;
1242  g->old1 = *psurvival;  /* 'survival' survivals are old now */
1243  g->survival = g->allgc;  /* all news are survivals */
1244
1245  /* repeat for 'finobj' lists */
1246  dummy = NULL;  /* no 'firstold1' optimization for 'finobj' lists */
1247  psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
1248  /* sweep 'survival' */
1249  sweepgen(L, g, psurvival, g->finobjold1, &dummy);
1250  g->finobjrold = g->finobjold1;
1251  g->finobjold1 = *psurvival;  /* 'survival' survivals are old now */
1252  g->finobjsur = g->finobj;  /* all news are survivals */
1253
1254  sweepgen(L, g, &g->tobefnz, NULL, &dummy);
1255  finishgencycle(L, g);
1256}
1257
1258
1259/*
1260** Clears all gray lists, sweeps objects, and prepare sublists to enter
1261** generational mode. The sweeps remove dead objects and turn all
1262** surviving objects to old. Threads go back to 'grayagain'; everything
1263** else is turned black (not in any gray list).
1264*/
1265static void atomic2gen (lua_State *L, global_State *g) {
1266  cleargraylists(g);
1267  /* sweep all elements making them old */
1268  g->gcstate = GCSswpallgc;
1269  sweep2old(L, &g->allgc);
1270  /* everything alive now is old */
1271  g->reallyold = g->old1 = g->survival = g->allgc;
1272  g->firstold1 = NULL;  /* there are no OLD1 objects anywhere */
1273
1274  /* repeat for 'finobj' lists */
1275  sweep2old(L, &g->finobj);
1276  g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
1277
1278  sweep2old(L, &g->tobefnz);
1279
1280  g->gckind = KGC_GEN;
1281  g->lastatomic = 0;
1282  g->GCestimate = gettotalbytes(g);  /* base for memory control */
1283  finishgencycle(L, g);
1284}
1285
1286
1287/*
1288** Enter generational mode. Must go until the end of an atomic cycle
1289** to ensure that all objects are correctly marked and weak tables
1290** are cleared. Then, turn all objects into old and finishes the
1291** collection.
1292*/
1293static lu_mem entergen (lua_State *L, global_State *g) {
1294  lu_mem numobjs;
1295  luaC_runtilstate(L, bitmask(GCSpause));  /* prepare to start a new cycle */
1296  luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1297  numobjs = atomic(L);  /* propagates all and then do the atomic stuff */
1298  atomic2gen(L, g);
1299  return numobjs;
1300}
1301
1302
1303/*
1304** Enter incremental mode. Turn all objects white, make all
1305** intermediate lists point to NULL (to avoid invalid pointers),
1306** and go to the pause state.
1307*/
1308static void enterinc (global_State *g) {
1309  whitelist(g, g->allgc);
1310  g->reallyold = g->old1 = g->survival = NULL;
1311  whitelist(g, g->finobj);
1312  whitelist(g, g->tobefnz);
1313  g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
1314  g->gcstate = GCSpause;
1315  g->gckind = KGC_INC;
1316  g->lastatomic = 0;
1317}
1318
1319
1320/*
1321** Change collector mode to 'newmode'.
1322*/
1323void luaC_changemode (lua_State *L, int newmode) {
1324  global_State *g = G(L);
1325  if (newmode != g->gckind) {
1326    if (newmode == KGC_GEN)  /* entering generational mode? */
1327      entergen(L, g);
1328    else
1329      enterinc(g);  /* entering incremental mode */
1330  }
1331  g->lastatomic = 0;
1332}
1333
1334
1335/*
1336** Does a full collection in generational mode.
1337*/
1338static lu_mem fullgen (lua_State *L, global_State *g) {
1339  enterinc(g);
1340  return entergen(L, g);
1341}
1342
1343
1344/*
1345** Set debt for the next minor collection, which will happen when
1346** memory grows 'genminormul'%.
1347*/
1348static void setminordebt (global_State *g) {
1349  luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
1350}
1351
1352
1353/*
1354** Does a major collection after last collection was a "bad collection".
1355**
1356** When the program is building a big structure, it allocates lots of
1357** memory but generates very little garbage. In those scenarios,
1358** the generational mode just wastes time doing small collections, and
1359** major collections are frequently what we call a "bad collection", a
1360** collection that frees too few objects. To avoid the cost of switching
1361** between generational mode and the incremental mode needed for full
1362** (major) collections, the collector tries to stay in incremental mode
1363** after a bad collection, and to switch back to generational mode only
1364** after a "good" collection (one that traverses less than 9/8 objects
1365** of the previous one).
1366** The collector must choose whether to stay in incremental mode or to
1367** switch back to generational mode before sweeping. At this point, it
1368** does not know the real memory in use, so it cannot use memory to
1369** decide whether to return to generational mode. Instead, it uses the
1370** number of objects traversed (returned by 'atomic') as a proxy. The
1371** field 'g->lastatomic' keeps this count from the last collection.
1372** ('g->lastatomic != 0' also means that the last collection was bad.)
1373*/
1374static void stepgenfull (lua_State *L, global_State *g) {
1375  lu_mem newatomic;  /* count of traversed objects */
1376  lu_mem lastatomic = g->lastatomic;  /* count from last collection */
1377  if (g->gckind == KGC_GEN)  /* still in generational mode? */
1378    enterinc(g);  /* enter incremental mode */
1379  luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1380  newatomic = atomic(L);  /* mark everybody */
1381  if (newatomic < lastatomic + (lastatomic >> 3)) {  /* good collection? */
1382    atomic2gen(L, g);  /* return to generational mode */
1383    setminordebt(g);
1384  }
1385  else {  /* another bad collection; stay in incremental mode */
1386    g->GCestimate = gettotalbytes(g);  /* first estimate */;
1387    entersweep(L);
1388    luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1389    setpause(g);
1390    g->lastatomic = newatomic;
1391  }
1392}
1393
1394
1395/*
1396** Does a generational "step".
1397** Usually, this means doing a minor collection and setting the debt to
1398** make another collection when memory grows 'genminormul'% larger.
1399**
1400** However, there are exceptions.  If memory grows 'genmajormul'%
1401** larger than it was at the end of the last major collection (kept
1402** in 'g->GCestimate'), the function does a major collection. At the
1403** end, it checks whether the major collection was able to free a
1404** decent amount of memory (at least half the growth in memory since
1405** previous major collection). If so, the collector keeps its state,
1406** and the next collection will probably be minor again. Otherwise,
1407** we have what we call a "bad collection". In that case, set the field
1408** 'g->lastatomic' to signal that fact, so that the next collection will
1409** go to 'stepgenfull'.
1410**
1411** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1412** in that case, do a minor collection.
1413*/
1414static void genstep (lua_State *L, global_State *g) {
1415  if (g->lastatomic != 0)  /* last collection was a bad one? */
1416    stepgenfull(L, g);  /* do a full step */
1417  else {
1418    lu_mem majorbase = g->GCestimate;  /* memory after last major collection */
1419    lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
1420    if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
1421      lu_mem numobjs = fullgen(L, g);  /* do a major collection */
1422      if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
1423        /* collected at least half of memory growth since last major
1424           collection; keep doing minor collections */
1425        setminordebt(g);
1426      }
1427      else {  /* bad collection */
1428        g->lastatomic = numobjs;  /* signal that last collection was bad */
1429        setpause(g);  /* do a long wait for next (major) collection */
1430      }
1431    }
1432    else {  /* regular case; do a minor collection */
1433      youngcollection(L, g);
1434      setminordebt(g);
1435      g->GCestimate = majorbase;  /* preserve base value */
1436    }
1437  }
1438  lua_assert(isdecGCmodegen(g));
1439}
1440
1441/* }====================================================== */
1442
1443
1444/*
1445** {======================================================
1446** GC control
1447** =======================================================
1448*/
1449
1450
1451/*
1452** Set the "time" to wait before starting a new GC cycle; cycle will
1453** start when memory use hits the threshold of ('estimate' * pause /
1454** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1455** because Lua cannot even start with less than PAUSEADJ bytes).
1456*/
1457static void setpause (global_State *g) {
1458  l_mem threshold, debt;
1459  int pause = getgcparam(g->gcpause);
1460  l_mem estimate = g->GCestimate / PAUSEADJ;  /* adjust 'estimate' */
1461  lua_assert(estimate > 0);
1462  threshold = (pause < MAX_LMEM / estimate)  /* overflow? */
1463            ? estimate * pause  /* no overflow */
1464            : MAX_LMEM;  /* overflow; truncate to maximum */
1465  debt = gettotalbytes(g) - threshold;
1466  if (debt > 0) debt = 0;
1467  luaE_setdebt(g, debt);
1468}
1469
1470
1471/*
1472** Enter first sweep phase.
1473** The call to 'sweeptolive' makes the pointer point to an object
1474** inside the list (instead of to the header), so that the real sweep do
1475** not need to skip objects created between "now" and the start of the
1476** real sweep.
1477*/
1478static void entersweep (lua_State *L) {
1479  global_State *g = G(L);
1480  g->gcstate = GCSswpallgc;
1481  lua_assert(g->sweepgc == NULL);
1482  g->sweepgc = sweeptolive(L, &g->allgc);
1483}
1484
1485
1486/*
1487** Delete all objects in list 'p' until (but not including) object
1488** 'limit'.
1489*/
1490static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
1491  while (p != limit) {
1492    GCObject *next = p->next;
1493    freeobj(L, p);
1494    p = next;
1495  }
1496}
1497
1498
1499/*
1500** Call all finalizers of the objects in the given Lua state, and
1501** then free all objects, except for the main thread.
1502*/
1503void luaC_freeallobjects (lua_State *L) {
1504  global_State *g = G(L);
1505  luaC_changemode(L, KGC_INC);
1506  separatetobefnz(g, 1);  /* separate all objects with finalizers */
1507  lua_assert(g->finobj == NULL);
1508  callallpendingfinalizers(L);
1509  deletelist(L, g->allgc, obj2gco(g->mainthread));
1510  deletelist(L, g->finobj, NULL);
1511  deletelist(L, g->fixedgc, NULL);  /* collect fixed objects */
1512  lua_assert(g->strt.nuse == 0);
1513}
1514
1515
1516static lu_mem atomic (lua_State *L) {
1517  global_State *g = G(L);
1518  lu_mem work = 0;
1519  GCObject *origweak, *origall;
1520  GCObject *grayagain = g->grayagain;  /* save original list */
1521  g->grayagain = NULL;
1522  lua_assert(g->ephemeron == NULL && g->weak == NULL);
1523  lua_assert(!iswhite(g->mainthread));
1524  g->gcstate = GCSatomic;
1525  markobject(g, L);  /* mark running thread */
1526  /* registry and global metatables may be changed by API */
1527  markvalue(g, &g->l_registry);
1528  markmt(g);  /* mark global metatables */
1529  work += propagateall(g);  /* empties 'gray' list */
1530  /* remark occasional upvalues of (maybe) dead threads */
1531  work += remarkupvals(g);
1532  work += propagateall(g);  /* propagate changes */
1533  g->gray = grayagain;
1534  work += propagateall(g);  /* traverse 'grayagain' list */
1535  convergeephemerons(g);
1536  /* at this point, all strongly accessible objects are marked. */
1537  /* Clear values from weak tables, before checking finalizers */
1538  clearbyvalues(g, g->weak, NULL);
1539  clearbyvalues(g, g->allweak, NULL);
1540  origweak = g->weak; origall = g->allweak;
1541  separatetobefnz(g, 0);  /* separate objects to be finalized */
1542  work += markbeingfnz(g);  /* mark objects that will be finalized */
1543  work += propagateall(g);  /* remark, to propagate 'resurrection' */
1544  convergeephemerons(g);
1545  /* at this point, all resurrected objects are marked. */
1546  /* remove dead objects from weak tables */
1547  clearbykeys(g, g->ephemeron);  /* clear keys from all ephemeron tables */
1548  clearbykeys(g, g->allweak);  /* clear keys from all 'allweak' tables */
1549  /* clear values from resurrected weak tables */
1550  clearbyvalues(g, g->weak, origweak);
1551  clearbyvalues(g, g->allweak, origall);
1552  luaS_clearcache(g);
1553  g->currentwhite = cast_byte(otherwhite(g));  /* flip current white */
1554  lua_assert(g->gray == NULL);
1555  return work;  /* estimate of slots marked by 'atomic' */
1556}
1557
1558
1559static int sweepstep (lua_State *L, global_State *g,
1560                      int nextstate, GCObject **nextlist) {
1561  if (g->sweepgc) {
1562    l_mem olddebt = g->GCdebt;
1563    int count;
1564    g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
1565    g->GCestimate += g->GCdebt - olddebt;  /* update estimate */
1566    return count;
1567  }
1568  else {  /* enter next state */
1569    g->gcstate = nextstate;
1570    g->sweepgc = nextlist;
1571    return 0;  /* no work done */
1572  }
1573}
1574
1575
1576static lu_mem singlestep (lua_State *L) {
1577  global_State *g = G(L);
1578  switch (g->gcstate) {
1579    case GCSpause: {
1580      restartcollection(g);
1581      g->gcstate = GCSpropagate;
1582      return 1;
1583    }
1584    case GCSpropagate: {
1585      if (g->gray == NULL) {  /* no more gray objects? */
1586        g->gcstate = GCSenteratomic;  /* finish propagate phase */
1587        return 0;
1588      }
1589      else
1590        return propagatemark(g);  /* traverse one gray object */
1591    }
1592    case GCSenteratomic: {
1593      lu_mem work = atomic(L);  /* work is what was traversed by 'atomic' */
1594      entersweep(L);
1595      g->GCestimate = gettotalbytes(g);  /* first estimate */;
1596      return work;
1597    }
1598    case GCSswpallgc: {  /* sweep "regular" objects */
1599      return sweepstep(L, g, GCSswpfinobj, &g->finobj);
1600    }
1601    case GCSswpfinobj: {  /* sweep objects with finalizers */
1602      return sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
1603    }
1604    case GCSswptobefnz: {  /* sweep objects to be finalized */
1605      return sweepstep(L, g, GCSswpend, NULL);
1606    }
1607    case GCSswpend: {  /* finish sweeps */
1608      checkSizes(L, g);
1609      g->gcstate = GCScallfin;
1610      return 0;
1611    }
1612    case GCScallfin: {  /* call remaining finalizers */
1613      if (g->tobefnz && !g->gcemergency) {
1614        int n = runafewfinalizers(L, GCFINMAX);
1615        return n * GCFINALIZECOST;
1616      }
1617      else {  /* emergency mode or no more finalizers */
1618        g->gcstate = GCSpause;  /* finish collection */
1619        return 0;
1620      }
1621    }
1622    default: lua_assert(0); return 0;
1623  }
1624}
1625
1626
1627/*
1628** advances the garbage collector until it reaches a state allowed
1629** by 'statemask'
1630*/
1631void luaC_runtilstate (lua_State *L, int statesmask) {
1632  global_State *g = G(L);
1633  while (!testbit(statesmask, g->gcstate))
1634    singlestep(L);
1635}
1636
1637
1638/*
1639** Performs a basic incremental step. The debt and step size are
1640** converted from bytes to "units of work"; then the function loops
1641** running single steps until adding that many units of work or
1642** finishing a cycle (pause state). Finally, it sets the debt that
1643** controls when next step will be performed.
1644*/
1645static void incstep (lua_State *L, global_State *g) {
1646  int stepmul = (getgcparam(g->gcstepmul) | 1);  /* avoid division by 0 */
1647  l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
1648  l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
1649                 ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
1650                 : MAX_LMEM;  /* overflow; keep maximum value */
1651  do {  /* repeat until pause or enough "credit" (negative debt) */
1652    lu_mem work = singlestep(L);  /* perform one single step */
1653    debt -= work;
1654  } while (debt > -stepsize && g->gcstate != GCSpause);
1655  if (g->gcstate == GCSpause)
1656    setpause(g);  /* pause until next cycle */
1657  else {
1658    debt = (debt / stepmul) * WORK2MEM;  /* convert 'work units' to bytes */
1659    luaE_setdebt(g, debt);
1660  }
1661}
1662
1663/*
1664** performs a basic GC step if collector is running
1665*/
1666void luaC_step (lua_State *L) {
1667  global_State *g = G(L);
1668  lua_assert(!g->gcemergency);
1669  if (g->gcrunning) {  /* running? */
1670    if(isdecGCmodegen(g))
1671      genstep(L, g);
1672    else
1673      incstep(L, g);
1674  }
1675}
1676
1677
1678/*
1679** Perform a full collection in incremental mode.
1680** Before running the collection, check 'keepinvariant'; if it is true,
1681** there may be some objects marked as black, so the collector has
1682** to sweep all objects to turn them back to white (as white has not
1683** changed, nothing will be collected).
1684*/
1685static void fullinc (lua_State *L, global_State *g) {
1686  if (keepinvariant(g))  /* black objects? */
1687    entersweep(L); /* sweep everything to turn them back to white */
1688  /* finish any pending sweep phase to start a new cycle */
1689  luaC_runtilstate(L, bitmask(GCSpause));
1690  luaC_runtilstate(L, bitmask(GCScallfin));  /* run up to finalizers */
1691  /* estimate must be correct after a full GC cycle */
1692  lua_assert(g->GCestimate == gettotalbytes(g));
1693  luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1694  setpause(g);
1695}
1696
1697
1698/*
1699** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1700** some operations which could change the interpreter state in some
1701** unexpected ways (running finalizers and shrinking some structures).
1702*/
1703void luaC_fullgc (lua_State *L, int isemergency) {
1704  global_State *g = G(L);
1705  lua_assert(!g->gcemergency);
1706  g->gcemergency = isemergency;  /* set flag */
1707  if (g->gckind == KGC_INC)
1708    fullinc(L, g);
1709  else
1710    fullgen(L, g);
1711  g->gcemergency = 0;
1712}
1713
1714/* }====================================================== */
1715
1716
1717