1//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines structures to encapsulate information gleaned from the
10// target register and register class definitions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenRegisters.h"
15#include "CodeGenTarget.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/IntEqClasses.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/Twine.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/TableGen/Error.h"
32#include "llvm/TableGen/Record.h"
33#include <algorithm>
34#include <cassert>
35#include <cstdint>
36#include <iterator>
37#include <map>
38#include <queue>
39#include <set>
40#include <string>
41#include <tuple>
42#include <utility>
43#include <vector>
44
45using namespace llvm;
46
47#define DEBUG_TYPE "regalloc-emitter"
48
49//===----------------------------------------------------------------------===//
50//                             CodeGenSubRegIndex
51//===----------------------------------------------------------------------===//
52
53CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
54  : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
55  Name = std::string(R->getName());
56  if (R->getValue("Namespace"))
57    Namespace = std::string(R->getValueAsString("Namespace"));
58  Size = R->getValueAsInt("Size");
59  Offset = R->getValueAsInt("Offset");
60}
61
62CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
63                                       unsigned Enum)
64    : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
65      Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
66      Artificial(true) {}
67
68std::string CodeGenSubRegIndex::getQualifiedName() const {
69  std::string N = getNamespace();
70  if (!N.empty())
71    N += "::";
72  N += getName();
73  return N;
74}
75
76void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
77  if (!TheDef)
78    return;
79
80  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
81  if (!Comps.empty()) {
82    if (Comps.size() != 2)
83      PrintFatalError(TheDef->getLoc(),
84                      "ComposedOf must have exactly two entries");
85    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
86    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
87    CodeGenSubRegIndex *X = A->addComposite(B, this);
88    if (X)
89      PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
90  }
91
92  std::vector<Record*> Parts =
93    TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
94  if (!Parts.empty()) {
95    if (Parts.size() < 2)
96      PrintFatalError(TheDef->getLoc(),
97                      "CoveredBySubRegs must have two or more entries");
98    SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
99    for (Record *Part : Parts)
100      IdxParts.push_back(RegBank.getSubRegIdx(Part));
101    setConcatenationOf(IdxParts);
102  }
103}
104
105LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
106  // Already computed?
107  if (LaneMask.any())
108    return LaneMask;
109
110  // Recursion guard, shouldn't be required.
111  LaneMask = LaneBitmask::getAll();
112
113  // The lane mask is simply the union of all sub-indices.
114  LaneBitmask M;
115  for (const auto &C : Composed)
116    M |= C.second->computeLaneMask();
117  assert(M.any() && "Missing lane mask, sub-register cycle?");
118  LaneMask = M;
119  return LaneMask;
120}
121
122void CodeGenSubRegIndex::setConcatenationOf(
123    ArrayRef<CodeGenSubRegIndex*> Parts) {
124  if (ConcatenationOf.empty())
125    ConcatenationOf.assign(Parts.begin(), Parts.end());
126  else
127    assert(std::equal(Parts.begin(), Parts.end(),
128                      ConcatenationOf.begin()) && "parts consistent");
129}
130
131void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
132  for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
133       I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
134    CodeGenSubRegIndex *SubIdx = *I;
135    SubIdx->computeConcatTransitiveClosure();
136#ifndef NDEBUG
137    for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
138      assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
139#endif
140
141    if (SubIdx->ConcatenationOf.empty()) {
142      ++I;
143    } else {
144      I = ConcatenationOf.erase(I);
145      I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
146                                 SubIdx->ConcatenationOf.end());
147      I += SubIdx->ConcatenationOf.size();
148    }
149  }
150}
151
152//===----------------------------------------------------------------------===//
153//                              CodeGenRegister
154//===----------------------------------------------------------------------===//
155
156CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
157  : TheDef(R),
158    EnumValue(Enum),
159    CostPerUse(R->getValueAsInt("CostPerUse")),
160    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
161    HasDisjunctSubRegs(false),
162    SubRegsComplete(false),
163    SuperRegsComplete(false),
164    TopoSig(~0u) {
165  Artificial = R->getValueAsBit("isArtificial");
166}
167
168void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
169  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
170  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
171
172  if (SRIs.size() != SRs.size())
173    PrintFatalError(TheDef->getLoc(),
174                    "SubRegs and SubRegIndices must have the same size");
175
176  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
177    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
178    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
179  }
180
181  // Also compute leading super-registers. Each register has a list of
182  // covered-by-subregs super-registers where it appears as the first explicit
183  // sub-register.
184  //
185  // This is used by computeSecondarySubRegs() to find candidates.
186  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
187    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
188
189  // Add ad hoc alias links. This is a symmetric relationship between two
190  // registers, so build a symmetric graph by adding links in both ends.
191  std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
192  for (Record *Alias : Aliases) {
193    CodeGenRegister *Reg = RegBank.getReg(Alias);
194    ExplicitAliases.push_back(Reg);
195    Reg->ExplicitAliases.push_back(this);
196  }
197}
198
199const StringRef CodeGenRegister::getName() const {
200  assert(TheDef && "no def");
201  return TheDef->getName();
202}
203
204namespace {
205
206// Iterate over all register units in a set of registers.
207class RegUnitIterator {
208  CodeGenRegister::Vec::const_iterator RegI, RegE;
209  CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
210
211public:
212  RegUnitIterator(const CodeGenRegister::Vec &Regs):
213    RegI(Regs.begin()), RegE(Regs.end()) {
214
215    if (RegI != RegE) {
216      UnitI = (*RegI)->getRegUnits().begin();
217      UnitE = (*RegI)->getRegUnits().end();
218      advance();
219    }
220  }
221
222  bool isValid() const { return UnitI != UnitE; }
223
224  unsigned operator* () const { assert(isValid()); return *UnitI; }
225
226  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
227
228  /// Preincrement.  Move to the next unit.
229  void operator++() {
230    assert(isValid() && "Cannot advance beyond the last operand");
231    ++UnitI;
232    advance();
233  }
234
235protected:
236  void advance() {
237    while (UnitI == UnitE) {
238      if (++RegI == RegE)
239        break;
240      UnitI = (*RegI)->getRegUnits().begin();
241      UnitE = (*RegI)->getRegUnits().end();
242    }
243  }
244};
245
246} // end anonymous namespace
247
248// Return true of this unit appears in RegUnits.
249static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250  return RegUnits.test(Unit);
251}
252
253// Inherit register units from subregisters.
254// Return true if the RegUnits changed.
255bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256  bool changed = false;
257  for (const auto &SubReg : SubRegs) {
258    CodeGenRegister *SR = SubReg.second;
259    // Merge the subregister's units into this register's RegUnits.
260    changed |= (RegUnits |= SR->RegUnits);
261  }
262
263  return changed;
264}
265
266const CodeGenRegister::SubRegMap &
267CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268  // Only compute this map once.
269  if (SubRegsComplete)
270    return SubRegs;
271  SubRegsComplete = true;
272
273  HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274
275  // First insert the explicit subregs and make sure they are fully indexed.
276  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277    CodeGenRegister *SR = ExplicitSubRegs[i];
278    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279    if (!SR->Artificial)
280      Idx->Artificial = false;
281    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282      PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283                      " appears twice in Register " + getName());
284    // Map explicit sub-registers first, so the names take precedence.
285    // The inherited sub-registers are mapped below.
286    SubReg2Idx.insert(std::make_pair(SR, Idx));
287  }
288
289  // Keep track of inherited subregs and how they can be reached.
290  SmallPtrSet<CodeGenRegister*, 8> Orphans;
291
292  // Clone inherited subregs and place duplicate entries in Orphans.
293  // Here the order is important - earlier subregs take precedence.
294  for (CodeGenRegister *ESR : ExplicitSubRegs) {
295    const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296    HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297
298    for (const auto &SR : Map) {
299      if (!SubRegs.insert(SR).second)
300        Orphans.insert(SR.second);
301    }
302  }
303
304  // Expand any composed subreg indices.
305  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
307  // expanded subreg indices recursively.
308  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309  for (unsigned i = 0; i != Indices.size(); ++i) {
310    CodeGenSubRegIndex *Idx = Indices[i];
311    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312    CodeGenRegister *SR = SubRegs[Idx];
313    const SubRegMap &Map = SR->computeSubRegs(RegBank);
314
315    // Look at the possible compositions of Idx.
316    // They may not all be supported by SR.
317    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
318           E = Comps.end(); I != E; ++I) {
319      SubRegMap::const_iterator SRI = Map.find(I->first);
320      if (SRI == Map.end())
321        continue; // Idx + I->first doesn't exist in SR.
322      // Add I->second as a name for the subreg SRI->second, assuming it is
323      // orphaned, and the name isn't already used for something else.
324      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
325        continue;
326      // We found a new name for the orphaned sub-register.
327      SubRegs.insert(std::make_pair(I->second, SRI->second));
328      Indices.push_back(I->second);
329    }
330  }
331
332  // Now Orphans contains the inherited subregisters without a direct index.
333  // Create inferred indexes for all missing entries.
334  // Work backwards in the Indices vector in order to compose subregs bottom-up.
335  // Consider this subreg sequence:
336  //
337  //   qsub_1 -> dsub_0 -> ssub_0
338  //
339  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
340  // can be reached in two different ways:
341  //
342  //   qsub_1 -> ssub_0
343  //   dsub_2 -> ssub_0
344  //
345  // We pick the latter composition because another register may have [dsub_0,
346  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
347  // dsub_2 -> ssub_0 composition can be shared.
348  while (!Indices.empty() && !Orphans.empty()) {
349    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
350    CodeGenRegister *SR = SubRegs[Idx];
351    const SubRegMap &Map = SR->computeSubRegs(RegBank);
352    for (const auto &SubReg : Map)
353      if (Orphans.erase(SubReg.second))
354        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
355  }
356
357  // Compute the inverse SubReg -> Idx map.
358  for (const auto &SubReg : SubRegs) {
359    if (SubReg.second == this) {
360      ArrayRef<SMLoc> Loc;
361      if (TheDef)
362        Loc = TheDef->getLoc();
363      PrintFatalError(Loc, "Register " + getName() +
364                      " has itself as a sub-register");
365    }
366
367    // Compute AllSuperRegsCovered.
368    if (!CoveredBySubRegs)
369      SubReg.first->AllSuperRegsCovered = false;
370
371    // Ensure that every sub-register has a unique name.
372    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
373      SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
374    if (Ins->second == SubReg.first)
375      continue;
376    // Trouble: Two different names for SubReg.second.
377    ArrayRef<SMLoc> Loc;
378    if (TheDef)
379      Loc = TheDef->getLoc();
380    PrintFatalError(Loc, "Sub-register can't have two names: " +
381                  SubReg.second->getName() + " available as " +
382                  SubReg.first->getName() + " and " + Ins->second->getName());
383  }
384
385  // Derive possible names for sub-register concatenations from any explicit
386  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
387  // that getConcatSubRegIndex() won't invent any concatenated indices that the
388  // user already specified.
389  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
390    CodeGenRegister *SR = ExplicitSubRegs[i];
391    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
392        SR->Artificial)
393      continue;
394
395    // SR is composed of multiple sub-regs. Find their names in this register.
396    SmallVector<CodeGenSubRegIndex*, 8> Parts;
397    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
398      CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
399      if (!I.Artificial)
400        Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
401    }
402
403    // Offer this as an existing spelling for the concatenation of Parts.
404    CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
405    Idx.setConcatenationOf(Parts);
406  }
407
408  // Initialize RegUnitList. Because getSubRegs is called recursively, this
409  // processes the register hierarchy in postorder.
410  //
411  // Inherit all sub-register units. It is good enough to look at the explicit
412  // sub-registers, the other registers won't contribute any more units.
413  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
414    CodeGenRegister *SR = ExplicitSubRegs[i];
415    RegUnits |= SR->RegUnits;
416  }
417
418  // Absent any ad hoc aliasing, we create one register unit per leaf register.
419  // These units correspond to the maximal cliques in the register overlap
420  // graph which is optimal.
421  //
422  // When there is ad hoc aliasing, we simply create one unit per edge in the
423  // undirected ad hoc aliasing graph. Technically, we could do better by
424  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
425  // are extremely rare anyway (I've never seen one), so we don't bother with
426  // the added complexity.
427  for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
428    CodeGenRegister *AR = ExplicitAliases[i];
429    // Only visit each edge once.
430    if (AR->SubRegsComplete)
431      continue;
432    // Create a RegUnit representing this alias edge, and add it to both
433    // registers.
434    unsigned Unit = RegBank.newRegUnit(this, AR);
435    RegUnits.set(Unit);
436    AR->RegUnits.set(Unit);
437  }
438
439  // Finally, create units for leaf registers without ad hoc aliases. Note that
440  // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
441  // necessary. This means the aliasing leaf registers can share a single unit.
442  if (RegUnits.empty())
443    RegUnits.set(RegBank.newRegUnit(this));
444
445  // We have now computed the native register units. More may be adopted later
446  // for balancing purposes.
447  NativeRegUnits = RegUnits;
448
449  return SubRegs;
450}
451
452// In a register that is covered by its sub-registers, try to find redundant
453// sub-registers. For example:
454//
455//   QQ0 = {Q0, Q1}
456//   Q0 = {D0, D1}
457//   Q1 = {D2, D3}
458//
459// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
460// the register definition.
461//
462// The explicitly specified registers form a tree. This function discovers
463// sub-register relationships that would force a DAG.
464//
465void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
466  SmallVector<SubRegMap::value_type, 8> NewSubRegs;
467
468  std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
469  for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
470    SubRegQueue.push(P);
471
472  // Look at the leading super-registers of each sub-register. Those are the
473  // candidates for new sub-registers, assuming they are fully contained in
474  // this register.
475  while (!SubRegQueue.empty()) {
476    CodeGenSubRegIndex *SubRegIdx;
477    const CodeGenRegister *SubReg;
478    std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
479    SubRegQueue.pop();
480
481    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
482    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
483      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
484      // Already got this sub-register?
485      if (Cand == this || getSubRegIndex(Cand))
486        continue;
487      // Check if each component of Cand is already a sub-register.
488      assert(!Cand->ExplicitSubRegs.empty() &&
489             "Super-register has no sub-registers");
490      if (Cand->ExplicitSubRegs.size() == 1)
491        continue;
492      SmallVector<CodeGenSubRegIndex*, 8> Parts;
493      // We know that the first component is (SubRegIdx,SubReg). However we
494      // may still need to split it into smaller subregister parts.
495      assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
496      assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
497      for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
498        if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
499          if (SubRegIdx->ConcatenationOf.empty()) {
500            Parts.push_back(SubRegIdx);
501          } else
502            for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf)
503              Parts.push_back(SubIdx);
504        } else {
505          // Sub-register doesn't exist.
506          Parts.clear();
507          break;
508        }
509      }
510      // There is nothing to do if some Cand sub-register is not part of this
511      // register.
512      if (Parts.empty())
513        continue;
514
515      // Each part of Cand is a sub-register of this. Make the full Cand also
516      // a sub-register with a concatenated sub-register index.
517      CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
518      std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
519          std::make_pair(Concat, Cand);
520
521      if (!SubRegs.insert(NewSubReg).second)
522        continue;
523
524      // We inserted a new subregister.
525      NewSubRegs.push_back(NewSubReg);
526      SubRegQueue.push(NewSubReg);
527      SubReg2Idx.insert(std::make_pair(Cand, Concat));
528    }
529  }
530
531  // Create sub-register index composition maps for the synthesized indices.
532  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
533    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
534    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
535    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
536           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
537      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
538      if (!SubIdx)
539        PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
540                        SI->second->getName() + " in " + getName());
541      NewIdx->addComposite(SI->first, SubIdx);
542    }
543  }
544}
545
546void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
547  // Only visit each register once.
548  if (SuperRegsComplete)
549    return;
550  SuperRegsComplete = true;
551
552  // Make sure all sub-registers have been visited first, so the super-reg
553  // lists will be topologically ordered.
554  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
555       I != E; ++I)
556    I->second->computeSuperRegs(RegBank);
557
558  // Now add this as a super-register on all sub-registers.
559  // Also compute the TopoSigId in post-order.
560  TopoSigId Id;
561  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
562       I != E; ++I) {
563    // Topological signature computed from SubIdx, TopoId(SubReg).
564    // Loops and idempotent indices have TopoSig = ~0u.
565    Id.push_back(I->first->EnumValue);
566    Id.push_back(I->second->TopoSig);
567
568    // Don't add duplicate entries.
569    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
570      continue;
571    I->second->SuperRegs.push_back(this);
572  }
573  TopoSig = RegBank.getTopoSig(Id);
574}
575
576void
577CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
578                                    CodeGenRegBank &RegBank) const {
579  assert(SubRegsComplete && "Must precompute sub-registers");
580  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
581    CodeGenRegister *SR = ExplicitSubRegs[i];
582    if (OSet.insert(SR))
583      SR->addSubRegsPreOrder(OSet, RegBank);
584  }
585  // Add any secondary sub-registers that weren't part of the explicit tree.
586  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
587       I != E; ++I)
588    OSet.insert(I->second);
589}
590
591// Get the sum of this register's unit weights.
592unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
593  unsigned Weight = 0;
594  for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
595       I != E; ++I) {
596    Weight += RegBank.getRegUnit(*I).Weight;
597  }
598  return Weight;
599}
600
601//===----------------------------------------------------------------------===//
602//                               RegisterTuples
603//===----------------------------------------------------------------------===//
604
605// A RegisterTuples def is used to generate pseudo-registers from lists of
606// sub-registers. We provide a SetTheory expander class that returns the new
607// registers.
608namespace {
609
610struct TupleExpander : SetTheory::Expander {
611  // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
612  // the synthesized definitions for their lifetime.
613  std::vector<std::unique_ptr<Record>> &SynthDefs;
614
615  TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
616      : SynthDefs(SynthDefs) {}
617
618  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
619    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
620    unsigned Dim = Indices.size();
621    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
622    if (Dim != SubRegs->size())
623      PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
624    if (Dim < 2)
625      PrintFatalError(Def->getLoc(),
626                      "Tuples must have at least 2 sub-registers");
627
628    // Evaluate the sub-register lists to be zipped.
629    unsigned Length = ~0u;
630    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
631    for (unsigned i = 0; i != Dim; ++i) {
632      ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
633      Length = std::min(Length, unsigned(Lists[i].size()));
634    }
635
636    if (Length == 0)
637      return;
638
639    // Precompute some types.
640    Record *RegisterCl = Def->getRecords().getClass("Register");
641    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
642    std::vector<StringRef> RegNames =
643      Def->getValueAsListOfStrings("RegAsmNames");
644
645    // Zip them up.
646    for (unsigned n = 0; n != Length; ++n) {
647      std::string Name;
648      Record *Proto = Lists[0][n];
649      std::vector<Init*> Tuple;
650      unsigned CostPerUse = 0;
651      for (unsigned i = 0; i != Dim; ++i) {
652        Record *Reg = Lists[i][n];
653        if (i) Name += '_';
654        Name += Reg->getName();
655        Tuple.push_back(DefInit::get(Reg));
656        CostPerUse = std::max(CostPerUse,
657                              unsigned(Reg->getValueAsInt("CostPerUse")));
658      }
659
660      StringInit *AsmName = StringInit::get("");
661      if (!RegNames.empty()) {
662        if (RegNames.size() <= n)
663          PrintFatalError(Def->getLoc(),
664                          "Register tuple definition missing name for '" +
665                            Name + "'.");
666        AsmName = StringInit::get(RegNames[n]);
667      }
668
669      // Create a new Record representing the synthesized register. This record
670      // is only for consumption by CodeGenRegister, it is not added to the
671      // RecordKeeper.
672      SynthDefs.emplace_back(
673          std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
674      Record *NewReg = SynthDefs.back().get();
675      Elts.insert(NewReg);
676
677      // Copy Proto super-classes.
678      ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
679      for (const auto &SuperPair : Supers)
680        NewReg->addSuperClass(SuperPair.first, SuperPair.second);
681
682      // Copy Proto fields.
683      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
684        RecordVal RV = Proto->getValues()[i];
685
686        // Skip existing fields, like NAME.
687        if (NewReg->getValue(RV.getNameInit()))
688          continue;
689
690        StringRef Field = RV.getName();
691
692        // Replace the sub-register list with Tuple.
693        if (Field == "SubRegs")
694          RV.setValue(ListInit::get(Tuple, RegisterRecTy));
695
696        if (Field == "AsmName")
697          RV.setValue(AsmName);
698
699        // CostPerUse is aggregated from all Tuple members.
700        if (Field == "CostPerUse")
701          RV.setValue(IntInit::get(CostPerUse));
702
703        // Composite registers are always covered by sub-registers.
704        if (Field == "CoveredBySubRegs")
705          RV.setValue(BitInit::get(true));
706
707        // Copy fields from the RegisterTuples def.
708        if (Field == "SubRegIndices" ||
709            Field == "CompositeIndices") {
710          NewReg->addValue(*Def->getValue(Field));
711          continue;
712        }
713
714        // Some fields get their default uninitialized value.
715        if (Field == "DwarfNumbers" ||
716            Field == "DwarfAlias" ||
717            Field == "Aliases") {
718          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
719            NewReg->addValue(*DefRV);
720          continue;
721        }
722
723        // Everything else is copied from Proto.
724        NewReg->addValue(RV);
725      }
726    }
727  }
728};
729
730} // end anonymous namespace
731
732//===----------------------------------------------------------------------===//
733//                            CodeGenRegisterClass
734//===----------------------------------------------------------------------===//
735
736static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
737  llvm::sort(M, deref<std::less<>>());
738  M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
739}
740
741CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
742    : TheDef(R), Name(std::string(R->getName())),
743      TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) {
744  GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
745  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
746  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
747    Record *Type = TypeList[i];
748    if (!Type->isSubClassOf("ValueType"))
749      PrintFatalError(R->getLoc(),
750                      "RegTypes list member '" + Type->getName() +
751                          "' does not derive from the ValueType class!");
752    VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
753  }
754  assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
755
756  // Allocation order 0 is the full set. AltOrders provides others.
757  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
758  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
759  Orders.resize(1 + AltOrders->size());
760
761  // Default allocation order always contains all registers.
762  Artificial = true;
763  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
764    Orders[0].push_back((*Elements)[i]);
765    const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
766    Members.push_back(Reg);
767    Artificial &= Reg->Artificial;
768    TopoSigs.set(Reg->getTopoSig());
769  }
770  sortAndUniqueRegisters(Members);
771
772  // Alternative allocation orders may be subsets.
773  SetTheory::RecSet Order;
774  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
775    RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
776    Orders[1 + i].append(Order.begin(), Order.end());
777    // Verify that all altorder members are regclass members.
778    while (!Order.empty()) {
779      CodeGenRegister *Reg = RegBank.getReg(Order.back());
780      Order.pop_back();
781      if (!contains(Reg))
782        PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
783                      " is not a class member");
784    }
785  }
786
787  Namespace = R->getValueAsString("Namespace");
788
789  if (const RecordVal *RV = R->getValue("RegInfos"))
790    if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
791      RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
792  unsigned Size = R->getValueAsInt("Size");
793  assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
794         "Impossible to determine register size");
795  if (!RSI.hasDefault()) {
796    RegSizeInfo RI;
797    RI.RegSize = RI.SpillSize = Size ? Size
798                                     : VTs[0].getSimple().getSizeInBits();
799    RI.SpillAlignment = R->getValueAsInt("Alignment");
800    RSI.Map.insert({DefaultMode, RI});
801  }
802
803  CopyCost = R->getValueAsInt("CopyCost");
804  Allocatable = R->getValueAsBit("isAllocatable");
805  AltOrderSelect = R->getValueAsString("AltOrderSelect");
806  int AllocationPriority = R->getValueAsInt("AllocationPriority");
807  if (AllocationPriority < 0 || AllocationPriority > 63)
808    PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
809  this->AllocationPriority = AllocationPriority;
810}
811
812// Create an inferred register class that was missing from the .td files.
813// Most properties will be inherited from the closest super-class after the
814// class structure has been computed.
815CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
816                                           StringRef Name, Key Props)
817    : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
818      TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
819      CopyCost(0), Allocatable(true), AllocationPriority(0) {
820  Artificial = true;
821  GeneratePressureSet = false;
822  for (const auto R : Members) {
823    TopoSigs.set(R->getTopoSig());
824    Artificial &= R->Artificial;
825  }
826}
827
828// Compute inherited propertied for a synthesized register class.
829void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
830  assert(!getDef() && "Only synthesized classes can inherit properties");
831  assert(!SuperClasses.empty() && "Synthesized class without super class");
832
833  // The last super-class is the smallest one.
834  CodeGenRegisterClass &Super = *SuperClasses.back();
835
836  // Most properties are copied directly.
837  // Exceptions are members, size, and alignment
838  Namespace = Super.Namespace;
839  VTs = Super.VTs;
840  CopyCost = Super.CopyCost;
841  Allocatable = Super.Allocatable;
842  AltOrderSelect = Super.AltOrderSelect;
843  AllocationPriority = Super.AllocationPriority;
844  GeneratePressureSet |= Super.GeneratePressureSet;
845
846  // Copy all allocation orders, filter out foreign registers from the larger
847  // super-class.
848  Orders.resize(Super.Orders.size());
849  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
850    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
851      if (contains(RegBank.getReg(Super.Orders[i][j])))
852        Orders[i].push_back(Super.Orders[i][j]);
853}
854
855bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
856  return std::binary_search(Members.begin(), Members.end(), Reg,
857                            deref<std::less<>>());
858}
859
860unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
861  if (TheDef && !TheDef->isValueUnset("Weight"))
862    return TheDef->getValueAsInt("Weight");
863
864  if (Members.empty() || Artificial)
865    return 0;
866
867  return (*Members.begin())->getWeight(RegBank);
868}
869
870namespace llvm {
871
872  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
873    OS << "{ " << K.RSI;
874    for (const auto R : *K.Members)
875      OS << ", " << R->getName();
876    return OS << " }";
877  }
878
879} // end namespace llvm
880
881// This is a simple lexicographical order that can be used to search for sets.
882// It is not the same as the topological order provided by TopoOrderRC.
883bool CodeGenRegisterClass::Key::
884operator<(const CodeGenRegisterClass::Key &B) const {
885  assert(Members && B.Members);
886  return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
887}
888
889// Returns true if RC is a strict subclass.
890// RC is a sub-class of this class if it is a valid replacement for any
891// instruction operand where a register of this classis required. It must
892// satisfy these conditions:
893//
894// 1. All RC registers are also in this.
895// 2. The RC spill size must not be smaller than our spill size.
896// 3. RC spill alignment must be compatible with ours.
897//
898static bool testSubClass(const CodeGenRegisterClass *A,
899                         const CodeGenRegisterClass *B) {
900  return A->RSI.isSubClassOf(B->RSI) &&
901         std::includes(A->getMembers().begin(), A->getMembers().end(),
902                       B->getMembers().begin(), B->getMembers().end(),
903                       deref<std::less<>>());
904}
905
906/// Sorting predicate for register classes.  This provides a topological
907/// ordering that arranges all register classes before their sub-classes.
908///
909/// Register classes with the same registers, spill size, and alignment form a
910/// clique.  They will be ordered alphabetically.
911///
912static bool TopoOrderRC(const CodeGenRegisterClass &PA,
913                        const CodeGenRegisterClass &PB) {
914  auto *A = &PA;
915  auto *B = &PB;
916  if (A == B)
917    return false;
918
919  if (A->RSI < B->RSI)
920    return true;
921  if (A->RSI != B->RSI)
922    return false;
923
924  // Order by descending set size.  Note that the classes' allocation order may
925  // not have been computed yet.  The Members set is always vaild.
926  if (A->getMembers().size() > B->getMembers().size())
927    return true;
928  if (A->getMembers().size() < B->getMembers().size())
929    return false;
930
931  // Finally order by name as a tie breaker.
932  return StringRef(A->getName()) < B->getName();
933}
934
935std::string CodeGenRegisterClass::getQualifiedName() const {
936  if (Namespace.empty())
937    return getName();
938  else
939    return (Namespace + "::" + getName()).str();
940}
941
942// Compute sub-classes of all register classes.
943// Assume the classes are ordered topologically.
944void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
945  auto &RegClasses = RegBank.getRegClasses();
946
947  // Visit backwards so sub-classes are seen first.
948  for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
949    CodeGenRegisterClass &RC = *I;
950    RC.SubClasses.resize(RegClasses.size());
951    RC.SubClasses.set(RC.EnumValue);
952    if (RC.Artificial)
953      continue;
954
955    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
956    for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
957      CodeGenRegisterClass &SubRC = *I2;
958      if (RC.SubClasses.test(SubRC.EnumValue))
959        continue;
960      if (!testSubClass(&RC, &SubRC))
961        continue;
962      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
963      // check them again.
964      RC.SubClasses |= SubRC.SubClasses;
965    }
966
967    // Sweep up missed clique members.  They will be immediately preceding RC.
968    for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
969      RC.SubClasses.set(I2->EnumValue);
970  }
971
972  // Compute the SuperClasses lists from the SubClasses vectors.
973  for (auto &RC : RegClasses) {
974    const BitVector &SC = RC.getSubClasses();
975    auto I = RegClasses.begin();
976    for (int s = 0, next_s = SC.find_first(); next_s != -1;
977         next_s = SC.find_next(s)) {
978      std::advance(I, next_s - s);
979      s = next_s;
980      if (&*I == &RC)
981        continue;
982      I->SuperClasses.push_back(&RC);
983    }
984  }
985
986  // With the class hierarchy in place, let synthesized register classes inherit
987  // properties from their closest super-class. The iteration order here can
988  // propagate properties down multiple levels.
989  for (auto &RC : RegClasses)
990    if (!RC.getDef())
991      RC.inheritProperties(RegBank);
992}
993
994Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
995CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
996    CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
997  auto SizeOrder = [this](const CodeGenRegisterClass *A,
998                      const CodeGenRegisterClass *B) {
999    // If there are multiple, identical register classes, prefer the original
1000    // register class.
1001    if (A->getMembers().size() == B->getMembers().size())
1002      return A == this;
1003    return A->getMembers().size() > B->getMembers().size();
1004  };
1005
1006  auto &RegClasses = RegBank.getRegClasses();
1007
1008  // Find all the subclasses of this one that fully support the sub-register
1009  // index and order them by size. BiggestSuperRC should always be first.
1010  CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1011  if (!BiggestSuperRegRC)
1012    return None;
1013  BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1014  std::vector<CodeGenRegisterClass *> SuperRegRCs;
1015  for (auto &RC : RegClasses)
1016    if (SuperRegRCsBV[RC.EnumValue])
1017      SuperRegRCs.emplace_back(&RC);
1018  llvm::stable_sort(SuperRegRCs, SizeOrder);
1019
1020  assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1021         "Biggest class wasn't first");
1022
1023  // Find all the subreg classes and order them by size too.
1024  std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1025  for (auto &RC: RegClasses) {
1026    BitVector SuperRegClassesBV(RegClasses.size());
1027    RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1028    if (SuperRegClassesBV.any())
1029      SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1030  }
1031  llvm::sort(SuperRegClasses,
1032             [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1033                 const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1034               return SizeOrder(A.first, B.first);
1035             });
1036
1037  // Find the biggest subclass and subreg class such that R:subidx is in the
1038  // subreg class for all R in subclass.
1039  //
1040  // For example:
1041  // All registers in X86's GR64 have a sub_32bit subregister but no class
1042  // exists that contains all the 32-bit subregisters because GR64 contains RIP
1043  // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1044  // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1045  // having excluded RIP, we are able to find a SubRegRC (GR32).
1046  CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1047  CodeGenRegisterClass *SubRegRC = nullptr;
1048  for (auto *SuperRegRC : SuperRegRCs) {
1049    for (const auto &SuperRegClassPair : SuperRegClasses) {
1050      const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1051      if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1052        SubRegRC = SuperRegClassPair.first;
1053        ChosenSuperRegClass = SuperRegRC;
1054
1055        // If SubRegRC is bigger than SuperRegRC then there are members of
1056        // SubRegRC that don't have super registers via SubIdx. Keep looking to
1057        // find a better fit and fall back on this one if there isn't one.
1058        //
1059        // This is intended to prevent X86 from making odd choices such as
1060        // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1061        // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1062        // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1063        // mapping.
1064        if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1065          return std::make_pair(ChosenSuperRegClass, SubRegRC);
1066      }
1067    }
1068
1069    // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1070    // registers, then we're done.
1071    if (ChosenSuperRegClass)
1072      return std::make_pair(ChosenSuperRegClass, SubRegRC);
1073  }
1074
1075  return None;
1076}
1077
1078void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1079                                              BitVector &Out) const {
1080  auto FindI = SuperRegClasses.find(SubIdx);
1081  if (FindI == SuperRegClasses.end())
1082    return;
1083  for (CodeGenRegisterClass *RC : FindI->second)
1084    Out.set(RC->EnumValue);
1085}
1086
1087// Populate a unique sorted list of units from a register set.
1088void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1089  std::vector<unsigned> &RegUnits) const {
1090  std::vector<unsigned> TmpUnits;
1091  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1092    const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1093    if (!RU.Artificial)
1094      TmpUnits.push_back(*UnitI);
1095  }
1096  llvm::sort(TmpUnits);
1097  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1098                   std::back_inserter(RegUnits));
1099}
1100
1101//===----------------------------------------------------------------------===//
1102//                               CodeGenRegBank
1103//===----------------------------------------------------------------------===//
1104
1105CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1106                               const CodeGenHwModes &Modes) : CGH(Modes) {
1107  // Configure register Sets to understand register classes and tuples.
1108  Sets.addFieldExpander("RegisterClass", "MemberList");
1109  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1110  Sets.addExpander("RegisterTuples",
1111                   std::make_unique<TupleExpander>(SynthDefs));
1112
1113  // Read in the user-defined (named) sub-register indices.
1114  // More indices will be synthesized later.
1115  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1116  llvm::sort(SRIs, LessRecord());
1117  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1118    getSubRegIdx(SRIs[i]);
1119  // Build composite maps from ComposedOf fields.
1120  for (auto &Idx : SubRegIndices)
1121    Idx.updateComponents(*this);
1122
1123  // Read in the register definitions.
1124  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1125  llvm::sort(Regs, LessRecordRegister());
1126  // Assign the enumeration values.
1127  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1128    getReg(Regs[i]);
1129
1130  // Expand tuples and number the new registers.
1131  std::vector<Record*> Tups =
1132    Records.getAllDerivedDefinitions("RegisterTuples");
1133
1134  for (Record *R : Tups) {
1135    std::vector<Record *> TupRegs = *Sets.expand(R);
1136    llvm::sort(TupRegs, LessRecordRegister());
1137    for (Record *RC : TupRegs)
1138      getReg(RC);
1139  }
1140
1141  // Now all the registers are known. Build the object graph of explicit
1142  // register-register references.
1143  for (auto &Reg : Registers)
1144    Reg.buildObjectGraph(*this);
1145
1146  // Compute register name map.
1147  for (auto &Reg : Registers)
1148    // FIXME: This could just be RegistersByName[name] = register, except that
1149    // causes some failures in MIPS - perhaps they have duplicate register name
1150    // entries? (or maybe there's a reason for it - I don't know much about this
1151    // code, just drive-by refactoring)
1152    RegistersByName.insert(
1153        std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1154
1155  // Precompute all sub-register maps.
1156  // This will create Composite entries for all inferred sub-register indices.
1157  for (auto &Reg : Registers)
1158    Reg.computeSubRegs(*this);
1159
1160  // Compute transitive closure of subregister index ConcatenationOf vectors
1161  // and initialize ConcatIdx map.
1162  for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1163    SRI.computeConcatTransitiveClosure();
1164    if (!SRI.ConcatenationOf.empty())
1165      ConcatIdx.insert(std::make_pair(
1166          SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1167                                             SRI.ConcatenationOf.end()), &SRI));
1168  }
1169
1170  // Infer even more sub-registers by combining leading super-registers.
1171  for (auto &Reg : Registers)
1172    if (Reg.CoveredBySubRegs)
1173      Reg.computeSecondarySubRegs(*this);
1174
1175  // After the sub-register graph is complete, compute the topologically
1176  // ordered SuperRegs list.
1177  for (auto &Reg : Registers)
1178    Reg.computeSuperRegs(*this);
1179
1180  // For each pair of Reg:SR, if both are non-artificial, mark the
1181  // corresponding sub-register index as non-artificial.
1182  for (auto &Reg : Registers) {
1183    if (Reg.Artificial)
1184      continue;
1185    for (auto P : Reg.getSubRegs()) {
1186      const CodeGenRegister *SR = P.second;
1187      if (!SR->Artificial)
1188        P.first->Artificial = false;
1189    }
1190  }
1191
1192  // Native register units are associated with a leaf register. They've all been
1193  // discovered now.
1194  NumNativeRegUnits = RegUnits.size();
1195
1196  // Read in register class definitions.
1197  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1198  if (RCs.empty())
1199    PrintFatalError("No 'RegisterClass' subclasses defined!");
1200
1201  // Allocate user-defined register classes.
1202  for (auto *R : RCs) {
1203    RegClasses.emplace_back(*this, R);
1204    CodeGenRegisterClass &RC = RegClasses.back();
1205    if (!RC.Artificial)
1206      addToMaps(&RC);
1207  }
1208
1209  // Infer missing classes to create a full algebra.
1210  computeInferredRegisterClasses();
1211
1212  // Order register classes topologically and assign enum values.
1213  RegClasses.sort(TopoOrderRC);
1214  unsigned i = 0;
1215  for (auto &RC : RegClasses)
1216    RC.EnumValue = i++;
1217  CodeGenRegisterClass::computeSubClasses(*this);
1218}
1219
1220// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1221CodeGenSubRegIndex*
1222CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1223  SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1224  return &SubRegIndices.back();
1225}
1226
1227CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1228  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1229  if (Idx)
1230    return Idx;
1231  SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1232  Idx = &SubRegIndices.back();
1233  return Idx;
1234}
1235
1236const CodeGenSubRegIndex *
1237CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1238  auto I = Def2SubRegIdx.find(Def);
1239  return (I == Def2SubRegIdx.end()) ? nullptr : I->second;
1240}
1241
1242CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1243  CodeGenRegister *&Reg = Def2Reg[Def];
1244  if (Reg)
1245    return Reg;
1246  Registers.emplace_back(Def, Registers.size() + 1);
1247  Reg = &Registers.back();
1248  return Reg;
1249}
1250
1251void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1252  if (Record *Def = RC->getDef())
1253    Def2RC.insert(std::make_pair(Def, RC));
1254
1255  // Duplicate classes are rejected by insert().
1256  // That's OK, we only care about the properties handled by CGRC::Key.
1257  CodeGenRegisterClass::Key K(*RC);
1258  Key2RC.insert(std::make_pair(K, RC));
1259}
1260
1261// Create a synthetic sub-class if it is missing.
1262CodeGenRegisterClass*
1263CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1264                                    const CodeGenRegister::Vec *Members,
1265                                    StringRef Name) {
1266  // Synthetic sub-class has the same size and alignment as RC.
1267  CodeGenRegisterClass::Key K(Members, RC->RSI);
1268  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1269  if (FoundI != Key2RC.end())
1270    return FoundI->second;
1271
1272  // Sub-class doesn't exist, create a new one.
1273  RegClasses.emplace_back(*this, Name, K);
1274  addToMaps(&RegClasses.back());
1275  return &RegClasses.back();
1276}
1277
1278CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1279  if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1280    return RC;
1281
1282  PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1283}
1284
1285CodeGenSubRegIndex*
1286CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1287                                        CodeGenSubRegIndex *B) {
1288  // Look for an existing entry.
1289  CodeGenSubRegIndex *Comp = A->compose(B);
1290  if (Comp)
1291    return Comp;
1292
1293  // None exists, synthesize one.
1294  std::string Name = A->getName() + "_then_" + B->getName();
1295  Comp = createSubRegIndex(Name, A->getNamespace());
1296  A->addComposite(B, Comp);
1297  return Comp;
1298}
1299
1300CodeGenSubRegIndex *CodeGenRegBank::
1301getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1302  assert(Parts.size() > 1 && "Need two parts to concatenate");
1303#ifndef NDEBUG
1304  for (CodeGenSubRegIndex *Idx : Parts) {
1305    assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1306  }
1307#endif
1308
1309  // Look for an existing entry.
1310  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1311  if (Idx)
1312    return Idx;
1313
1314  // None exists, synthesize one.
1315  std::string Name = Parts.front()->getName();
1316  // Determine whether all parts are contiguous.
1317  bool isContinuous = true;
1318  unsigned Size = Parts.front()->Size;
1319  unsigned LastOffset = Parts.front()->Offset;
1320  unsigned LastSize = Parts.front()->Size;
1321  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1322    Name += '_';
1323    Name += Parts[i]->getName();
1324    Size += Parts[i]->Size;
1325    if (Parts[i]->Offset != (LastOffset + LastSize))
1326      isContinuous = false;
1327    LastOffset = Parts[i]->Offset;
1328    LastSize = Parts[i]->Size;
1329  }
1330  Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1331  Idx->Size = Size;
1332  Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1333  Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1334  return Idx;
1335}
1336
1337void CodeGenRegBank::computeComposites() {
1338  using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1339
1340  // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1341  // register to (sub)register associated with the action of the left-hand
1342  // side subregister.
1343  std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1344  for (const CodeGenRegister &R : Registers) {
1345    const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1346    for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1347      SubRegAction[P.first].insert({&R, P.second});
1348  }
1349
1350  // Calculate the composition of two subregisters as compositions of their
1351  // associated actions.
1352  auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1353                                  const CodeGenSubRegIndex *Sub2) {
1354    RegMap C;
1355    const RegMap &Img1 = SubRegAction.at(Sub1);
1356    const RegMap &Img2 = SubRegAction.at(Sub2);
1357    for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1358      auto F = Img2.find(P.second);
1359      if (F != Img2.end())
1360        C.insert({P.first, F->second});
1361    }
1362    return C;
1363  };
1364
1365  // Check if the two maps agree on the intersection of their domains.
1366  auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1367    // Technically speaking, an empty map agrees with any other map, but
1368    // this could flag false positives. We're interested in non-vacuous
1369    // agreements.
1370    if (Map1.empty() || Map2.empty())
1371      return false;
1372    for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1373      auto F = Map2.find(P.first);
1374      if (F == Map2.end() || P.second != F->second)
1375        return false;
1376    }
1377    return true;
1378  };
1379
1380  using CompositePair = std::pair<const CodeGenSubRegIndex*,
1381                                  const CodeGenSubRegIndex*>;
1382  SmallSet<CompositePair,4> UserDefined;
1383  for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1384    for (auto P : Idx.getComposites())
1385      UserDefined.insert(std::make_pair(&Idx, P.first));
1386
1387  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1388  // and many registers will share TopoSigs on regular architectures.
1389  BitVector TopoSigs(getNumTopoSigs());
1390
1391  for (const auto &Reg1 : Registers) {
1392    // Skip identical subreg structures already processed.
1393    if (TopoSigs.test(Reg1.getTopoSig()))
1394      continue;
1395    TopoSigs.set(Reg1.getTopoSig());
1396
1397    const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1398    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
1399         e1 = SRM1.end(); i1 != e1; ++i1) {
1400      CodeGenSubRegIndex *Idx1 = i1->first;
1401      CodeGenRegister *Reg2 = i1->second;
1402      // Ignore identity compositions.
1403      if (&Reg1 == Reg2)
1404        continue;
1405      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1406      // Try composing Idx1 with another SubRegIndex.
1407      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
1408           e2 = SRM2.end(); i2 != e2; ++i2) {
1409        CodeGenSubRegIndex *Idx2 = i2->first;
1410        CodeGenRegister *Reg3 = i2->second;
1411        // Ignore identity compositions.
1412        if (Reg2 == Reg3)
1413          continue;
1414        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1415        CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1416        assert(Idx3 && "Sub-register doesn't have an index");
1417
1418        // Conflicting composition? Emit a warning but allow it.
1419        if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1420          // If the composition was not user-defined, always emit a warning.
1421          if (!UserDefined.count({Idx1, Idx2}) ||
1422              agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1423            PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1424                         " and " + Idx2->getQualifiedName() +
1425                         " compose ambiguously as " + Prev->getQualifiedName() +
1426                         " or " + Idx3->getQualifiedName());
1427        }
1428      }
1429    }
1430  }
1431}
1432
1433// Compute lane masks. This is similar to register units, but at the
1434// sub-register index level. Each bit in the lane mask is like a register unit
1435// class, and two lane masks will have a bit in common if two sub-register
1436// indices overlap in some register.
1437//
1438// Conservatively share a lane mask bit if two sub-register indices overlap in
1439// some registers, but not in others. That shouldn't happen a lot.
1440void CodeGenRegBank::computeSubRegLaneMasks() {
1441  // First assign individual bits to all the leaf indices.
1442  unsigned Bit = 0;
1443  // Determine mask of lanes that cover their registers.
1444  CoveringLanes = LaneBitmask::getAll();
1445  for (auto &Idx : SubRegIndices) {
1446    if (Idx.getComposites().empty()) {
1447      if (Bit > LaneBitmask::BitWidth) {
1448        PrintFatalError(
1449          Twine("Ran out of lanemask bits to represent subregister ")
1450          + Idx.getName());
1451      }
1452      Idx.LaneMask = LaneBitmask::getLane(Bit);
1453      ++Bit;
1454    } else {
1455      Idx.LaneMask = LaneBitmask::getNone();
1456    }
1457  }
1458
1459  // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1460  // here is that for each possible target subregister we look at the leafs
1461  // in the subregister graph that compose for this target and create
1462  // transformation sequences for the lanemasks. Each step in the sequence
1463  // consists of a bitmask and a bitrotate operation. As the rotation amounts
1464  // are usually the same for many subregisters we can easily combine the steps
1465  // by combining the masks.
1466  for (const auto &Idx : SubRegIndices) {
1467    const auto &Composites = Idx.getComposites();
1468    auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1469
1470    if (Composites.empty()) {
1471      // Moving from a class with no subregisters we just had a single lane:
1472      // The subregister must be a leaf subregister and only occupies 1 bit.
1473      // Move the bit from the class without subregisters into that position.
1474      unsigned DstBit = Idx.LaneMask.getHighestLane();
1475      assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1476             "Must be a leaf subregister");
1477      MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1478      LaneTransforms.push_back(MaskRol);
1479    } else {
1480      // Go through all leaf subregisters and find the ones that compose with
1481      // Idx. These make out all possible valid bits in the lane mask we want to
1482      // transform. Looking only at the leafs ensure that only a single bit in
1483      // the mask is set.
1484      unsigned NextBit = 0;
1485      for (auto &Idx2 : SubRegIndices) {
1486        // Skip non-leaf subregisters.
1487        if (!Idx2.getComposites().empty())
1488          continue;
1489        // Replicate the behaviour from the lane mask generation loop above.
1490        unsigned SrcBit = NextBit;
1491        LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1492        if (NextBit < LaneBitmask::BitWidth-1)
1493          ++NextBit;
1494        assert(Idx2.LaneMask == SrcMask);
1495
1496        // Get the composed subregister if there is any.
1497        auto C = Composites.find(&Idx2);
1498        if (C == Composites.end())
1499          continue;
1500        const CodeGenSubRegIndex *Composite = C->second;
1501        // The Composed subreg should be a leaf subreg too
1502        assert(Composite->getComposites().empty());
1503
1504        // Create Mask+Rotate operation and merge with existing ops if possible.
1505        unsigned DstBit = Composite->LaneMask.getHighestLane();
1506        int Shift = DstBit - SrcBit;
1507        uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1508                                        : LaneBitmask::BitWidth + Shift;
1509        for (auto &I : LaneTransforms) {
1510          if (I.RotateLeft == RotateLeft) {
1511            I.Mask |= SrcMask;
1512            SrcMask = LaneBitmask::getNone();
1513          }
1514        }
1515        if (SrcMask.any()) {
1516          MaskRolPair MaskRol = { SrcMask, RotateLeft };
1517          LaneTransforms.push_back(MaskRol);
1518        }
1519      }
1520    }
1521
1522    // Optimize if the transformation consists of one step only: Set mask to
1523    // 0xffffffff (including some irrelevant invalid bits) so that it should
1524    // merge with more entries later while compressing the table.
1525    if (LaneTransforms.size() == 1)
1526      LaneTransforms[0].Mask = LaneBitmask::getAll();
1527
1528    // Further compression optimization: For invalid compositions resulting
1529    // in a sequence with 0 entries we can just pick any other. Choose
1530    // Mask 0xffffffff with Rotation 0.
1531    if (LaneTransforms.size() == 0) {
1532      MaskRolPair P = { LaneBitmask::getAll(), 0 };
1533      LaneTransforms.push_back(P);
1534    }
1535  }
1536
1537  // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1538  // by the sub-register graph? This doesn't occur in any known targets.
1539
1540  // Inherit lanes from composites.
1541  for (const auto &Idx : SubRegIndices) {
1542    LaneBitmask Mask = Idx.computeLaneMask();
1543    // If some super-registers without CoveredBySubRegs use this index, we can
1544    // no longer assume that the lanes are covering their registers.
1545    if (!Idx.AllSuperRegsCovered)
1546      CoveringLanes &= ~Mask;
1547  }
1548
1549  // Compute lane mask combinations for register classes.
1550  for (auto &RegClass : RegClasses) {
1551    LaneBitmask LaneMask;
1552    for (const auto &SubRegIndex : SubRegIndices) {
1553      if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1554        continue;
1555      LaneMask |= SubRegIndex.LaneMask;
1556    }
1557
1558    // For classes without any subregisters set LaneMask to 1 instead of 0.
1559    // This makes it easier for client code to handle classes uniformly.
1560    if (LaneMask.none())
1561      LaneMask = LaneBitmask::getLane(0);
1562
1563    RegClass.LaneMask = LaneMask;
1564  }
1565}
1566
1567namespace {
1568
1569// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1570// the transitive closure of the union of overlapping register
1571// classes. Together, the UberRegSets form a partition of the registers. If we
1572// consider overlapping register classes to be connected, then each UberRegSet
1573// is a set of connected components.
1574//
1575// An UberRegSet will likely be a horizontal slice of register names of
1576// the same width. Nontrivial subregisters should then be in a separate
1577// UberRegSet. But this property isn't required for valid computation of
1578// register unit weights.
1579//
1580// A Weight field caches the max per-register unit weight in each UberRegSet.
1581//
1582// A set of SingularDeterminants flags single units of some register in this set
1583// for which the unit weight equals the set weight. These units should not have
1584// their weight increased.
1585struct UberRegSet {
1586  CodeGenRegister::Vec Regs;
1587  unsigned Weight = 0;
1588  CodeGenRegister::RegUnitList SingularDeterminants;
1589
1590  UberRegSet() = default;
1591};
1592
1593} // end anonymous namespace
1594
1595// Partition registers into UberRegSets, where each set is the transitive
1596// closure of the union of overlapping register classes.
1597//
1598// UberRegSets[0] is a special non-allocatable set.
1599static void computeUberSets(std::vector<UberRegSet> &UberSets,
1600                            std::vector<UberRegSet*> &RegSets,
1601                            CodeGenRegBank &RegBank) {
1602  const auto &Registers = RegBank.getRegisters();
1603
1604  // The Register EnumValue is one greater than its index into Registers.
1605  assert(Registers.size() == Registers.back().EnumValue &&
1606         "register enum value mismatch");
1607
1608  // For simplicitly make the SetID the same as EnumValue.
1609  IntEqClasses UberSetIDs(Registers.size()+1);
1610  std::set<unsigned> AllocatableRegs;
1611  for (auto &RegClass : RegBank.getRegClasses()) {
1612    if (!RegClass.Allocatable)
1613      continue;
1614
1615    const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1616    if (Regs.empty())
1617      continue;
1618
1619    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1620    assert(USetID && "register number 0 is invalid");
1621
1622    AllocatableRegs.insert((*Regs.begin())->EnumValue);
1623    for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
1624      AllocatableRegs.insert((*I)->EnumValue);
1625      UberSetIDs.join(USetID, (*I)->EnumValue);
1626    }
1627  }
1628  // Combine non-allocatable regs.
1629  for (const auto &Reg : Registers) {
1630    unsigned RegNum = Reg.EnumValue;
1631    if (AllocatableRegs.count(RegNum))
1632      continue;
1633
1634    UberSetIDs.join(0, RegNum);
1635  }
1636  UberSetIDs.compress();
1637
1638  // Make the first UberSet a special unallocatable set.
1639  unsigned ZeroID = UberSetIDs[0];
1640
1641  // Insert Registers into the UberSets formed by union-find.
1642  // Do not resize after this.
1643  UberSets.resize(UberSetIDs.getNumClasses());
1644  unsigned i = 0;
1645  for (const CodeGenRegister &Reg : Registers) {
1646    unsigned USetID = UberSetIDs[Reg.EnumValue];
1647    if (!USetID)
1648      USetID = ZeroID;
1649    else if (USetID == ZeroID)
1650      USetID = 0;
1651
1652    UberRegSet *USet = &UberSets[USetID];
1653    USet->Regs.push_back(&Reg);
1654    sortAndUniqueRegisters(USet->Regs);
1655    RegSets[i++] = USet;
1656  }
1657}
1658
1659// Recompute each UberSet weight after changing unit weights.
1660static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1661                               CodeGenRegBank &RegBank) {
1662  // Skip the first unallocatable set.
1663  for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1664         E = UberSets.end(); I != E; ++I) {
1665
1666    // Initialize all unit weights in this set, and remember the max units/reg.
1667    const CodeGenRegister *Reg = nullptr;
1668    unsigned MaxWeight = 0, Weight = 0;
1669    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1670      if (Reg != UnitI.getReg()) {
1671        if (Weight > MaxWeight)
1672          MaxWeight = Weight;
1673        Reg = UnitI.getReg();
1674        Weight = 0;
1675      }
1676      if (!RegBank.getRegUnit(*UnitI).Artificial) {
1677        unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1678        if (!UWeight) {
1679          UWeight = 1;
1680          RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1681        }
1682        Weight += UWeight;
1683      }
1684    }
1685    if (Weight > MaxWeight)
1686      MaxWeight = Weight;
1687    if (I->Weight != MaxWeight) {
1688      LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1689                        << MaxWeight;
1690                 for (auto &Unit
1691                      : I->Regs) dbgs()
1692                 << " " << Unit->getName();
1693                 dbgs() << "\n");
1694      // Update the set weight.
1695      I->Weight = MaxWeight;
1696    }
1697
1698    // Find singular determinants.
1699    for (const auto R : I->Regs) {
1700      if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1701        I->SingularDeterminants |= R->getRegUnits();
1702      }
1703    }
1704  }
1705}
1706
1707// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1708// a register and its subregisters so that they have the same weight as their
1709// UberSet. Self-recursion processes the subregister tree in postorder so
1710// subregisters are normalized first.
1711//
1712// Side effects:
1713// - creates new adopted register units
1714// - causes superregisters to inherit adopted units
1715// - increases the weight of "singular" units
1716// - induces recomputation of UberWeights.
1717static bool normalizeWeight(CodeGenRegister *Reg,
1718                            std::vector<UberRegSet> &UberSets,
1719                            std::vector<UberRegSet*> &RegSets,
1720                            BitVector &NormalRegs,
1721                            CodeGenRegister::RegUnitList &NormalUnits,
1722                            CodeGenRegBank &RegBank) {
1723  NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1724  if (NormalRegs.test(Reg->EnumValue))
1725    return false;
1726  NormalRegs.set(Reg->EnumValue);
1727
1728  bool Changed = false;
1729  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1730  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
1731         SRE = SRM.end(); SRI != SRE; ++SRI) {
1732    if (SRI->second == Reg)
1733      continue; // self-cycles happen
1734
1735    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
1736                               NormalRegs, NormalUnits, RegBank);
1737  }
1738  // Postorder register normalization.
1739
1740  // Inherit register units newly adopted by subregisters.
1741  if (Reg->inheritRegUnits(RegBank))
1742    computeUberWeights(UberSets, RegBank);
1743
1744  // Check if this register is too skinny for its UberRegSet.
1745  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1746
1747  unsigned RegWeight = Reg->getWeight(RegBank);
1748  if (UberSet->Weight > RegWeight) {
1749    // A register unit's weight can be adjusted only if it is the singular unit
1750    // for this register, has not been used to normalize a subregister's set,
1751    // and has not already been used to singularly determine this UberRegSet.
1752    unsigned AdjustUnit = *Reg->getRegUnits().begin();
1753    if (Reg->getRegUnits().count() != 1
1754        || hasRegUnit(NormalUnits, AdjustUnit)
1755        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1756      // We don't have an adjustable unit, so adopt a new one.
1757      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1758      Reg->adoptRegUnit(AdjustUnit);
1759      // Adopting a unit does not immediately require recomputing set weights.
1760    }
1761    else {
1762      // Adjust the existing single unit.
1763      if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1764        RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1765      // The unit may be shared among sets and registers within this set.
1766      computeUberWeights(UberSets, RegBank);
1767    }
1768    Changed = true;
1769  }
1770
1771  // Mark these units normalized so superregisters can't change their weights.
1772  NormalUnits |= Reg->getRegUnits();
1773
1774  return Changed;
1775}
1776
1777// Compute a weight for each register unit created during getSubRegs.
1778//
1779// The goal is that two registers in the same class will have the same weight,
1780// where each register's weight is defined as sum of its units' weights.
1781void CodeGenRegBank::computeRegUnitWeights() {
1782  std::vector<UberRegSet> UberSets;
1783  std::vector<UberRegSet*> RegSets(Registers.size());
1784  computeUberSets(UberSets, RegSets, *this);
1785  // UberSets and RegSets are now immutable.
1786
1787  computeUberWeights(UberSets, *this);
1788
1789  // Iterate over each Register, normalizing the unit weights until reaching
1790  // a fix point.
1791  unsigned NumIters = 0;
1792  for (bool Changed = true; Changed; ++NumIters) {
1793    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1794    Changed = false;
1795    for (auto &Reg : Registers) {
1796      CodeGenRegister::RegUnitList NormalUnits;
1797      BitVector NormalRegs;
1798      Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1799                                 NormalUnits, *this);
1800    }
1801  }
1802}
1803
1804// Find a set in UniqueSets with the same elements as Set.
1805// Return an iterator into UniqueSets.
1806static std::vector<RegUnitSet>::const_iterator
1807findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1808               const RegUnitSet &Set) {
1809  std::vector<RegUnitSet>::const_iterator
1810    I = UniqueSets.begin(), E = UniqueSets.end();
1811  for(;I != E; ++I) {
1812    if (I->Units == Set.Units)
1813      break;
1814  }
1815  return I;
1816}
1817
1818// Return true if the RUSubSet is a subset of RUSuperSet.
1819static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1820                            const std::vector<unsigned> &RUSuperSet) {
1821  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1822                       RUSubSet.begin(), RUSubSet.end());
1823}
1824
1825/// Iteratively prune unit sets. Prune subsets that are close to the superset,
1826/// but with one or two registers removed. We occasionally have registers like
1827/// APSR and PC thrown in with the general registers. We also see many
1828/// special-purpose register subsets, such as tail-call and Thumb
1829/// encodings. Generating all possible overlapping sets is combinatorial and
1830/// overkill for modeling pressure. Ideally we could fix this statically in
1831/// tablegen by (1) having the target define register classes that only include
1832/// the allocatable registers and marking other classes as non-allocatable and
1833/// (2) having a way to mark special purpose classes as "don't-care" classes for
1834/// the purpose of pressure.  However, we make an attempt to handle targets that
1835/// are not nicely defined by merging nearly identical register unit sets
1836/// statically. This generates smaller tables. Then, dynamically, we adjust the
1837/// set limit by filtering the reserved registers.
1838///
1839/// Merge sets only if the units have the same weight. For example, on ARM,
1840/// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1841/// should not expand the S set to include D regs.
1842void CodeGenRegBank::pruneUnitSets() {
1843  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1844
1845  // Form an equivalence class of UnitSets with no significant difference.
1846  std::vector<unsigned> SuperSetIDs;
1847  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1848       SubIdx != EndIdx; ++SubIdx) {
1849    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1850    unsigned SuperIdx = 0;
1851    for (; SuperIdx != EndIdx; ++SuperIdx) {
1852      if (SuperIdx == SubIdx)
1853        continue;
1854
1855      unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1856      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1857      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1858          && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1859          && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1860          && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1861        LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1862                          << "\n");
1863        // We can pick any of the set names for the merged set. Go for the
1864        // shortest one to avoid picking the name of one of the classes that are
1865        // artificially created by tablegen. So "FPR128_lo" instead of
1866        // "QQQQ_with_qsub3_in_FPR128_lo".
1867        if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1868          RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1869        break;
1870      }
1871    }
1872    if (SuperIdx == EndIdx)
1873      SuperSetIDs.push_back(SubIdx);
1874  }
1875  // Populate PrunedUnitSets with each equivalence class's superset.
1876  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1877  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1878    unsigned SuperIdx = SuperSetIDs[i];
1879    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1880    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1881  }
1882  RegUnitSets.swap(PrunedUnitSets);
1883}
1884
1885// Create a RegUnitSet for each RegClass that contains all units in the class
1886// including adopted units that are necessary to model register pressure. Then
1887// iteratively compute RegUnitSets such that the union of any two overlapping
1888// RegUnitSets is repreresented.
1889//
1890// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1891// RegUnitSet that is a superset of that RegUnitClass.
1892void CodeGenRegBank::computeRegUnitSets() {
1893  assert(RegUnitSets.empty() && "dirty RegUnitSets");
1894
1895  // Compute a unique RegUnitSet for each RegClass.
1896  auto &RegClasses = getRegClasses();
1897  for (auto &RC : RegClasses) {
1898    if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1899      continue;
1900
1901    // Speculatively grow the RegUnitSets to hold the new set.
1902    RegUnitSets.resize(RegUnitSets.size() + 1);
1903    RegUnitSets.back().Name = RC.getName();
1904
1905    // Compute a sorted list of units in this class.
1906    RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1907
1908    // Find an existing RegUnitSet.
1909    std::vector<RegUnitSet>::const_iterator SetI =
1910      findRegUnitSet(RegUnitSets, RegUnitSets.back());
1911    if (SetI != std::prev(RegUnitSets.end()))
1912      RegUnitSets.pop_back();
1913  }
1914
1915  LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1916                                                   USEnd = RegUnitSets.size();
1917                                                   USIdx < USEnd; ++USIdx) {
1918    dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1919    for (auto &U : RegUnitSets[USIdx].Units)
1920      printRegUnitName(U);
1921    dbgs() << "\n";
1922  });
1923
1924  // Iteratively prune unit sets.
1925  pruneUnitSets();
1926
1927  LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1928                                                 USEnd = RegUnitSets.size();
1929                                                 USIdx < USEnd; ++USIdx) {
1930    dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1931    for (auto &U : RegUnitSets[USIdx].Units)
1932      printRegUnitName(U);
1933    dbgs() << "\n";
1934  } dbgs() << "\nUnion sets:\n");
1935
1936  // Iterate over all unit sets, including new ones added by this loop.
1937  unsigned NumRegUnitSubSets = RegUnitSets.size();
1938  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1939    // In theory, this is combinatorial. In practice, it needs to be bounded
1940    // by a small number of sets for regpressure to be efficient.
1941    // If the assert is hit, we need to implement pruning.
1942    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1943
1944    // Compare new sets with all original classes.
1945    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1946         SearchIdx != EndIdx; ++SearchIdx) {
1947      std::set<unsigned> Intersection;
1948      std::set_intersection(RegUnitSets[Idx].Units.begin(),
1949                            RegUnitSets[Idx].Units.end(),
1950                            RegUnitSets[SearchIdx].Units.begin(),
1951                            RegUnitSets[SearchIdx].Units.end(),
1952                            std::inserter(Intersection, Intersection.begin()));
1953      if (Intersection.empty())
1954        continue;
1955
1956      // Speculatively grow the RegUnitSets to hold the new set.
1957      RegUnitSets.resize(RegUnitSets.size() + 1);
1958      RegUnitSets.back().Name =
1959        RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
1960
1961      std::set_union(RegUnitSets[Idx].Units.begin(),
1962                     RegUnitSets[Idx].Units.end(),
1963                     RegUnitSets[SearchIdx].Units.begin(),
1964                     RegUnitSets[SearchIdx].Units.end(),
1965                     std::inserter(RegUnitSets.back().Units,
1966                                   RegUnitSets.back().Units.begin()));
1967
1968      // Find an existing RegUnitSet, or add the union to the unique sets.
1969      std::vector<RegUnitSet>::const_iterator SetI =
1970        findRegUnitSet(RegUnitSets, RegUnitSets.back());
1971      if (SetI != std::prev(RegUnitSets.end()))
1972        RegUnitSets.pop_back();
1973      else {
1974        LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
1975                          << RegUnitSets.back().Name << ":";
1976                   for (auto &U
1977                        : RegUnitSets.back().Units) printRegUnitName(U);
1978                   dbgs() << "\n";);
1979      }
1980    }
1981  }
1982
1983  // Iteratively prune unit sets after inferring supersets.
1984  pruneUnitSets();
1985
1986  LLVM_DEBUG(
1987      dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
1988                           USIdx < USEnd; ++USIdx) {
1989        dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1990        for (auto &U : RegUnitSets[USIdx].Units)
1991          printRegUnitName(U);
1992        dbgs() << "\n";
1993      });
1994
1995  // For each register class, list the UnitSets that are supersets.
1996  RegClassUnitSets.resize(RegClasses.size());
1997  int RCIdx = -1;
1998  for (auto &RC : RegClasses) {
1999    ++RCIdx;
2000    if (!RC.Allocatable)
2001      continue;
2002
2003    // Recompute the sorted list of units in this class.
2004    std::vector<unsigned> RCRegUnits;
2005    RC.buildRegUnitSet(*this, RCRegUnits);
2006
2007    // Don't increase pressure for unallocatable regclasses.
2008    if (RCRegUnits.empty())
2009      continue;
2010
2011    LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
2012               for (auto U
2013                    : RCRegUnits) printRegUnitName(U);
2014               dbgs() << "\n  UnitSetIDs:");
2015
2016    // Find all supersets.
2017    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2018         USIdx != USEnd; ++USIdx) {
2019      if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2020        LLVM_DEBUG(dbgs() << " " << USIdx);
2021        RegClassUnitSets[RCIdx].push_back(USIdx);
2022      }
2023    }
2024    LLVM_DEBUG(dbgs() << "\n");
2025    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
2026  }
2027
2028  // For each register unit, ensure that we have the list of UnitSets that
2029  // contain the unit. Normally, this matches an existing list of UnitSets for a
2030  // register class. If not, we create a new entry in RegClassUnitSets as a
2031  // "fake" register class.
2032  for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2033       UnitIdx < UnitEnd; ++UnitIdx) {
2034    std::vector<unsigned> RUSets;
2035    for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2036      RegUnitSet &RUSet = RegUnitSets[i];
2037      if (!is_contained(RUSet.Units, UnitIdx))
2038        continue;
2039      RUSets.push_back(i);
2040    }
2041    unsigned RCUnitSetsIdx = 0;
2042    for (unsigned e = RegClassUnitSets.size();
2043         RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2044      if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2045        break;
2046      }
2047    }
2048    RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2049    if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2050      // Create a new list of UnitSets as a "fake" register class.
2051      RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2052      RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2053    }
2054  }
2055}
2056
2057void CodeGenRegBank::computeRegUnitLaneMasks() {
2058  for (auto &Register : Registers) {
2059    // Create an initial lane mask for all register units.
2060    const auto &RegUnits = Register.getRegUnits();
2061    CodeGenRegister::RegUnitLaneMaskList
2062        RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2063    // Iterate through SubRegisters.
2064    typedef CodeGenRegister::SubRegMap SubRegMap;
2065    const SubRegMap &SubRegs = Register.getSubRegs();
2066    for (SubRegMap::const_iterator S = SubRegs.begin(),
2067         SE = SubRegs.end(); S != SE; ++S) {
2068      CodeGenRegister *SubReg = S->second;
2069      // Ignore non-leaf subregisters, their lane masks are fully covered by
2070      // the leaf subregisters anyway.
2071      if (!SubReg->getSubRegs().empty())
2072        continue;
2073      CodeGenSubRegIndex *SubRegIndex = S->first;
2074      const CodeGenRegister *SubRegister = S->second;
2075      LaneBitmask LaneMask = SubRegIndex->LaneMask;
2076      // Distribute LaneMask to Register Units touched.
2077      for (unsigned SUI : SubRegister->getRegUnits()) {
2078        bool Found = false;
2079        unsigned u = 0;
2080        for (unsigned RU : RegUnits) {
2081          if (SUI == RU) {
2082            RegUnitLaneMasks[u] |= LaneMask;
2083            assert(!Found);
2084            Found = true;
2085          }
2086          ++u;
2087        }
2088        (void)Found;
2089        assert(Found);
2090      }
2091    }
2092    Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2093  }
2094}
2095
2096void CodeGenRegBank::computeDerivedInfo() {
2097  computeComposites();
2098  computeSubRegLaneMasks();
2099
2100  // Compute a weight for each register unit created during getSubRegs.
2101  // This may create adopted register units (with unit # >= NumNativeRegUnits).
2102  computeRegUnitWeights();
2103
2104  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2105  // supersets for the union of overlapping sets.
2106  computeRegUnitSets();
2107
2108  computeRegUnitLaneMasks();
2109
2110  // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2111  for (CodeGenRegisterClass &RC : RegClasses) {
2112    RC.HasDisjunctSubRegs = false;
2113    RC.CoveredBySubRegs = true;
2114    for (const CodeGenRegister *Reg : RC.getMembers()) {
2115      RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2116      RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2117    }
2118  }
2119
2120  // Get the weight of each set.
2121  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2122    RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2123
2124  // Find the order of each set.
2125  RegUnitSetOrder.reserve(RegUnitSets.size());
2126  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2127    RegUnitSetOrder.push_back(Idx);
2128
2129  llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2130    return getRegPressureSet(ID1).Units.size() <
2131           getRegPressureSet(ID2).Units.size();
2132  });
2133  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2134    RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2135  }
2136}
2137
2138//
2139// Synthesize missing register class intersections.
2140//
2141// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2142// returns a maximal register class for all X.
2143//
2144void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2145  assert(!RegClasses.empty());
2146  // Stash the iterator to the last element so that this loop doesn't visit
2147  // elements added by the getOrCreateSubClass call within it.
2148  for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2149       I != std::next(E); ++I) {
2150    CodeGenRegisterClass *RC1 = RC;
2151    CodeGenRegisterClass *RC2 = &*I;
2152    if (RC1 == RC2)
2153      continue;
2154
2155    // Compute the set intersection of RC1 and RC2.
2156    const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2157    const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2158    CodeGenRegister::Vec Intersection;
2159    std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2160                          Memb2.end(),
2161                          std::inserter(Intersection, Intersection.begin()),
2162                          deref<std::less<>>());
2163
2164    // Skip disjoint class pairs.
2165    if (Intersection.empty())
2166      continue;
2167
2168    // If RC1 and RC2 have different spill sizes or alignments, use the
2169    // stricter one for sub-classing.  If they are equal, prefer RC1.
2170    if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2171      std::swap(RC1, RC2);
2172
2173    getOrCreateSubClass(RC1, &Intersection,
2174                        RC1->getName() + "_and_" + RC2->getName());
2175  }
2176}
2177
2178//
2179// Synthesize missing sub-classes for getSubClassWithSubReg().
2180//
2181// Make sure that the set of registers in RC with a given SubIdx sub-register
2182// form a register class.  Update RC->SubClassWithSubReg.
2183//
2184void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2185  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2186  typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2187                   deref<std::less<>>>
2188      SubReg2SetMap;
2189
2190  // Compute the set of registers supporting each SubRegIndex.
2191  SubReg2SetMap SRSets;
2192  for (const auto R : RC->getMembers()) {
2193    if (R->Artificial)
2194      continue;
2195    const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2196    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2197         E = SRM.end(); I != E; ++I) {
2198      if (!I->first->Artificial)
2199        SRSets[I->first].push_back(R);
2200    }
2201  }
2202
2203  for (auto I : SRSets)
2204    sortAndUniqueRegisters(I.second);
2205
2206  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
2207  // numerical order to visit synthetic indices last.
2208  for (const auto &SubIdx : SubRegIndices) {
2209    if (SubIdx.Artificial)
2210      continue;
2211    SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2212    // Unsupported SubRegIndex. Skip it.
2213    if (I == SRSets.end())
2214      continue;
2215    // In most cases, all RC registers support the SubRegIndex.
2216    if (I->second.size() == RC->getMembers().size()) {
2217      RC->setSubClassWithSubReg(&SubIdx, RC);
2218      continue;
2219    }
2220    // This is a real subset.  See if we have a matching class.
2221    CodeGenRegisterClass *SubRC =
2222      getOrCreateSubClass(RC, &I->second,
2223                          RC->getName() + "_with_" + I->first->getName());
2224    RC->setSubClassWithSubReg(&SubIdx, SubRC);
2225  }
2226}
2227
2228//
2229// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2230//
2231// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2232// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2233//
2234
2235void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2236                                                std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2237  SmallVector<std::pair<const CodeGenRegister*,
2238                        const CodeGenRegister*>, 16> SSPairs;
2239  BitVector TopoSigs(getNumTopoSigs());
2240
2241  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2242  for (auto &SubIdx : SubRegIndices) {
2243    // Skip indexes that aren't fully supported by RC's registers. This was
2244    // computed by inferSubClassWithSubReg() above which should have been
2245    // called first.
2246    if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2247      continue;
2248
2249    // Build list of (Super, Sub) pairs for this SubIdx.
2250    SSPairs.clear();
2251    TopoSigs.reset();
2252    for (const auto Super : RC->getMembers()) {
2253      const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2254      assert(Sub && "Missing sub-register");
2255      SSPairs.push_back(std::make_pair(Super, Sub));
2256      TopoSigs.set(Sub->getTopoSig());
2257    }
2258
2259    // Iterate over sub-register class candidates.  Ignore classes created by
2260    // this loop. They will never be useful.
2261    // Store an iterator to the last element (not end) so that this loop doesn't
2262    // visit newly inserted elements.
2263    assert(!RegClasses.empty());
2264    for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2265         I != std::next(E); ++I) {
2266      CodeGenRegisterClass &SubRC = *I;
2267      if (SubRC.Artificial)
2268        continue;
2269      // Topological shortcut: SubRC members have the wrong shape.
2270      if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2271        continue;
2272      // Compute the subset of RC that maps into SubRC.
2273      CodeGenRegister::Vec SubSetVec;
2274      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2275        if (SubRC.contains(SSPairs[i].second))
2276          SubSetVec.push_back(SSPairs[i].first);
2277
2278      if (SubSetVec.empty())
2279        continue;
2280
2281      // RC injects completely into SubRC.
2282      sortAndUniqueRegisters(SubSetVec);
2283      if (SubSetVec.size() == SSPairs.size()) {
2284        SubRC.addSuperRegClass(&SubIdx, RC);
2285        continue;
2286      }
2287
2288      // Only a subset of RC maps into SubRC. Make sure it is represented by a
2289      // class.
2290      getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2291                                          SubIdx.getName() + "_in_" +
2292                                          SubRC.getName());
2293    }
2294  }
2295}
2296
2297//
2298// Infer missing register classes.
2299//
2300void CodeGenRegBank::computeInferredRegisterClasses() {
2301  assert(!RegClasses.empty());
2302  // When this function is called, the register classes have not been sorted
2303  // and assigned EnumValues yet.  That means getSubClasses(),
2304  // getSuperClasses(), and hasSubClass() functions are defunct.
2305
2306  // Use one-before-the-end so it doesn't move forward when new elements are
2307  // added.
2308  auto FirstNewRC = std::prev(RegClasses.end());
2309
2310  // Visit all register classes, including the ones being added by the loop.
2311  // Watch out for iterator invalidation here.
2312  for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2313    CodeGenRegisterClass *RC = &*I;
2314    if (RC->Artificial)
2315      continue;
2316
2317    // Synthesize answers for getSubClassWithSubReg().
2318    inferSubClassWithSubReg(RC);
2319
2320    // Synthesize answers for getCommonSubClass().
2321    inferCommonSubClass(RC);
2322
2323    // Synthesize answers for getMatchingSuperRegClass().
2324    inferMatchingSuperRegClass(RC);
2325
2326    // New register classes are created while this loop is running, and we need
2327    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
2328    // to match old super-register classes with sub-register classes created
2329    // after inferMatchingSuperRegClass was called.  At this point,
2330    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2331    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
2332    if (I == FirstNewRC) {
2333      auto NextNewRC = std::prev(RegClasses.end());
2334      for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2335           ++I2)
2336        inferMatchingSuperRegClass(&*I2, E2);
2337      FirstNewRC = NextNewRC;
2338    }
2339  }
2340}
2341
2342/// getRegisterClassForRegister - Find the register class that contains the
2343/// specified physical register.  If the register is not in a register class,
2344/// return null. If the register is in multiple classes, and the classes have a
2345/// superset-subset relationship and the same set of types, return the
2346/// superclass.  Otherwise return null.
2347const CodeGenRegisterClass*
2348CodeGenRegBank::getRegClassForRegister(Record *R) {
2349  const CodeGenRegister *Reg = getReg(R);
2350  const CodeGenRegisterClass *FoundRC = nullptr;
2351  for (const auto &RC : getRegClasses()) {
2352    if (!RC.contains(Reg))
2353      continue;
2354
2355    // If this is the first class that contains the register,
2356    // make a note of it and go on to the next class.
2357    if (!FoundRC) {
2358      FoundRC = &RC;
2359      continue;
2360    }
2361
2362    // If a register's classes have different types, return null.
2363    if (RC.getValueTypes() != FoundRC->getValueTypes())
2364      return nullptr;
2365
2366    // Check to see if the previously found class that contains
2367    // the register is a subclass of the current class. If so,
2368    // prefer the superclass.
2369    if (RC.hasSubClass(FoundRC)) {
2370      FoundRC = &RC;
2371      continue;
2372    }
2373
2374    // Check to see if the previously found class that contains
2375    // the register is a superclass of the current class. If so,
2376    // prefer the superclass.
2377    if (FoundRC->hasSubClass(&RC))
2378      continue;
2379
2380    // Multiple classes, and neither is a superclass of the other.
2381    // Return null.
2382    return nullptr;
2383  }
2384  return FoundRC;
2385}
2386
2387const CodeGenRegisterClass *
2388CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2389                                       ValueTypeByHwMode *VT) {
2390  const CodeGenRegister *Reg = getReg(RegRecord);
2391  const CodeGenRegisterClass *BestRC = nullptr;
2392  for (const auto &RC : getRegClasses()) {
2393    if ((!VT || RC.hasType(*VT)) &&
2394        RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2395      BestRC = &RC;
2396  }
2397
2398  assert(BestRC && "Couldn't find the register class");
2399  return BestRC;
2400}
2401
2402BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2403  SetVector<const CodeGenRegister*> Set;
2404
2405  // First add Regs with all sub-registers.
2406  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2407    CodeGenRegister *Reg = getReg(Regs[i]);
2408    if (Set.insert(Reg))
2409      // Reg is new, add all sub-registers.
2410      // The pre-ordering is not important here.
2411      Reg->addSubRegsPreOrder(Set, *this);
2412  }
2413
2414  // Second, find all super-registers that are completely covered by the set.
2415  for (unsigned i = 0; i != Set.size(); ++i) {
2416    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2417    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2418      const CodeGenRegister *Super = SR[j];
2419      if (!Super->CoveredBySubRegs || Set.count(Super))
2420        continue;
2421      // This new super-register is covered by its sub-registers.
2422      bool AllSubsInSet = true;
2423      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2424      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
2425             E = SRM.end(); I != E; ++I)
2426        if (!Set.count(I->second)) {
2427          AllSubsInSet = false;
2428          break;
2429        }
2430      // All sub-registers in Set, add Super as well.
2431      // We will visit Super later to recheck its super-registers.
2432      if (AllSubsInSet)
2433        Set.insert(Super);
2434    }
2435  }
2436
2437  // Convert to BitVector.
2438  BitVector BV(Registers.size() + 1);
2439  for (unsigned i = 0, e = Set.size(); i != e; ++i)
2440    BV.set(Set[i]->EnumValue);
2441  return BV;
2442}
2443
2444void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2445  if (Unit < NumNativeRegUnits)
2446    dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2447  else
2448    dbgs() << " #" << Unit;
2449}
2450