1//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This tablegen backend is responsible for emitting a description of the target
10// instruction set for the code generator.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenDAGPatterns.h"
15#include "CodeGenInstruction.h"
16#include "CodeGenSchedule.h"
17#include "CodeGenTarget.h"
18#include "PredicateExpander.h"
19#include "SequenceToOffsetTable.h"
20#include "TableGenBackends.h"
21#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/StringExtras.h"
23#include "llvm/Support/Casting.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/TableGen/Error.h"
26#include "llvm/TableGen/Record.h"
27#include "llvm/TableGen/TableGenBackend.h"
28#include <cassert>
29#include <cstdint>
30#include <map>
31#include <string>
32#include <utility>
33#include <vector>
34
35using namespace llvm;
36
37namespace {
38
39class InstrInfoEmitter {
40  RecordKeeper &Records;
41  CodeGenDAGPatterns CDP;
42  const CodeGenSchedModels &SchedModels;
43
44public:
45  InstrInfoEmitter(RecordKeeper &R):
46    Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {}
47
48  // run - Output the instruction set description.
49  void run(raw_ostream &OS);
50
51private:
52  void emitEnums(raw_ostream &OS);
53
54  typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy;
55
56  /// The keys of this map are maps which have OpName enum values as their keys
57  /// and instruction operand indices as their values.  The values of this map
58  /// are lists of instruction names.
59  typedef std::map<std::map<unsigned, unsigned>,
60                   std::vector<std::string>> OpNameMapTy;
61  typedef std::map<std::string, unsigned>::iterator StrUintMapIter;
62
63  /// Generate member functions in the target-specific GenInstrInfo class.
64  ///
65  /// This method is used to custom expand TIIPredicate definitions.
66  /// See file llvm/Target/TargetInstPredicates.td for a description of what is
67  /// a TIIPredicate and how to use it.
68  void emitTIIHelperMethods(raw_ostream &OS, StringRef TargetName,
69                            bool ExpandDefinition = true);
70
71  /// Expand TIIPredicate definitions to functions that accept a const MCInst
72  /// reference.
73  void emitMCIIHelperMethods(raw_ostream &OS, StringRef TargetName);
74  void emitRecord(const CodeGenInstruction &Inst, unsigned Num,
75                  Record *InstrInfo,
76                  std::map<std::vector<Record*>, unsigned> &EL,
77                  const OperandInfoMapTy &OpInfo,
78                  raw_ostream &OS);
79  void emitOperandTypeMappings(
80      raw_ostream &OS, const CodeGenTarget &Target,
81      ArrayRef<const CodeGenInstruction *> NumberedInstructions);
82  void initOperandMapData(
83            ArrayRef<const CodeGenInstruction *> NumberedInstructions,
84            StringRef Namespace,
85            std::map<std::string, unsigned> &Operands,
86            OpNameMapTy &OperandMap);
87  void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target,
88            ArrayRef<const CodeGenInstruction*> NumberedInstructions);
89
90  // Operand information.
91  void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs);
92  std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst);
93};
94
95} // end anonymous namespace
96
97static void PrintDefList(const std::vector<Record*> &Uses,
98                         unsigned Num, raw_ostream &OS) {
99  OS << "static const MCPhysReg ImplicitList" << Num << "[] = { ";
100  for (Record *U : Uses)
101    OS << getQualifiedName(U) << ", ";
102  OS << "0 };\n";
103}
104
105//===----------------------------------------------------------------------===//
106// Operand Info Emission.
107//===----------------------------------------------------------------------===//
108
109std::vector<std::string>
110InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) {
111  std::vector<std::string> Result;
112
113  for (auto &Op : Inst.Operands) {
114    // Handle aggregate operands and normal operands the same way by expanding
115    // either case into a list of operands for this op.
116    std::vector<CGIOperandList::OperandInfo> OperandList;
117
118    // This might be a multiple operand thing.  Targets like X86 have
119    // registers in their multi-operand operands.  It may also be an anonymous
120    // operand, which has a single operand, but no declared class for the
121    // operand.
122    DagInit *MIOI = Op.MIOperandInfo;
123
124    if (!MIOI || MIOI->getNumArgs() == 0) {
125      // Single, anonymous, operand.
126      OperandList.push_back(Op);
127    } else {
128      for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) {
129        OperandList.push_back(Op);
130
131        auto *OpR = cast<DefInit>(MIOI->getArg(j))->getDef();
132        OperandList.back().Rec = OpR;
133      }
134    }
135
136    for (unsigned j = 0, e = OperandList.size(); j != e; ++j) {
137      Record *OpR = OperandList[j].Rec;
138      std::string Res;
139
140      if (OpR->isSubClassOf("RegisterOperand"))
141        OpR = OpR->getValueAsDef("RegClass");
142      if (OpR->isSubClassOf("RegisterClass"))
143        Res += getQualifiedName(OpR) + "RegClassID, ";
144      else if (OpR->isSubClassOf("PointerLikeRegClass"))
145        Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", ";
146      else
147        // -1 means the operand does not have a fixed register class.
148        Res += "-1, ";
149
150      // Fill in applicable flags.
151      Res += "0";
152
153      // Ptr value whose register class is resolved via callback.
154      if (OpR->isSubClassOf("PointerLikeRegClass"))
155        Res += "|(1<<MCOI::LookupPtrRegClass)";
156
157      // Predicate operands.  Check to see if the original unexpanded operand
158      // was of type PredicateOp.
159      if (Op.Rec->isSubClassOf("PredicateOp"))
160        Res += "|(1<<MCOI::Predicate)";
161
162      // Optional def operands.  Check to see if the original unexpanded operand
163      // was of type OptionalDefOperand.
164      if (Op.Rec->isSubClassOf("OptionalDefOperand"))
165        Res += "|(1<<MCOI::OptionalDef)";
166
167      // Branch target operands.  Check to see if the original unexpanded
168      // operand was of type BranchTargetOperand.
169      if (Op.Rec->isSubClassOf("BranchTargetOperand"))
170        Res += "|(1<<MCOI::BranchTarget)";
171
172      // Fill in operand type.
173      Res += ", ";
174      assert(!Op.OperandType.empty() && "Invalid operand type.");
175      Res += Op.OperandType;
176
177      // Fill in constraint info.
178      Res += ", ";
179
180      const CGIOperandList::ConstraintInfo &Constraint =
181        Op.Constraints[j];
182      if (Constraint.isNone())
183        Res += "0";
184      else if (Constraint.isEarlyClobber())
185        Res += "(1 << MCOI::EARLY_CLOBBER)";
186      else {
187        assert(Constraint.isTied());
188        Res += "((" + utostr(Constraint.getTiedOperand()) +
189                    " << 16) | (1 << MCOI::TIED_TO))";
190      }
191
192      Result.push_back(Res);
193    }
194  }
195
196  return Result;
197}
198
199void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS,
200                                       OperandInfoMapTy &OperandInfoIDs) {
201  // ID #0 is for no operand info.
202  unsigned OperandListNum = 0;
203  OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum;
204
205  OS << "\n";
206  const CodeGenTarget &Target = CDP.getTargetInfo();
207  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
208    std::vector<std::string> OperandInfo = GetOperandInfo(*Inst);
209    unsigned &N = OperandInfoIDs[OperandInfo];
210    if (N != 0) continue;
211
212    N = ++OperandListNum;
213    OS << "static const MCOperandInfo OperandInfo" << N << "[] = { ";
214    for (const std::string &Info : OperandInfo)
215      OS << "{ " << Info << " }, ";
216    OS << "};\n";
217  }
218}
219
220/// Initialize data structures for generating operand name mappings.
221///
222/// \param Operands [out] A map used to generate the OpName enum with operand
223///        names as its keys and operand enum values as its values.
224/// \param OperandMap [out] A map for representing the operand name mappings for
225///        each instructions.  This is used to generate the OperandMap table as
226///        well as the getNamedOperandIdx() function.
227void InstrInfoEmitter::initOperandMapData(
228        ArrayRef<const CodeGenInstruction *> NumberedInstructions,
229        StringRef Namespace,
230        std::map<std::string, unsigned> &Operands,
231        OpNameMapTy &OperandMap) {
232  unsigned NumOperands = 0;
233  for (const CodeGenInstruction *Inst : NumberedInstructions) {
234    if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable"))
235      continue;
236    std::map<unsigned, unsigned> OpList;
237    for (const auto &Info : Inst->Operands) {
238      StrUintMapIter I = Operands.find(Info.Name);
239
240      if (I == Operands.end()) {
241        I = Operands.insert(Operands.begin(),
242                    std::pair<std::string, unsigned>(Info.Name, NumOperands++));
243      }
244      OpList[I->second] = Info.MIOperandNo;
245    }
246    OperandMap[OpList].push_back(Namespace.str() + "::" +
247                                 Inst->TheDef->getName().str());
248  }
249}
250
251/// Generate a table and function for looking up the indices of operands by
252/// name.
253///
254/// This code generates:
255/// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry
256///   for each operand name.
257/// - A 2-dimensional table called OperandMap for mapping OpName enum values to
258///   operand indices.
259/// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx)
260///   for looking up the operand index for an instruction, given a value from
261///   OpName enum
262void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS,
263           const CodeGenTarget &Target,
264           ArrayRef<const CodeGenInstruction*> NumberedInstructions) {
265  StringRef Namespace = Target.getInstNamespace();
266  std::string OpNameNS = "OpName";
267  // Map of operand names to their enumeration value.  This will be used to
268  // generate the OpName enum.
269  std::map<std::string, unsigned> Operands;
270  OpNameMapTy OperandMap;
271
272  initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap);
273
274  OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n";
275  OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n";
276  OS << "namespace llvm {\n";
277  OS << "namespace " << Namespace << " {\n";
278  OS << "namespace " << OpNameNS << " {\n";
279  OS << "enum {\n";
280  for (const auto &Op : Operands)
281    OS << "  " << Op.first << " = " << Op.second << ",\n";
282
283  OS << "OPERAND_LAST";
284  OS << "\n};\n";
285  OS << "} // end namespace OpName\n";
286  OS << "} // end namespace " << Namespace << "\n";
287  OS << "} // end namespace llvm\n";
288  OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n\n";
289
290  OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n";
291  OS << "#undef GET_INSTRINFO_NAMED_OPS\n";
292  OS << "namespace llvm {\n";
293  OS << "namespace " << Namespace << " {\n";
294  OS << "LLVM_READONLY\n";
295  OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n";
296  if (!Operands.empty()) {
297    OS << "  static const int16_t OperandMap [][" << Operands.size()
298       << "] = {\n";
299    for (const auto &Entry : OperandMap) {
300      const std::map<unsigned, unsigned> &OpList = Entry.first;
301      OS << "{";
302
303      // Emit a row of the OperandMap table
304      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
305        OS << (OpList.count(i) == 0 ? -1 : (int)OpList.find(i)->second) << ", ";
306
307      OS << "},\n";
308    }
309    OS << "};\n";
310
311    OS << "  switch(Opcode) {\n";
312    unsigned TableIndex = 0;
313    for (const auto &Entry : OperandMap) {
314      for (const std::string &Name : Entry.second)
315        OS << "  case " << Name << ":\n";
316
317      OS << "    return OperandMap[" << TableIndex++ << "][NamedIdx];\n";
318    }
319    OS << "    default: return -1;\n";
320    OS << "  }\n";
321  } else {
322    // There are no operands, so no need to emit anything
323    OS << "  return -1;\n";
324  }
325  OS << "}\n";
326  OS << "} // end namespace " << Namespace << "\n";
327  OS << "} // end namespace llvm\n";
328  OS << "#endif //GET_INSTRINFO_NAMED_OPS\n\n";
329}
330
331/// Generate an enum for all the operand types for this target, under the
332/// llvm::TargetNamespace::OpTypes namespace.
333/// Operand types are all definitions derived of the Operand Target.td class.
334void InstrInfoEmitter::emitOperandTypeMappings(
335    raw_ostream &OS, const CodeGenTarget &Target,
336    ArrayRef<const CodeGenInstruction *> NumberedInstructions) {
337
338  StringRef Namespace = Target.getInstNamespace();
339  std::vector<Record *> Operands = Records.getAllDerivedDefinitions("Operand");
340  std::vector<Record *> RegisterOperands =
341      Records.getAllDerivedDefinitions("RegisterOperand");
342  std::vector<Record *> RegisterClasses =
343      Records.getAllDerivedDefinitions("RegisterClass");
344
345  OS << "#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
346  OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n";
347  OS << "namespace llvm {\n";
348  OS << "namespace " << Namespace << " {\n";
349  OS << "namespace OpTypes {\n";
350  OS << "enum OperandType {\n";
351
352  unsigned EnumVal = 0;
353  for (const std::vector<Record *> *RecordsToAdd :
354       {&Operands, &RegisterOperands, &RegisterClasses}) {
355    for (const Record *Op : *RecordsToAdd) {
356      if (!Op->isAnonymous())
357        OS << "  " << Op->getName() << " = " << EnumVal << ",\n";
358      ++EnumVal;
359    }
360  }
361
362  OS << "  OPERAND_TYPE_LIST_END" << "\n};\n";
363  OS << "} // end namespace OpTypes\n";
364  OS << "} // end namespace " << Namespace << "\n";
365  OS << "} // end namespace llvm\n";
366  OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n\n";
367
368  OS << "#ifdef GET_INSTRINFO_OPERAND_TYPE\n";
369  OS << "#undef GET_INSTRINFO_OPERAND_TYPE\n";
370  OS << "namespace llvm {\n";
371  OS << "namespace " << Namespace << " {\n";
372  OS << "LLVM_READONLY\n";
373  OS << "static int getOperandType(uint16_t Opcode, uint16_t OpIdx) {\n";
374  // TODO: Factor out instructions with same operands to compress the tables.
375  if (!NumberedInstructions.empty()) {
376    std::vector<int> OperandOffsets;
377    std::vector<Record *> OperandRecords;
378    int CurrentOffset = 0;
379    for (const CodeGenInstruction *Inst : NumberedInstructions) {
380      OperandOffsets.push_back(CurrentOffset);
381      for (const auto &Op : Inst->Operands) {
382        const DagInit *MIOI = Op.MIOperandInfo;
383        if (!MIOI || MIOI->getNumArgs() == 0) {
384          // Single, anonymous, operand.
385          OperandRecords.push_back(Op.Rec);
386          ++CurrentOffset;
387        } else {
388          for (Init *Arg : make_range(MIOI->arg_begin(), MIOI->arg_end())) {
389            OperandRecords.push_back(cast<DefInit>(Arg)->getDef());
390            ++CurrentOffset;
391          }
392        }
393      }
394    }
395
396    // Emit the table of offsets for the opcode lookup.
397    OS << "  const int Offsets[] = {\n";
398    for (int I = 0, E = OperandOffsets.size(); I != E; ++I)
399      OS << "    " << OperandOffsets[I] << ",\n";
400    OS << "  };\n";
401
402    // Add an entry for the end so that we don't need to special case it below.
403    OperandOffsets.push_back(OperandRecords.size());
404    // Emit the actual operand types in a flat table.
405    OS << "  const int OpcodeOperandTypes[] = {\n    ";
406    for (int I = 0, E = OperandRecords.size(), CurOffset = 1; I != E; ++I) {
407      // We print each Opcode's operands in its own row.
408      if (I == OperandOffsets[CurOffset]) {
409        OS << "\n    ";
410        // If there are empty rows, mark them with an empty comment.
411        while (OperandOffsets[++CurOffset] == I)
412          OS << "/**/\n    ";
413      }
414      Record *OpR = OperandRecords[I];
415      if ((OpR->isSubClassOf("Operand") ||
416           OpR->isSubClassOf("RegisterOperand") ||
417           OpR->isSubClassOf("RegisterClass")) &&
418          !OpR->isAnonymous())
419        OS << "OpTypes::" << OpR->getName();
420      else
421        OS << -1;
422      OS << ", ";
423    }
424    OS << "\n  };\n";
425
426    OS << "  return OpcodeOperandTypes[Offsets[Opcode] + OpIdx];\n";
427  } else {
428    OS << "  llvm_unreachable(\"No instructions defined\");\n";
429  }
430  OS << "}\n";
431  OS << "} // end namespace " << Namespace << "\n";
432  OS << "} // end namespace llvm\n";
433  OS << "#endif // GET_INSTRINFO_OPERAND_TYPE\n\n";
434}
435
436void InstrInfoEmitter::emitMCIIHelperMethods(raw_ostream &OS,
437                                             StringRef TargetName) {
438  RecVec TIIPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
439  if (TIIPredicates.empty())
440    return;
441
442  OS << "#ifdef GET_INSTRINFO_MC_HELPER_DECLS\n";
443  OS << "#undef GET_INSTRINFO_MC_HELPER_DECLS\n\n";
444
445  OS << "namespace llvm {\n";
446  OS << "class MCInst;\n\n";
447
448  OS << "namespace " << TargetName << "_MC {\n\n";
449
450  for (const Record *Rec : TIIPredicates) {
451    OS << "bool " << Rec->getValueAsString("FunctionName")
452        << "(const MCInst &MI);\n";
453  }
454
455  OS << "\n} // end namespace " << TargetName << "_MC\n";
456  OS << "} // end namespace llvm\n\n";
457
458  OS << "#endif // GET_INSTRINFO_MC_HELPER_DECLS\n\n";
459
460  OS << "#ifdef GET_INSTRINFO_MC_HELPERS\n";
461  OS << "#undef GET_INSTRINFO_MC_HELPERS\n\n";
462
463  OS << "namespace llvm {\n";
464  OS << "namespace " << TargetName << "_MC {\n\n";
465
466  PredicateExpander PE(TargetName);
467  PE.setExpandForMC(true);
468
469  for (const Record *Rec : TIIPredicates) {
470    OS << "bool " << Rec->getValueAsString("FunctionName");
471    OS << "(const MCInst &MI) {\n";
472
473    OS.indent(PE.getIndentLevel() * 2);
474    PE.expandStatement(OS, Rec->getValueAsDef("Body"));
475    OS << "\n}\n\n";
476  }
477
478  OS << "} // end namespace " << TargetName << "_MC\n";
479  OS << "} // end namespace llvm\n\n";
480
481  OS << "#endif // GET_GENISTRINFO_MC_HELPERS\n";
482}
483
484void InstrInfoEmitter::emitTIIHelperMethods(raw_ostream &OS,
485                                            StringRef TargetName,
486                                            bool ExpandDefinition) {
487  RecVec TIIPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
488  if (TIIPredicates.empty())
489    return;
490
491  PredicateExpander PE(TargetName);
492  PE.setExpandForMC(false);
493
494  for (const Record *Rec : TIIPredicates) {
495    OS << (ExpandDefinition ? "" : "static ") << "bool ";
496    if (ExpandDefinition)
497      OS << TargetName << "InstrInfo::";
498    OS << Rec->getValueAsString("FunctionName");
499    OS << "(const MachineInstr &MI)";
500    if (!ExpandDefinition) {
501      OS << ";\n";
502      continue;
503    }
504
505    OS << " {\n";
506    OS.indent(PE.getIndentLevel() * 2);
507    PE.expandStatement(OS, Rec->getValueAsDef("Body"));
508    OS << "\n}\n\n";
509  }
510}
511
512//===----------------------------------------------------------------------===//
513// Main Output.
514//===----------------------------------------------------------------------===//
515
516// run - Emit the main instruction description records for the target...
517void InstrInfoEmitter::run(raw_ostream &OS) {
518  emitSourceFileHeader("Target Instruction Enum Values and Descriptors", OS);
519  emitEnums(OS);
520
521  OS << "#ifdef GET_INSTRINFO_MC_DESC\n";
522  OS << "#undef GET_INSTRINFO_MC_DESC\n";
523
524  OS << "namespace llvm {\n\n";
525
526  CodeGenTarget &Target = CDP.getTargetInfo();
527  const std::string &TargetName = std::string(Target.getName());
528  Record *InstrInfo = Target.getInstructionSet();
529
530  // Keep track of all of the def lists we have emitted already.
531  std::map<std::vector<Record*>, unsigned> EmittedLists;
532  unsigned ListNumber = 0;
533
534  // Emit all of the instruction's implicit uses and defs.
535  for (const CodeGenInstruction *II : Target.getInstructionsByEnumValue()) {
536    Record *Inst = II->TheDef;
537    std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses");
538    if (!Uses.empty()) {
539      unsigned &IL = EmittedLists[Uses];
540      if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS);
541    }
542    std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs");
543    if (!Defs.empty()) {
544      unsigned &IL = EmittedLists[Defs];
545      if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS);
546    }
547  }
548
549  OperandInfoMapTy OperandInfoIDs;
550
551  // Emit all of the operand info records.
552  EmitOperandInfo(OS, OperandInfoIDs);
553
554  // Emit all of the MCInstrDesc records in their ENUM ordering.
555  //
556  OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n";
557  ArrayRef<const CodeGenInstruction*> NumberedInstructions =
558    Target.getInstructionsByEnumValue();
559
560  SequenceToOffsetTable<std::string> InstrNames;
561  unsigned Num = 0;
562  for (const CodeGenInstruction *Inst : NumberedInstructions) {
563    // Keep a list of the instruction names.
564    InstrNames.add(std::string(Inst->TheDef->getName()));
565    // Emit the record into the table.
566    emitRecord(*Inst, Num++, InstrInfo, EmittedLists, OperandInfoIDs, OS);
567  }
568  OS << "};\n\n";
569
570  // Emit the array of instruction names.
571  InstrNames.layout();
572  InstrNames.emitStringLiteralDef(OS, Twine("extern const char ") + TargetName +
573                                          "InstrNameData[]");
574
575  OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {";
576  Num = 0;
577  for (const CodeGenInstruction *Inst : NumberedInstructions) {
578    // Newline every eight entries.
579    if (Num % 8 == 0)
580      OS << "\n    ";
581    OS << InstrNames.get(std::string(Inst->TheDef->getName())) << "U, ";
582    ++Num;
583  }
584  OS << "\n};\n\n";
585
586  bool HasDeprecationFeatures =
587      llvm::any_of(NumberedInstructions, [](const CodeGenInstruction *Inst) {
588        return !Inst->HasComplexDeprecationPredicate &&
589               !Inst->DeprecatedReason.empty();
590      });
591  if (HasDeprecationFeatures) {
592    OS << "extern const uint8_t " << TargetName
593       << "InstrDeprecationFeatures[] = {";
594    Num = 0;
595    for (const CodeGenInstruction *Inst : NumberedInstructions) {
596      if (Num % 8 == 0)
597        OS << "\n    ";
598      if (!Inst->HasComplexDeprecationPredicate &&
599          !Inst->DeprecatedReason.empty())
600        OS << Target.getInstNamespace() << "::" << Inst->DeprecatedReason
601           << ", ";
602      else
603        OS << "uint8_t(-1), ";
604      ++Num;
605    }
606    OS << "\n};\n\n";
607  }
608
609  bool HasComplexDeprecationInfos =
610      llvm::any_of(NumberedInstructions, [](const CodeGenInstruction *Inst) {
611        return Inst->HasComplexDeprecationPredicate;
612      });
613  if (HasComplexDeprecationInfos) {
614    OS << "extern const MCInstrInfo::ComplexDeprecationPredicate " << TargetName
615       << "InstrComplexDeprecationInfos[] = {";
616    Num = 0;
617    for (const CodeGenInstruction *Inst : NumberedInstructions) {
618      if (Num % 8 == 0)
619        OS << "\n    ";
620      if (Inst->HasComplexDeprecationPredicate)
621        // Emit a function pointer to the complex predicate method.
622        OS << "&get" << Inst->DeprecatedReason << "DeprecationInfo, ";
623      else
624        OS << "nullptr, ";
625      ++Num;
626    }
627    OS << "\n};\n\n";
628  }
629
630  // MCInstrInfo initialization routine.
631  OS << "static inline void Init" << TargetName
632     << "MCInstrInfo(MCInstrInfo *II) {\n";
633  OS << "  II->InitMCInstrInfo(" << TargetName << "Insts, " << TargetName
634     << "InstrNameIndices, " << TargetName << "InstrNameData, ";
635  if (HasDeprecationFeatures)
636    OS << TargetName << "InstrDeprecationFeatures, ";
637  else
638    OS << "nullptr, ";
639  if (HasComplexDeprecationInfos)
640    OS << TargetName << "InstrComplexDeprecationInfos, ";
641  else
642    OS << "nullptr, ";
643  OS << NumberedInstructions.size() << ");\n}\n\n";
644
645  OS << "} // end namespace llvm\n";
646
647  OS << "#endif // GET_INSTRINFO_MC_DESC\n\n";
648
649  // Create a TargetInstrInfo subclass to hide the MC layer initialization.
650  OS << "#ifdef GET_INSTRINFO_HEADER\n";
651  OS << "#undef GET_INSTRINFO_HEADER\n";
652
653  std::string ClassName = TargetName + "GenInstrInfo";
654  OS << "namespace llvm {\n";
655  OS << "struct " << ClassName << " : public TargetInstrInfo {\n"
656     << "  explicit " << ClassName
657     << "(int CFSetupOpcode = -1, int CFDestroyOpcode = -1, int CatchRetOpcode = -1, int ReturnOpcode = -1);\n"
658     << "  ~" << ClassName << "() override = default;\n";
659
660
661  OS << "\n};\n} // end namespace llvm\n";
662
663  OS << "#endif // GET_INSTRINFO_HEADER\n\n";
664
665  OS << "#ifdef GET_INSTRINFO_HELPER_DECLS\n";
666  OS << "#undef GET_INSTRINFO_HELPER_DECLS\n\n";
667  emitTIIHelperMethods(OS, TargetName, /* ExpandDefintion = */false);
668  OS << "\n";
669  OS << "#endif // GET_INSTRINFO_HELPER_DECLS\n\n";
670
671  OS << "#ifdef GET_INSTRINFO_HELPERS\n";
672  OS << "#undef GET_INSTRINFO_HELPERS\n\n";
673  emitTIIHelperMethods(OS, TargetName, /* ExpandDefintion = */true);
674  OS << "#endif // GET_INSTRINFO_HELPERS\n\n";
675
676  OS << "#ifdef GET_INSTRINFO_CTOR_DTOR\n";
677  OS << "#undef GET_INSTRINFO_CTOR_DTOR\n";
678
679  OS << "namespace llvm {\n";
680  OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n";
681  OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n";
682  OS << "extern const char " << TargetName << "InstrNameData[];\n";
683  if (HasDeprecationFeatures)
684    OS << "extern const uint8_t " << TargetName
685       << "InstrDeprecationFeatures[];\n";
686  if (HasComplexDeprecationInfos)
687    OS << "extern const MCInstrInfo::ComplexDeprecationPredicate " << TargetName
688       << "InstrComplexDeprecationInfos[];\n";
689  OS << ClassName << "::" << ClassName
690     << "(int CFSetupOpcode, int CFDestroyOpcode, int CatchRetOpcode, int "
691        "ReturnOpcode)\n"
692     << "  : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode, CatchRetOpcode, "
693        "ReturnOpcode) {\n"
694     << "  InitMCInstrInfo(" << TargetName << "Insts, " << TargetName
695     << "InstrNameIndices, " << TargetName << "InstrNameData, ";
696  if (HasDeprecationFeatures)
697    OS << TargetName << "InstrDeprecationFeatures, ";
698  else
699    OS << "nullptr, ";
700  if (HasComplexDeprecationInfos)
701    OS << TargetName << "InstrComplexDeprecationInfos, ";
702  else
703    OS << "nullptr, ";
704  OS << NumberedInstructions.size() << ");\n}\n";
705  OS << "} // end namespace llvm\n";
706
707  OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n";
708
709  emitOperandNameMappings(OS, Target, NumberedInstructions);
710
711  emitOperandTypeMappings(OS, Target, NumberedInstructions);
712
713  emitMCIIHelperMethods(OS, TargetName);
714}
715
716void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num,
717                                  Record *InstrInfo,
718                         std::map<std::vector<Record*>, unsigned> &EmittedLists,
719                                  const OperandInfoMapTy &OpInfo,
720                                  raw_ostream &OS) {
721  int MinOperands = 0;
722  if (!Inst.Operands.empty())
723    // Each logical operand can be multiple MI operands.
724    MinOperands = Inst.Operands.back().MIOperandNo +
725                  Inst.Operands.back().MINumOperands;
726
727  OS << "  { ";
728  OS << Num << ",\t" << MinOperands << ",\t"
729     << Inst.Operands.NumDefs << ",\t"
730     << Inst.TheDef->getValueAsInt("Size") << ",\t"
731     << SchedModels.getSchedClassIdx(Inst) << ",\t0";
732
733  CodeGenTarget &Target = CDP.getTargetInfo();
734
735  // Emit all of the target independent flags...
736  if (Inst.isPreISelOpcode)    OS << "|(1ULL<<MCID::PreISelOpcode)";
737  if (Inst.isPseudo)           OS << "|(1ULL<<MCID::Pseudo)";
738  if (Inst.isReturn)           OS << "|(1ULL<<MCID::Return)";
739  if (Inst.isEHScopeReturn)    OS << "|(1ULL<<MCID::EHScopeReturn)";
740  if (Inst.isBranch)           OS << "|(1ULL<<MCID::Branch)";
741  if (Inst.isIndirectBranch)   OS << "|(1ULL<<MCID::IndirectBranch)";
742  if (Inst.isCompare)          OS << "|(1ULL<<MCID::Compare)";
743  if (Inst.isMoveImm)          OS << "|(1ULL<<MCID::MoveImm)";
744  if (Inst.isMoveReg)          OS << "|(1ULL<<MCID::MoveReg)";
745  if (Inst.isBitcast)          OS << "|(1ULL<<MCID::Bitcast)";
746  if (Inst.isAdd)              OS << "|(1ULL<<MCID::Add)";
747  if (Inst.isTrap)             OS << "|(1ULL<<MCID::Trap)";
748  if (Inst.isSelect)           OS << "|(1ULL<<MCID::Select)";
749  if (Inst.isBarrier)          OS << "|(1ULL<<MCID::Barrier)";
750  if (Inst.hasDelaySlot)       OS << "|(1ULL<<MCID::DelaySlot)";
751  if (Inst.isCall)             OS << "|(1ULL<<MCID::Call)";
752  if (Inst.canFoldAsLoad)      OS << "|(1ULL<<MCID::FoldableAsLoad)";
753  if (Inst.mayLoad)            OS << "|(1ULL<<MCID::MayLoad)";
754  if (Inst.mayStore)           OS << "|(1ULL<<MCID::MayStore)";
755  if (Inst.mayRaiseFPException) OS << "|(1ULL<<MCID::MayRaiseFPException)";
756  if (Inst.isPredicable)       OS << "|(1ULL<<MCID::Predicable)";
757  if (Inst.isConvertibleToThreeAddress) OS << "|(1ULL<<MCID::ConvertibleTo3Addr)";
758  if (Inst.isCommutable)       OS << "|(1ULL<<MCID::Commutable)";
759  if (Inst.isTerminator)       OS << "|(1ULL<<MCID::Terminator)";
760  if (Inst.isReMaterializable) OS << "|(1ULL<<MCID::Rematerializable)";
761  if (Inst.isNotDuplicable)    OS << "|(1ULL<<MCID::NotDuplicable)";
762  if (Inst.Operands.hasOptionalDef) OS << "|(1ULL<<MCID::HasOptionalDef)";
763  if (Inst.usesCustomInserter) OS << "|(1ULL<<MCID::UsesCustomInserter)";
764  if (Inst.hasPostISelHook)    OS << "|(1ULL<<MCID::HasPostISelHook)";
765  if (Inst.Operands.isVariadic)OS << "|(1ULL<<MCID::Variadic)";
766  if (Inst.hasSideEffects)     OS << "|(1ULL<<MCID::UnmodeledSideEffects)";
767  if (Inst.isAsCheapAsAMove)   OS << "|(1ULL<<MCID::CheapAsAMove)";
768  if (!Target.getAllowRegisterRenaming() || Inst.hasExtraSrcRegAllocReq)
769    OS << "|(1ULL<<MCID::ExtraSrcRegAllocReq)";
770  if (!Target.getAllowRegisterRenaming() || Inst.hasExtraDefRegAllocReq)
771    OS << "|(1ULL<<MCID::ExtraDefRegAllocReq)";
772  if (Inst.isRegSequence) OS << "|(1ULL<<MCID::RegSequence)";
773  if (Inst.isExtractSubreg) OS << "|(1ULL<<MCID::ExtractSubreg)";
774  if (Inst.isInsertSubreg) OS << "|(1ULL<<MCID::InsertSubreg)";
775  if (Inst.isConvergent) OS << "|(1ULL<<MCID::Convergent)";
776  if (Inst.variadicOpsAreDefs) OS << "|(1ULL<<MCID::VariadicOpsAreDefs)";
777  if (Inst.isAuthenticated) OS << "|(1ULL<<MCID::Authenticated)";
778
779  // Emit all of the target-specific flags...
780  BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags");
781  if (!TSF)
782    PrintFatalError(Inst.TheDef->getLoc(), "no TSFlags?");
783  uint64_t Value = 0;
784  for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) {
785    if (const auto *Bit = dyn_cast<BitInit>(TSF->getBit(i)))
786      Value |= uint64_t(Bit->getValue()) << i;
787    else
788      PrintFatalError(Inst.TheDef->getLoc(),
789                      "Invalid TSFlags bit in " + Inst.TheDef->getName());
790  }
791  OS << ", 0x";
792  OS.write_hex(Value);
793  OS << "ULL, ";
794
795  // Emit the implicit uses and defs lists...
796  std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses");
797  if (UseList.empty())
798    OS << "nullptr, ";
799  else
800    OS << "ImplicitList" << EmittedLists[UseList] << ", ";
801
802  std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs");
803  if (DefList.empty())
804    OS << "nullptr, ";
805  else
806    OS << "ImplicitList" << EmittedLists[DefList] << ", ";
807
808  // Emit the operand info.
809  std::vector<std::string> OperandInfo = GetOperandInfo(Inst);
810  if (OperandInfo.empty())
811    OS << "nullptr";
812  else
813    OS << "OperandInfo" << OpInfo.find(OperandInfo)->second;
814
815  OS << " },  // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n";
816}
817
818// emitEnums - Print out enum values for all of the instructions.
819void InstrInfoEmitter::emitEnums(raw_ostream &OS) {
820  OS << "#ifdef GET_INSTRINFO_ENUM\n";
821  OS << "#undef GET_INSTRINFO_ENUM\n";
822
823  OS << "namespace llvm {\n\n";
824
825  const CodeGenTarget &Target = CDP.getTargetInfo();
826
827  // We must emit the PHI opcode first...
828  StringRef Namespace = Target.getInstNamespace();
829
830  if (Namespace.empty())
831    PrintFatalError("No instructions defined!");
832
833  OS << "namespace " << Namespace << " {\n";
834  OS << "  enum {\n";
835  unsigned Num = 0;
836  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue())
837    OS << "    " << Inst->TheDef->getName() << "\t= " << Num++ << ",\n";
838  OS << "    INSTRUCTION_LIST_END = " << Num << "\n";
839  OS << "  };\n\n";
840  OS << "} // end namespace " << Namespace << "\n";
841  OS << "} // end namespace llvm\n";
842  OS << "#endif // GET_INSTRINFO_ENUM\n\n";
843
844  OS << "#ifdef GET_INSTRINFO_SCHED_ENUM\n";
845  OS << "#undef GET_INSTRINFO_SCHED_ENUM\n";
846  OS << "namespace llvm {\n\n";
847  OS << "namespace " << Namespace << " {\n";
848  OS << "namespace Sched {\n";
849  OS << "  enum {\n";
850  Num = 0;
851  for (const auto &Class : SchedModels.explicit_classes())
852    OS << "    " << Class.Name << "\t= " << Num++ << ",\n";
853  OS << "    SCHED_LIST_END = " << Num << "\n";
854  OS << "  };\n";
855  OS << "} // end namespace Sched\n";
856  OS << "} // end namespace " << Namespace << "\n";
857  OS << "} // end namespace llvm\n";
858
859  OS << "#endif // GET_INSTRINFO_SCHED_ENUM\n\n";
860}
861
862namespace llvm {
863
864void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) {
865  InstrInfoEmitter(RK).run(OS);
866  EmitMapTable(RK, OS);
867}
868
869} // end namespace llvm
870