1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15//  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
22#include "llvm/ADT/DenseSet.h"
23#include "llvm/ADT/MapVector.h"
24#include "llvm/ADT/None.h"
25#include "llvm/ADT/Optional.h"
26#include "llvm/ADT/PostOrderIterator.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallBitVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/iterator.h"
35#include "llvm/ADT/iterator_range.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Analysis/CodeMetrics.h"
38#include "llvm/Analysis/DemandedBits.h"
39#include "llvm/Analysis/GlobalsModRef.h"
40#include "llvm/Analysis/LoopAccessAnalysis.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/MemoryLocation.h"
43#include "llvm/Analysis/OptimizationRemarkEmitter.h"
44#include "llvm/Analysis/ScalarEvolution.h"
45#include "llvm/Analysis/ScalarEvolutionExpressions.h"
46#include "llvm/Analysis/TargetLibraryInfo.h"
47#include "llvm/Analysis/TargetTransformInfo.h"
48#include "llvm/Analysis/ValueTracking.h"
49#include "llvm/Analysis/VectorUtils.h"
50#include "llvm/Analysis/AssumptionCache.h"
51#include "llvm/IR/Attributes.h"
52#include "llvm/IR/BasicBlock.h"
53#include "llvm/IR/Constant.h"
54#include "llvm/IR/Constants.h"
55#include "llvm/IR/DataLayout.h"
56#include "llvm/IR/DebugLoc.h"
57#include "llvm/IR/DerivedTypes.h"
58#include "llvm/IR/Dominators.h"
59#include "llvm/IR/Function.h"
60#include "llvm/IR/IRBuilder.h"
61#include "llvm/IR/InstrTypes.h"
62#include "llvm/IR/Instruction.h"
63#include "llvm/IR/Instructions.h"
64#include "llvm/IR/IntrinsicInst.h"
65#include "llvm/IR/Intrinsics.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/NoFolder.h"
68#include "llvm/IR/Operator.h"
69#include "llvm/IR/PassManager.h"
70#include "llvm/IR/PatternMatch.h"
71#include "llvm/IR/Type.h"
72#include "llvm/IR/Use.h"
73#include "llvm/IR/User.h"
74#include "llvm/IR/Value.h"
75#include "llvm/IR/ValueHandle.h"
76#include "llvm/IR/Verifier.h"
77#include "llvm/InitializePasses.h"
78#include "llvm/Pass.h"
79#include "llvm/Support/Casting.h"
80#include "llvm/Support/CommandLine.h"
81#include "llvm/Support/Compiler.h"
82#include "llvm/Support/DOTGraphTraits.h"
83#include "llvm/Support/Debug.h"
84#include "llvm/Support/ErrorHandling.h"
85#include "llvm/Support/GraphWriter.h"
86#include "llvm/Support/KnownBits.h"
87#include "llvm/Support/MathExtras.h"
88#include "llvm/Support/raw_ostream.h"
89#include "llvm/Transforms/Utils/InjectTLIMappings.h"
90#include "llvm/Transforms/Utils/LoopUtils.h"
91#include "llvm/Transforms/Vectorize.h"
92#include <algorithm>
93#include <cassert>
94#include <cstdint>
95#include <iterator>
96#include <memory>
97#include <set>
98#include <string>
99#include <tuple>
100#include <utility>
101#include <vector>
102
103using namespace llvm;
104using namespace llvm::PatternMatch;
105using namespace slpvectorizer;
106
107#define SV_NAME "slp-vectorizer"
108#define DEBUG_TYPE "SLP"
109
110STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
111
112cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden,
113                                  cl::desc("Run the SLP vectorization passes"));
114
115static cl::opt<int>
116    SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
117                     cl::desc("Only vectorize if you gain more than this "
118                              "number "));
119
120static cl::opt<bool>
121ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
122                   cl::desc("Attempt to vectorize horizontal reductions"));
123
124static cl::opt<bool> ShouldStartVectorizeHorAtStore(
125    "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
126    cl::desc(
127        "Attempt to vectorize horizontal reductions feeding into a store"));
128
129static cl::opt<int>
130MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
131    cl::desc("Attempt to vectorize for this register size in bits"));
132
133static cl::opt<int>
134MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden,
135    cl::desc("Maximum depth of the lookup for consecutive stores."));
136
137/// Limits the size of scheduling regions in a block.
138/// It avoid long compile times for _very_ large blocks where vector
139/// instructions are spread over a wide range.
140/// This limit is way higher than needed by real-world functions.
141static cl::opt<int>
142ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
143    cl::desc("Limit the size of the SLP scheduling region per block"));
144
145static cl::opt<int> MinVectorRegSizeOption(
146    "slp-min-reg-size", cl::init(128), cl::Hidden,
147    cl::desc("Attempt to vectorize for this register size in bits"));
148
149static cl::opt<unsigned> RecursionMaxDepth(
150    "slp-recursion-max-depth", cl::init(12), cl::Hidden,
151    cl::desc("Limit the recursion depth when building a vectorizable tree"));
152
153static cl::opt<unsigned> MinTreeSize(
154    "slp-min-tree-size", cl::init(3), cl::Hidden,
155    cl::desc("Only vectorize small trees if they are fully vectorizable"));
156
157// The maximum depth that the look-ahead score heuristic will explore.
158// The higher this value, the higher the compilation time overhead.
159static cl::opt<int> LookAheadMaxDepth(
160    "slp-max-look-ahead-depth", cl::init(2), cl::Hidden,
161    cl::desc("The maximum look-ahead depth for operand reordering scores"));
162
163// The Look-ahead heuristic goes through the users of the bundle to calculate
164// the users cost in getExternalUsesCost(). To avoid compilation time increase
165// we limit the number of users visited to this value.
166static cl::opt<unsigned> LookAheadUsersBudget(
167    "slp-look-ahead-users-budget", cl::init(2), cl::Hidden,
168    cl::desc("The maximum number of users to visit while visiting the "
169             "predecessors. This prevents compilation time increase."));
170
171static cl::opt<bool>
172    ViewSLPTree("view-slp-tree", cl::Hidden,
173                cl::desc("Display the SLP trees with Graphviz"));
174
175// Limit the number of alias checks. The limit is chosen so that
176// it has no negative effect on the llvm benchmarks.
177static const unsigned AliasedCheckLimit = 10;
178
179// Another limit for the alias checks: The maximum distance between load/store
180// instructions where alias checks are done.
181// This limit is useful for very large basic blocks.
182static const unsigned MaxMemDepDistance = 160;
183
184/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
185/// regions to be handled.
186static const int MinScheduleRegionSize = 16;
187
188/// Predicate for the element types that the SLP vectorizer supports.
189///
190/// The most important thing to filter here are types which are invalid in LLVM
191/// vectors. We also filter target specific types which have absolutely no
192/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
193/// avoids spending time checking the cost model and realizing that they will
194/// be inevitably scalarized.
195static bool isValidElementType(Type *Ty) {
196  return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
197         !Ty->isPPC_FP128Ty();
198}
199
200/// \returns true if all of the instructions in \p VL are in the same block or
201/// false otherwise.
202static bool allSameBlock(ArrayRef<Value *> VL) {
203  Instruction *I0 = dyn_cast<Instruction>(VL[0]);
204  if (!I0)
205    return false;
206  BasicBlock *BB = I0->getParent();
207  for (int i = 1, e = VL.size(); i < e; i++) {
208    Instruction *I = dyn_cast<Instruction>(VL[i]);
209    if (!I)
210      return false;
211
212    if (BB != I->getParent())
213      return false;
214  }
215  return true;
216}
217
218/// \returns True if all of the values in \p VL are constants (but not
219/// globals/constant expressions).
220static bool allConstant(ArrayRef<Value *> VL) {
221  // Constant expressions and globals can't be vectorized like normal integer/FP
222  // constants.
223  for (Value *i : VL)
224    if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
225      return false;
226  return true;
227}
228
229/// \returns True if all of the values in \p VL are identical.
230static bool isSplat(ArrayRef<Value *> VL) {
231  for (unsigned i = 1, e = VL.size(); i < e; ++i)
232    if (VL[i] != VL[0])
233      return false;
234  return true;
235}
236
237/// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
238static bool isCommutative(Instruction *I) {
239  if (auto *IC = dyn_cast<CmpInst>(I))
240    return IC->isCommutative();
241  return I->isCommutative();
242}
243
244/// Checks if the vector of instructions can be represented as a shuffle, like:
245/// %x0 = extractelement <4 x i8> %x, i32 0
246/// %x3 = extractelement <4 x i8> %x, i32 3
247/// %y1 = extractelement <4 x i8> %y, i32 1
248/// %y2 = extractelement <4 x i8> %y, i32 2
249/// %x0x0 = mul i8 %x0, %x0
250/// %x3x3 = mul i8 %x3, %x3
251/// %y1y1 = mul i8 %y1, %y1
252/// %y2y2 = mul i8 %y2, %y2
253/// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
254/// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
255/// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
256/// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
257/// ret <4 x i8> %ins4
258/// can be transformed into:
259/// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
260///                                                         i32 6>
261/// %2 = mul <4 x i8> %1, %1
262/// ret <4 x i8> %2
263/// We convert this initially to something like:
264/// %x0 = extractelement <4 x i8> %x, i32 0
265/// %x3 = extractelement <4 x i8> %x, i32 3
266/// %y1 = extractelement <4 x i8> %y, i32 1
267/// %y2 = extractelement <4 x i8> %y, i32 2
268/// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
269/// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
270/// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
271/// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
272/// %5 = mul <4 x i8> %4, %4
273/// %6 = extractelement <4 x i8> %5, i32 0
274/// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
275/// %7 = extractelement <4 x i8> %5, i32 1
276/// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
277/// %8 = extractelement <4 x i8> %5, i32 2
278/// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
279/// %9 = extractelement <4 x i8> %5, i32 3
280/// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
281/// ret <4 x i8> %ins4
282/// InstCombiner transforms this into a shuffle and vector mul
283/// TODO: Can we split off and reuse the shuffle mask detection from
284/// TargetTransformInfo::getInstructionThroughput?
285static Optional<TargetTransformInfo::ShuffleKind>
286isShuffle(ArrayRef<Value *> VL) {
287  auto *EI0 = cast<ExtractElementInst>(VL[0]);
288  unsigned Size = EI0->getVectorOperandType()->getNumElements();
289  Value *Vec1 = nullptr;
290  Value *Vec2 = nullptr;
291  enum ShuffleMode { Unknown, Select, Permute };
292  ShuffleMode CommonShuffleMode = Unknown;
293  for (unsigned I = 0, E = VL.size(); I < E; ++I) {
294    auto *EI = cast<ExtractElementInst>(VL[I]);
295    auto *Vec = EI->getVectorOperand();
296    // All vector operands must have the same number of vector elements.
297    if (cast<VectorType>(Vec->getType())->getNumElements() != Size)
298      return None;
299    auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
300    if (!Idx)
301      return None;
302    // Undefined behavior if Idx is negative or >= Size.
303    if (Idx->getValue().uge(Size))
304      continue;
305    unsigned IntIdx = Idx->getValue().getZExtValue();
306    // We can extractelement from undef vector.
307    if (isa<UndefValue>(Vec))
308      continue;
309    // For correct shuffling we have to have at most 2 different vector operands
310    // in all extractelement instructions.
311    if (!Vec1 || Vec1 == Vec)
312      Vec1 = Vec;
313    else if (!Vec2 || Vec2 == Vec)
314      Vec2 = Vec;
315    else
316      return None;
317    if (CommonShuffleMode == Permute)
318      continue;
319    // If the extract index is not the same as the operation number, it is a
320    // permutation.
321    if (IntIdx != I) {
322      CommonShuffleMode = Permute;
323      continue;
324    }
325    CommonShuffleMode = Select;
326  }
327  // If we're not crossing lanes in different vectors, consider it as blending.
328  if (CommonShuffleMode == Select && Vec2)
329    return TargetTransformInfo::SK_Select;
330  // If Vec2 was never used, we have a permutation of a single vector, otherwise
331  // we have permutation of 2 vectors.
332  return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
333              : TargetTransformInfo::SK_PermuteSingleSrc;
334}
335
336namespace {
337
338/// Main data required for vectorization of instructions.
339struct InstructionsState {
340  /// The very first instruction in the list with the main opcode.
341  Value *OpValue = nullptr;
342
343  /// The main/alternate instruction.
344  Instruction *MainOp = nullptr;
345  Instruction *AltOp = nullptr;
346
347  /// The main/alternate opcodes for the list of instructions.
348  unsigned getOpcode() const {
349    return MainOp ? MainOp->getOpcode() : 0;
350  }
351
352  unsigned getAltOpcode() const {
353    return AltOp ? AltOp->getOpcode() : 0;
354  }
355
356  /// Some of the instructions in the list have alternate opcodes.
357  bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
358
359  bool isOpcodeOrAlt(Instruction *I) const {
360    unsigned CheckedOpcode = I->getOpcode();
361    return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
362  }
363
364  InstructionsState() = delete;
365  InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
366      : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
367};
368
369} // end anonymous namespace
370
371/// Chooses the correct key for scheduling data. If \p Op has the same (or
372/// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
373/// OpValue.
374static Value *isOneOf(const InstructionsState &S, Value *Op) {
375  auto *I = dyn_cast<Instruction>(Op);
376  if (I && S.isOpcodeOrAlt(I))
377    return Op;
378  return S.OpValue;
379}
380
381/// \returns true if \p Opcode is allowed as part of of the main/alternate
382/// instruction for SLP vectorization.
383///
384/// Example of unsupported opcode is SDIV that can potentially cause UB if the
385/// "shuffled out" lane would result in division by zero.
386static bool isValidForAlternation(unsigned Opcode) {
387  if (Instruction::isIntDivRem(Opcode))
388    return false;
389
390  return true;
391}
392
393/// \returns analysis of the Instructions in \p VL described in
394/// InstructionsState, the Opcode that we suppose the whole list
395/// could be vectorized even if its structure is diverse.
396static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
397                                       unsigned BaseIndex = 0) {
398  // Make sure these are all Instructions.
399  if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
400    return InstructionsState(VL[BaseIndex], nullptr, nullptr);
401
402  bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
403  bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
404  unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
405  unsigned AltOpcode = Opcode;
406  unsigned AltIndex = BaseIndex;
407
408  // Check for one alternate opcode from another BinaryOperator.
409  // TODO - generalize to support all operators (types, calls etc.).
410  for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
411    unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
412    if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
413      if (InstOpcode == Opcode || InstOpcode == AltOpcode)
414        continue;
415      if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) &&
416          isValidForAlternation(Opcode)) {
417        AltOpcode = InstOpcode;
418        AltIndex = Cnt;
419        continue;
420      }
421    } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
422      Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
423      Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
424      if (Ty0 == Ty1) {
425        if (InstOpcode == Opcode || InstOpcode == AltOpcode)
426          continue;
427        if (Opcode == AltOpcode) {
428          assert(isValidForAlternation(Opcode) &&
429                 isValidForAlternation(InstOpcode) &&
430                 "Cast isn't safe for alternation, logic needs to be updated!");
431          AltOpcode = InstOpcode;
432          AltIndex = Cnt;
433          continue;
434        }
435      }
436    } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
437      continue;
438    return InstructionsState(VL[BaseIndex], nullptr, nullptr);
439  }
440
441  return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
442                           cast<Instruction>(VL[AltIndex]));
443}
444
445/// \returns true if all of the values in \p VL have the same type or false
446/// otherwise.
447static bool allSameType(ArrayRef<Value *> VL) {
448  Type *Ty = VL[0]->getType();
449  for (int i = 1, e = VL.size(); i < e; i++)
450    if (VL[i]->getType() != Ty)
451      return false;
452
453  return true;
454}
455
456/// \returns True if Extract{Value,Element} instruction extracts element Idx.
457static Optional<unsigned> getExtractIndex(Instruction *E) {
458  unsigned Opcode = E->getOpcode();
459  assert((Opcode == Instruction::ExtractElement ||
460          Opcode == Instruction::ExtractValue) &&
461         "Expected extractelement or extractvalue instruction.");
462  if (Opcode == Instruction::ExtractElement) {
463    auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
464    if (!CI)
465      return None;
466    return CI->getZExtValue();
467  }
468  ExtractValueInst *EI = cast<ExtractValueInst>(E);
469  if (EI->getNumIndices() != 1)
470    return None;
471  return *EI->idx_begin();
472}
473
474/// \returns True if in-tree use also needs extract. This refers to
475/// possible scalar operand in vectorized instruction.
476static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
477                                    TargetLibraryInfo *TLI) {
478  unsigned Opcode = UserInst->getOpcode();
479  switch (Opcode) {
480  case Instruction::Load: {
481    LoadInst *LI = cast<LoadInst>(UserInst);
482    return (LI->getPointerOperand() == Scalar);
483  }
484  case Instruction::Store: {
485    StoreInst *SI = cast<StoreInst>(UserInst);
486    return (SI->getPointerOperand() == Scalar);
487  }
488  case Instruction::Call: {
489    CallInst *CI = cast<CallInst>(UserInst);
490    Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
491    for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
492      if (hasVectorInstrinsicScalarOpd(ID, i))
493        return (CI->getArgOperand(i) == Scalar);
494    }
495    LLVM_FALLTHROUGH;
496  }
497  default:
498    return false;
499  }
500}
501
502/// \returns the AA location that is being access by the instruction.
503static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
504  if (StoreInst *SI = dyn_cast<StoreInst>(I))
505    return MemoryLocation::get(SI);
506  if (LoadInst *LI = dyn_cast<LoadInst>(I))
507    return MemoryLocation::get(LI);
508  return MemoryLocation();
509}
510
511/// \returns True if the instruction is not a volatile or atomic load/store.
512static bool isSimple(Instruction *I) {
513  if (LoadInst *LI = dyn_cast<LoadInst>(I))
514    return LI->isSimple();
515  if (StoreInst *SI = dyn_cast<StoreInst>(I))
516    return SI->isSimple();
517  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
518    return !MI->isVolatile();
519  return true;
520}
521
522namespace llvm {
523
524namespace slpvectorizer {
525
526/// Bottom Up SLP Vectorizer.
527class BoUpSLP {
528  struct TreeEntry;
529  struct ScheduleData;
530
531public:
532  using ValueList = SmallVector<Value *, 8>;
533  using InstrList = SmallVector<Instruction *, 16>;
534  using ValueSet = SmallPtrSet<Value *, 16>;
535  using StoreList = SmallVector<StoreInst *, 8>;
536  using ExtraValueToDebugLocsMap =
537      MapVector<Value *, SmallVector<Instruction *, 2>>;
538
539  BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
540          TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
541          DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
542          const DataLayout *DL, OptimizationRemarkEmitter *ORE)
543      : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
544        DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
545    CodeMetrics::collectEphemeralValues(F, AC, EphValues);
546    // Use the vector register size specified by the target unless overridden
547    // by a command-line option.
548    // TODO: It would be better to limit the vectorization factor based on
549    //       data type rather than just register size. For example, x86 AVX has
550    //       256-bit registers, but it does not support integer operations
551    //       at that width (that requires AVX2).
552    if (MaxVectorRegSizeOption.getNumOccurrences())
553      MaxVecRegSize = MaxVectorRegSizeOption;
554    else
555      MaxVecRegSize = TTI->getRegisterBitWidth(true);
556
557    if (MinVectorRegSizeOption.getNumOccurrences())
558      MinVecRegSize = MinVectorRegSizeOption;
559    else
560      MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
561  }
562
563  /// Vectorize the tree that starts with the elements in \p VL.
564  /// Returns the vectorized root.
565  Value *vectorizeTree();
566
567  /// Vectorize the tree but with the list of externally used values \p
568  /// ExternallyUsedValues. Values in this MapVector can be replaced but the
569  /// generated extractvalue instructions.
570  Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
571
572  /// \returns the cost incurred by unwanted spills and fills, caused by
573  /// holding live values over call sites.
574  int getSpillCost() const;
575
576  /// \returns the vectorization cost of the subtree that starts at \p VL.
577  /// A negative number means that this is profitable.
578  int getTreeCost();
579
580  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
581  /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
582  void buildTree(ArrayRef<Value *> Roots,
583                 ArrayRef<Value *> UserIgnoreLst = None);
584
585  /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
586  /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
587  /// into account (and updating it, if required) list of externally used
588  /// values stored in \p ExternallyUsedValues.
589  void buildTree(ArrayRef<Value *> Roots,
590                 ExtraValueToDebugLocsMap &ExternallyUsedValues,
591                 ArrayRef<Value *> UserIgnoreLst = None);
592
593  /// Clear the internal data structures that are created by 'buildTree'.
594  void deleteTree() {
595    VectorizableTree.clear();
596    ScalarToTreeEntry.clear();
597    MustGather.clear();
598    ExternalUses.clear();
599    NumOpsWantToKeepOrder.clear();
600    NumOpsWantToKeepOriginalOrder = 0;
601    for (auto &Iter : BlocksSchedules) {
602      BlockScheduling *BS = Iter.second.get();
603      BS->clear();
604    }
605    MinBWs.clear();
606  }
607
608  unsigned getTreeSize() const { return VectorizableTree.size(); }
609
610  /// Perform LICM and CSE on the newly generated gather sequences.
611  void optimizeGatherSequence();
612
613  /// \returns The best order of instructions for vectorization.
614  Optional<ArrayRef<unsigned>> bestOrder() const {
615    auto I = std::max_element(
616        NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
617        [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
618           const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
619          return D1.second < D2.second;
620        });
621    if (I == NumOpsWantToKeepOrder.end() ||
622        I->getSecond() <= NumOpsWantToKeepOriginalOrder)
623      return None;
624
625    return makeArrayRef(I->getFirst());
626  }
627
628  /// \return The vector element size in bits to use when vectorizing the
629  /// expression tree ending at \p V. If V is a store, the size is the width of
630  /// the stored value. Otherwise, the size is the width of the largest loaded
631  /// value reaching V. This method is used by the vectorizer to calculate
632  /// vectorization factors.
633  unsigned getVectorElementSize(Value *V);
634
635  /// Compute the minimum type sizes required to represent the entries in a
636  /// vectorizable tree.
637  void computeMinimumValueSizes();
638
639  // \returns maximum vector register size as set by TTI or overridden by cl::opt.
640  unsigned getMaxVecRegSize() const {
641    return MaxVecRegSize;
642  }
643
644  // \returns minimum vector register size as set by cl::opt.
645  unsigned getMinVecRegSize() const {
646    return MinVecRegSize;
647  }
648
649  /// Check if homogeneous aggregate is isomorphic to some VectorType.
650  /// Accepts homogeneous multidimensional aggregate of scalars/vectors like
651  /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> },
652  /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on.
653  ///
654  /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
655  unsigned canMapToVector(Type *T, const DataLayout &DL) const;
656
657  /// \returns True if the VectorizableTree is both tiny and not fully
658  /// vectorizable. We do not vectorize such trees.
659  bool isTreeTinyAndNotFullyVectorizable() const;
660
661  /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values
662  /// can be load combined in the backend. Load combining may not be allowed in
663  /// the IR optimizer, so we do not want to alter the pattern. For example,
664  /// partially transforming a scalar bswap() pattern into vector code is
665  /// effectively impossible for the backend to undo.
666  /// TODO: If load combining is allowed in the IR optimizer, this analysis
667  ///       may not be necessary.
668  bool isLoadCombineReductionCandidate(unsigned ReductionOpcode) const;
669
670  /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values
671  /// can be load combined in the backend. Load combining may not be allowed in
672  /// the IR optimizer, so we do not want to alter the pattern. For example,
673  /// partially transforming a scalar bswap() pattern into vector code is
674  /// effectively impossible for the backend to undo.
675  /// TODO: If load combining is allowed in the IR optimizer, this analysis
676  ///       may not be necessary.
677  bool isLoadCombineCandidate() const;
678
679  OptimizationRemarkEmitter *getORE() { return ORE; }
680
681  /// This structure holds any data we need about the edges being traversed
682  /// during buildTree_rec(). We keep track of:
683  /// (i) the user TreeEntry index, and
684  /// (ii) the index of the edge.
685  struct EdgeInfo {
686    EdgeInfo() = default;
687    EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
688        : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
689    /// The user TreeEntry.
690    TreeEntry *UserTE = nullptr;
691    /// The operand index of the use.
692    unsigned EdgeIdx = UINT_MAX;
693#ifndef NDEBUG
694    friend inline raw_ostream &operator<<(raw_ostream &OS,
695                                          const BoUpSLP::EdgeInfo &EI) {
696      EI.dump(OS);
697      return OS;
698    }
699    /// Debug print.
700    void dump(raw_ostream &OS) const {
701      OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
702         << " EdgeIdx:" << EdgeIdx << "}";
703    }
704    LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
705#endif
706  };
707
708  /// A helper data structure to hold the operands of a vector of instructions.
709  /// This supports a fixed vector length for all operand vectors.
710  class VLOperands {
711    /// For each operand we need (i) the value, and (ii) the opcode that it
712    /// would be attached to if the expression was in a left-linearized form.
713    /// This is required to avoid illegal operand reordering.
714    /// For example:
715    /// \verbatim
716    ///                         0 Op1
717    ///                         |/
718    /// Op1 Op2   Linearized    + Op2
719    ///   \ /     ---------->   |/
720    ///    -                    -
721    ///
722    /// Op1 - Op2            (0 + Op1) - Op2
723    /// \endverbatim
724    ///
725    /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
726    ///
727    /// Another way to think of this is to track all the operations across the
728    /// path from the operand all the way to the root of the tree and to
729    /// calculate the operation that corresponds to this path. For example, the
730    /// path from Op2 to the root crosses the RHS of the '-', therefore the
731    /// corresponding operation is a '-' (which matches the one in the
732    /// linearized tree, as shown above).
733    ///
734    /// For lack of a better term, we refer to this operation as Accumulated
735    /// Path Operation (APO).
736    struct OperandData {
737      OperandData() = default;
738      OperandData(Value *V, bool APO, bool IsUsed)
739          : V(V), APO(APO), IsUsed(IsUsed) {}
740      /// The operand value.
741      Value *V = nullptr;
742      /// TreeEntries only allow a single opcode, or an alternate sequence of
743      /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
744      /// APO. It is set to 'true' if 'V' is attached to an inverse operation
745      /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
746      /// (e.g., Add/Mul)
747      bool APO = false;
748      /// Helper data for the reordering function.
749      bool IsUsed = false;
750    };
751
752    /// During operand reordering, we are trying to select the operand at lane
753    /// that matches best with the operand at the neighboring lane. Our
754    /// selection is based on the type of value we are looking for. For example,
755    /// if the neighboring lane has a load, we need to look for a load that is
756    /// accessing a consecutive address. These strategies are summarized in the
757    /// 'ReorderingMode' enumerator.
758    enum class ReorderingMode {
759      Load,     ///< Matching loads to consecutive memory addresses
760      Opcode,   ///< Matching instructions based on opcode (same or alternate)
761      Constant, ///< Matching constants
762      Splat,    ///< Matching the same instruction multiple times (broadcast)
763      Failed,   ///< We failed to create a vectorizable group
764    };
765
766    using OperandDataVec = SmallVector<OperandData, 2>;
767
768    /// A vector of operand vectors.
769    SmallVector<OperandDataVec, 4> OpsVec;
770
771    const DataLayout &DL;
772    ScalarEvolution &SE;
773    const BoUpSLP &R;
774
775    /// \returns the operand data at \p OpIdx and \p Lane.
776    OperandData &getData(unsigned OpIdx, unsigned Lane) {
777      return OpsVec[OpIdx][Lane];
778    }
779
780    /// \returns the operand data at \p OpIdx and \p Lane. Const version.
781    const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
782      return OpsVec[OpIdx][Lane];
783    }
784
785    /// Clears the used flag for all entries.
786    void clearUsed() {
787      for (unsigned OpIdx = 0, NumOperands = getNumOperands();
788           OpIdx != NumOperands; ++OpIdx)
789        for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
790             ++Lane)
791          OpsVec[OpIdx][Lane].IsUsed = false;
792    }
793
794    /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
795    void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
796      std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
797    }
798
799    // The hard-coded scores listed here are not very important. When computing
800    // the scores of matching one sub-tree with another, we are basically
801    // counting the number of values that are matching. So even if all scores
802    // are set to 1, we would still get a decent matching result.
803    // However, sometimes we have to break ties. For example we may have to
804    // choose between matching loads vs matching opcodes. This is what these
805    // scores are helping us with: they provide the order of preference.
806
807    /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]).
808    static const int ScoreConsecutiveLoads = 3;
809    /// ExtractElementInst from same vector and consecutive indexes.
810    static const int ScoreConsecutiveExtracts = 3;
811    /// Constants.
812    static const int ScoreConstants = 2;
813    /// Instructions with the same opcode.
814    static const int ScoreSameOpcode = 2;
815    /// Instructions with alt opcodes (e.g, add + sub).
816    static const int ScoreAltOpcodes = 1;
817    /// Identical instructions (a.k.a. splat or broadcast).
818    static const int ScoreSplat = 1;
819    /// Matching with an undef is preferable to failing.
820    static const int ScoreUndef = 1;
821    /// Score for failing to find a decent match.
822    static const int ScoreFail = 0;
823    /// User exteranl to the vectorized code.
824    static const int ExternalUseCost = 1;
825    /// The user is internal but in a different lane.
826    static const int UserInDiffLaneCost = ExternalUseCost;
827
828    /// \returns the score of placing \p V1 and \p V2 in consecutive lanes.
829    static int getShallowScore(Value *V1, Value *V2, const DataLayout &DL,
830                               ScalarEvolution &SE) {
831      auto *LI1 = dyn_cast<LoadInst>(V1);
832      auto *LI2 = dyn_cast<LoadInst>(V2);
833      if (LI1 && LI2)
834        return isConsecutiveAccess(LI1, LI2, DL, SE)
835                   ? VLOperands::ScoreConsecutiveLoads
836                   : VLOperands::ScoreFail;
837
838      auto *C1 = dyn_cast<Constant>(V1);
839      auto *C2 = dyn_cast<Constant>(V2);
840      if (C1 && C2)
841        return VLOperands::ScoreConstants;
842
843      // Extracts from consecutive indexes of the same vector better score as
844      // the extracts could be optimized away.
845      Value *EV;
846      ConstantInt *Ex1Idx, *Ex2Idx;
847      if (match(V1, m_ExtractElt(m_Value(EV), m_ConstantInt(Ex1Idx))) &&
848          match(V2, m_ExtractElt(m_Deferred(EV), m_ConstantInt(Ex2Idx))) &&
849          Ex1Idx->getZExtValue() + 1 == Ex2Idx->getZExtValue())
850        return VLOperands::ScoreConsecutiveExtracts;
851
852      auto *I1 = dyn_cast<Instruction>(V1);
853      auto *I2 = dyn_cast<Instruction>(V2);
854      if (I1 && I2) {
855        if (I1 == I2)
856          return VLOperands::ScoreSplat;
857        InstructionsState S = getSameOpcode({I1, I2});
858        // Note: Only consider instructions with <= 2 operands to avoid
859        // complexity explosion.
860        if (S.getOpcode() && S.MainOp->getNumOperands() <= 2)
861          return S.isAltShuffle() ? VLOperands::ScoreAltOpcodes
862                                  : VLOperands::ScoreSameOpcode;
863      }
864
865      if (isa<UndefValue>(V2))
866        return VLOperands::ScoreUndef;
867
868      return VLOperands::ScoreFail;
869    }
870
871    /// Holds the values and their lane that are taking part in the look-ahead
872    /// score calculation. This is used in the external uses cost calculation.
873    SmallDenseMap<Value *, int> InLookAheadValues;
874
875    /// \Returns the additinal cost due to uses of \p LHS and \p RHS that are
876    /// either external to the vectorized code, or require shuffling.
877    int getExternalUsesCost(const std::pair<Value *, int> &LHS,
878                            const std::pair<Value *, int> &RHS) {
879      int Cost = 0;
880      std::array<std::pair<Value *, int>, 2> Values = {{LHS, RHS}};
881      for (int Idx = 0, IdxE = Values.size(); Idx != IdxE; ++Idx) {
882        Value *V = Values[Idx].first;
883        // Calculate the absolute lane, using the minimum relative lane of LHS
884        // and RHS as base and Idx as the offset.
885        int Ln = std::min(LHS.second, RHS.second) + Idx;
886        assert(Ln >= 0 && "Bad lane calculation");
887        unsigned UsersBudget = LookAheadUsersBudget;
888        for (User *U : V->users()) {
889          if (const TreeEntry *UserTE = R.getTreeEntry(U)) {
890            // The user is in the VectorizableTree. Check if we need to insert.
891            auto It = llvm::find(UserTE->Scalars, U);
892            assert(It != UserTE->Scalars.end() && "U is in UserTE");
893            int UserLn = std::distance(UserTE->Scalars.begin(), It);
894            assert(UserLn >= 0 && "Bad lane");
895            if (UserLn != Ln)
896              Cost += UserInDiffLaneCost;
897          } else {
898            // Check if the user is in the look-ahead code.
899            auto It2 = InLookAheadValues.find(U);
900            if (It2 != InLookAheadValues.end()) {
901              // The user is in the look-ahead code. Check the lane.
902              if (It2->second != Ln)
903                Cost += UserInDiffLaneCost;
904            } else {
905              // The user is neither in SLP tree nor in the look-ahead code.
906              Cost += ExternalUseCost;
907            }
908          }
909          // Limit the number of visited uses to cap compilation time.
910          if (--UsersBudget == 0)
911            break;
912        }
913      }
914      return Cost;
915    }
916
917    /// Go through the operands of \p LHS and \p RHS recursively until \p
918    /// MaxLevel, and return the cummulative score. For example:
919    /// \verbatim
920    ///  A[0]  B[0]  A[1]  B[1]  C[0] D[0]  B[1] A[1]
921    ///     \ /         \ /         \ /        \ /
922    ///      +           +           +          +
923    ///     G1          G2          G3         G4
924    /// \endverbatim
925    /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at
926    /// each level recursively, accumulating the score. It starts from matching
927    /// the additions at level 0, then moves on to the loads (level 1). The
928    /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and
929    /// {B[0],B[1]} match with VLOperands::ScoreConsecutiveLoads, while
930    /// {A[0],C[0]} has a score of VLOperands::ScoreFail.
931    /// Please note that the order of the operands does not matter, as we
932    /// evaluate the score of all profitable combinations of operands. In
933    /// other words the score of G1 and G4 is the same as G1 and G2. This
934    /// heuristic is based on ideas described in:
935    ///   Look-ahead SLP: Auto-vectorization in the presence of commutative
936    ///   operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
937    ///   Lu��s F. W. G��es
938    int getScoreAtLevelRec(const std::pair<Value *, int> &LHS,
939                           const std::pair<Value *, int> &RHS, int CurrLevel,
940                           int MaxLevel) {
941
942      Value *V1 = LHS.first;
943      Value *V2 = RHS.first;
944      // Get the shallow score of V1 and V2.
945      int ShallowScoreAtThisLevel =
946          std::max((int)ScoreFail, getShallowScore(V1, V2, DL, SE) -
947                                       getExternalUsesCost(LHS, RHS));
948      int Lane1 = LHS.second;
949      int Lane2 = RHS.second;
950
951      // If reached MaxLevel,
952      //  or if V1 and V2 are not instructions,
953      //  or if they are SPLAT,
954      //  or if they are not consecutive, early return the current cost.
955      auto *I1 = dyn_cast<Instruction>(V1);
956      auto *I2 = dyn_cast<Instruction>(V2);
957      if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 ||
958          ShallowScoreAtThisLevel == VLOperands::ScoreFail ||
959          (isa<LoadInst>(I1) && isa<LoadInst>(I2) && ShallowScoreAtThisLevel))
960        return ShallowScoreAtThisLevel;
961      assert(I1 && I2 && "Should have early exited.");
962
963      // Keep track of in-tree values for determining the external-use cost.
964      InLookAheadValues[V1] = Lane1;
965      InLookAheadValues[V2] = Lane2;
966
967      // Contains the I2 operand indexes that got matched with I1 operands.
968      SmallSet<unsigned, 4> Op2Used;
969
970      // Recursion towards the operands of I1 and I2. We are trying all possbile
971      // operand pairs, and keeping track of the best score.
972      for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands();
973           OpIdx1 != NumOperands1; ++OpIdx1) {
974        // Try to pair op1I with the best operand of I2.
975        int MaxTmpScore = 0;
976        unsigned MaxOpIdx2 = 0;
977        bool FoundBest = false;
978        // If I2 is commutative try all combinations.
979        unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1;
980        unsigned ToIdx = isCommutative(I2)
981                             ? I2->getNumOperands()
982                             : std::min(I2->getNumOperands(), OpIdx1 + 1);
983        assert(FromIdx <= ToIdx && "Bad index");
984        for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) {
985          // Skip operands already paired with OpIdx1.
986          if (Op2Used.count(OpIdx2))
987            continue;
988          // Recursively calculate the cost at each level
989          int TmpScore = getScoreAtLevelRec({I1->getOperand(OpIdx1), Lane1},
990                                            {I2->getOperand(OpIdx2), Lane2},
991                                            CurrLevel + 1, MaxLevel);
992          // Look for the best score.
993          if (TmpScore > VLOperands::ScoreFail && TmpScore > MaxTmpScore) {
994            MaxTmpScore = TmpScore;
995            MaxOpIdx2 = OpIdx2;
996            FoundBest = true;
997          }
998        }
999        if (FoundBest) {
1000          // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it.
1001          Op2Used.insert(MaxOpIdx2);
1002          ShallowScoreAtThisLevel += MaxTmpScore;
1003        }
1004      }
1005      return ShallowScoreAtThisLevel;
1006    }
1007
1008    /// \Returns the look-ahead score, which tells us how much the sub-trees
1009    /// rooted at \p LHS and \p RHS match, the more they match the higher the
1010    /// score. This helps break ties in an informed way when we cannot decide on
1011    /// the order of the operands by just considering the immediate
1012    /// predecessors.
1013    int getLookAheadScore(const std::pair<Value *, int> &LHS,
1014                          const std::pair<Value *, int> &RHS) {
1015      InLookAheadValues.clear();
1016      return getScoreAtLevelRec(LHS, RHS, 1, LookAheadMaxDepth);
1017    }
1018
1019    // Search all operands in Ops[*][Lane] for the one that matches best
1020    // Ops[OpIdx][LastLane] and return its opreand index.
1021    // If no good match can be found, return None.
1022    Optional<unsigned>
1023    getBestOperand(unsigned OpIdx, int Lane, int LastLane,
1024                   ArrayRef<ReorderingMode> ReorderingModes) {
1025      unsigned NumOperands = getNumOperands();
1026
1027      // The operand of the previous lane at OpIdx.
1028      Value *OpLastLane = getData(OpIdx, LastLane).V;
1029
1030      // Our strategy mode for OpIdx.
1031      ReorderingMode RMode = ReorderingModes[OpIdx];
1032
1033      // The linearized opcode of the operand at OpIdx, Lane.
1034      bool OpIdxAPO = getData(OpIdx, Lane).APO;
1035
1036      // The best operand index and its score.
1037      // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
1038      // are using the score to differentiate between the two.
1039      struct BestOpData {
1040        Optional<unsigned> Idx = None;
1041        unsigned Score = 0;
1042      } BestOp;
1043
1044      // Iterate through all unused operands and look for the best.
1045      for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
1046        // Get the operand at Idx and Lane.
1047        OperandData &OpData = getData(Idx, Lane);
1048        Value *Op = OpData.V;
1049        bool OpAPO = OpData.APO;
1050
1051        // Skip already selected operands.
1052        if (OpData.IsUsed)
1053          continue;
1054
1055        // Skip if we are trying to move the operand to a position with a
1056        // different opcode in the linearized tree form. This would break the
1057        // semantics.
1058        if (OpAPO != OpIdxAPO)
1059          continue;
1060
1061        // Look for an operand that matches the current mode.
1062        switch (RMode) {
1063        case ReorderingMode::Load:
1064        case ReorderingMode::Constant:
1065        case ReorderingMode::Opcode: {
1066          bool LeftToRight = Lane > LastLane;
1067          Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
1068          Value *OpRight = (LeftToRight) ? Op : OpLastLane;
1069          unsigned Score =
1070              getLookAheadScore({OpLeft, LastLane}, {OpRight, Lane});
1071          if (Score > BestOp.Score) {
1072            BestOp.Idx = Idx;
1073            BestOp.Score = Score;
1074          }
1075          break;
1076        }
1077        case ReorderingMode::Splat:
1078          if (Op == OpLastLane)
1079            BestOp.Idx = Idx;
1080          break;
1081        case ReorderingMode::Failed:
1082          return None;
1083        }
1084      }
1085
1086      if (BestOp.Idx) {
1087        getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
1088        return BestOp.Idx;
1089      }
1090      // If we could not find a good match return None.
1091      return None;
1092    }
1093
1094    /// Helper for reorderOperandVecs. \Returns the lane that we should start
1095    /// reordering from. This is the one which has the least number of operands
1096    /// that can freely move about.
1097    unsigned getBestLaneToStartReordering() const {
1098      unsigned BestLane = 0;
1099      unsigned Min = UINT_MAX;
1100      for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
1101           ++Lane) {
1102        unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
1103        if (NumFreeOps < Min) {
1104          Min = NumFreeOps;
1105          BestLane = Lane;
1106        }
1107      }
1108      return BestLane;
1109    }
1110
1111    /// \Returns the maximum number of operands that are allowed to be reordered
1112    /// for \p Lane. This is used as a heuristic for selecting the first lane to
1113    /// start operand reordering.
1114    unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
1115      unsigned CntTrue = 0;
1116      unsigned NumOperands = getNumOperands();
1117      // Operands with the same APO can be reordered. We therefore need to count
1118      // how many of them we have for each APO, like this: Cnt[APO] = x.
1119      // Since we only have two APOs, namely true and false, we can avoid using
1120      // a map. Instead we can simply count the number of operands that
1121      // correspond to one of them (in this case the 'true' APO), and calculate
1122      // the other by subtracting it from the total number of operands.
1123      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
1124        if (getData(OpIdx, Lane).APO)
1125          ++CntTrue;
1126      unsigned CntFalse = NumOperands - CntTrue;
1127      return std::max(CntTrue, CntFalse);
1128    }
1129
1130    /// Go through the instructions in VL and append their operands.
1131    void appendOperandsOfVL(ArrayRef<Value *> VL) {
1132      assert(!VL.empty() && "Bad VL");
1133      assert((empty() || VL.size() == getNumLanes()) &&
1134             "Expected same number of lanes");
1135      assert(isa<Instruction>(VL[0]) && "Expected instruction");
1136      unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
1137      OpsVec.resize(NumOperands);
1138      unsigned NumLanes = VL.size();
1139      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1140        OpsVec[OpIdx].resize(NumLanes);
1141        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1142          assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
1143          // Our tree has just 3 nodes: the root and two operands.
1144          // It is therefore trivial to get the APO. We only need to check the
1145          // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
1146          // RHS operand. The LHS operand of both add and sub is never attached
1147          // to an inversese operation in the linearized form, therefore its APO
1148          // is false. The RHS is true only if VL[Lane] is an inverse operation.
1149
1150          // Since operand reordering is performed on groups of commutative
1151          // operations or alternating sequences (e.g., +, -), we can safely
1152          // tell the inverse operations by checking commutativity.
1153          bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
1154          bool APO = (OpIdx == 0) ? false : IsInverseOperation;
1155          OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
1156                                 APO, false};
1157        }
1158      }
1159    }
1160
1161    /// \returns the number of operands.
1162    unsigned getNumOperands() const { return OpsVec.size(); }
1163
1164    /// \returns the number of lanes.
1165    unsigned getNumLanes() const { return OpsVec[0].size(); }
1166
1167    /// \returns the operand value at \p OpIdx and \p Lane.
1168    Value *getValue(unsigned OpIdx, unsigned Lane) const {
1169      return getData(OpIdx, Lane).V;
1170    }
1171
1172    /// \returns true if the data structure is empty.
1173    bool empty() const { return OpsVec.empty(); }
1174
1175    /// Clears the data.
1176    void clear() { OpsVec.clear(); }
1177
1178    /// \Returns true if there are enough operands identical to \p Op to fill
1179    /// the whole vector.
1180    /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
1181    bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
1182      bool OpAPO = getData(OpIdx, Lane).APO;
1183      for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
1184        if (Ln == Lane)
1185          continue;
1186        // This is set to true if we found a candidate for broadcast at Lane.
1187        bool FoundCandidate = false;
1188        for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
1189          OperandData &Data = getData(OpI, Ln);
1190          if (Data.APO != OpAPO || Data.IsUsed)
1191            continue;
1192          if (Data.V == Op) {
1193            FoundCandidate = true;
1194            Data.IsUsed = true;
1195            break;
1196          }
1197        }
1198        if (!FoundCandidate)
1199          return false;
1200      }
1201      return true;
1202    }
1203
1204  public:
1205    /// Initialize with all the operands of the instruction vector \p RootVL.
1206    VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
1207               ScalarEvolution &SE, const BoUpSLP &R)
1208        : DL(DL), SE(SE), R(R) {
1209      // Append all the operands of RootVL.
1210      appendOperandsOfVL(RootVL);
1211    }
1212
1213    /// \Returns a value vector with the operands across all lanes for the
1214    /// opearnd at \p OpIdx.
1215    ValueList getVL(unsigned OpIdx) const {
1216      ValueList OpVL(OpsVec[OpIdx].size());
1217      assert(OpsVec[OpIdx].size() == getNumLanes() &&
1218             "Expected same num of lanes across all operands");
1219      for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
1220        OpVL[Lane] = OpsVec[OpIdx][Lane].V;
1221      return OpVL;
1222    }
1223
1224    // Performs operand reordering for 2 or more operands.
1225    // The original operands are in OrigOps[OpIdx][Lane].
1226    // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
1227    void reorder() {
1228      unsigned NumOperands = getNumOperands();
1229      unsigned NumLanes = getNumLanes();
1230      // Each operand has its own mode. We are using this mode to help us select
1231      // the instructions for each lane, so that they match best with the ones
1232      // we have selected so far.
1233      SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
1234
1235      // This is a greedy single-pass algorithm. We are going over each lane
1236      // once and deciding on the best order right away with no back-tracking.
1237      // However, in order to increase its effectiveness, we start with the lane
1238      // that has operands that can move the least. For example, given the
1239      // following lanes:
1240      //  Lane 0 : A[0] = B[0] + C[0]   // Visited 3rd
1241      //  Lane 1 : A[1] = C[1] - B[1]   // Visited 1st
1242      //  Lane 2 : A[2] = B[2] + C[2]   // Visited 2nd
1243      //  Lane 3 : A[3] = C[3] - B[3]   // Visited 4th
1244      // we will start at Lane 1, since the operands of the subtraction cannot
1245      // be reordered. Then we will visit the rest of the lanes in a circular
1246      // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
1247
1248      // Find the first lane that we will start our search from.
1249      unsigned FirstLane = getBestLaneToStartReordering();
1250
1251      // Initialize the modes.
1252      for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1253        Value *OpLane0 = getValue(OpIdx, FirstLane);
1254        // Keep track if we have instructions with all the same opcode on one
1255        // side.
1256        if (isa<LoadInst>(OpLane0))
1257          ReorderingModes[OpIdx] = ReorderingMode::Load;
1258        else if (isa<Instruction>(OpLane0)) {
1259          // Check if OpLane0 should be broadcast.
1260          if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1261            ReorderingModes[OpIdx] = ReorderingMode::Splat;
1262          else
1263            ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1264        }
1265        else if (isa<Constant>(OpLane0))
1266          ReorderingModes[OpIdx] = ReorderingMode::Constant;
1267        else if (isa<Argument>(OpLane0))
1268          // Our best hope is a Splat. It may save some cost in some cases.
1269          ReorderingModes[OpIdx] = ReorderingMode::Splat;
1270        else
1271          // NOTE: This should be unreachable.
1272          ReorderingModes[OpIdx] = ReorderingMode::Failed;
1273      }
1274
1275      // If the initial strategy fails for any of the operand indexes, then we
1276      // perform reordering again in a second pass. This helps avoid assigning
1277      // high priority to the failed strategy, and should improve reordering for
1278      // the non-failed operand indexes.
1279      for (int Pass = 0; Pass != 2; ++Pass) {
1280        // Skip the second pass if the first pass did not fail.
1281        bool StrategyFailed = false;
1282        // Mark all operand data as free to use.
1283        clearUsed();
1284        // We keep the original operand order for the FirstLane, so reorder the
1285        // rest of the lanes. We are visiting the nodes in a circular fashion,
1286        // using FirstLane as the center point and increasing the radius
1287        // distance.
1288        for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1289          // Visit the lane on the right and then the lane on the left.
1290          for (int Direction : {+1, -1}) {
1291            int Lane = FirstLane + Direction * Distance;
1292            if (Lane < 0 || Lane >= (int)NumLanes)
1293              continue;
1294            int LastLane = Lane - Direction;
1295            assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1296                   "Out of bounds");
1297            // Look for a good match for each operand.
1298            for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1299              // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1300              Optional<unsigned> BestIdx =
1301                  getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1302              // By not selecting a value, we allow the operands that follow to
1303              // select a better matching value. We will get a non-null value in
1304              // the next run of getBestOperand().
1305              if (BestIdx) {
1306                // Swap the current operand with the one returned by
1307                // getBestOperand().
1308                swap(OpIdx, BestIdx.getValue(), Lane);
1309              } else {
1310                // We failed to find a best operand, set mode to 'Failed'.
1311                ReorderingModes[OpIdx] = ReorderingMode::Failed;
1312                // Enable the second pass.
1313                StrategyFailed = true;
1314              }
1315            }
1316          }
1317        }
1318        // Skip second pass if the strategy did not fail.
1319        if (!StrategyFailed)
1320          break;
1321      }
1322    }
1323
1324#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1325    LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1326      switch (RMode) {
1327      case ReorderingMode::Load:
1328        return "Load";
1329      case ReorderingMode::Opcode:
1330        return "Opcode";
1331      case ReorderingMode::Constant:
1332        return "Constant";
1333      case ReorderingMode::Splat:
1334        return "Splat";
1335      case ReorderingMode::Failed:
1336        return "Failed";
1337      }
1338      llvm_unreachable("Unimplemented Reordering Type");
1339    }
1340
1341    LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1342                                                   raw_ostream &OS) {
1343      return OS << getModeStr(RMode);
1344    }
1345
1346    /// Debug print.
1347    LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1348      printMode(RMode, dbgs());
1349    }
1350
1351    friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1352      return printMode(RMode, OS);
1353    }
1354
1355    LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1356      const unsigned Indent = 2;
1357      unsigned Cnt = 0;
1358      for (const OperandDataVec &OpDataVec : OpsVec) {
1359        OS << "Operand " << Cnt++ << "\n";
1360        for (const OperandData &OpData : OpDataVec) {
1361          OS.indent(Indent) << "{";
1362          if (Value *V = OpData.V)
1363            OS << *V;
1364          else
1365            OS << "null";
1366          OS << ", APO:" << OpData.APO << "}\n";
1367        }
1368        OS << "\n";
1369      }
1370      return OS;
1371    }
1372
1373    /// Debug print.
1374    LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1375#endif
1376  };
1377
1378  /// Checks if the instruction is marked for deletion.
1379  bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1380
1381  /// Marks values operands for later deletion by replacing them with Undefs.
1382  void eraseInstructions(ArrayRef<Value *> AV);
1383
1384  ~BoUpSLP();
1385
1386private:
1387  /// Checks if all users of \p I are the part of the vectorization tree.
1388  bool areAllUsersVectorized(Instruction *I) const;
1389
1390  /// \returns the cost of the vectorizable entry.
1391  int getEntryCost(TreeEntry *E);
1392
1393  /// This is the recursive part of buildTree.
1394  void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1395                     const EdgeInfo &EI);
1396
1397  /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1398  /// be vectorized to use the original vector (or aggregate "bitcast" to a
1399  /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1400  /// returns false, setting \p CurrentOrder to either an empty vector or a
1401  /// non-identity permutation that allows to reuse extract instructions.
1402  bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1403                       SmallVectorImpl<unsigned> &CurrentOrder) const;
1404
1405  /// Vectorize a single entry in the tree.
1406  Value *vectorizeTree(TreeEntry *E);
1407
1408  /// Vectorize a single entry in the tree, starting in \p VL.
1409  Value *vectorizeTree(ArrayRef<Value *> VL);
1410
1411  /// \returns the scalarization cost for this type. Scalarization in this
1412  /// context means the creation of vectors from a group of scalars.
1413  int getGatherCost(VectorType *Ty,
1414                    const DenseSet<unsigned> &ShuffledIndices) const;
1415
1416  /// \returns the scalarization cost for this list of values. Assuming that
1417  /// this subtree gets vectorized, we may need to extract the values from the
1418  /// roots. This method calculates the cost of extracting the values.
1419  int getGatherCost(ArrayRef<Value *> VL) const;
1420
1421  /// Set the Builder insert point to one after the last instruction in
1422  /// the bundle
1423  void setInsertPointAfterBundle(TreeEntry *E);
1424
1425  /// \returns a vector from a collection of scalars in \p VL.
1426  Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1427
1428  /// \returns whether the VectorizableTree is fully vectorizable and will
1429  /// be beneficial even the tree height is tiny.
1430  bool isFullyVectorizableTinyTree() const;
1431
1432  /// Reorder commutative or alt operands to get better probability of
1433  /// generating vectorized code.
1434  static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1435                                             SmallVectorImpl<Value *> &Left,
1436                                             SmallVectorImpl<Value *> &Right,
1437                                             const DataLayout &DL,
1438                                             ScalarEvolution &SE,
1439                                             const BoUpSLP &R);
1440  struct TreeEntry {
1441    using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1442    TreeEntry(VecTreeTy &Container) : Container(Container) {}
1443
1444    /// \returns true if the scalars in VL are equal to this entry.
1445    bool isSame(ArrayRef<Value *> VL) const {
1446      if (VL.size() == Scalars.size())
1447        return std::equal(VL.begin(), VL.end(), Scalars.begin());
1448      return VL.size() == ReuseShuffleIndices.size() &&
1449             std::equal(
1450                 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1451                 [this](Value *V, int Idx) { return V == Scalars[Idx]; });
1452    }
1453
1454    /// A vector of scalars.
1455    ValueList Scalars;
1456
1457    /// The Scalars are vectorized into this value. It is initialized to Null.
1458    Value *VectorizedValue = nullptr;
1459
1460    /// Do we need to gather this sequence ?
1461    enum EntryState { Vectorize, NeedToGather };
1462    EntryState State;
1463
1464    /// Does this sequence require some shuffling?
1465    SmallVector<int, 4> ReuseShuffleIndices;
1466
1467    /// Does this entry require reordering?
1468    ArrayRef<unsigned> ReorderIndices;
1469
1470    /// Points back to the VectorizableTree.
1471    ///
1472    /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
1473    /// to be a pointer and needs to be able to initialize the child iterator.
1474    /// Thus we need a reference back to the container to translate the indices
1475    /// to entries.
1476    VecTreeTy &Container;
1477
1478    /// The TreeEntry index containing the user of this entry.  We can actually
1479    /// have multiple users so the data structure is not truly a tree.
1480    SmallVector<EdgeInfo, 1> UserTreeIndices;
1481
1482    /// The index of this treeEntry in VectorizableTree.
1483    int Idx = -1;
1484
1485  private:
1486    /// The operands of each instruction in each lane Operands[op_index][lane].
1487    /// Note: This helps avoid the replication of the code that performs the
1488    /// reordering of operands during buildTree_rec() and vectorizeTree().
1489    SmallVector<ValueList, 2> Operands;
1490
1491    /// The main/alternate instruction.
1492    Instruction *MainOp = nullptr;
1493    Instruction *AltOp = nullptr;
1494
1495  public:
1496    /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1497    void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1498      if (Operands.size() < OpIdx + 1)
1499        Operands.resize(OpIdx + 1);
1500      assert(Operands[OpIdx].size() == 0 && "Already resized?");
1501      Operands[OpIdx].resize(Scalars.size());
1502      for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1503        Operands[OpIdx][Lane] = OpVL[Lane];
1504    }
1505
1506    /// Set the operands of this bundle in their original order.
1507    void setOperandsInOrder() {
1508      assert(Operands.empty() && "Already initialized?");
1509      auto *I0 = cast<Instruction>(Scalars[0]);
1510      Operands.resize(I0->getNumOperands());
1511      unsigned NumLanes = Scalars.size();
1512      for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1513           OpIdx != NumOperands; ++OpIdx) {
1514        Operands[OpIdx].resize(NumLanes);
1515        for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1516          auto *I = cast<Instruction>(Scalars[Lane]);
1517          assert(I->getNumOperands() == NumOperands &&
1518                 "Expected same number of operands");
1519          Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1520        }
1521      }
1522    }
1523
1524    /// \returns the \p OpIdx operand of this TreeEntry.
1525    ValueList &getOperand(unsigned OpIdx) {
1526      assert(OpIdx < Operands.size() && "Off bounds");
1527      return Operands[OpIdx];
1528    }
1529
1530    /// \returns the number of operands.
1531    unsigned getNumOperands() const { return Operands.size(); }
1532
1533    /// \return the single \p OpIdx operand.
1534    Value *getSingleOperand(unsigned OpIdx) const {
1535      assert(OpIdx < Operands.size() && "Off bounds");
1536      assert(!Operands[OpIdx].empty() && "No operand available");
1537      return Operands[OpIdx][0];
1538    }
1539
1540    /// Some of the instructions in the list have alternate opcodes.
1541    bool isAltShuffle() const {
1542      return getOpcode() != getAltOpcode();
1543    }
1544
1545    bool isOpcodeOrAlt(Instruction *I) const {
1546      unsigned CheckedOpcode = I->getOpcode();
1547      return (getOpcode() == CheckedOpcode ||
1548              getAltOpcode() == CheckedOpcode);
1549    }
1550
1551    /// Chooses the correct key for scheduling data. If \p Op has the same (or
1552    /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1553    /// \p OpValue.
1554    Value *isOneOf(Value *Op) const {
1555      auto *I = dyn_cast<Instruction>(Op);
1556      if (I && isOpcodeOrAlt(I))
1557        return Op;
1558      return MainOp;
1559    }
1560
1561    void setOperations(const InstructionsState &S) {
1562      MainOp = S.MainOp;
1563      AltOp = S.AltOp;
1564    }
1565
1566    Instruction *getMainOp() const {
1567      return MainOp;
1568    }
1569
1570    Instruction *getAltOp() const {
1571      return AltOp;
1572    }
1573
1574    /// The main/alternate opcodes for the list of instructions.
1575    unsigned getOpcode() const {
1576      return MainOp ? MainOp->getOpcode() : 0;
1577    }
1578
1579    unsigned getAltOpcode() const {
1580      return AltOp ? AltOp->getOpcode() : 0;
1581    }
1582
1583    /// Update operations state of this entry if reorder occurred.
1584    bool updateStateIfReorder() {
1585      if (ReorderIndices.empty())
1586        return false;
1587      InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1588      setOperations(S);
1589      return true;
1590    }
1591
1592#ifndef NDEBUG
1593    /// Debug printer.
1594    LLVM_DUMP_METHOD void dump() const {
1595      dbgs() << Idx << ".\n";
1596      for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1597        dbgs() << "Operand " << OpI << ":\n";
1598        for (const Value *V : Operands[OpI])
1599          dbgs().indent(2) << *V << "\n";
1600      }
1601      dbgs() << "Scalars: \n";
1602      for (Value *V : Scalars)
1603        dbgs().indent(2) << *V << "\n";
1604      dbgs() << "State: ";
1605      switch (State) {
1606      case Vectorize:
1607        dbgs() << "Vectorize\n";
1608        break;
1609      case NeedToGather:
1610        dbgs() << "NeedToGather\n";
1611        break;
1612      }
1613      dbgs() << "MainOp: ";
1614      if (MainOp)
1615        dbgs() << *MainOp << "\n";
1616      else
1617        dbgs() << "NULL\n";
1618      dbgs() << "AltOp: ";
1619      if (AltOp)
1620        dbgs() << *AltOp << "\n";
1621      else
1622        dbgs() << "NULL\n";
1623      dbgs() << "VectorizedValue: ";
1624      if (VectorizedValue)
1625        dbgs() << *VectorizedValue << "\n";
1626      else
1627        dbgs() << "NULL\n";
1628      dbgs() << "ReuseShuffleIndices: ";
1629      if (ReuseShuffleIndices.empty())
1630        dbgs() << "Emtpy";
1631      else
1632        for (unsigned ReuseIdx : ReuseShuffleIndices)
1633          dbgs() << ReuseIdx << ", ";
1634      dbgs() << "\n";
1635      dbgs() << "ReorderIndices: ";
1636      for (unsigned ReorderIdx : ReorderIndices)
1637        dbgs() << ReorderIdx << ", ";
1638      dbgs() << "\n";
1639      dbgs() << "UserTreeIndices: ";
1640      for (const auto &EInfo : UserTreeIndices)
1641        dbgs() << EInfo << ", ";
1642      dbgs() << "\n";
1643    }
1644#endif
1645  };
1646
1647  /// Create a new VectorizableTree entry.
1648  TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1649                          const InstructionsState &S,
1650                          const EdgeInfo &UserTreeIdx,
1651                          ArrayRef<unsigned> ReuseShuffleIndices = None,
1652                          ArrayRef<unsigned> ReorderIndices = None) {
1653    bool Vectorized = (bool)Bundle;
1654    VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1655    TreeEntry *Last = VectorizableTree.back().get();
1656    Last->Idx = VectorizableTree.size() - 1;
1657    Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1658    Last->State = Vectorized ? TreeEntry::Vectorize : TreeEntry::NeedToGather;
1659    Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1660                                     ReuseShuffleIndices.end());
1661    Last->ReorderIndices = ReorderIndices;
1662    Last->setOperations(S);
1663    if (Vectorized) {
1664      for (int i = 0, e = VL.size(); i != e; ++i) {
1665        assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
1666        ScalarToTreeEntry[VL[i]] = Last;
1667      }
1668      // Update the scheduler bundle to point to this TreeEntry.
1669      unsigned Lane = 0;
1670      for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1671           BundleMember = BundleMember->NextInBundle) {
1672        BundleMember->TE = Last;
1673        BundleMember->Lane = Lane;
1674        ++Lane;
1675      }
1676      assert((!Bundle.getValue() || Lane == VL.size()) &&
1677             "Bundle and VL out of sync");
1678    } else {
1679      MustGather.insert(VL.begin(), VL.end());
1680    }
1681
1682    if (UserTreeIdx.UserTE)
1683      Last->UserTreeIndices.push_back(UserTreeIdx);
1684
1685    return Last;
1686  }
1687
1688  /// -- Vectorization State --
1689  /// Holds all of the tree entries.
1690  TreeEntry::VecTreeTy VectorizableTree;
1691
1692#ifndef NDEBUG
1693  /// Debug printer.
1694  LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1695    for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1696      VectorizableTree[Id]->dump();
1697      dbgs() << "\n";
1698    }
1699  }
1700#endif
1701
1702  TreeEntry *getTreeEntry(Value *V) {
1703    auto I = ScalarToTreeEntry.find(V);
1704    if (I != ScalarToTreeEntry.end())
1705      return I->second;
1706    return nullptr;
1707  }
1708
1709  const TreeEntry *getTreeEntry(Value *V) const {
1710    auto I = ScalarToTreeEntry.find(V);
1711    if (I != ScalarToTreeEntry.end())
1712      return I->second;
1713    return nullptr;
1714  }
1715
1716  /// Maps a specific scalar to its tree entry.
1717  SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1718
1719  /// Maps a value��to the proposed vectorizable size.
1720  SmallDenseMap<Value *, unsigned> InstrElementSize;
1721
1722  /// A list of scalars that we found that we need to keep as scalars.
1723  ValueSet MustGather;
1724
1725  /// This POD struct describes one external user in the vectorized tree.
1726  struct ExternalUser {
1727    ExternalUser(Value *S, llvm::User *U, int L)
1728        : Scalar(S), User(U), Lane(L) {}
1729
1730    // Which scalar in our function.
1731    Value *Scalar;
1732
1733    // Which user that uses the scalar.
1734    llvm::User *User;
1735
1736    // Which lane does the scalar belong to.
1737    int Lane;
1738  };
1739  using UserList = SmallVector<ExternalUser, 16>;
1740
1741  /// Checks if two instructions may access the same memory.
1742  ///
1743  /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1744  /// is invariant in the calling loop.
1745  bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1746                 Instruction *Inst2) {
1747    // First check if the result is already in the cache.
1748    AliasCacheKey key = std::make_pair(Inst1, Inst2);
1749    Optional<bool> &result = AliasCache[key];
1750    if (result.hasValue()) {
1751      return result.getValue();
1752    }
1753    MemoryLocation Loc2 = getLocation(Inst2, AA);
1754    bool aliased = true;
1755    if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1756      // Do the alias check.
1757      aliased = AA->alias(Loc1, Loc2);
1758    }
1759    // Store the result in the cache.
1760    result = aliased;
1761    return aliased;
1762  }
1763
1764  using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1765
1766  /// Cache for alias results.
1767  /// TODO: consider moving this to the AliasAnalysis itself.
1768  DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1769
1770  /// Removes an instruction from its block and eventually deletes it.
1771  /// It's like Instruction::eraseFromParent() except that the actual deletion
1772  /// is delayed until BoUpSLP is destructed.
1773  /// This is required to ensure that there are no incorrect collisions in the
1774  /// AliasCache, which can happen if a new instruction is allocated at the
1775  /// same address as a previously deleted instruction.
1776  void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1777    auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1778    It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1779  }
1780
1781  /// Temporary store for deleted instructions. Instructions will be deleted
1782  /// eventually when the BoUpSLP is destructed.
1783  DenseMap<Instruction *, bool> DeletedInstructions;
1784
1785  /// A list of values that need to extracted out of the tree.
1786  /// This list holds pairs of (Internal Scalar : External User). External User
1787  /// can be nullptr, it means that this Internal Scalar will be used later,
1788  /// after vectorization.
1789  UserList ExternalUses;
1790
1791  /// Values used only by @llvm.assume calls.
1792  SmallPtrSet<const Value *, 32> EphValues;
1793
1794  /// Holds all of the instructions that we gathered.
1795  SetVector<Instruction *> GatherSeq;
1796
1797  /// A list of blocks that we are going to CSE.
1798  SetVector<BasicBlock *> CSEBlocks;
1799
1800  /// Contains all scheduling relevant data for an instruction.
1801  /// A ScheduleData either represents a single instruction or a member of an
1802  /// instruction bundle (= a group of instructions which is combined into a
1803  /// vector instruction).
1804  struct ScheduleData {
1805    // The initial value for the dependency counters. It means that the
1806    // dependencies are not calculated yet.
1807    enum { InvalidDeps = -1 };
1808
1809    ScheduleData() = default;
1810
1811    void init(int BlockSchedulingRegionID, Value *OpVal) {
1812      FirstInBundle = this;
1813      NextInBundle = nullptr;
1814      NextLoadStore = nullptr;
1815      IsScheduled = false;
1816      SchedulingRegionID = BlockSchedulingRegionID;
1817      UnscheduledDepsInBundle = UnscheduledDeps;
1818      clearDependencies();
1819      OpValue = OpVal;
1820      TE = nullptr;
1821      Lane = -1;
1822    }
1823
1824    /// Returns true if the dependency information has been calculated.
1825    bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1826
1827    /// Returns true for single instructions and for bundle representatives
1828    /// (= the head of a bundle).
1829    bool isSchedulingEntity() const { return FirstInBundle == this; }
1830
1831    /// Returns true if it represents an instruction bundle and not only a
1832    /// single instruction.
1833    bool isPartOfBundle() const {
1834      return NextInBundle != nullptr || FirstInBundle != this;
1835    }
1836
1837    /// Returns true if it is ready for scheduling, i.e. it has no more
1838    /// unscheduled depending instructions/bundles.
1839    bool isReady() const {
1840      assert(isSchedulingEntity() &&
1841             "can't consider non-scheduling entity for ready list");
1842      return UnscheduledDepsInBundle == 0 && !IsScheduled;
1843    }
1844
1845    /// Modifies the number of unscheduled dependencies, also updating it for
1846    /// the whole bundle.
1847    int incrementUnscheduledDeps(int Incr) {
1848      UnscheduledDeps += Incr;
1849      return FirstInBundle->UnscheduledDepsInBundle += Incr;
1850    }
1851
1852    /// Sets the number of unscheduled dependencies to the number of
1853    /// dependencies.
1854    void resetUnscheduledDeps() {
1855      incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1856    }
1857
1858    /// Clears all dependency information.
1859    void clearDependencies() {
1860      Dependencies = InvalidDeps;
1861      resetUnscheduledDeps();
1862      MemoryDependencies.clear();
1863    }
1864
1865    void dump(raw_ostream &os) const {
1866      if (!isSchedulingEntity()) {
1867        os << "/ " << *Inst;
1868      } else if (NextInBundle) {
1869        os << '[' << *Inst;
1870        ScheduleData *SD = NextInBundle;
1871        while (SD) {
1872          os << ';' << *SD->Inst;
1873          SD = SD->NextInBundle;
1874        }
1875        os << ']';
1876      } else {
1877        os << *Inst;
1878      }
1879    }
1880
1881    Instruction *Inst = nullptr;
1882
1883    /// Points to the head in an instruction bundle (and always to this for
1884    /// single instructions).
1885    ScheduleData *FirstInBundle = nullptr;
1886
1887    /// Single linked list of all instructions in a bundle. Null if it is a
1888    /// single instruction.
1889    ScheduleData *NextInBundle = nullptr;
1890
1891    /// Single linked list of all memory instructions (e.g. load, store, call)
1892    /// in the block - until the end of the scheduling region.
1893    ScheduleData *NextLoadStore = nullptr;
1894
1895    /// The dependent memory instructions.
1896    /// This list is derived on demand in calculateDependencies().
1897    SmallVector<ScheduleData *, 4> MemoryDependencies;
1898
1899    /// This ScheduleData is in the current scheduling region if this matches
1900    /// the current SchedulingRegionID of BlockScheduling.
1901    int SchedulingRegionID = 0;
1902
1903    /// Used for getting a "good" final ordering of instructions.
1904    int SchedulingPriority = 0;
1905
1906    /// The number of dependencies. Constitutes of the number of users of the
1907    /// instruction plus the number of dependent memory instructions (if any).
1908    /// This value is calculated on demand.
1909    /// If InvalidDeps, the number of dependencies is not calculated yet.
1910    int Dependencies = InvalidDeps;
1911
1912    /// The number of dependencies minus the number of dependencies of scheduled
1913    /// instructions. As soon as this is zero, the instruction/bundle gets ready
1914    /// for scheduling.
1915    /// Note that this is negative as long as Dependencies is not calculated.
1916    int UnscheduledDeps = InvalidDeps;
1917
1918    /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1919    /// single instructions.
1920    int UnscheduledDepsInBundle = InvalidDeps;
1921
1922    /// True if this instruction is scheduled (or considered as scheduled in the
1923    /// dry-run).
1924    bool IsScheduled = false;
1925
1926    /// Opcode of the current instruction in the schedule data.
1927    Value *OpValue = nullptr;
1928
1929    /// The TreeEntry that this instruction corresponds to.
1930    TreeEntry *TE = nullptr;
1931
1932    /// The lane of this node in the TreeEntry.
1933    int Lane = -1;
1934  };
1935
1936#ifndef NDEBUG
1937  friend inline raw_ostream &operator<<(raw_ostream &os,
1938                                        const BoUpSLP::ScheduleData &SD) {
1939    SD.dump(os);
1940    return os;
1941  }
1942#endif
1943
1944  friend struct GraphTraits<BoUpSLP *>;
1945  friend struct DOTGraphTraits<BoUpSLP *>;
1946
1947  /// Contains all scheduling data for a basic block.
1948  struct BlockScheduling {
1949    BlockScheduling(BasicBlock *BB)
1950        : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1951
1952    void clear() {
1953      ReadyInsts.clear();
1954      ScheduleStart = nullptr;
1955      ScheduleEnd = nullptr;
1956      FirstLoadStoreInRegion = nullptr;
1957      LastLoadStoreInRegion = nullptr;
1958
1959      // Reduce the maximum schedule region size by the size of the
1960      // previous scheduling run.
1961      ScheduleRegionSizeLimit -= ScheduleRegionSize;
1962      if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1963        ScheduleRegionSizeLimit = MinScheduleRegionSize;
1964      ScheduleRegionSize = 0;
1965
1966      // Make a new scheduling region, i.e. all existing ScheduleData is not
1967      // in the new region yet.
1968      ++SchedulingRegionID;
1969    }
1970
1971    ScheduleData *getScheduleData(Value *V) {
1972      ScheduleData *SD = ScheduleDataMap[V];
1973      if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1974        return SD;
1975      return nullptr;
1976    }
1977
1978    ScheduleData *getScheduleData(Value *V, Value *Key) {
1979      if (V == Key)
1980        return getScheduleData(V);
1981      auto I = ExtraScheduleDataMap.find(V);
1982      if (I != ExtraScheduleDataMap.end()) {
1983        ScheduleData *SD = I->second[Key];
1984        if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1985          return SD;
1986      }
1987      return nullptr;
1988    }
1989
1990    bool isInSchedulingRegion(ScheduleData *SD) const {
1991      return SD->SchedulingRegionID == SchedulingRegionID;
1992    }
1993
1994    /// Marks an instruction as scheduled and puts all dependent ready
1995    /// instructions into the ready-list.
1996    template <typename ReadyListType>
1997    void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1998      SD->IsScheduled = true;
1999      LLVM_DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
2000
2001      ScheduleData *BundleMember = SD;
2002      while (BundleMember) {
2003        if (BundleMember->Inst != BundleMember->OpValue) {
2004          BundleMember = BundleMember->NextInBundle;
2005          continue;
2006        }
2007        // Handle the def-use chain dependencies.
2008
2009        // Decrement the unscheduled counter and insert to ready list if ready.
2010        auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
2011          doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
2012            if (OpDef && OpDef->hasValidDependencies() &&
2013                OpDef->incrementUnscheduledDeps(-1) == 0) {
2014              // There are no more unscheduled dependencies after
2015              // decrementing, so we can put the dependent instruction
2016              // into the ready list.
2017              ScheduleData *DepBundle = OpDef->FirstInBundle;
2018              assert(!DepBundle->IsScheduled &&
2019                     "already scheduled bundle gets ready");
2020              ReadyList.insert(DepBundle);
2021              LLVM_DEBUG(dbgs()
2022                         << "SLP:    gets ready (def): " << *DepBundle << "\n");
2023            }
2024          });
2025        };
2026
2027        // If BundleMember is a vector bundle, its operands may have been
2028        // reordered duiring buildTree(). We therefore need to get its operands
2029        // through the TreeEntry.
2030        if (TreeEntry *TE = BundleMember->TE) {
2031          int Lane = BundleMember->Lane;
2032          assert(Lane >= 0 && "Lane not set");
2033
2034          // Since vectorization tree is being built recursively this assertion
2035          // ensures that the tree entry has all operands set before reaching
2036          // this code. Couple of exceptions known at the moment are extracts
2037          // where their second (immediate) operand is not added. Since
2038          // immediates do not affect scheduler behavior this is considered
2039          // okay.
2040          auto *In = TE->getMainOp();
2041          assert(In &&
2042                 (isa<ExtractValueInst>(In) || isa<ExtractElementInst>(In) ||
2043                  In->getNumOperands() == TE->getNumOperands()) &&
2044                 "Missed TreeEntry operands?");
2045          (void)In; // fake use to avoid build failure when assertions disabled
2046
2047          for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
2048               OpIdx != NumOperands; ++OpIdx)
2049            if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
2050              DecrUnsched(I);
2051        } else {
2052          // If BundleMember is a stand-alone instruction, no operand reordering
2053          // has taken place, so we directly access its operands.
2054          for (Use &U : BundleMember->Inst->operands())
2055            if (auto *I = dyn_cast<Instruction>(U.get()))
2056              DecrUnsched(I);
2057        }
2058        // Handle the memory dependencies.
2059        for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
2060          if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
2061            // There are no more unscheduled dependencies after decrementing,
2062            // so we can put the dependent instruction into the ready list.
2063            ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
2064            assert(!DepBundle->IsScheduled &&
2065                   "already scheduled bundle gets ready");
2066            ReadyList.insert(DepBundle);
2067            LLVM_DEBUG(dbgs()
2068                       << "SLP:    gets ready (mem): " << *DepBundle << "\n");
2069          }
2070        }
2071        BundleMember = BundleMember->NextInBundle;
2072      }
2073    }
2074
2075    void doForAllOpcodes(Value *V,
2076                         function_ref<void(ScheduleData *SD)> Action) {
2077      if (ScheduleData *SD = getScheduleData(V))
2078        Action(SD);
2079      auto I = ExtraScheduleDataMap.find(V);
2080      if (I != ExtraScheduleDataMap.end())
2081        for (auto &P : I->second)
2082          if (P.second->SchedulingRegionID == SchedulingRegionID)
2083            Action(P.second);
2084    }
2085
2086    /// Put all instructions into the ReadyList which are ready for scheduling.
2087    template <typename ReadyListType>
2088    void initialFillReadyList(ReadyListType &ReadyList) {
2089      for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2090        doForAllOpcodes(I, [&](ScheduleData *SD) {
2091          if (SD->isSchedulingEntity() && SD->isReady()) {
2092            ReadyList.insert(SD);
2093            LLVM_DEBUG(dbgs()
2094                       << "SLP:    initially in ready list: " << *I << "\n");
2095          }
2096        });
2097      }
2098    }
2099
2100    /// Checks if a bundle of instructions can be scheduled, i.e. has no
2101    /// cyclic dependencies. This is only a dry-run, no instructions are
2102    /// actually moved at this stage.
2103    /// \returns the scheduling bundle. The returned Optional value is non-None
2104    /// if \p VL is allowed to be scheduled.
2105    Optional<ScheduleData *>
2106    tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
2107                      const InstructionsState &S);
2108
2109    /// Un-bundles a group of instructions.
2110    void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
2111
2112    /// Allocates schedule data chunk.
2113    ScheduleData *allocateScheduleDataChunks();
2114
2115    /// Extends the scheduling region so that V is inside the region.
2116    /// \returns true if the region size is within the limit.
2117    bool extendSchedulingRegion(Value *V, const InstructionsState &S);
2118
2119    /// Initialize the ScheduleData structures for new instructions in the
2120    /// scheduling region.
2121    void initScheduleData(Instruction *FromI, Instruction *ToI,
2122                          ScheduleData *PrevLoadStore,
2123                          ScheduleData *NextLoadStore);
2124
2125    /// Updates the dependency information of a bundle and of all instructions/
2126    /// bundles which depend on the original bundle.
2127    void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
2128                               BoUpSLP *SLP);
2129
2130    /// Sets all instruction in the scheduling region to un-scheduled.
2131    void resetSchedule();
2132
2133    BasicBlock *BB;
2134
2135    /// Simple memory allocation for ScheduleData.
2136    std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
2137
2138    /// The size of a ScheduleData array in ScheduleDataChunks.
2139    int ChunkSize;
2140
2141    /// The allocator position in the current chunk, which is the last entry
2142    /// of ScheduleDataChunks.
2143    int ChunkPos;
2144
2145    /// Attaches ScheduleData to Instruction.
2146    /// Note that the mapping survives during all vectorization iterations, i.e.
2147    /// ScheduleData structures are recycled.
2148    DenseMap<Value *, ScheduleData *> ScheduleDataMap;
2149
2150    /// Attaches ScheduleData to Instruction with the leading key.
2151    DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
2152        ExtraScheduleDataMap;
2153
2154    struct ReadyList : SmallVector<ScheduleData *, 8> {
2155      void insert(ScheduleData *SD) { push_back(SD); }
2156    };
2157
2158    /// The ready-list for scheduling (only used for the dry-run).
2159    ReadyList ReadyInsts;
2160
2161    /// The first instruction of the scheduling region.
2162    Instruction *ScheduleStart = nullptr;
2163
2164    /// The first instruction _after_ the scheduling region.
2165    Instruction *ScheduleEnd = nullptr;
2166
2167    /// The first memory accessing instruction in the scheduling region
2168    /// (can be null).
2169    ScheduleData *FirstLoadStoreInRegion = nullptr;
2170
2171    /// The last memory accessing instruction in the scheduling region
2172    /// (can be null).
2173    ScheduleData *LastLoadStoreInRegion = nullptr;
2174
2175    /// The current size of the scheduling region.
2176    int ScheduleRegionSize = 0;
2177
2178    /// The maximum size allowed for the scheduling region.
2179    int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
2180
2181    /// The ID of the scheduling region. For a new vectorization iteration this
2182    /// is incremented which "removes" all ScheduleData from the region.
2183    // Make sure that the initial SchedulingRegionID is greater than the
2184    // initial SchedulingRegionID in ScheduleData (which is 0).
2185    int SchedulingRegionID = 1;
2186  };
2187
2188  /// Attaches the BlockScheduling structures to basic blocks.
2189  MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
2190
2191  /// Performs the "real" scheduling. Done before vectorization is actually
2192  /// performed in a basic block.
2193  void scheduleBlock(BlockScheduling *BS);
2194
2195  /// List of users to ignore during scheduling and that don't need extracting.
2196  ArrayRef<Value *> UserIgnoreList;
2197
2198  using OrdersType = SmallVector<unsigned, 4>;
2199  /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
2200  /// sorted SmallVectors of unsigned.
2201  struct OrdersTypeDenseMapInfo {
2202    static OrdersType getEmptyKey() {
2203      OrdersType V;
2204      V.push_back(~1U);
2205      return V;
2206    }
2207
2208    static OrdersType getTombstoneKey() {
2209      OrdersType V;
2210      V.push_back(~2U);
2211      return V;
2212    }
2213
2214    static unsigned getHashValue(const OrdersType &V) {
2215      return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
2216    }
2217
2218    static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
2219      return LHS == RHS;
2220    }
2221  };
2222
2223  /// Contains orders of operations along with the number of bundles that have
2224  /// operations in this order. It stores only those orders that require
2225  /// reordering, if reordering is not required it is counted using \a
2226  /// NumOpsWantToKeepOriginalOrder.
2227  DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
2228  /// Number of bundles that do not require reordering.
2229  unsigned NumOpsWantToKeepOriginalOrder = 0;
2230
2231  // Analysis and block reference.
2232  Function *F;
2233  ScalarEvolution *SE;
2234  TargetTransformInfo *TTI;
2235  TargetLibraryInfo *TLI;
2236  AliasAnalysis *AA;
2237  LoopInfo *LI;
2238  DominatorTree *DT;
2239  AssumptionCache *AC;
2240  DemandedBits *DB;
2241  const DataLayout *DL;
2242  OptimizationRemarkEmitter *ORE;
2243
2244  unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
2245  unsigned MinVecRegSize; // Set by cl::opt (default: 128).
2246
2247  /// Instruction builder to construct the vectorized tree.
2248  IRBuilder<> Builder;
2249
2250  /// A map of scalar integer values to the smallest bit width with which they
2251  /// can legally be represented. The values map to (width, signed) pairs,
2252  /// where "width" indicates the minimum bit width and "signed" is True if the
2253  /// value must be signed-extended, rather than zero-extended, back to its
2254  /// original width.
2255  MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
2256};
2257
2258} // end namespace slpvectorizer
2259
2260template <> struct GraphTraits<BoUpSLP *> {
2261  using TreeEntry = BoUpSLP::TreeEntry;
2262
2263  /// NodeRef has to be a pointer per the GraphWriter.
2264  using NodeRef = TreeEntry *;
2265
2266  using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
2267
2268  /// Add the VectorizableTree to the index iterator to be able to return
2269  /// TreeEntry pointers.
2270  struct ChildIteratorType
2271      : public iterator_adaptor_base<
2272            ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
2273    ContainerTy &VectorizableTree;
2274
2275    ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
2276                      ContainerTy &VT)
2277        : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
2278
2279    NodeRef operator*() { return I->UserTE; }
2280  };
2281
2282  static NodeRef getEntryNode(BoUpSLP &R) {
2283    return R.VectorizableTree[0].get();
2284  }
2285
2286  static ChildIteratorType child_begin(NodeRef N) {
2287    return {N->UserTreeIndices.begin(), N->Container};
2288  }
2289
2290  static ChildIteratorType child_end(NodeRef N) {
2291    return {N->UserTreeIndices.end(), N->Container};
2292  }
2293
2294  /// For the node iterator we just need to turn the TreeEntry iterator into a
2295  /// TreeEntry* iterator so that it dereferences to NodeRef.
2296  class nodes_iterator {
2297    using ItTy = ContainerTy::iterator;
2298    ItTy It;
2299
2300  public:
2301    nodes_iterator(const ItTy &It2) : It(It2) {}
2302    NodeRef operator*() { return It->get(); }
2303    nodes_iterator operator++() {
2304      ++It;
2305      return *this;
2306    }
2307    bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2308  };
2309
2310  static nodes_iterator nodes_begin(BoUpSLP *R) {
2311    return nodes_iterator(R->VectorizableTree.begin());
2312  }
2313
2314  static nodes_iterator nodes_end(BoUpSLP *R) {
2315    return nodes_iterator(R->VectorizableTree.end());
2316  }
2317
2318  static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2319};
2320
2321template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2322  using TreeEntry = BoUpSLP::TreeEntry;
2323
2324  DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2325
2326  std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2327    std::string Str;
2328    raw_string_ostream OS(Str);
2329    if (isSplat(Entry->Scalars)) {
2330      OS << "<splat> " << *Entry->Scalars[0];
2331      return Str;
2332    }
2333    for (auto V : Entry->Scalars) {
2334      OS << *V;
2335      if (std::any_of(
2336              R->ExternalUses.begin(), R->ExternalUses.end(),
2337              [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
2338        OS << " <extract>";
2339      OS << "\n";
2340    }
2341    return Str;
2342  }
2343
2344  static std::string getNodeAttributes(const TreeEntry *Entry,
2345                                       const BoUpSLP *) {
2346    if (Entry->State == TreeEntry::NeedToGather)
2347      return "color=red";
2348    return "";
2349  }
2350};
2351
2352} // end namespace llvm
2353
2354BoUpSLP::~BoUpSLP() {
2355  for (const auto &Pair : DeletedInstructions) {
2356    // Replace operands of ignored instructions with Undefs in case if they were
2357    // marked for deletion.
2358    if (Pair.getSecond()) {
2359      Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2360      Pair.getFirst()->replaceAllUsesWith(Undef);
2361    }
2362    Pair.getFirst()->dropAllReferences();
2363  }
2364  for (const auto &Pair : DeletedInstructions) {
2365    assert(Pair.getFirst()->use_empty() &&
2366           "trying to erase instruction with users.");
2367    Pair.getFirst()->eraseFromParent();
2368  }
2369  assert(!verifyFunction(*F, &dbgs()));
2370}
2371
2372void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2373  for (auto *V : AV) {
2374    if (auto *I = dyn_cast<Instruction>(V))
2375      eraseInstruction(I, /*ReplaceWithUndef=*/true);
2376  };
2377}
2378
2379void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2380                        ArrayRef<Value *> UserIgnoreLst) {
2381  ExtraValueToDebugLocsMap ExternallyUsedValues;
2382  buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2383}
2384
2385void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2386                        ExtraValueToDebugLocsMap &ExternallyUsedValues,
2387                        ArrayRef<Value *> UserIgnoreLst) {
2388  deleteTree();
2389  UserIgnoreList = UserIgnoreLst;
2390  if (!allSameType(Roots))
2391    return;
2392  buildTree_rec(Roots, 0, EdgeInfo());
2393
2394  // Collect the values that we need to extract from the tree.
2395  for (auto &TEPtr : VectorizableTree) {
2396    TreeEntry *Entry = TEPtr.get();
2397
2398    // No need to handle users of gathered values.
2399    if (Entry->State == TreeEntry::NeedToGather)
2400      continue;
2401
2402    // For each lane:
2403    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2404      Value *Scalar = Entry->Scalars[Lane];
2405      int FoundLane = Lane;
2406      if (!Entry->ReuseShuffleIndices.empty()) {
2407        FoundLane =
2408            std::distance(Entry->ReuseShuffleIndices.begin(),
2409                          llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2410      }
2411
2412      // Check if the scalar is externally used as an extra arg.
2413      auto ExtI = ExternallyUsedValues.find(Scalar);
2414      if (ExtI != ExternallyUsedValues.end()) {
2415        LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2416                          << Lane << " from " << *Scalar << ".\n");
2417        ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2418      }
2419      for (User *U : Scalar->users()) {
2420        LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2421
2422        Instruction *UserInst = dyn_cast<Instruction>(U);
2423        if (!UserInst)
2424          continue;
2425
2426        // Skip in-tree scalars that become vectors
2427        if (TreeEntry *UseEntry = getTreeEntry(U)) {
2428          Value *UseScalar = UseEntry->Scalars[0];
2429          // Some in-tree scalars will remain as scalar in vectorized
2430          // instructions. If that is the case, the one in Lane 0 will
2431          // be used.
2432          if (UseScalar != U ||
2433              !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2434            LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2435                              << ".\n");
2436            assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state");
2437            continue;
2438          }
2439        }
2440
2441        // Ignore users in the user ignore list.
2442        if (is_contained(UserIgnoreList, UserInst))
2443          continue;
2444
2445        LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2446                          << Lane << " from " << *Scalar << ".\n");
2447        ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2448      }
2449    }
2450  }
2451}
2452
2453void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2454                            const EdgeInfo &UserTreeIdx) {
2455  assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2456
2457  InstructionsState S = getSameOpcode(VL);
2458  if (Depth == RecursionMaxDepth) {
2459    LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2460    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2461    return;
2462  }
2463
2464  // Don't handle vectors.
2465  if (S.OpValue->getType()->isVectorTy()) {
2466    LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2467    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2468    return;
2469  }
2470
2471  if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2472    if (SI->getValueOperand()->getType()->isVectorTy()) {
2473      LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2474      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2475      return;
2476    }
2477
2478  // If all of the operands are identical or constant we have a simple solution.
2479  if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2480    LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2481    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2482    return;
2483  }
2484
2485  // We now know that this is a vector of instructions of the same type from
2486  // the same block.
2487
2488  // Don't vectorize ephemeral values.
2489  for (Value *V : VL) {
2490    if (EphValues.count(V)) {
2491      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2492                        << ") is ephemeral.\n");
2493      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2494      return;
2495    }
2496  }
2497
2498  // Check if this is a duplicate of another entry.
2499  if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2500    LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2501    if (!E->isSame(VL)) {
2502      LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2503      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2504      return;
2505    }
2506    // Record the reuse of the tree node.  FIXME, currently this is only used to
2507    // properly draw the graph rather than for the actual vectorization.
2508    E->UserTreeIndices.push_back(UserTreeIdx);
2509    LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2510                      << ".\n");
2511    return;
2512  }
2513
2514  // Check that none of the instructions in the bundle are already in the tree.
2515  for (Value *V : VL) {
2516    auto *I = dyn_cast<Instruction>(V);
2517    if (!I)
2518      continue;
2519    if (getTreeEntry(I)) {
2520      LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2521                        << ") is already in tree.\n");
2522      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2523      return;
2524    }
2525  }
2526
2527  // If any of the scalars is marked as a value that needs to stay scalar, then
2528  // we need to gather the scalars.
2529  // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2530  for (Value *V : VL) {
2531    if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2532      LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2533      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2534      return;
2535    }
2536  }
2537
2538  // Check that all of the users of the scalars that we want to vectorize are
2539  // schedulable.
2540  auto *VL0 = cast<Instruction>(S.OpValue);
2541  BasicBlock *BB = VL0->getParent();
2542
2543  if (!DT->isReachableFromEntry(BB)) {
2544    // Don't go into unreachable blocks. They may contain instructions with
2545    // dependency cycles which confuse the final scheduling.
2546    LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2547    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2548    return;
2549  }
2550
2551  // Check that every instruction appears once in this bundle.
2552  SmallVector<unsigned, 4> ReuseShuffleIndicies;
2553  SmallVector<Value *, 4> UniqueValues;
2554  DenseMap<Value *, unsigned> UniquePositions;
2555  for (Value *V : VL) {
2556    auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2557    ReuseShuffleIndicies.emplace_back(Res.first->second);
2558    if (Res.second)
2559      UniqueValues.emplace_back(V);
2560  }
2561  size_t NumUniqueScalarValues = UniqueValues.size();
2562  if (NumUniqueScalarValues == VL.size()) {
2563    ReuseShuffleIndicies.clear();
2564  } else {
2565    LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2566    if (NumUniqueScalarValues <= 1 ||
2567        !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2568      LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2569      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2570      return;
2571    }
2572    VL = UniqueValues;
2573  }
2574
2575  auto &BSRef = BlocksSchedules[BB];
2576  if (!BSRef)
2577    BSRef = std::make_unique<BlockScheduling>(BB);
2578
2579  BlockScheduling &BS = *BSRef.get();
2580
2581  Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2582  if (!Bundle) {
2583    LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2584    assert((!BS.getScheduleData(VL0) ||
2585            !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2586           "tryScheduleBundle should cancelScheduling on failure");
2587    newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2588                 ReuseShuffleIndicies);
2589    return;
2590  }
2591  LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2592
2593  unsigned ShuffleOrOp = S.isAltShuffle() ?
2594                (unsigned) Instruction::ShuffleVector : S.getOpcode();
2595  switch (ShuffleOrOp) {
2596    case Instruction::PHI: {
2597      auto *PH = cast<PHINode>(VL0);
2598
2599      // Check for terminator values (e.g. invoke).
2600      for (unsigned j = 0; j < VL.size(); ++j)
2601        for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2602          Instruction *Term = dyn_cast<Instruction>(
2603              cast<PHINode>(VL[j])->getIncomingValueForBlock(
2604                  PH->getIncomingBlock(i)));
2605          if (Term && Term->isTerminator()) {
2606            LLVM_DEBUG(dbgs()
2607                       << "SLP: Need to swizzle PHINodes (terminator use).\n");
2608            BS.cancelScheduling(VL, VL0);
2609            newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2610                         ReuseShuffleIndicies);
2611            return;
2612          }
2613        }
2614
2615      TreeEntry *TE =
2616          newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2617      LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2618
2619      // Keeps the reordered operands to avoid code duplication.
2620      SmallVector<ValueList, 2> OperandsVec;
2621      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2622        ValueList Operands;
2623        // Prepare the operand vector.
2624        for (Value *j : VL)
2625          Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2626              PH->getIncomingBlock(i)));
2627        TE->setOperand(i, Operands);
2628        OperandsVec.push_back(Operands);
2629      }
2630      for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2631        buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2632      return;
2633    }
2634    case Instruction::ExtractValue:
2635    case Instruction::ExtractElement: {
2636      OrdersType CurrentOrder;
2637      bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2638      if (Reuse) {
2639        LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2640        ++NumOpsWantToKeepOriginalOrder;
2641        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2642                     ReuseShuffleIndicies);
2643        // This is a special case, as it does not gather, but at the same time
2644        // we are not extending buildTree_rec() towards the operands.
2645        ValueList Op0;
2646        Op0.assign(VL.size(), VL0->getOperand(0));
2647        VectorizableTree.back()->setOperand(0, Op0);
2648        return;
2649      }
2650      if (!CurrentOrder.empty()) {
2651        LLVM_DEBUG({
2652          dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2653                    "with order";
2654          for (unsigned Idx : CurrentOrder)
2655            dbgs() << " " << Idx;
2656          dbgs() << "\n";
2657        });
2658        // Insert new order with initial value 0, if it does not exist,
2659        // otherwise return the iterator to the existing one.
2660        auto StoredCurrentOrderAndNum =
2661            NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2662        ++StoredCurrentOrderAndNum->getSecond();
2663        newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2664                     ReuseShuffleIndicies,
2665                     StoredCurrentOrderAndNum->getFirst());
2666        // This is a special case, as it does not gather, but at the same time
2667        // we are not extending buildTree_rec() towards the operands.
2668        ValueList Op0;
2669        Op0.assign(VL.size(), VL0->getOperand(0));
2670        VectorizableTree.back()->setOperand(0, Op0);
2671        return;
2672      }
2673      LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2674      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2675                   ReuseShuffleIndicies);
2676      BS.cancelScheduling(VL, VL0);
2677      return;
2678    }
2679    case Instruction::Load: {
2680      // Check that a vectorized load would load the same memory as a scalar
2681      // load. For example, we don't want to vectorize loads that are smaller
2682      // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2683      // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2684      // from such a struct, we read/write packed bits disagreeing with the
2685      // unvectorized version.
2686      Type *ScalarTy = VL0->getType();
2687
2688      if (DL->getTypeSizeInBits(ScalarTy) !=
2689          DL->getTypeAllocSizeInBits(ScalarTy)) {
2690        BS.cancelScheduling(VL, VL0);
2691        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2692                     ReuseShuffleIndicies);
2693        LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2694        return;
2695      }
2696
2697      // Make sure all loads in the bundle are simple - we can't vectorize
2698      // atomic or volatile loads.
2699      SmallVector<Value *, 4> PointerOps(VL.size());
2700      auto POIter = PointerOps.begin();
2701      for (Value *V : VL) {
2702        auto *L = cast<LoadInst>(V);
2703        if (!L->isSimple()) {
2704          BS.cancelScheduling(VL, VL0);
2705          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2706                       ReuseShuffleIndicies);
2707          LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2708          return;
2709        }
2710        *POIter = L->getPointerOperand();
2711        ++POIter;
2712      }
2713
2714      OrdersType CurrentOrder;
2715      // Check the order of pointer operands.
2716      if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2717        Value *Ptr0;
2718        Value *PtrN;
2719        if (CurrentOrder.empty()) {
2720          Ptr0 = PointerOps.front();
2721          PtrN = PointerOps.back();
2722        } else {
2723          Ptr0 = PointerOps[CurrentOrder.front()];
2724          PtrN = PointerOps[CurrentOrder.back()];
2725        }
2726        const SCEV *Scev0 = SE->getSCEV(Ptr0);
2727        const SCEV *ScevN = SE->getSCEV(PtrN);
2728        const auto *Diff =
2729            dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2730        uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2731        // Check that the sorted loads are consecutive.
2732        if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2733          if (CurrentOrder.empty()) {
2734            // Original loads are consecutive and does not require reordering.
2735            ++NumOpsWantToKeepOriginalOrder;
2736            TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2737                                         UserTreeIdx, ReuseShuffleIndicies);
2738            TE->setOperandsInOrder();
2739            LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2740          } else {
2741            // Need to reorder.
2742            auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2743            ++I->getSecond();
2744            TreeEntry *TE =
2745                newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2746                             ReuseShuffleIndicies, I->getFirst());
2747            TE->setOperandsInOrder();
2748            LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2749          }
2750          return;
2751        }
2752      }
2753
2754      LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2755      BS.cancelScheduling(VL, VL0);
2756      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2757                   ReuseShuffleIndicies);
2758      return;
2759    }
2760    case Instruction::ZExt:
2761    case Instruction::SExt:
2762    case Instruction::FPToUI:
2763    case Instruction::FPToSI:
2764    case Instruction::FPExt:
2765    case Instruction::PtrToInt:
2766    case Instruction::IntToPtr:
2767    case Instruction::SIToFP:
2768    case Instruction::UIToFP:
2769    case Instruction::Trunc:
2770    case Instruction::FPTrunc:
2771    case Instruction::BitCast: {
2772      Type *SrcTy = VL0->getOperand(0)->getType();
2773      for (Value *V : VL) {
2774        Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2775        if (Ty != SrcTy || !isValidElementType(Ty)) {
2776          BS.cancelScheduling(VL, VL0);
2777          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2778                       ReuseShuffleIndicies);
2779          LLVM_DEBUG(dbgs()
2780                     << "SLP: Gathering casts with different src types.\n");
2781          return;
2782        }
2783      }
2784      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2785                                   ReuseShuffleIndicies);
2786      LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2787
2788      TE->setOperandsInOrder();
2789      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2790        ValueList Operands;
2791        // Prepare the operand vector.
2792        for (Value *V : VL)
2793          Operands.push_back(cast<Instruction>(V)->getOperand(i));
2794
2795        buildTree_rec(Operands, Depth + 1, {TE, i});
2796      }
2797      return;
2798    }
2799    case Instruction::ICmp:
2800    case Instruction::FCmp: {
2801      // Check that all of the compares have the same predicate.
2802      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2803      CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2804      Type *ComparedTy = VL0->getOperand(0)->getType();
2805      for (Value *V : VL) {
2806        CmpInst *Cmp = cast<CmpInst>(V);
2807        if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2808            Cmp->getOperand(0)->getType() != ComparedTy) {
2809          BS.cancelScheduling(VL, VL0);
2810          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2811                       ReuseShuffleIndicies);
2812          LLVM_DEBUG(dbgs()
2813                     << "SLP: Gathering cmp with different predicate.\n");
2814          return;
2815        }
2816      }
2817
2818      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2819                                   ReuseShuffleIndicies);
2820      LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2821
2822      ValueList Left, Right;
2823      if (cast<CmpInst>(VL0)->isCommutative()) {
2824        // Commutative predicate - collect + sort operands of the instructions
2825        // so that each side is more likely to have the same opcode.
2826        assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2827        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2828      } else {
2829        // Collect operands - commute if it uses the swapped predicate.
2830        for (Value *V : VL) {
2831          auto *Cmp = cast<CmpInst>(V);
2832          Value *LHS = Cmp->getOperand(0);
2833          Value *RHS = Cmp->getOperand(1);
2834          if (Cmp->getPredicate() != P0)
2835            std::swap(LHS, RHS);
2836          Left.push_back(LHS);
2837          Right.push_back(RHS);
2838        }
2839      }
2840      TE->setOperand(0, Left);
2841      TE->setOperand(1, Right);
2842      buildTree_rec(Left, Depth + 1, {TE, 0});
2843      buildTree_rec(Right, Depth + 1, {TE, 1});
2844      return;
2845    }
2846    case Instruction::Select:
2847    case Instruction::FNeg:
2848    case Instruction::Add:
2849    case Instruction::FAdd:
2850    case Instruction::Sub:
2851    case Instruction::FSub:
2852    case Instruction::Mul:
2853    case Instruction::FMul:
2854    case Instruction::UDiv:
2855    case Instruction::SDiv:
2856    case Instruction::FDiv:
2857    case Instruction::URem:
2858    case Instruction::SRem:
2859    case Instruction::FRem:
2860    case Instruction::Shl:
2861    case Instruction::LShr:
2862    case Instruction::AShr:
2863    case Instruction::And:
2864    case Instruction::Or:
2865    case Instruction::Xor: {
2866      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2867                                   ReuseShuffleIndicies);
2868      LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
2869
2870      // Sort operands of the instructions so that each side is more likely to
2871      // have the same opcode.
2872      if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2873        ValueList Left, Right;
2874        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
2875        TE->setOperand(0, Left);
2876        TE->setOperand(1, Right);
2877        buildTree_rec(Left, Depth + 1, {TE, 0});
2878        buildTree_rec(Right, Depth + 1, {TE, 1});
2879        return;
2880      }
2881
2882      TE->setOperandsInOrder();
2883      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2884        ValueList Operands;
2885        // Prepare the operand vector.
2886        for (Value *j : VL)
2887          Operands.push_back(cast<Instruction>(j)->getOperand(i));
2888
2889        buildTree_rec(Operands, Depth + 1, {TE, i});
2890      }
2891      return;
2892    }
2893    case Instruction::GetElementPtr: {
2894      // We don't combine GEPs with complicated (nested) indexing.
2895      for (Value *V : VL) {
2896        if (cast<Instruction>(V)->getNumOperands() != 2) {
2897          LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
2898          BS.cancelScheduling(VL, VL0);
2899          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2900                       ReuseShuffleIndicies);
2901          return;
2902        }
2903      }
2904
2905      // We can't combine several GEPs into one vector if they operate on
2906      // different types.
2907      Type *Ty0 = VL0->getOperand(0)->getType();
2908      for (Value *V : VL) {
2909        Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
2910        if (Ty0 != CurTy) {
2911          LLVM_DEBUG(dbgs()
2912                     << "SLP: not-vectorizable GEP (different types).\n");
2913          BS.cancelScheduling(VL, VL0);
2914          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2915                       ReuseShuffleIndicies);
2916          return;
2917        }
2918      }
2919
2920      // We don't combine GEPs with non-constant indexes.
2921      Type *Ty1 = VL0->getOperand(1)->getType();
2922      for (Value *V : VL) {
2923        auto Op = cast<Instruction>(V)->getOperand(1);
2924        if (!isa<ConstantInt>(Op) ||
2925            (Op->getType() != Ty1 &&
2926             Op->getType()->getScalarSizeInBits() >
2927                 DL->getIndexSizeInBits(
2928                     V->getType()->getPointerAddressSpace()))) {
2929          LLVM_DEBUG(dbgs()
2930                     << "SLP: not-vectorizable GEP (non-constant indexes).\n");
2931          BS.cancelScheduling(VL, VL0);
2932          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2933                       ReuseShuffleIndicies);
2934          return;
2935        }
2936      }
2937
2938      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2939                                   ReuseShuffleIndicies);
2940      LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
2941      TE->setOperandsInOrder();
2942      for (unsigned i = 0, e = 2; i < e; ++i) {
2943        ValueList Operands;
2944        // Prepare the operand vector.
2945        for (Value *V : VL)
2946          Operands.push_back(cast<Instruction>(V)->getOperand(i));
2947
2948        buildTree_rec(Operands, Depth + 1, {TE, i});
2949      }
2950      return;
2951    }
2952    case Instruction::Store: {
2953      // Check if the stores are consecutive or if we need to swizzle them.
2954      llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType();
2955      // Make sure all stores in the bundle are simple - we can't vectorize
2956      // atomic or volatile stores.
2957      SmallVector<Value *, 4> PointerOps(VL.size());
2958      ValueList Operands(VL.size());
2959      auto POIter = PointerOps.begin();
2960      auto OIter = Operands.begin();
2961      for (Value *V : VL) {
2962        auto *SI = cast<StoreInst>(V);
2963        if (!SI->isSimple()) {
2964          BS.cancelScheduling(VL, VL0);
2965          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2966                       ReuseShuffleIndicies);
2967          LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n");
2968          return;
2969        }
2970        *POIter = SI->getPointerOperand();
2971        *OIter = SI->getValueOperand();
2972        ++POIter;
2973        ++OIter;
2974      }
2975
2976      OrdersType CurrentOrder;
2977      // Check the order of pointer operands.
2978      if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2979        Value *Ptr0;
2980        Value *PtrN;
2981        if (CurrentOrder.empty()) {
2982          Ptr0 = PointerOps.front();
2983          PtrN = PointerOps.back();
2984        } else {
2985          Ptr0 = PointerOps[CurrentOrder.front()];
2986          PtrN = PointerOps[CurrentOrder.back()];
2987        }
2988        const SCEV *Scev0 = SE->getSCEV(Ptr0);
2989        const SCEV *ScevN = SE->getSCEV(PtrN);
2990        const auto *Diff =
2991            dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2992        uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2993        // Check that the sorted pointer operands are consecutive.
2994        if (Diff && Diff->getAPInt() == (VL.size() - 1) * Size) {
2995          if (CurrentOrder.empty()) {
2996            // Original stores are consecutive and does not require reordering.
2997            ++NumOpsWantToKeepOriginalOrder;
2998            TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2999                                         UserTreeIdx, ReuseShuffleIndicies);
3000            TE->setOperandsInOrder();
3001            buildTree_rec(Operands, Depth + 1, {TE, 0});
3002            LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
3003          } else {
3004            // Need to reorder.
3005            auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
3006            ++(I->getSecond());
3007            TreeEntry *TE =
3008                newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3009                             ReuseShuffleIndicies, I->getFirst());
3010            TE->setOperandsInOrder();
3011            buildTree_rec(Operands, Depth + 1, {TE, 0});
3012            LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n");
3013          }
3014          return;
3015        }
3016      }
3017
3018      BS.cancelScheduling(VL, VL0);
3019      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3020                   ReuseShuffleIndicies);
3021      LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
3022      return;
3023    }
3024    case Instruction::Call: {
3025      // Check if the calls are all to the same vectorizable intrinsic or
3026      // library function.
3027      CallInst *CI = cast<CallInst>(VL0);
3028      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3029
3030      VFShape Shape = VFShape::get(
3031          *CI, {static_cast<unsigned int>(VL.size()), false /*Scalable*/},
3032          false /*HasGlobalPred*/);
3033      Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3034
3035      if (!VecFunc && !isTriviallyVectorizable(ID)) {
3036        BS.cancelScheduling(VL, VL0);
3037        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3038                     ReuseShuffleIndicies);
3039        LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
3040        return;
3041      }
3042      Function *F = CI->getCalledFunction();
3043      unsigned NumArgs = CI->getNumArgOperands();
3044      SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
3045      for (unsigned j = 0; j != NumArgs; ++j)
3046        if (hasVectorInstrinsicScalarOpd(ID, j))
3047          ScalarArgs[j] = CI->getArgOperand(j);
3048      for (Value *V : VL) {
3049        CallInst *CI2 = dyn_cast<CallInst>(V);
3050        if (!CI2 || CI2->getCalledFunction() != F ||
3051            getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
3052            (VecFunc &&
3053             VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) ||
3054            !CI->hasIdenticalOperandBundleSchema(*CI2)) {
3055          BS.cancelScheduling(VL, VL0);
3056          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3057                       ReuseShuffleIndicies);
3058          LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
3059                            << "\n");
3060          return;
3061        }
3062        // Some intrinsics have scalar arguments and should be same in order for
3063        // them to be vectorized.
3064        for (unsigned j = 0; j != NumArgs; ++j) {
3065          if (hasVectorInstrinsicScalarOpd(ID, j)) {
3066            Value *A1J = CI2->getArgOperand(j);
3067            if (ScalarArgs[j] != A1J) {
3068              BS.cancelScheduling(VL, VL0);
3069              newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3070                           ReuseShuffleIndicies);
3071              LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
3072                                << " argument " << ScalarArgs[j] << "!=" << A1J
3073                                << "\n");
3074              return;
3075            }
3076          }
3077        }
3078        // Verify that the bundle operands are identical between the two calls.
3079        if (CI->hasOperandBundles() &&
3080            !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
3081                        CI->op_begin() + CI->getBundleOperandsEndIndex(),
3082                        CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
3083          BS.cancelScheduling(VL, VL0);
3084          newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3085                       ReuseShuffleIndicies);
3086          LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
3087                            << *CI << "!=" << *V << '\n');
3088          return;
3089        }
3090      }
3091
3092      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3093                                   ReuseShuffleIndicies);
3094      TE->setOperandsInOrder();
3095      for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
3096        ValueList Operands;
3097        // Prepare the operand vector.
3098        for (Value *V : VL) {
3099          auto *CI2 = cast<CallInst>(V);
3100          Operands.push_back(CI2->getArgOperand(i));
3101        }
3102        buildTree_rec(Operands, Depth + 1, {TE, i});
3103      }
3104      return;
3105    }
3106    case Instruction::ShuffleVector: {
3107      // If this is not an alternate sequence of opcode like add-sub
3108      // then do not vectorize this instruction.
3109      if (!S.isAltShuffle()) {
3110        BS.cancelScheduling(VL, VL0);
3111        newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3112                     ReuseShuffleIndicies);
3113        LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
3114        return;
3115      }
3116      TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
3117                                   ReuseShuffleIndicies);
3118      LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
3119
3120      // Reorder operands if reordering would enable vectorization.
3121      if (isa<BinaryOperator>(VL0)) {
3122        ValueList Left, Right;
3123        reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE, *this);
3124        TE->setOperand(0, Left);
3125        TE->setOperand(1, Right);
3126        buildTree_rec(Left, Depth + 1, {TE, 0});
3127        buildTree_rec(Right, Depth + 1, {TE, 1});
3128        return;
3129      }
3130
3131      TE->setOperandsInOrder();
3132      for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
3133        ValueList Operands;
3134        // Prepare the operand vector.
3135        for (Value *V : VL)
3136          Operands.push_back(cast<Instruction>(V)->getOperand(i));
3137
3138        buildTree_rec(Operands, Depth + 1, {TE, i});
3139      }
3140      return;
3141    }
3142    default:
3143      BS.cancelScheduling(VL, VL0);
3144      newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
3145                   ReuseShuffleIndicies);
3146      LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
3147      return;
3148  }
3149}
3150
3151unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
3152  unsigned N = 1;
3153  Type *EltTy = T;
3154
3155  while (isa<StructType>(EltTy) || isa<ArrayType>(EltTy) ||
3156         isa<VectorType>(EltTy)) {
3157    if (auto *ST = dyn_cast<StructType>(EltTy)) {
3158      // Check that struct is homogeneous.
3159      for (const auto *Ty : ST->elements())
3160        if (Ty != *ST->element_begin())
3161          return 0;
3162      N *= ST->getNumElements();
3163      EltTy = *ST->element_begin();
3164    } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) {
3165      N *= AT->getNumElements();
3166      EltTy = AT->getElementType();
3167    } else {
3168      auto *VT = cast<VectorType>(EltTy);
3169      N *= VT->getNumElements();
3170      EltTy = VT->getElementType();
3171    }
3172  }
3173
3174  if (!isValidElementType(EltTy))
3175    return 0;
3176  uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N));
3177  if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
3178    return 0;
3179  return N;
3180}
3181
3182bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
3183                              SmallVectorImpl<unsigned> &CurrentOrder) const {
3184  Instruction *E0 = cast<Instruction>(OpValue);
3185  assert(E0->getOpcode() == Instruction::ExtractElement ||
3186         E0->getOpcode() == Instruction::ExtractValue);
3187  assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
3188  // Check if all of the extracts come from the same vector and from the
3189  // correct offset.
3190  Value *Vec = E0->getOperand(0);
3191
3192  CurrentOrder.clear();
3193
3194  // We have to extract from a vector/aggregate with the same number of elements.
3195  unsigned NElts;
3196  if (E0->getOpcode() == Instruction::ExtractValue) {
3197    const DataLayout &DL = E0->getModule()->getDataLayout();
3198    NElts = canMapToVector(Vec->getType(), DL);
3199    if (!NElts)
3200      return false;
3201    // Check if load can be rewritten as load of vector.
3202    LoadInst *LI = dyn_cast<LoadInst>(Vec);
3203    if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
3204      return false;
3205  } else {
3206    NElts = cast<VectorType>(Vec->getType())->getNumElements();
3207  }
3208
3209  if (NElts != VL.size())
3210    return false;
3211
3212  // Check that all of the indices extract from the correct offset.
3213  bool ShouldKeepOrder = true;
3214  unsigned E = VL.size();
3215  // Assign to all items the initial value E + 1 so we can check if the extract
3216  // instruction index was used already.
3217  // Also, later we can check that all the indices are used and we have a
3218  // consecutive access in the extract instructions, by checking that no
3219  // element of CurrentOrder still has value E + 1.
3220  CurrentOrder.assign(E, E + 1);
3221  unsigned I = 0;
3222  for (; I < E; ++I) {
3223    auto *Inst = cast<Instruction>(VL[I]);
3224    if (Inst->getOperand(0) != Vec)
3225      break;
3226    Optional<unsigned> Idx = getExtractIndex(Inst);
3227    if (!Idx)
3228      break;
3229    const unsigned ExtIdx = *Idx;
3230    if (ExtIdx != I) {
3231      if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
3232        break;
3233      ShouldKeepOrder = false;
3234      CurrentOrder[ExtIdx] = I;
3235    } else {
3236      if (CurrentOrder[I] != E + 1)
3237        break;
3238      CurrentOrder[I] = I;
3239    }
3240  }
3241  if (I < E) {
3242    CurrentOrder.clear();
3243    return false;
3244  }
3245
3246  return ShouldKeepOrder;
3247}
3248
3249bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
3250  return I->hasOneUse() ||
3251         std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
3252           return ScalarToTreeEntry.count(U) > 0;
3253         });
3254}
3255
3256static std::pair<unsigned, unsigned>
3257getVectorCallCosts(CallInst *CI, VectorType *VecTy, TargetTransformInfo *TTI,
3258                   TargetLibraryInfo *TLI) {
3259  Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3260
3261  // Calculate the cost of the scalar and vector calls.
3262  IntrinsicCostAttributes CostAttrs(ID, *CI, VecTy->getNumElements());
3263  int IntrinsicCost =
3264    TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput);
3265
3266  auto Shape =
3267      VFShape::get(*CI, {static_cast<unsigned>(VecTy->getNumElements()), false},
3268                   false /*HasGlobalPred*/);
3269  Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3270  int LibCost = IntrinsicCost;
3271  if (!CI->isNoBuiltin() && VecFunc) {
3272    // Calculate the cost of the vector library call.
3273    SmallVector<Type *, 4> VecTys;
3274    for (Use &Arg : CI->args())
3275      VecTys.push_back(
3276          FixedVectorType::get(Arg->getType(), VecTy->getNumElements()));
3277
3278    // If the corresponding vector call is cheaper, return its cost.
3279    LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys,
3280                                    TTI::TCK_RecipThroughput);
3281  }
3282  return {IntrinsicCost, LibCost};
3283}
3284
3285int BoUpSLP::getEntryCost(TreeEntry *E) {
3286  ArrayRef<Value*> VL = E->Scalars;
3287
3288  Type *ScalarTy = VL[0]->getType();
3289  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3290    ScalarTy = SI->getValueOperand()->getType();
3291  else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
3292    ScalarTy = CI->getOperand(0)->getType();
3293  auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3294  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
3295
3296  // If we have computed a smaller type for the expression, update VecTy so
3297  // that the costs will be accurate.
3298  if (MinBWs.count(VL[0]))
3299    VecTy = FixedVectorType::get(
3300        IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
3301
3302  unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
3303  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3304  int ReuseShuffleCost = 0;
3305  if (NeedToShuffleReuses) {
3306    ReuseShuffleCost =
3307        TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3308  }
3309  if (E->State == TreeEntry::NeedToGather) {
3310    if (allConstant(VL))
3311      return 0;
3312    if (isSplat(VL)) {
3313      return ReuseShuffleCost +
3314             TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
3315    }
3316    if (E->getOpcode() == Instruction::ExtractElement &&
3317        allSameType(VL) && allSameBlock(VL)) {
3318      Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
3319      if (ShuffleKind.hasValue()) {
3320        int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
3321        for (auto *V : VL) {
3322          // If all users of instruction are going to be vectorized and this
3323          // instruction itself is not going to be vectorized, consider this
3324          // instruction as dead and remove its cost from the final cost of the
3325          // vectorized tree.
3326          if (areAllUsersVectorized(cast<Instruction>(V)) &&
3327              !ScalarToTreeEntry.count(V)) {
3328            auto *IO = cast<ConstantInt>(
3329                cast<ExtractElementInst>(V)->getIndexOperand());
3330            Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
3331                                            IO->getZExtValue());
3332          }
3333        }
3334        return ReuseShuffleCost + Cost;
3335      }
3336    }
3337    return ReuseShuffleCost + getGatherCost(VL);
3338  }
3339  assert(E->State == TreeEntry::Vectorize && "Unhandled state");
3340  assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
3341  Instruction *VL0 = E->getMainOp();
3342  unsigned ShuffleOrOp =
3343      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3344  switch (ShuffleOrOp) {
3345    case Instruction::PHI:
3346      return 0;
3347
3348    case Instruction::ExtractValue:
3349    case Instruction::ExtractElement: {
3350      if (NeedToShuffleReuses) {
3351        unsigned Idx = 0;
3352        for (unsigned I : E->ReuseShuffleIndices) {
3353          if (ShuffleOrOp == Instruction::ExtractElement) {
3354            auto *IO = cast<ConstantInt>(
3355                cast<ExtractElementInst>(VL[I])->getIndexOperand());
3356            Idx = IO->getZExtValue();
3357            ReuseShuffleCost -= TTI->getVectorInstrCost(
3358                Instruction::ExtractElement, VecTy, Idx);
3359          } else {
3360            ReuseShuffleCost -= TTI->getVectorInstrCost(
3361                Instruction::ExtractElement, VecTy, Idx);
3362            ++Idx;
3363          }
3364        }
3365        Idx = ReuseShuffleNumbers;
3366        for (Value *V : VL) {
3367          if (ShuffleOrOp == Instruction::ExtractElement) {
3368            auto *IO = cast<ConstantInt>(
3369                cast<ExtractElementInst>(V)->getIndexOperand());
3370            Idx = IO->getZExtValue();
3371          } else {
3372            --Idx;
3373          }
3374          ReuseShuffleCost +=
3375              TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
3376        }
3377      }
3378      int DeadCost = ReuseShuffleCost;
3379      if (!E->ReorderIndices.empty()) {
3380        // TODO: Merge this shuffle with the ReuseShuffleCost.
3381        DeadCost += TTI->getShuffleCost(
3382            TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3383      }
3384      for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3385        Instruction *E = cast<Instruction>(VL[i]);
3386        // If all users are going to be vectorized, instruction can be
3387        // considered as dead.
3388        // The same, if have only one user, it will be vectorized for sure.
3389        if (areAllUsersVectorized(E)) {
3390          // Take credit for instruction that will become dead.
3391          if (E->hasOneUse()) {
3392            Instruction *Ext = E->user_back();
3393            if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3394                all_of(Ext->users(),
3395                       [](User *U) { return isa<GetElementPtrInst>(U); })) {
3396              // Use getExtractWithExtendCost() to calculate the cost of
3397              // extractelement/ext pair.
3398              DeadCost -= TTI->getExtractWithExtendCost(
3399                  Ext->getOpcode(), Ext->getType(), VecTy, i);
3400              // Add back the cost of s|zext which is subtracted separately.
3401              DeadCost += TTI->getCastInstrCost(
3402                  Ext->getOpcode(), Ext->getType(), E->getType(), CostKind,
3403                  Ext);
3404              continue;
3405            }
3406          }
3407          DeadCost -=
3408              TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
3409        }
3410      }
3411      return DeadCost;
3412    }
3413    case Instruction::ZExt:
3414    case Instruction::SExt:
3415    case Instruction::FPToUI:
3416    case Instruction::FPToSI:
3417    case Instruction::FPExt:
3418    case Instruction::PtrToInt:
3419    case Instruction::IntToPtr:
3420    case Instruction::SIToFP:
3421    case Instruction::UIToFP:
3422    case Instruction::Trunc:
3423    case Instruction::FPTrunc:
3424    case Instruction::BitCast: {
3425      Type *SrcTy = VL0->getOperand(0)->getType();
3426      int ScalarEltCost =
3427          TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, CostKind,
3428                                VL0);
3429      if (NeedToShuffleReuses) {
3430        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3431      }
3432
3433      // Calculate the cost of this instruction.
3434      int ScalarCost = VL.size() * ScalarEltCost;
3435
3436      auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size());
3437      int VecCost = 0;
3438      // Check if the values are candidates to demote.
3439      if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3440        VecCost = ReuseShuffleCost +
3441                  TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy,
3442                                        CostKind, VL0);
3443      }
3444      return VecCost - ScalarCost;
3445    }
3446    case Instruction::FCmp:
3447    case Instruction::ICmp:
3448    case Instruction::Select: {
3449      // Calculate the cost of this instruction.
3450      int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
3451                                                  Builder.getInt1Ty(),
3452                                                  CostKind, VL0);
3453      if (NeedToShuffleReuses) {
3454        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3455      }
3456      auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size());
3457      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3458      int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy,
3459                                            CostKind, VL0);
3460      return ReuseShuffleCost + VecCost - ScalarCost;
3461    }
3462    case Instruction::FNeg:
3463    case Instruction::Add:
3464    case Instruction::FAdd:
3465    case Instruction::Sub:
3466    case Instruction::FSub:
3467    case Instruction::Mul:
3468    case Instruction::FMul:
3469    case Instruction::UDiv:
3470    case Instruction::SDiv:
3471    case Instruction::FDiv:
3472    case Instruction::URem:
3473    case Instruction::SRem:
3474    case Instruction::FRem:
3475    case Instruction::Shl:
3476    case Instruction::LShr:
3477    case Instruction::AShr:
3478    case Instruction::And:
3479    case Instruction::Or:
3480    case Instruction::Xor: {
3481      // Certain instructions can be cheaper to vectorize if they have a
3482      // constant second vector operand.
3483      TargetTransformInfo::OperandValueKind Op1VK =
3484          TargetTransformInfo::OK_AnyValue;
3485      TargetTransformInfo::OperandValueKind Op2VK =
3486          TargetTransformInfo::OK_UniformConstantValue;
3487      TargetTransformInfo::OperandValueProperties Op1VP =
3488          TargetTransformInfo::OP_None;
3489      TargetTransformInfo::OperandValueProperties Op2VP =
3490          TargetTransformInfo::OP_PowerOf2;
3491
3492      // If all operands are exactly the same ConstantInt then set the
3493      // operand kind to OK_UniformConstantValue.
3494      // If instead not all operands are constants, then set the operand kind
3495      // to OK_AnyValue. If all operands are constants but not the same,
3496      // then set the operand kind to OK_NonUniformConstantValue.
3497      ConstantInt *CInt0 = nullptr;
3498      for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3499        const Instruction *I = cast<Instruction>(VL[i]);
3500        unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3501        ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3502        if (!CInt) {
3503          Op2VK = TargetTransformInfo::OK_AnyValue;
3504          Op2VP = TargetTransformInfo::OP_None;
3505          break;
3506        }
3507        if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3508            !CInt->getValue().isPowerOf2())
3509          Op2VP = TargetTransformInfo::OP_None;
3510        if (i == 0) {
3511          CInt0 = CInt;
3512          continue;
3513        }
3514        if (CInt0 != CInt)
3515          Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3516      }
3517
3518      SmallVector<const Value *, 4> Operands(VL0->operand_values());
3519      int ScalarEltCost = TTI->getArithmeticInstrCost(
3520          E->getOpcode(), ScalarTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
3521          Operands, VL0);
3522      if (NeedToShuffleReuses) {
3523        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3524      }
3525      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3526      int VecCost = TTI->getArithmeticInstrCost(
3527          E->getOpcode(), VecTy, CostKind, Op1VK, Op2VK, Op1VP, Op2VP,
3528          Operands, VL0);
3529      return ReuseShuffleCost + VecCost - ScalarCost;
3530    }
3531    case Instruction::GetElementPtr: {
3532      TargetTransformInfo::OperandValueKind Op1VK =
3533          TargetTransformInfo::OK_AnyValue;
3534      TargetTransformInfo::OperandValueKind Op2VK =
3535          TargetTransformInfo::OK_UniformConstantValue;
3536
3537      int ScalarEltCost =
3538          TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, CostKind,
3539                                      Op1VK, Op2VK);
3540      if (NeedToShuffleReuses) {
3541        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3542      }
3543      int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3544      int VecCost =
3545          TTI->getArithmeticInstrCost(Instruction::Add, VecTy, CostKind,
3546                                      Op1VK, Op2VK);
3547      return ReuseShuffleCost + VecCost - ScalarCost;
3548    }
3549    case Instruction::Load: {
3550      // Cost of wide load - cost of scalar loads.
3551      Align alignment = cast<LoadInst>(VL0)->getAlign();
3552      int ScalarEltCost =
3553          TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0,
3554                               CostKind, VL0);
3555      if (NeedToShuffleReuses) {
3556        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3557      }
3558      int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3559      int VecLdCost =
3560          TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0,
3561                               CostKind, VL0);
3562      if (!E->ReorderIndices.empty()) {
3563        // TODO: Merge this shuffle with the ReuseShuffleCost.
3564        VecLdCost += TTI->getShuffleCost(
3565            TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3566      }
3567      return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3568    }
3569    case Instruction::Store: {
3570      // We know that we can merge the stores. Calculate the cost.
3571      bool IsReorder = !E->ReorderIndices.empty();
3572      auto *SI =
3573          cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0);
3574      Align Alignment = SI->getAlign();
3575      int ScalarEltCost =
3576          TTI->getMemoryOpCost(Instruction::Store, ScalarTy, Alignment, 0,
3577                               CostKind, VL0);
3578      if (NeedToShuffleReuses)
3579        ReuseShuffleCost = -(ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3580      int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3581      int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
3582                                           VecTy, Alignment, 0, CostKind, VL0);
3583      if (IsReorder) {
3584        // TODO: Merge this shuffle with the ReuseShuffleCost.
3585        VecStCost += TTI->getShuffleCost(
3586            TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3587      }
3588      return ReuseShuffleCost + VecStCost - ScalarStCost;
3589    }
3590    case Instruction::Call: {
3591      CallInst *CI = cast<CallInst>(VL0);
3592      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3593
3594      // Calculate the cost of the scalar and vector calls.
3595      IntrinsicCostAttributes CostAttrs(ID, *CI, 1, 1);
3596      int ScalarEltCost = TTI->getIntrinsicInstrCost(CostAttrs, CostKind);
3597      if (NeedToShuffleReuses) {
3598        ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3599      }
3600      int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3601
3602      auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
3603      int VecCallCost = std::min(VecCallCosts.first, VecCallCosts.second);
3604
3605      LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3606                        << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3607                        << " for " << *CI << "\n");
3608
3609      return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3610    }
3611    case Instruction::ShuffleVector: {
3612      assert(E->isAltShuffle() &&
3613             ((Instruction::isBinaryOp(E->getOpcode()) &&
3614               Instruction::isBinaryOp(E->getAltOpcode())) ||
3615              (Instruction::isCast(E->getOpcode()) &&
3616               Instruction::isCast(E->getAltOpcode()))) &&
3617             "Invalid Shuffle Vector Operand");
3618      int ScalarCost = 0;
3619      if (NeedToShuffleReuses) {
3620        for (unsigned Idx : E->ReuseShuffleIndices) {
3621          Instruction *I = cast<Instruction>(VL[Idx]);
3622          ReuseShuffleCost -= TTI->getInstructionCost(I, CostKind);
3623        }
3624        for (Value *V : VL) {
3625          Instruction *I = cast<Instruction>(V);
3626          ReuseShuffleCost += TTI->getInstructionCost(I, CostKind);
3627        }
3628      }
3629      for (Value *V : VL) {
3630        Instruction *I = cast<Instruction>(V);
3631        assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3632        ScalarCost += TTI->getInstructionCost(I, CostKind);
3633      }
3634      // VecCost is equal to sum of the cost of creating 2 vectors
3635      // and the cost of creating shuffle.
3636      int VecCost = 0;
3637      if (Instruction::isBinaryOp(E->getOpcode())) {
3638        VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind);
3639        VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy,
3640                                               CostKind);
3641      } else {
3642        Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3643        Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3644        auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size());
3645        auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size());
3646        VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty,
3647                                        CostKind);
3648        VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty,
3649                                         CostKind);
3650      }
3651      VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3652      return ReuseShuffleCost + VecCost - ScalarCost;
3653    }
3654    default:
3655      llvm_unreachable("Unknown instruction");
3656  }
3657}
3658
3659bool BoUpSLP::isFullyVectorizableTinyTree() const {
3660  LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3661                    << VectorizableTree.size() << " is fully vectorizable .\n");
3662
3663  // We only handle trees of heights 1 and 2.
3664  if (VectorizableTree.size() == 1 &&
3665      VectorizableTree[0]->State == TreeEntry::Vectorize)
3666    return true;
3667
3668  if (VectorizableTree.size() != 2)
3669    return false;
3670
3671  // Handle splat and all-constants stores.
3672  if (VectorizableTree[0]->State == TreeEntry::Vectorize &&
3673      (allConstant(VectorizableTree[1]->Scalars) ||
3674       isSplat(VectorizableTree[1]->Scalars)))
3675    return true;
3676
3677  // Gathering cost would be too much for tiny trees.
3678  if (VectorizableTree[0]->State == TreeEntry::NeedToGather ||
3679      VectorizableTree[1]->State == TreeEntry::NeedToGather)
3680    return false;
3681
3682  return true;
3683}
3684
3685static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts,
3686                                       TargetTransformInfo *TTI) {
3687  // Look past the root to find a source value. Arbitrarily follow the
3688  // path through operand 0 of any 'or'. Also, peek through optional
3689  // shift-left-by-constant.
3690  Value *ZextLoad = Root;
3691  while (!isa<ConstantExpr>(ZextLoad) &&
3692         (match(ZextLoad, m_Or(m_Value(), m_Value())) ||
3693          match(ZextLoad, m_Shl(m_Value(), m_Constant()))))
3694    ZextLoad = cast<BinaryOperator>(ZextLoad)->getOperand(0);
3695
3696  // Check if the input is an extended load of the required or/shift expression.
3697  Value *LoadPtr;
3698  if (ZextLoad == Root || !match(ZextLoad, m_ZExt(m_Load(m_Value(LoadPtr)))))
3699    return false;
3700
3701  // Require that the total load bit width is a legal integer type.
3702  // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target.
3703  // But <16 x i8> --> i128 is not, so the backend probably can't reduce it.
3704  Type *SrcTy = LoadPtr->getType()->getPointerElementType();
3705  unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts;
3706  if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth)))
3707    return false;
3708
3709  // Everything matched - assume that we can fold the whole sequence using
3710  // load combining.
3711  LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at "
3712             << *(cast<Instruction>(Root)) << "\n");
3713
3714  return true;
3715}
3716
3717bool BoUpSLP::isLoadCombineReductionCandidate(unsigned RdxOpcode) const {
3718  if (RdxOpcode != Instruction::Or)
3719    return false;
3720
3721  unsigned NumElts = VectorizableTree[0]->Scalars.size();
3722  Value *FirstReduced = VectorizableTree[0]->Scalars[0];
3723  return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI);
3724}
3725
3726bool BoUpSLP::isLoadCombineCandidate() const {
3727  // Peek through a final sequence of stores and check if all operations are
3728  // likely to be load-combined.
3729  unsigned NumElts = VectorizableTree[0]->Scalars.size();
3730  for (Value *Scalar : VectorizableTree[0]->Scalars) {
3731    Value *X;
3732    if (!match(Scalar, m_Store(m_Value(X), m_Value())) ||
3733        !isLoadCombineCandidateImpl(X, NumElts, TTI))
3734      return false;
3735  }
3736  return true;
3737}
3738
3739bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3740  // We can vectorize the tree if its size is greater than or equal to the
3741  // minimum size specified by the MinTreeSize command line option.
3742  if (VectorizableTree.size() >= MinTreeSize)
3743    return false;
3744
3745  // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3746  // can vectorize it if we can prove it fully vectorizable.
3747  if (isFullyVectorizableTinyTree())
3748    return false;
3749
3750  assert(VectorizableTree.empty()
3751             ? ExternalUses.empty()
3752             : true && "We shouldn't have any external users");
3753
3754  // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3755  // vectorizable.
3756  return true;
3757}
3758
3759int BoUpSLP::getSpillCost() const {
3760  // Walk from the bottom of the tree to the top, tracking which values are
3761  // live. When we see a call instruction that is not part of our tree,
3762  // query TTI to see if there is a cost to keeping values live over it
3763  // (for example, if spills and fills are required).
3764  unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3765  int Cost = 0;
3766
3767  SmallPtrSet<Instruction*, 4> LiveValues;
3768  Instruction *PrevInst = nullptr;
3769
3770  for (const auto &TEPtr : VectorizableTree) {
3771    Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3772    if (!Inst)
3773      continue;
3774
3775    if (!PrevInst) {
3776      PrevInst = Inst;
3777      continue;
3778    }
3779
3780    // Update LiveValues.
3781    LiveValues.erase(PrevInst);
3782    for (auto &J : PrevInst->operands()) {
3783      if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3784        LiveValues.insert(cast<Instruction>(&*J));
3785    }
3786
3787    LLVM_DEBUG({
3788      dbgs() << "SLP: #LV: " << LiveValues.size();
3789      for (auto *X : LiveValues)
3790        dbgs() << " " << X->getName();
3791      dbgs() << ", Looking at ";
3792      Inst->dump();
3793    });
3794
3795    // Now find the sequence of instructions between PrevInst and Inst.
3796    unsigned NumCalls = 0;
3797    BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3798                                 PrevInstIt =
3799                                     PrevInst->getIterator().getReverse();
3800    while (InstIt != PrevInstIt) {
3801      if (PrevInstIt == PrevInst->getParent()->rend()) {
3802        PrevInstIt = Inst->getParent()->rbegin();
3803        continue;
3804      }
3805
3806      // Debug information does not impact spill cost.
3807      if ((isa<CallInst>(&*PrevInstIt) &&
3808           !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3809          &*PrevInstIt != PrevInst)
3810        NumCalls++;
3811
3812      ++PrevInstIt;
3813    }
3814
3815    if (NumCalls) {
3816      SmallVector<Type*, 4> V;
3817      for (auto *II : LiveValues)
3818        V.push_back(FixedVectorType::get(II->getType(), BundleWidth));
3819      Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3820    }
3821
3822    PrevInst = Inst;
3823  }
3824
3825  return Cost;
3826}
3827
3828int BoUpSLP::getTreeCost() {
3829  int Cost = 0;
3830  LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
3831                    << VectorizableTree.size() << ".\n");
3832
3833  unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3834
3835  for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3836    TreeEntry &TE = *VectorizableTree[I].get();
3837
3838    // We create duplicate tree entries for gather sequences that have multiple
3839    // uses. However, we should not compute the cost of duplicate sequences.
3840    // For example, if we have a build vector (i.e., insertelement sequence)
3841    // that is used by more than one vector instruction, we only need to
3842    // compute the cost of the insertelement instructions once. The redundant
3843    // instructions will be eliminated by CSE.
3844    //
3845    // We should consider not creating duplicate tree entries for gather
3846    // sequences, and instead add additional edges to the tree representing
3847    // their uses. Since such an approach results in fewer total entries,
3848    // existing heuristics based on tree size may yield different results.
3849    //
3850    if (TE.State == TreeEntry::NeedToGather &&
3851        std::any_of(std::next(VectorizableTree.begin(), I + 1),
3852                    VectorizableTree.end(),
3853                    [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3854                      return EntryPtr->State == TreeEntry::NeedToGather &&
3855                             EntryPtr->isSame(TE.Scalars);
3856                    }))
3857      continue;
3858
3859    int C = getEntryCost(&TE);
3860    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
3861                      << " for bundle that starts with " << *TE.Scalars[0]
3862                      << ".\n");
3863    Cost += C;
3864  }
3865
3866  SmallPtrSet<Value *, 16> ExtractCostCalculated;
3867  int ExtractCost = 0;
3868  for (ExternalUser &EU : ExternalUses) {
3869    // We only add extract cost once for the same scalar.
3870    if (!ExtractCostCalculated.insert(EU.Scalar).second)
3871      continue;
3872
3873    // Uses by ephemeral values are free (because the ephemeral value will be
3874    // removed prior to code generation, and so the extraction will be
3875    // removed as well).
3876    if (EphValues.count(EU.User))
3877      continue;
3878
3879    // If we plan to rewrite the tree in a smaller type, we will need to sign
3880    // extend the extracted value back to the original type. Here, we account
3881    // for the extract and the added cost of the sign extend if needed.
3882    auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth);
3883    auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3884    if (MinBWs.count(ScalarRoot)) {
3885      auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3886      auto Extend =
3887          MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3888      VecTy = FixedVectorType::get(MinTy, BundleWidth);
3889      ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3890                                                   VecTy, EU.Lane);
3891    } else {
3892      ExtractCost +=
3893          TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3894    }
3895  }
3896
3897  int SpillCost = getSpillCost();
3898  Cost += SpillCost + ExtractCost;
3899
3900  std::string Str;
3901  {
3902    raw_string_ostream OS(Str);
3903    OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3904       << "SLP: Extract Cost = " << ExtractCost << ".\n"
3905       << "SLP: Total Cost = " << Cost << ".\n";
3906  }
3907  LLVM_DEBUG(dbgs() << Str);
3908
3909  if (ViewSLPTree)
3910    ViewGraph(this, "SLP" + F->getName(), false, Str);
3911
3912  return Cost;
3913}
3914
3915int BoUpSLP::getGatherCost(VectorType *Ty,
3916                           const DenseSet<unsigned> &ShuffledIndices) const {
3917  unsigned NumElts = Ty->getNumElements();
3918  APInt DemandedElts = APInt::getNullValue(NumElts);
3919  for (unsigned i = 0; i < NumElts; ++i)
3920    if (!ShuffledIndices.count(i))
3921      DemandedElts.setBit(i);
3922  int Cost = TTI->getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ true,
3923                                           /*Extract*/ false);
3924  if (!ShuffledIndices.empty())
3925    Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3926  return Cost;
3927}
3928
3929int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3930  // Find the type of the operands in VL.
3931  Type *ScalarTy = VL[0]->getType();
3932  if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3933    ScalarTy = SI->getValueOperand()->getType();
3934  auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
3935  // Find the cost of inserting/extracting values from the vector.
3936  // Check if the same elements are inserted several times and count them as
3937  // shuffle candidates.
3938  DenseSet<unsigned> ShuffledElements;
3939  DenseSet<Value *> UniqueElements;
3940  // Iterate in reverse order to consider insert elements with the high cost.
3941  for (unsigned I = VL.size(); I > 0; --I) {
3942    unsigned Idx = I - 1;
3943    if (!UniqueElements.insert(VL[Idx]).second)
3944      ShuffledElements.insert(Idx);
3945  }
3946  return getGatherCost(VecTy, ShuffledElements);
3947}
3948
3949// Perform operand reordering on the instructions in VL and return the reordered
3950// operands in Left and Right.
3951void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
3952                                             SmallVectorImpl<Value *> &Left,
3953                                             SmallVectorImpl<Value *> &Right,
3954                                             const DataLayout &DL,
3955                                             ScalarEvolution &SE,
3956                                             const BoUpSLP &R) {
3957  if (VL.empty())
3958    return;
3959  VLOperands Ops(VL, DL, SE, R);
3960  // Reorder the operands in place.
3961  Ops.reorder();
3962  Left = Ops.getVL(0);
3963  Right = Ops.getVL(1);
3964}
3965
3966void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
3967  // Get the basic block this bundle is in. All instructions in the bundle
3968  // should be in this block.
3969  auto *Front = E->getMainOp();
3970  auto *BB = Front->getParent();
3971  assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
3972                      [=](Value *V) -> bool {
3973                        auto *I = cast<Instruction>(V);
3974                        return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
3975                      }));
3976
3977  // The last instruction in the bundle in program order.
3978  Instruction *LastInst = nullptr;
3979
3980  // Find the last instruction. The common case should be that BB has been
3981  // scheduled, and the last instruction is VL.back(). So we start with
3982  // VL.back() and iterate over schedule data until we reach the end of the
3983  // bundle. The end of the bundle is marked by null ScheduleData.
3984  if (BlocksSchedules.count(BB)) {
3985    auto *Bundle =
3986        BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
3987    if (Bundle && Bundle->isPartOfBundle())
3988      for (; Bundle; Bundle = Bundle->NextInBundle)
3989        if (Bundle->OpValue == Bundle->Inst)
3990          LastInst = Bundle->Inst;
3991  }
3992
3993  // LastInst can still be null at this point if there's either not an entry
3994  // for BB in BlocksSchedules or there's no ScheduleData available for
3995  // VL.back(). This can be the case if buildTree_rec aborts for various
3996  // reasons (e.g., the maximum recursion depth is reached, the maximum region
3997  // size is reached, etc.). ScheduleData is initialized in the scheduling
3998  // "dry-run".
3999  //
4000  // If this happens, we can still find the last instruction by brute force. We
4001  // iterate forwards from Front (inclusive) until we either see all
4002  // instructions in the bundle or reach the end of the block. If Front is the
4003  // last instruction in program order, LastInst will be set to Front, and we
4004  // will visit all the remaining instructions in the block.
4005  //
4006  // One of the reasons we exit early from buildTree_rec is to place an upper
4007  // bound on compile-time. Thus, taking an additional compile-time hit here is
4008  // not ideal. However, this should be exceedingly rare since it requires that
4009  // we both exit early from buildTree_rec and that the bundle be out-of-order
4010  // (causing us to iterate all the way to the end of the block).
4011  if (!LastInst) {
4012    SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
4013    for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
4014      if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
4015        LastInst = &I;
4016      if (Bundle.empty())
4017        break;
4018    }
4019  }
4020  assert(LastInst && "Failed to find last instruction in bundle");
4021
4022  // Set the insertion point after the last instruction in the bundle. Set the
4023  // debug location to Front.
4024  Builder.SetInsertPoint(BB, ++LastInst->getIterator());
4025  Builder.SetCurrentDebugLocation(Front->getDebugLoc());
4026}
4027
4028Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
4029  Value *Vec = UndefValue::get(Ty);
4030  // Generate the 'InsertElement' instruction.
4031  for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
4032    Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
4033    if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) {
4034      GatherSeq.insert(Insrt);
4035      CSEBlocks.insert(Insrt->getParent());
4036
4037      // Add to our 'need-to-extract' list.
4038      if (TreeEntry *E = getTreeEntry(VL[i])) {
4039        // Find which lane we need to extract.
4040        int FoundLane = -1;
4041        for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
4042          // Is this the lane of the scalar that we are looking for ?
4043          if (E->Scalars[Lane] == VL[i]) {
4044            FoundLane = Lane;
4045            break;
4046          }
4047        }
4048        assert(FoundLane >= 0 && "Could not find the correct lane");
4049        if (!E->ReuseShuffleIndices.empty()) {
4050          FoundLane =
4051              std::distance(E->ReuseShuffleIndices.begin(),
4052                            llvm::find(E->ReuseShuffleIndices, FoundLane));
4053        }
4054        ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
4055      }
4056    }
4057  }
4058
4059  return Vec;
4060}
4061
4062Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
4063  InstructionsState S = getSameOpcode(VL);
4064  if (S.getOpcode()) {
4065    if (TreeEntry *E = getTreeEntry(S.OpValue)) {
4066      if (E->isSame(VL)) {
4067        Value *V = vectorizeTree(E);
4068        if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
4069          // We need to get the vectorized value but without shuffle.
4070          if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
4071            V = SV->getOperand(0);
4072          } else {
4073            // Reshuffle to get only unique values.
4074            SmallVector<int, 4> UniqueIdxs;
4075            SmallSet<int, 4> UsedIdxs;
4076            for (int Idx : E->ReuseShuffleIndices)
4077              if (UsedIdxs.insert(Idx).second)
4078                UniqueIdxs.emplace_back(Idx);
4079            V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
4080                                            UniqueIdxs);
4081          }
4082        }
4083        return V;
4084      }
4085    }
4086  }
4087
4088  Type *ScalarTy = S.OpValue->getType();
4089  if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
4090    ScalarTy = SI->getValueOperand()->getType();
4091
4092  // Check that every instruction appears once in this bundle.
4093  SmallVector<int, 4> ReuseShuffleIndicies;
4094  SmallVector<Value *, 4> UniqueValues;
4095  if (VL.size() > 2) {
4096    DenseMap<Value *, unsigned> UniquePositions;
4097    for (Value *V : VL) {
4098      auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
4099      ReuseShuffleIndicies.emplace_back(Res.first->second);
4100      if (Res.second || isa<Constant>(V))
4101        UniqueValues.emplace_back(V);
4102    }
4103    // Do not shuffle single element or if number of unique values is not power
4104    // of 2.
4105    if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
4106        !llvm::isPowerOf2_32(UniqueValues.size()))
4107      ReuseShuffleIndicies.clear();
4108    else
4109      VL = UniqueValues;
4110  }
4111  auto *VecTy = FixedVectorType::get(ScalarTy, VL.size());
4112
4113  Value *V = Gather(VL, VecTy);
4114  if (!ReuseShuffleIndicies.empty()) {
4115    V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4116                                    ReuseShuffleIndicies, "shuffle");
4117    if (auto *I = dyn_cast<Instruction>(V)) {
4118      GatherSeq.insert(I);
4119      CSEBlocks.insert(I->getParent());
4120    }
4121  }
4122  return V;
4123}
4124
4125static void inversePermutation(ArrayRef<unsigned> Indices,
4126                               SmallVectorImpl<int> &Mask) {
4127  Mask.clear();
4128  const unsigned E = Indices.size();
4129  Mask.resize(E);
4130  for (unsigned I = 0; I < E; ++I)
4131    Mask[Indices[I]] = I;
4132}
4133
4134Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
4135  IRBuilder<>::InsertPointGuard Guard(Builder);
4136
4137  if (E->VectorizedValue) {
4138    LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
4139    return E->VectorizedValue;
4140  }
4141
4142  Instruction *VL0 = E->getMainOp();
4143  Type *ScalarTy = VL0->getType();
4144  if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
4145    ScalarTy = SI->getValueOperand()->getType();
4146  auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size());
4147
4148  bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
4149
4150  if (E->State == TreeEntry::NeedToGather) {
4151    setInsertPointAfterBundle(E);
4152    auto *V = Gather(E->Scalars, VecTy);
4153    if (NeedToShuffleReuses) {
4154      V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4155                                      E->ReuseShuffleIndices, "shuffle");
4156      if (auto *I = dyn_cast<Instruction>(V)) {
4157        GatherSeq.insert(I);
4158        CSEBlocks.insert(I->getParent());
4159      }
4160    }
4161    E->VectorizedValue = V;
4162    return V;
4163  }
4164
4165  assert(E->State == TreeEntry::Vectorize && "Unhandled state");
4166  unsigned ShuffleOrOp =
4167      E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
4168  switch (ShuffleOrOp) {
4169    case Instruction::PHI: {
4170      auto *PH = cast<PHINode>(VL0);
4171      Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
4172      Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4173      PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
4174      Value *V = NewPhi;
4175      if (NeedToShuffleReuses) {
4176        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4177                                        E->ReuseShuffleIndices, "shuffle");
4178      }
4179      E->VectorizedValue = V;
4180
4181      // PHINodes may have multiple entries from the same block. We want to
4182      // visit every block once.
4183      SmallPtrSet<BasicBlock*, 4> VisitedBBs;
4184
4185      for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
4186        ValueList Operands;
4187        BasicBlock *IBB = PH->getIncomingBlock(i);
4188
4189        if (!VisitedBBs.insert(IBB).second) {
4190          NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
4191          continue;
4192        }
4193
4194        Builder.SetInsertPoint(IBB->getTerminator());
4195        Builder.SetCurrentDebugLocation(PH->getDebugLoc());
4196        Value *Vec = vectorizeTree(E->getOperand(i));
4197        NewPhi->addIncoming(Vec, IBB);
4198      }
4199
4200      assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
4201             "Invalid number of incoming values");
4202      return V;
4203    }
4204
4205    case Instruction::ExtractElement: {
4206      Value *V = E->getSingleOperand(0);
4207      if (!E->ReorderIndices.empty()) {
4208        SmallVector<int, 4> Mask;
4209        inversePermutation(E->ReorderIndices, Mask);
4210        Builder.SetInsertPoint(VL0);
4211        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
4212                                        "reorder_shuffle");
4213      }
4214      if (NeedToShuffleReuses) {
4215        // TODO: Merge this shuffle with the ReorderShuffleMask.
4216        if (E->ReorderIndices.empty())
4217          Builder.SetInsertPoint(VL0);
4218        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4219                                        E->ReuseShuffleIndices, "shuffle");
4220      }
4221      E->VectorizedValue = V;
4222      return V;
4223    }
4224    case Instruction::ExtractValue: {
4225      LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
4226      Builder.SetInsertPoint(LI);
4227      PointerType *PtrTy =
4228          PointerType::get(VecTy, LI->getPointerAddressSpace());
4229      Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
4230      LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign());
4231      Value *NewV = propagateMetadata(V, E->Scalars);
4232      if (!E->ReorderIndices.empty()) {
4233        SmallVector<int, 4> Mask;
4234        inversePermutation(E->ReorderIndices, Mask);
4235        NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
4236                                           "reorder_shuffle");
4237      }
4238      if (NeedToShuffleReuses) {
4239        // TODO: Merge this shuffle with the ReorderShuffleMask.
4240        NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy),
4241                                           E->ReuseShuffleIndices, "shuffle");
4242      }
4243      E->VectorizedValue = NewV;
4244      return NewV;
4245    }
4246    case Instruction::ZExt:
4247    case Instruction::SExt:
4248    case Instruction::FPToUI:
4249    case Instruction::FPToSI:
4250    case Instruction::FPExt:
4251    case Instruction::PtrToInt:
4252    case Instruction::IntToPtr:
4253    case Instruction::SIToFP:
4254    case Instruction::UIToFP:
4255    case Instruction::Trunc:
4256    case Instruction::FPTrunc:
4257    case Instruction::BitCast: {
4258      setInsertPointAfterBundle(E);
4259
4260      Value *InVec = vectorizeTree(E->getOperand(0));
4261
4262      if (E->VectorizedValue) {
4263        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4264        return E->VectorizedValue;
4265      }
4266
4267      auto *CI = cast<CastInst>(VL0);
4268      Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
4269      if (NeedToShuffleReuses) {
4270        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4271                                        E->ReuseShuffleIndices, "shuffle");
4272      }
4273      E->VectorizedValue = V;
4274      ++NumVectorInstructions;
4275      return V;
4276    }
4277    case Instruction::FCmp:
4278    case Instruction::ICmp: {
4279      setInsertPointAfterBundle(E);
4280
4281      Value *L = vectorizeTree(E->getOperand(0));
4282      Value *R = vectorizeTree(E->getOperand(1));
4283
4284      if (E->VectorizedValue) {
4285        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4286        return E->VectorizedValue;
4287      }
4288
4289      CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
4290      Value *V = Builder.CreateCmp(P0, L, R);
4291      propagateIRFlags(V, E->Scalars, VL0);
4292      if (NeedToShuffleReuses) {
4293        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4294                                        E->ReuseShuffleIndices, "shuffle");
4295      }
4296      E->VectorizedValue = V;
4297      ++NumVectorInstructions;
4298      return V;
4299    }
4300    case Instruction::Select: {
4301      setInsertPointAfterBundle(E);
4302
4303      Value *Cond = vectorizeTree(E->getOperand(0));
4304      Value *True = vectorizeTree(E->getOperand(1));
4305      Value *False = vectorizeTree(E->getOperand(2));
4306
4307      if (E->VectorizedValue) {
4308        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4309        return E->VectorizedValue;
4310      }
4311
4312      Value *V = Builder.CreateSelect(Cond, True, False);
4313      if (NeedToShuffleReuses) {
4314        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4315                                        E->ReuseShuffleIndices, "shuffle");
4316      }
4317      E->VectorizedValue = V;
4318      ++NumVectorInstructions;
4319      return V;
4320    }
4321    case Instruction::FNeg: {
4322      setInsertPointAfterBundle(E);
4323
4324      Value *Op = vectorizeTree(E->getOperand(0));
4325
4326      if (E->VectorizedValue) {
4327        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4328        return E->VectorizedValue;
4329      }
4330
4331      Value *V = Builder.CreateUnOp(
4332          static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
4333      propagateIRFlags(V, E->Scalars, VL0);
4334      if (auto *I = dyn_cast<Instruction>(V))
4335        V = propagateMetadata(I, E->Scalars);
4336
4337      if (NeedToShuffleReuses) {
4338        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4339                                        E->ReuseShuffleIndices, "shuffle");
4340      }
4341      E->VectorizedValue = V;
4342      ++NumVectorInstructions;
4343
4344      return V;
4345    }
4346    case Instruction::Add:
4347    case Instruction::FAdd:
4348    case Instruction::Sub:
4349    case Instruction::FSub:
4350    case Instruction::Mul:
4351    case Instruction::FMul:
4352    case Instruction::UDiv:
4353    case Instruction::SDiv:
4354    case Instruction::FDiv:
4355    case Instruction::URem:
4356    case Instruction::SRem:
4357    case Instruction::FRem:
4358    case Instruction::Shl:
4359    case Instruction::LShr:
4360    case Instruction::AShr:
4361    case Instruction::And:
4362    case Instruction::Or:
4363    case Instruction::Xor: {
4364      setInsertPointAfterBundle(E);
4365
4366      Value *LHS = vectorizeTree(E->getOperand(0));
4367      Value *RHS = vectorizeTree(E->getOperand(1));
4368
4369      if (E->VectorizedValue) {
4370        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4371        return E->VectorizedValue;
4372      }
4373
4374      Value *V = Builder.CreateBinOp(
4375          static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
4376          RHS);
4377      propagateIRFlags(V, E->Scalars, VL0);
4378      if (auto *I = dyn_cast<Instruction>(V))
4379        V = propagateMetadata(I, E->Scalars);
4380
4381      if (NeedToShuffleReuses) {
4382        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4383                                        E->ReuseShuffleIndices, "shuffle");
4384      }
4385      E->VectorizedValue = V;
4386      ++NumVectorInstructions;
4387
4388      return V;
4389    }
4390    case Instruction::Load: {
4391      // Loads are inserted at the head of the tree because we don't want to
4392      // sink them all the way down past store instructions.
4393      bool IsReorder = E->updateStateIfReorder();
4394      if (IsReorder)
4395        VL0 = E->getMainOp();
4396      setInsertPointAfterBundle(E);
4397
4398      LoadInst *LI = cast<LoadInst>(VL0);
4399      unsigned AS = LI->getPointerAddressSpace();
4400
4401      Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
4402                                            VecTy->getPointerTo(AS));
4403
4404      // The pointer operand uses an in-tree scalar so we add the new BitCast to
4405      // ExternalUses list to make sure that an extract will be generated in the
4406      // future.
4407      Value *PO = LI->getPointerOperand();
4408      if (getTreeEntry(PO))
4409        ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
4410
4411      LI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign());
4412      Value *V = propagateMetadata(LI, E->Scalars);
4413      if (IsReorder) {
4414        SmallVector<int, 4> Mask;
4415        inversePermutation(E->ReorderIndices, Mask);
4416        V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
4417                                        Mask, "reorder_shuffle");
4418      }
4419      if (NeedToShuffleReuses) {
4420        // TODO: Merge this shuffle with the ReorderShuffleMask.
4421        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4422                                        E->ReuseShuffleIndices, "shuffle");
4423      }
4424      E->VectorizedValue = V;
4425      ++NumVectorInstructions;
4426      return V;
4427    }
4428    case Instruction::Store: {
4429      bool IsReorder = !E->ReorderIndices.empty();
4430      auto *SI = cast<StoreInst>(
4431          IsReorder ? E->Scalars[E->ReorderIndices.front()] : VL0);
4432      unsigned AS = SI->getPointerAddressSpace();
4433
4434      setInsertPointAfterBundle(E);
4435
4436      Value *VecValue = vectorizeTree(E->getOperand(0));
4437      if (IsReorder) {
4438        SmallVector<int, 4> Mask(E->ReorderIndices.begin(),
4439                                 E->ReorderIndices.end());
4440        VecValue = Builder.CreateShuffleVector(
4441            VecValue, UndefValue::get(VecValue->getType()), Mask,
4442            "reorder_shuffle");
4443      }
4444      Value *ScalarPtr = SI->getPointerOperand();
4445      Value *VecPtr = Builder.CreateBitCast(
4446          ScalarPtr, VecValue->getType()->getPointerTo(AS));
4447      StoreInst *ST = Builder.CreateAlignedStore(VecValue, VecPtr,
4448                                                 SI->getAlign());
4449
4450      // The pointer operand uses an in-tree scalar, so add the new BitCast to
4451      // ExternalUses to make sure that an extract will be generated in the
4452      // future.
4453      if (getTreeEntry(ScalarPtr))
4454        ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4455
4456      Value *V = propagateMetadata(ST, E->Scalars);
4457      if (NeedToShuffleReuses) {
4458        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4459                                        E->ReuseShuffleIndices, "shuffle");
4460      }
4461      E->VectorizedValue = V;
4462      ++NumVectorInstructions;
4463      return V;
4464    }
4465    case Instruction::GetElementPtr: {
4466      setInsertPointAfterBundle(E);
4467
4468      Value *Op0 = vectorizeTree(E->getOperand(0));
4469
4470      std::vector<Value *> OpVecs;
4471      for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4472           ++j) {
4473        ValueList &VL = E->getOperand(j);
4474        // Need to cast all elements to the same type before vectorization to
4475        // avoid crash.
4476        Type *VL0Ty = VL0->getOperand(j)->getType();
4477        Type *Ty = llvm::all_of(
4478                       VL, [VL0Ty](Value *V) { return VL0Ty == V->getType(); })
4479                       ? VL0Ty
4480                       : DL->getIndexType(cast<GetElementPtrInst>(VL0)
4481                                              ->getPointerOperandType()
4482                                              ->getScalarType());
4483        for (Value *&V : VL) {
4484          auto *CI = cast<ConstantInt>(V);
4485          V = ConstantExpr::getIntegerCast(CI, Ty,
4486                                           CI->getValue().isSignBitSet());
4487        }
4488        Value *OpVec = vectorizeTree(VL);
4489        OpVecs.push_back(OpVec);
4490      }
4491
4492      Value *V = Builder.CreateGEP(
4493          cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4494      if (Instruction *I = dyn_cast<Instruction>(V))
4495        V = propagateMetadata(I, E->Scalars);
4496
4497      if (NeedToShuffleReuses) {
4498        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4499                                        E->ReuseShuffleIndices, "shuffle");
4500      }
4501      E->VectorizedValue = V;
4502      ++NumVectorInstructions;
4503
4504      return V;
4505    }
4506    case Instruction::Call: {
4507      CallInst *CI = cast<CallInst>(VL0);
4508      setInsertPointAfterBundle(E);
4509
4510      Intrinsic::ID IID  = Intrinsic::not_intrinsic;
4511      if (Function *FI = CI->getCalledFunction())
4512        IID = FI->getIntrinsicID();
4513
4514      Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4515
4516      auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI);
4517      bool UseIntrinsic = ID != Intrinsic::not_intrinsic &&
4518                          VecCallCosts.first <= VecCallCosts.second;
4519
4520      Value *ScalarArg = nullptr;
4521      std::vector<Value *> OpVecs;
4522      for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4523        ValueList OpVL;
4524        // Some intrinsics have scalar arguments. This argument should not be
4525        // vectorized.
4526        if (UseIntrinsic && hasVectorInstrinsicScalarOpd(IID, j)) {
4527          CallInst *CEI = cast<CallInst>(VL0);
4528          ScalarArg = CEI->getArgOperand(j);
4529          OpVecs.push_back(CEI->getArgOperand(j));
4530          continue;
4531        }
4532
4533        Value *OpVec = vectorizeTree(E->getOperand(j));
4534        LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4535        OpVecs.push_back(OpVec);
4536      }
4537
4538      Function *CF;
4539      if (!UseIntrinsic) {
4540        VFShape Shape = VFShape::get(
4541            *CI, {static_cast<unsigned>(VecTy->getNumElements()), false},
4542            false /*HasGlobalPred*/);
4543        CF = VFDatabase(*CI).getVectorizedFunction(Shape);
4544      } else {
4545        Type *Tys[] = {FixedVectorType::get(CI->getType(), E->Scalars.size())};
4546        CF = Intrinsic::getDeclaration(F->getParent(), ID, Tys);
4547      }
4548
4549      SmallVector<OperandBundleDef, 1> OpBundles;
4550      CI->getOperandBundlesAsDefs(OpBundles);
4551      Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4552
4553      // The scalar argument uses an in-tree scalar so we add the new vectorized
4554      // call to ExternalUses list to make sure that an extract will be
4555      // generated in the future.
4556      if (ScalarArg && getTreeEntry(ScalarArg))
4557        ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4558
4559      propagateIRFlags(V, E->Scalars, VL0);
4560      if (NeedToShuffleReuses) {
4561        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4562                                        E->ReuseShuffleIndices, "shuffle");
4563      }
4564      E->VectorizedValue = V;
4565      ++NumVectorInstructions;
4566      return V;
4567    }
4568    case Instruction::ShuffleVector: {
4569      assert(E->isAltShuffle() &&
4570             ((Instruction::isBinaryOp(E->getOpcode()) &&
4571               Instruction::isBinaryOp(E->getAltOpcode())) ||
4572              (Instruction::isCast(E->getOpcode()) &&
4573               Instruction::isCast(E->getAltOpcode()))) &&
4574             "Invalid Shuffle Vector Operand");
4575
4576      Value *LHS = nullptr, *RHS = nullptr;
4577      if (Instruction::isBinaryOp(E->getOpcode())) {
4578        setInsertPointAfterBundle(E);
4579        LHS = vectorizeTree(E->getOperand(0));
4580        RHS = vectorizeTree(E->getOperand(1));
4581      } else {
4582        setInsertPointAfterBundle(E);
4583        LHS = vectorizeTree(E->getOperand(0));
4584      }
4585
4586      if (E->VectorizedValue) {
4587        LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4588        return E->VectorizedValue;
4589      }
4590
4591      Value *V0, *V1;
4592      if (Instruction::isBinaryOp(E->getOpcode())) {
4593        V0 = Builder.CreateBinOp(
4594            static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4595        V1 = Builder.CreateBinOp(
4596            static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4597      } else {
4598        V0 = Builder.CreateCast(
4599            static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4600        V1 = Builder.CreateCast(
4601            static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4602      }
4603
4604      // Create shuffle to take alternate operations from the vector.
4605      // Also, gather up main and alt scalar ops to propagate IR flags to
4606      // each vector operation.
4607      ValueList OpScalars, AltScalars;
4608      unsigned e = E->Scalars.size();
4609      SmallVector<int, 8> Mask(e);
4610      for (unsigned i = 0; i < e; ++i) {
4611        auto *OpInst = cast<Instruction>(E->Scalars[i]);
4612        assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4613        if (OpInst->getOpcode() == E->getAltOpcode()) {
4614          Mask[i] = e + i;
4615          AltScalars.push_back(E->Scalars[i]);
4616        } else {
4617          Mask[i] = i;
4618          OpScalars.push_back(E->Scalars[i]);
4619        }
4620      }
4621
4622      propagateIRFlags(V0, OpScalars);
4623      propagateIRFlags(V1, AltScalars);
4624
4625      Value *V = Builder.CreateShuffleVector(V0, V1, Mask);
4626      if (Instruction *I = dyn_cast<Instruction>(V))
4627        V = propagateMetadata(I, E->Scalars);
4628      if (NeedToShuffleReuses) {
4629        V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4630                                        E->ReuseShuffleIndices, "shuffle");
4631      }
4632      E->VectorizedValue = V;
4633      ++NumVectorInstructions;
4634
4635      return V;
4636    }
4637    default:
4638    llvm_unreachable("unknown inst");
4639  }
4640  return nullptr;
4641}
4642
4643Value *BoUpSLP::vectorizeTree() {
4644  ExtraValueToDebugLocsMap ExternallyUsedValues;
4645  return vectorizeTree(ExternallyUsedValues);
4646}
4647
4648Value *
4649BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4650  // All blocks must be scheduled before any instructions are inserted.
4651  for (auto &BSIter : BlocksSchedules) {
4652    scheduleBlock(BSIter.second.get());
4653  }
4654
4655  Builder.SetInsertPoint(&F->getEntryBlock().front());
4656  auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4657
4658  // If the vectorized tree can be rewritten in a smaller type, we truncate the
4659  // vectorized root. InstCombine will then rewrite the entire expression. We
4660  // sign extend the extracted values below.
4661  auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4662  if (MinBWs.count(ScalarRoot)) {
4663    if (auto *I = dyn_cast<Instruction>(VectorRoot))
4664      Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4665    auto BundleWidth = VectorizableTree[0]->Scalars.size();
4666    auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4667    auto *VecTy = FixedVectorType::get(MinTy, BundleWidth);
4668    auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4669    VectorizableTree[0]->VectorizedValue = Trunc;
4670  }
4671
4672  LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
4673                    << " values .\n");
4674
4675  // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4676  // specified by ScalarType.
4677  auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4678    if (!MinBWs.count(ScalarRoot))
4679      return Ex;
4680    if (MinBWs[ScalarRoot].second)
4681      return Builder.CreateSExt(Ex, ScalarType);
4682    return Builder.CreateZExt(Ex, ScalarType);
4683  };
4684
4685  // Extract all of the elements with the external uses.
4686  for (const auto &ExternalUse : ExternalUses) {
4687    Value *Scalar = ExternalUse.Scalar;
4688    llvm::User *User = ExternalUse.User;
4689
4690    // Skip users that we already RAUW. This happens when one instruction
4691    // has multiple uses of the same value.
4692    if (User && !is_contained(Scalar->users(), User))
4693      continue;
4694    TreeEntry *E = getTreeEntry(Scalar);
4695    assert(E && "Invalid scalar");
4696    assert(E->State == TreeEntry::Vectorize && "Extracting from a gather list");
4697
4698    Value *Vec = E->VectorizedValue;
4699    assert(Vec && "Can't find vectorizable value");
4700
4701    Value *Lane = Builder.getInt32(ExternalUse.Lane);
4702    // If User == nullptr, the Scalar is used as extra arg. Generate
4703    // ExtractElement instruction and update the record for this scalar in
4704    // ExternallyUsedValues.
4705    if (!User) {
4706      assert(ExternallyUsedValues.count(Scalar) &&
4707             "Scalar with nullptr as an external user must be registered in "
4708             "ExternallyUsedValues map");
4709      if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4710        Builder.SetInsertPoint(VecI->getParent(),
4711                               std::next(VecI->getIterator()));
4712      } else {
4713        Builder.SetInsertPoint(&F->getEntryBlock().front());
4714      }
4715      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4716      Ex = extend(ScalarRoot, Ex, Scalar->getType());
4717      CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4718      auto &Locs = ExternallyUsedValues[Scalar];
4719      ExternallyUsedValues.insert({Ex, Locs});
4720      ExternallyUsedValues.erase(Scalar);
4721      // Required to update internally referenced instructions.
4722      Scalar->replaceAllUsesWith(Ex);
4723      continue;
4724    }
4725
4726    // Generate extracts for out-of-tree users.
4727    // Find the insertion point for the extractelement lane.
4728    if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4729      if (PHINode *PH = dyn_cast<PHINode>(User)) {
4730        for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4731          if (PH->getIncomingValue(i) == Scalar) {
4732            Instruction *IncomingTerminator =
4733                PH->getIncomingBlock(i)->getTerminator();
4734            if (isa<CatchSwitchInst>(IncomingTerminator)) {
4735              Builder.SetInsertPoint(VecI->getParent(),
4736                                     std::next(VecI->getIterator()));
4737            } else {
4738              Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4739            }
4740            Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4741            Ex = extend(ScalarRoot, Ex, Scalar->getType());
4742            CSEBlocks.insert(PH->getIncomingBlock(i));
4743            PH->setOperand(i, Ex);
4744          }
4745        }
4746      } else {
4747        Builder.SetInsertPoint(cast<Instruction>(User));
4748        Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4749        Ex = extend(ScalarRoot, Ex, Scalar->getType());
4750        CSEBlocks.insert(cast<Instruction>(User)->getParent());
4751        User->replaceUsesOfWith(Scalar, Ex);
4752      }
4753    } else {
4754      Builder.SetInsertPoint(&F->getEntryBlock().front());
4755      Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4756      Ex = extend(ScalarRoot, Ex, Scalar->getType());
4757      CSEBlocks.insert(&F->getEntryBlock());
4758      User->replaceUsesOfWith(Scalar, Ex);
4759    }
4760
4761    LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
4762  }
4763
4764  // For each vectorized value:
4765  for (auto &TEPtr : VectorizableTree) {
4766    TreeEntry *Entry = TEPtr.get();
4767
4768    // No need to handle users of gathered values.
4769    if (Entry->State == TreeEntry::NeedToGather)
4770      continue;
4771
4772    assert(Entry->VectorizedValue && "Can't find vectorizable value");
4773
4774    // For each lane:
4775    for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4776      Value *Scalar = Entry->Scalars[Lane];
4777
4778#ifndef NDEBUG
4779      Type *Ty = Scalar->getType();
4780      if (!Ty->isVoidTy()) {
4781        for (User *U : Scalar->users()) {
4782          LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
4783
4784          // It is legal to delete users in the ignorelist.
4785          assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
4786                 "Deleting out-of-tree value");
4787        }
4788      }
4789#endif
4790      LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
4791      eraseInstruction(cast<Instruction>(Scalar));
4792    }
4793  }
4794
4795  Builder.ClearInsertionPoint();
4796  InstrElementSize.clear();
4797
4798  return VectorizableTree[0]->VectorizedValue;
4799}
4800
4801void BoUpSLP::optimizeGatherSequence() {
4802  LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
4803                    << " gather sequences instructions.\n");
4804  // LICM InsertElementInst sequences.
4805  for (Instruction *I : GatherSeq) {
4806    if (isDeleted(I))
4807      continue;
4808
4809    // Check if this block is inside a loop.
4810    Loop *L = LI->getLoopFor(I->getParent());
4811    if (!L)
4812      continue;
4813
4814    // Check if it has a preheader.
4815    BasicBlock *PreHeader = L->getLoopPreheader();
4816    if (!PreHeader)
4817      continue;
4818
4819    // If the vector or the element that we insert into it are
4820    // instructions that are defined in this basic block then we can't
4821    // hoist this instruction.
4822    auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4823    auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4824    if (Op0 && L->contains(Op0))
4825      continue;
4826    if (Op1 && L->contains(Op1))
4827      continue;
4828
4829    // We can hoist this instruction. Move it to the pre-header.
4830    I->moveBefore(PreHeader->getTerminator());
4831  }
4832
4833  // Make a list of all reachable blocks in our CSE queue.
4834  SmallVector<const DomTreeNode *, 8> CSEWorkList;
4835  CSEWorkList.reserve(CSEBlocks.size());
4836  for (BasicBlock *BB : CSEBlocks)
4837    if (DomTreeNode *N = DT->getNode(BB)) {
4838      assert(DT->isReachableFromEntry(N));
4839      CSEWorkList.push_back(N);
4840    }
4841
4842  // Sort blocks by domination. This ensures we visit a block after all blocks
4843  // dominating it are visited.
4844  llvm::stable_sort(CSEWorkList,
4845                    [this](const DomTreeNode *A, const DomTreeNode *B) {
4846                      return DT->properlyDominates(A, B);
4847                    });
4848
4849  // Perform O(N^2) search over the gather sequences and merge identical
4850  // instructions. TODO: We can further optimize this scan if we split the
4851  // instructions into different buckets based on the insert lane.
4852  SmallVector<Instruction *, 16> Visited;
4853  for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4854    assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
4855           "Worklist not sorted properly!");
4856    BasicBlock *BB = (*I)->getBlock();
4857    // For all instructions in blocks containing gather sequences:
4858    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4859      Instruction *In = &*it++;
4860      if (isDeleted(In))
4861        continue;
4862      if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4863        continue;
4864
4865      // Check if we can replace this instruction with any of the
4866      // visited instructions.
4867      for (Instruction *v : Visited) {
4868        if (In->isIdenticalTo(v) &&
4869            DT->dominates(v->getParent(), In->getParent())) {
4870          In->replaceAllUsesWith(v);
4871          eraseInstruction(In);
4872          In = nullptr;
4873          break;
4874        }
4875      }
4876      if (In) {
4877        assert(!is_contained(Visited, In));
4878        Visited.push_back(In);
4879      }
4880    }
4881  }
4882  CSEBlocks.clear();
4883  GatherSeq.clear();
4884}
4885
4886// Groups the instructions to a bundle (which is then a single scheduling entity)
4887// and schedules instructions until the bundle gets ready.
4888Optional<BoUpSLP::ScheduleData *>
4889BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
4890                                            const InstructionsState &S) {
4891  if (isa<PHINode>(S.OpValue))
4892    return nullptr;
4893
4894  // Initialize the instruction bundle.
4895  Instruction *OldScheduleEnd = ScheduleEnd;
4896  ScheduleData *PrevInBundle = nullptr;
4897  ScheduleData *Bundle = nullptr;
4898  bool ReSchedule = false;
4899  LLVM_DEBUG(dbgs() << "SLP:  bundle: " << *S.OpValue << "\n");
4900
4901  // Make sure that the scheduling region contains all
4902  // instructions of the bundle.
4903  for (Value *V : VL) {
4904    if (!extendSchedulingRegion(V, S))
4905      return None;
4906  }
4907
4908  for (Value *V : VL) {
4909    ScheduleData *BundleMember = getScheduleData(V);
4910    assert(BundleMember &&
4911           "no ScheduleData for bundle member (maybe not in same basic block)");
4912    if (BundleMember->IsScheduled) {
4913      // A bundle member was scheduled as single instruction before and now
4914      // needs to be scheduled as part of the bundle. We just get rid of the
4915      // existing schedule.
4916      LLVM_DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
4917                        << " was already scheduled\n");
4918      ReSchedule = true;
4919    }
4920    assert(BundleMember->isSchedulingEntity() &&
4921           "bundle member already part of other bundle");
4922    if (PrevInBundle) {
4923      PrevInBundle->NextInBundle = BundleMember;
4924    } else {
4925      Bundle = BundleMember;
4926    }
4927    BundleMember->UnscheduledDepsInBundle = 0;
4928    Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4929
4930    // Group the instructions to a bundle.
4931    BundleMember->FirstInBundle = Bundle;
4932    PrevInBundle = BundleMember;
4933  }
4934  if (ScheduleEnd != OldScheduleEnd) {
4935    // The scheduling region got new instructions at the lower end (or it is a
4936    // new region for the first bundle). This makes it necessary to
4937    // recalculate all dependencies.
4938    // It is seldom that this needs to be done a second time after adding the
4939    // initial bundle to the region.
4940    for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4941      doForAllOpcodes(I, [](ScheduleData *SD) {
4942        SD->clearDependencies();
4943      });
4944    }
4945    ReSchedule = true;
4946  }
4947  if (ReSchedule) {
4948    resetSchedule();
4949    initialFillReadyList(ReadyInsts);
4950  }
4951  assert(Bundle && "Failed to find schedule bundle");
4952
4953  LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
4954                    << BB->getName() << "\n");
4955
4956  calculateDependencies(Bundle, true, SLP);
4957
4958  // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4959  // means that there are no cyclic dependencies and we can schedule it.
4960  // Note that's important that we don't "schedule" the bundle yet (see
4961  // cancelScheduling).
4962  while (!Bundle->isReady() && !ReadyInsts.empty()) {
4963
4964    ScheduleData *pickedSD = ReadyInsts.back();
4965    ReadyInsts.pop_back();
4966
4967    if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4968      schedule(pickedSD, ReadyInsts);
4969    }
4970  }
4971  if (!Bundle->isReady()) {
4972    cancelScheduling(VL, S.OpValue);
4973    return None;
4974  }
4975  return Bundle;
4976}
4977
4978void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4979                                                Value *OpValue) {
4980  if (isa<PHINode>(OpValue))
4981    return;
4982
4983  ScheduleData *Bundle = getScheduleData(OpValue);
4984  LLVM_DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
4985  assert(!Bundle->IsScheduled &&
4986         "Can't cancel bundle which is already scheduled");
4987  assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
4988         "tried to unbundle something which is not a bundle");
4989
4990  // Un-bundle: make single instructions out of the bundle.
4991  ScheduleData *BundleMember = Bundle;
4992  while (BundleMember) {
4993    assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
4994    BundleMember->FirstInBundle = BundleMember;
4995    ScheduleData *Next = BundleMember->NextInBundle;
4996    BundleMember->NextInBundle = nullptr;
4997    BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4998    if (BundleMember->UnscheduledDepsInBundle == 0) {
4999      ReadyInsts.insert(BundleMember);
5000    }
5001    BundleMember = Next;
5002  }
5003}
5004
5005BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
5006  // Allocate a new ScheduleData for the instruction.
5007  if (ChunkPos >= ChunkSize) {
5008    ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
5009    ChunkPos = 0;
5010  }
5011  return &(ScheduleDataChunks.back()[ChunkPos++]);
5012}
5013
5014bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
5015                                                      const InstructionsState &S) {
5016  if (getScheduleData(V, isOneOf(S, V)))
5017    return true;
5018  Instruction *I = dyn_cast<Instruction>(V);
5019  assert(I && "bundle member must be an instruction");
5020  assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
5021  auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
5022    ScheduleData *ISD = getScheduleData(I);
5023    if (!ISD)
5024      return false;
5025    assert(isInSchedulingRegion(ISD) &&
5026           "ScheduleData not in scheduling region");
5027    ScheduleData *SD = allocateScheduleDataChunks();
5028    SD->Inst = I;
5029    SD->init(SchedulingRegionID, S.OpValue);
5030    ExtraScheduleDataMap[I][S.OpValue] = SD;
5031    return true;
5032  };
5033  if (CheckSheduleForI(I))
5034    return true;
5035  if (!ScheduleStart) {
5036    // It's the first instruction in the new region.
5037    initScheduleData(I, I->getNextNode(), nullptr, nullptr);
5038    ScheduleStart = I;
5039    ScheduleEnd = I->getNextNode();
5040    if (isOneOf(S, I) != I)
5041      CheckSheduleForI(I);
5042    assert(ScheduleEnd && "tried to vectorize a terminator?");
5043    LLVM_DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
5044    return true;
5045  }
5046  // Search up and down at the same time, because we don't know if the new
5047  // instruction is above or below the existing scheduling region.
5048  BasicBlock::reverse_iterator UpIter =
5049      ++ScheduleStart->getIterator().getReverse();
5050  BasicBlock::reverse_iterator UpperEnd = BB->rend();
5051  BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
5052  BasicBlock::iterator LowerEnd = BB->end();
5053  while (true) {
5054    if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
5055      LLVM_DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
5056      return false;
5057    }
5058
5059    if (UpIter != UpperEnd) {
5060      if (&*UpIter == I) {
5061        initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
5062        ScheduleStart = I;
5063        if (isOneOf(S, I) != I)
5064          CheckSheduleForI(I);
5065        LLVM_DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I
5066                          << "\n");
5067        return true;
5068      }
5069      ++UpIter;
5070    }
5071    if (DownIter != LowerEnd) {
5072      if (&*DownIter == I) {
5073        initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
5074                         nullptr);
5075        ScheduleEnd = I->getNextNode();
5076        if (isOneOf(S, I) != I)
5077          CheckSheduleForI(I);
5078        assert(ScheduleEnd && "tried to vectorize a terminator?");
5079        LLVM_DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I
5080                          << "\n");
5081        return true;
5082      }
5083      ++DownIter;
5084    }
5085    assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
5086           "instruction not found in block");
5087  }
5088  return true;
5089}
5090
5091void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
5092                                                Instruction *ToI,
5093                                                ScheduleData *PrevLoadStore,
5094                                                ScheduleData *NextLoadStore) {
5095  ScheduleData *CurrentLoadStore = PrevLoadStore;
5096  for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
5097    ScheduleData *SD = ScheduleDataMap[I];
5098    if (!SD) {
5099      SD = allocateScheduleDataChunks();
5100      ScheduleDataMap[I] = SD;
5101      SD->Inst = I;
5102    }
5103    assert(!isInSchedulingRegion(SD) &&
5104           "new ScheduleData already in scheduling region");
5105    SD->init(SchedulingRegionID, I);
5106
5107    if (I->mayReadOrWriteMemory() &&
5108        (!isa<IntrinsicInst>(I) ||
5109         cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
5110      // Update the linked list of memory accessing instructions.
5111      if (CurrentLoadStore) {
5112        CurrentLoadStore->NextLoadStore = SD;
5113      } else {
5114        FirstLoadStoreInRegion = SD;
5115      }
5116      CurrentLoadStore = SD;
5117    }
5118  }
5119  if (NextLoadStore) {
5120    if (CurrentLoadStore)
5121      CurrentLoadStore->NextLoadStore = NextLoadStore;
5122  } else {
5123    LastLoadStoreInRegion = CurrentLoadStore;
5124  }
5125}
5126
5127void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
5128                                                     bool InsertInReadyList,
5129                                                     BoUpSLP *SLP) {
5130  assert(SD->isSchedulingEntity());
5131
5132  SmallVector<ScheduleData *, 10> WorkList;
5133  WorkList.push_back(SD);
5134
5135  while (!WorkList.empty()) {
5136    ScheduleData *SD = WorkList.back();
5137    WorkList.pop_back();
5138
5139    ScheduleData *BundleMember = SD;
5140    while (BundleMember) {
5141      assert(isInSchedulingRegion(BundleMember));
5142      if (!BundleMember->hasValidDependencies()) {
5143
5144        LLVM_DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember
5145                          << "\n");
5146        BundleMember->Dependencies = 0;
5147        BundleMember->resetUnscheduledDeps();
5148
5149        // Handle def-use chain dependencies.
5150        if (BundleMember->OpValue != BundleMember->Inst) {
5151          ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
5152          if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5153            BundleMember->Dependencies++;
5154            ScheduleData *DestBundle = UseSD->FirstInBundle;
5155            if (!DestBundle->IsScheduled)
5156              BundleMember->incrementUnscheduledDeps(1);
5157            if (!DestBundle->hasValidDependencies())
5158              WorkList.push_back(DestBundle);
5159          }
5160        } else {
5161          for (User *U : BundleMember->Inst->users()) {
5162            if (isa<Instruction>(U)) {
5163              ScheduleData *UseSD = getScheduleData(U);
5164              if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
5165                BundleMember->Dependencies++;
5166                ScheduleData *DestBundle = UseSD->FirstInBundle;
5167                if (!DestBundle->IsScheduled)
5168                  BundleMember->incrementUnscheduledDeps(1);
5169                if (!DestBundle->hasValidDependencies())
5170                  WorkList.push_back(DestBundle);
5171              }
5172            } else {
5173              // I'm not sure if this can ever happen. But we need to be safe.
5174              // This lets the instruction/bundle never be scheduled and
5175              // eventually disable vectorization.
5176              BundleMember->Dependencies++;
5177              BundleMember->incrementUnscheduledDeps(1);
5178            }
5179          }
5180        }
5181
5182        // Handle the memory dependencies.
5183        ScheduleData *DepDest = BundleMember->NextLoadStore;
5184        if (DepDest) {
5185          Instruction *SrcInst = BundleMember->Inst;
5186          MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
5187          bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
5188          unsigned numAliased = 0;
5189          unsigned DistToSrc = 1;
5190
5191          while (DepDest) {
5192            assert(isInSchedulingRegion(DepDest));
5193
5194            // We have two limits to reduce the complexity:
5195            // 1) AliasedCheckLimit: It's a small limit to reduce calls to
5196            //    SLP->isAliased (which is the expensive part in this loop).
5197            // 2) MaxMemDepDistance: It's for very large blocks and it aborts
5198            //    the whole loop (even if the loop is fast, it's quadratic).
5199            //    It's important for the loop break condition (see below) to
5200            //    check this limit even between two read-only instructions.
5201            if (DistToSrc >= MaxMemDepDistance ||
5202                    ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
5203                     (numAliased >= AliasedCheckLimit ||
5204                      SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
5205
5206              // We increment the counter only if the locations are aliased
5207              // (instead of counting all alias checks). This gives a better
5208              // balance between reduced runtime and accurate dependencies.
5209              numAliased++;
5210
5211              DepDest->MemoryDependencies.push_back(BundleMember);
5212              BundleMember->Dependencies++;
5213              ScheduleData *DestBundle = DepDest->FirstInBundle;
5214              if (!DestBundle->IsScheduled) {
5215                BundleMember->incrementUnscheduledDeps(1);
5216              }
5217              if (!DestBundle->hasValidDependencies()) {
5218                WorkList.push_back(DestBundle);
5219              }
5220            }
5221            DepDest = DepDest->NextLoadStore;
5222
5223            // Example, explaining the loop break condition: Let's assume our
5224            // starting instruction is i0 and MaxMemDepDistance = 3.
5225            //
5226            //                      +--------v--v--v
5227            //             i0,i1,i2,i3,i4,i5,i6,i7,i8
5228            //             +--------^--^--^
5229            //
5230            // MaxMemDepDistance let us stop alias-checking at i3 and we add
5231            // dependencies from i0 to i3,i4,.. (even if they are not aliased).
5232            // Previously we already added dependencies from i3 to i6,i7,i8
5233            // (because of MaxMemDepDistance). As we added a dependency from
5234            // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
5235            // and we can abort this loop at i6.
5236            if (DistToSrc >= 2 * MaxMemDepDistance)
5237              break;
5238            DistToSrc++;
5239          }
5240        }
5241      }
5242      BundleMember = BundleMember->NextInBundle;
5243    }
5244    if (InsertInReadyList && SD->isReady()) {
5245      ReadyInsts.push_back(SD);
5246      LLVM_DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst
5247                        << "\n");
5248    }
5249  }
5250}
5251
5252void BoUpSLP::BlockScheduling::resetSchedule() {
5253  assert(ScheduleStart &&
5254         "tried to reset schedule on block which has not been scheduled");
5255  for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
5256    doForAllOpcodes(I, [&](ScheduleData *SD) {
5257      assert(isInSchedulingRegion(SD) &&
5258             "ScheduleData not in scheduling region");
5259      SD->IsScheduled = false;
5260      SD->resetUnscheduledDeps();
5261    });
5262  }
5263  ReadyInsts.clear();
5264}
5265
5266void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
5267  if (!BS->ScheduleStart)
5268    return;
5269
5270  LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
5271
5272  BS->resetSchedule();
5273
5274  // For the real scheduling we use a more sophisticated ready-list: it is
5275  // sorted by the original instruction location. This lets the final schedule
5276  // be as  close as possible to the original instruction order.
5277  struct ScheduleDataCompare {
5278    bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
5279      return SD2->SchedulingPriority < SD1->SchedulingPriority;
5280    }
5281  };
5282  std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
5283
5284  // Ensure that all dependency data is updated and fill the ready-list with
5285  // initial instructions.
5286  int Idx = 0;
5287  int NumToSchedule = 0;
5288  for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
5289       I = I->getNextNode()) {
5290    BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
5291      assert(SD->isPartOfBundle() ==
5292                 (getTreeEntry(SD->Inst) != nullptr) &&
5293             "scheduler and vectorizer bundle mismatch");
5294      SD->FirstInBundle->SchedulingPriority = Idx++;
5295      if (SD->isSchedulingEntity()) {
5296        BS->calculateDependencies(SD, false, this);
5297        NumToSchedule++;
5298      }
5299    });
5300  }
5301  BS->initialFillReadyList(ReadyInsts);
5302
5303  Instruction *LastScheduledInst = BS->ScheduleEnd;
5304
5305  // Do the "real" scheduling.
5306  while (!ReadyInsts.empty()) {
5307    ScheduleData *picked = *ReadyInsts.begin();
5308    ReadyInsts.erase(ReadyInsts.begin());
5309
5310    // Move the scheduled instruction(s) to their dedicated places, if not
5311    // there yet.
5312    ScheduleData *BundleMember = picked;
5313    while (BundleMember) {
5314      Instruction *pickedInst = BundleMember->Inst;
5315      if (LastScheduledInst->getNextNode() != pickedInst) {
5316        BS->BB->getInstList().remove(pickedInst);
5317        BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
5318                                     pickedInst);
5319      }
5320      LastScheduledInst = pickedInst;
5321      BundleMember = BundleMember->NextInBundle;
5322    }
5323
5324    BS->schedule(picked, ReadyInsts);
5325    NumToSchedule--;
5326  }
5327  assert(NumToSchedule == 0 && "could not schedule all instructions");
5328
5329  // Avoid duplicate scheduling of the block.
5330  BS->ScheduleStart = nullptr;
5331}
5332
5333unsigned BoUpSLP::getVectorElementSize(Value *V) {
5334  // If V is a store, just return the width of the stored value without
5335  // traversing the expression tree. This is the common case.
5336  if (auto *Store = dyn_cast<StoreInst>(V))
5337    return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
5338
5339  auto E = InstrElementSize.find(V);
5340  if (E != InstrElementSize.end())
5341    return E->second;
5342
5343  // If V is not a store, we can traverse the expression tree to find loads
5344  // that feed it. The type of the loaded value may indicate a more suitable
5345  // width than V's type. We want to base the vector element size on the width
5346  // of memory operations where possible.
5347  SmallVector<Instruction *, 16> Worklist;
5348  SmallPtrSet<Instruction *, 16> Visited;
5349  if (auto *I = dyn_cast<Instruction>(V)) {
5350    Worklist.push_back(I);
5351    Visited.insert(I);
5352  }
5353
5354  // Traverse the expression tree in bottom-up order looking for loads. If we
5355  // encounter an instruction we don't yet handle, we give up.
5356  auto MaxWidth = 0u;
5357  auto FoundUnknownInst = false;
5358  while (!Worklist.empty() && !FoundUnknownInst) {
5359    auto *I = Worklist.pop_back_val();
5360
5361    // We should only be looking at scalar instructions here. If the current
5362    // instruction has a vector type, give up.
5363    auto *Ty = I->getType();
5364    if (isa<VectorType>(Ty))
5365      FoundUnknownInst = true;
5366
5367    // If the current instruction is a load, update MaxWidth to reflect the
5368    // width of the loaded value.
5369    else if (isa<LoadInst>(I))
5370      MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
5371
5372    // Otherwise, we need to visit the operands of the instruction. We only
5373    // handle the interesting cases from buildTree here. If an operand is an
5374    // instruction we haven't yet visited, we add it to the worklist.
5375    else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5376             isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
5377      for (Use &U : I->operands())
5378        if (auto *J = dyn_cast<Instruction>(U.get()))
5379          if (Visited.insert(J).second)
5380            Worklist.push_back(J);
5381    }
5382
5383    // If we don't yet handle the instruction, give up.
5384    else
5385      FoundUnknownInst = true;
5386  }
5387
5388  int Width = MaxWidth;
5389  // If we didn't encounter a memory access in the expression tree, or if we
5390  // gave up for some reason, just return the width of V. Otherwise, return the
5391  // maximum width we found.
5392  if (!MaxWidth || FoundUnknownInst)
5393    Width = DL->getTypeSizeInBits(V->getType());
5394
5395  for (Instruction *I : Visited)
5396    InstrElementSize[I] = Width;
5397
5398  return Width;
5399}
5400
5401// Determine if a value V in a vectorizable expression Expr can be demoted to a
5402// smaller type with a truncation. We collect the values that will be demoted
5403// in ToDemote and additional roots that require investigating in Roots.
5404static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
5405                                  SmallVectorImpl<Value *> &ToDemote,
5406                                  SmallVectorImpl<Value *> &Roots) {
5407  // We can always demote constants.
5408  if (isa<Constant>(V)) {
5409    ToDemote.push_back(V);
5410    return true;
5411  }
5412
5413  // If the value is not an instruction in the expression with only one use, it
5414  // cannot be demoted.
5415  auto *I = dyn_cast<Instruction>(V);
5416  if (!I || !I->hasOneUse() || !Expr.count(I))
5417    return false;
5418
5419  switch (I->getOpcode()) {
5420
5421  // We can always demote truncations and extensions. Since truncations can
5422  // seed additional demotion, we save the truncated value.
5423  case Instruction::Trunc:
5424    Roots.push_back(I->getOperand(0));
5425    break;
5426  case Instruction::ZExt:
5427  case Instruction::SExt:
5428    break;
5429
5430  // We can demote certain binary operations if we can demote both of their
5431  // operands.
5432  case Instruction::Add:
5433  case Instruction::Sub:
5434  case Instruction::Mul:
5435  case Instruction::And:
5436  case Instruction::Or:
5437  case Instruction::Xor:
5438    if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
5439        !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
5440      return false;
5441    break;
5442
5443  // We can demote selects if we can demote their true and false values.
5444  case Instruction::Select: {
5445    SelectInst *SI = cast<SelectInst>(I);
5446    if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
5447        !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
5448      return false;
5449    break;
5450  }
5451
5452  // We can demote phis if we can demote all their incoming operands. Note that
5453  // we don't need to worry about cycles since we ensure single use above.
5454  case Instruction::PHI: {
5455    PHINode *PN = cast<PHINode>(I);
5456    for (Value *IncValue : PN->incoming_values())
5457      if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
5458        return false;
5459    break;
5460  }
5461
5462  // Otherwise, conservatively give up.
5463  default:
5464    return false;
5465  }
5466
5467  // Record the value that we can demote.
5468  ToDemote.push_back(V);
5469  return true;
5470}
5471
5472void BoUpSLP::computeMinimumValueSizes() {
5473  // If there are no external uses, the expression tree must be rooted by a
5474  // store. We can't demote in-memory values, so there is nothing to do here.
5475  if (ExternalUses.empty())
5476    return;
5477
5478  // We only attempt to truncate integer expressions.
5479  auto &TreeRoot = VectorizableTree[0]->Scalars;
5480  auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5481  if (!TreeRootIT)
5482    return;
5483
5484  // If the expression is not rooted by a store, these roots should have
5485  // external uses. We will rely on InstCombine to rewrite the expression in
5486  // the narrower type. However, InstCombine only rewrites single-use values.
5487  // This means that if a tree entry other than a root is used externally, it
5488  // must have multiple uses and InstCombine will not rewrite it. The code
5489  // below ensures that only the roots are used externally.
5490  SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5491  for (auto &EU : ExternalUses)
5492    if (!Expr.erase(EU.Scalar))
5493      return;
5494  if (!Expr.empty())
5495    return;
5496
5497  // Collect the scalar values of the vectorizable expression. We will use this
5498  // context to determine which values can be demoted. If we see a truncation,
5499  // we mark it as seeding another demotion.
5500  for (auto &EntryPtr : VectorizableTree)
5501    Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5502
5503  // Ensure the roots of the vectorizable tree don't form a cycle. They must
5504  // have a single external user that is not in the vectorizable tree.
5505  for (auto *Root : TreeRoot)
5506    if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5507      return;
5508
5509  // Conservatively determine if we can actually truncate the roots of the
5510  // expression. Collect the values that can be demoted in ToDemote and
5511  // additional roots that require investigating in Roots.
5512  SmallVector<Value *, 32> ToDemote;
5513  SmallVector<Value *, 4> Roots;
5514  for (auto *Root : TreeRoot)
5515    if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5516      return;
5517
5518  // The maximum bit width required to represent all the values that can be
5519  // demoted without loss of precision. It would be safe to truncate the roots
5520  // of the expression to this width.
5521  auto MaxBitWidth = 8u;
5522
5523  // We first check if all the bits of the roots are demanded. If they're not,
5524  // we can truncate the roots to this narrower type.
5525  for (auto *Root : TreeRoot) {
5526    auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5527    MaxBitWidth = std::max<unsigned>(
5528        Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5529  }
5530
5531  // True if the roots can be zero-extended back to their original type, rather
5532  // than sign-extended. We know that if the leading bits are not demanded, we
5533  // can safely zero-extend. So we initialize IsKnownPositive to True.
5534  bool IsKnownPositive = true;
5535
5536  // If all the bits of the roots are demanded, we can try a little harder to
5537  // compute a narrower type. This can happen, for example, if the roots are
5538  // getelementptr indices. InstCombine promotes these indices to the pointer
5539  // width. Thus, all their bits are technically demanded even though the
5540  // address computation might be vectorized in a smaller type.
5541  //
5542  // We start by looking at each entry that can be demoted. We compute the
5543  // maximum bit width required to store the scalar by using ValueTracking to
5544  // compute the number of high-order bits we can truncate.
5545  if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5546      llvm::all_of(TreeRoot, [](Value *R) {
5547        assert(R->hasOneUse() && "Root should have only one use!");
5548        return isa<GetElementPtrInst>(R->user_back());
5549      })) {
5550    MaxBitWidth = 8u;
5551
5552    // Determine if the sign bit of all the roots is known to be zero. If not,
5553    // IsKnownPositive is set to False.
5554    IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5555      KnownBits Known = computeKnownBits(R, *DL);
5556      return Known.isNonNegative();
5557    });
5558
5559    // Determine the maximum number of bits required to store the scalar
5560    // values.
5561    for (auto *Scalar : ToDemote) {
5562      auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5563      auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5564      MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5565    }
5566
5567    // If we can't prove that the sign bit is zero, we must add one to the
5568    // maximum bit width to account for the unknown sign bit. This preserves
5569    // the existing sign bit so we can safely sign-extend the root back to the
5570    // original type. Otherwise, if we know the sign bit is zero, we will
5571    // zero-extend the root instead.
5572    //
5573    // FIXME: This is somewhat suboptimal, as there will be cases where adding
5574    //        one to the maximum bit width will yield a larger-than-necessary
5575    //        type. In general, we need to add an extra bit only if we can't
5576    //        prove that the upper bit of the original type is equal to the
5577    //        upper bit of the proposed smaller type. If these two bits are the
5578    //        same (either zero or one) we know that sign-extending from the
5579    //        smaller type will result in the same value. Here, since we can't
5580    //        yet prove this, we are just making the proposed smaller type
5581    //        larger to ensure correctness.
5582    if (!IsKnownPositive)
5583      ++MaxBitWidth;
5584  }
5585
5586  // Round MaxBitWidth up to the next power-of-two.
5587  if (!isPowerOf2_64(MaxBitWidth))
5588    MaxBitWidth = NextPowerOf2(MaxBitWidth);
5589
5590  // If the maximum bit width we compute is less than the with of the roots'
5591  // type, we can proceed with the narrowing. Otherwise, do nothing.
5592  if (MaxBitWidth >= TreeRootIT->getBitWidth())
5593    return;
5594
5595  // If we can truncate the root, we must collect additional values that might
5596  // be demoted as a result. That is, those seeded by truncations we will
5597  // modify.
5598  while (!Roots.empty())
5599    collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5600
5601  // Finally, map the values we can demote to the maximum bit with we computed.
5602  for (auto *Scalar : ToDemote)
5603    MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5604}
5605
5606namespace {
5607
5608/// The SLPVectorizer Pass.
5609struct SLPVectorizer : public FunctionPass {
5610  SLPVectorizerPass Impl;
5611
5612  /// Pass identification, replacement for typeid
5613  static char ID;
5614
5615  explicit SLPVectorizer() : FunctionPass(ID) {
5616    initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5617  }
5618
5619  bool doInitialization(Module &M) override {
5620    return false;
5621  }
5622
5623  bool runOnFunction(Function &F) override {
5624    if (skipFunction(F))
5625      return false;
5626
5627    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5628    auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5629    auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5630    auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5631    auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5632    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5633    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5634    auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5635    auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5636    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5637
5638    return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5639  }
5640
5641  void getAnalysisUsage(AnalysisUsage &AU) const override {
5642    FunctionPass::getAnalysisUsage(AU);
5643    AU.addRequired<AssumptionCacheTracker>();
5644    AU.addRequired<ScalarEvolutionWrapperPass>();
5645    AU.addRequired<AAResultsWrapperPass>();
5646    AU.addRequired<TargetTransformInfoWrapperPass>();
5647    AU.addRequired<LoopInfoWrapperPass>();
5648    AU.addRequired<DominatorTreeWrapperPass>();
5649    AU.addRequired<DemandedBitsWrapperPass>();
5650    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5651    AU.addRequired<InjectTLIMappingsLegacy>();
5652    AU.addPreserved<LoopInfoWrapperPass>();
5653    AU.addPreserved<DominatorTreeWrapperPass>();
5654    AU.addPreserved<AAResultsWrapperPass>();
5655    AU.addPreserved<GlobalsAAWrapperPass>();
5656    AU.setPreservesCFG();
5657  }
5658};
5659
5660} // end anonymous namespace
5661
5662PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5663  auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5664  auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5665  auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5666  auto *AA = &AM.getResult<AAManager>(F);
5667  auto *LI = &AM.getResult<LoopAnalysis>(F);
5668  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5669  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5670  auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5671  auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5672
5673  bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5674  if (!Changed)
5675    return PreservedAnalyses::all();
5676
5677  PreservedAnalyses PA;
5678  PA.preserveSet<CFGAnalyses>();
5679  PA.preserve<AAManager>();
5680  PA.preserve<GlobalsAA>();
5681  return PA;
5682}
5683
5684bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5685                                TargetTransformInfo *TTI_,
5686                                TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
5687                                LoopInfo *LI_, DominatorTree *DT_,
5688                                AssumptionCache *AC_, DemandedBits *DB_,
5689                                OptimizationRemarkEmitter *ORE_) {
5690  if (!RunSLPVectorization)
5691    return false;
5692  SE = SE_;
5693  TTI = TTI_;
5694  TLI = TLI_;
5695  AA = AA_;
5696  LI = LI_;
5697  DT = DT_;
5698  AC = AC_;
5699  DB = DB_;
5700  DL = &F.getParent()->getDataLayout();
5701
5702  Stores.clear();
5703  GEPs.clear();
5704  bool Changed = false;
5705
5706  // If the target claims to have no vector registers don't attempt
5707  // vectorization.
5708  if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)))
5709    return false;
5710
5711  // Don't vectorize when the attribute NoImplicitFloat is used.
5712  if (F.hasFnAttribute(Attribute::NoImplicitFloat))
5713    return false;
5714
5715  LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
5716
5717  // Use the bottom up slp vectorizer to construct chains that start with
5718  // store instructions.
5719  BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5720
5721  // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5722  // delete instructions.
5723
5724  // Scan the blocks in the function in post order.
5725  for (auto BB : post_order(&F.getEntryBlock())) {
5726    collectSeedInstructions(BB);
5727
5728    // Vectorize trees that end at stores.
5729    if (!Stores.empty()) {
5730      LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
5731                        << " underlying objects.\n");
5732      Changed |= vectorizeStoreChains(R);
5733    }
5734
5735    // Vectorize trees that end at reductions.
5736    Changed |= vectorizeChainsInBlock(BB, R);
5737
5738    // Vectorize the index computations of getelementptr instructions. This
5739    // is primarily intended to catch gather-like idioms ending at
5740    // non-consecutive loads.
5741    if (!GEPs.empty()) {
5742      LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
5743                        << " underlying objects.\n");
5744      Changed |= vectorizeGEPIndices(BB, R);
5745    }
5746  }
5747
5748  if (Changed) {
5749    R.optimizeGatherSequence();
5750    LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
5751  }
5752  return Changed;
5753}
5754
5755bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5756                                            unsigned Idx) {
5757  LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size()
5758                    << "\n");
5759  const unsigned Sz = R.getVectorElementSize(Chain[0]);
5760  const unsigned MinVF = R.getMinVecRegSize() / Sz;
5761  unsigned VF = Chain.size();
5762
5763  if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF)
5764    return false;
5765
5766  LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx
5767                    << "\n");
5768
5769  R.buildTree(Chain);
5770  Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5771  // TODO: Handle orders of size less than number of elements in the vector.
5772  if (Order && Order->size() == Chain.size()) {
5773    // TODO: reorder tree nodes without tree rebuilding.
5774    SmallVector<Value *, 4> ReorderedOps(Chain.rbegin(), Chain.rend());
5775    llvm::transform(*Order, ReorderedOps.begin(),
5776                    [Chain](const unsigned Idx) { return Chain[Idx]; });
5777    R.buildTree(ReorderedOps);
5778  }
5779  if (R.isTreeTinyAndNotFullyVectorizable())
5780    return false;
5781  if (R.isLoadCombineCandidate())
5782    return false;
5783
5784  R.computeMinimumValueSizes();
5785
5786  int Cost = R.getTreeCost();
5787
5788  LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
5789  if (Cost < -SLPCostThreshold) {
5790    LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
5791
5792    using namespace ore;
5793
5794    R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
5795                                        cast<StoreInst>(Chain[0]))
5796                     << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5797                     << " and with tree size "
5798                     << NV("TreeSize", R.getTreeSize()));
5799
5800    R.vectorizeTree();
5801    return true;
5802  }
5803
5804  return false;
5805}
5806
5807bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5808                                        BoUpSLP &R) {
5809  // We may run into multiple chains that merge into a single chain. We mark the
5810  // stores that we vectorized so that we don't visit the same store twice.
5811  BoUpSLP::ValueSet VectorizedStores;
5812  bool Changed = false;
5813
5814  int E = Stores.size();
5815  SmallBitVector Tails(E, false);
5816  SmallVector<int, 16> ConsecutiveChain(E, E + 1);
5817  int MaxIter = MaxStoreLookup.getValue();
5818  int IterCnt;
5819  auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter,
5820                                  &ConsecutiveChain](int K, int Idx) {
5821    if (IterCnt >= MaxIter)
5822      return true;
5823    ++IterCnt;
5824    if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5825      return false;
5826
5827    Tails.set(Idx);
5828    ConsecutiveChain[K] = Idx;
5829    return true;
5830  };
5831  // Do a quadratic search on all of the given stores in reverse order and find
5832  // all of the pairs of stores that follow each other.
5833  for (int Idx = E - 1; Idx >= 0; --Idx) {
5834    // If a store has multiple consecutive store candidates, search according
5835    // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5836    // This is because usually pairing with immediate succeeding or preceding
5837    // candidate create the best chance to find slp vectorization opportunity.
5838    const int MaxLookDepth = std::max(E - Idx, Idx + 1);
5839    IterCnt = 0;
5840    for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset)
5841      if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5842          (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5843        break;
5844  }
5845
5846  // For stores that start but don't end a link in the chain:
5847  for (int Cnt = E; Cnt > 0; --Cnt) {
5848    int I = Cnt - 1;
5849    if (ConsecutiveChain[I] == E + 1 || Tails.test(I))
5850      continue;
5851    // We found a store instr that starts a chain. Now follow the chain and try
5852    // to vectorize it.
5853    BoUpSLP::ValueList Operands;
5854    // Collect the chain into a list.
5855    while (I != E + 1 && !VectorizedStores.count(Stores[I])) {
5856      Operands.push_back(Stores[I]);
5857      // Move to the next value in the chain.
5858      I = ConsecutiveChain[I];
5859    }
5860
5861    // If a vector register can't hold 1 element, we are done.
5862    unsigned MaxVecRegSize = R.getMaxVecRegSize();
5863    unsigned EltSize = R.getVectorElementSize(Stores[0]);
5864    if (MaxVecRegSize % EltSize != 0)
5865      continue;
5866
5867    unsigned MaxElts = MaxVecRegSize / EltSize;
5868    // FIXME: Is division-by-2 the correct step? Should we assert that the
5869    // register size is a power-of-2?
5870    unsigned StartIdx = 0;
5871    for (unsigned Size = llvm::PowerOf2Ceil(MaxElts); Size >= 2; Size /= 2) {
5872      for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) {
5873        ArrayRef<Value *> Slice = makeArrayRef(Operands).slice(Cnt, Size);
5874        if (!VectorizedStores.count(Slice.front()) &&
5875            !VectorizedStores.count(Slice.back()) &&
5876            vectorizeStoreChain(Slice, R, Cnt)) {
5877          // Mark the vectorized stores so that we don't vectorize them again.
5878          VectorizedStores.insert(Slice.begin(), Slice.end());
5879          Changed = true;
5880          // If we vectorized initial block, no need to try to vectorize it
5881          // again.
5882          if (Cnt == StartIdx)
5883            StartIdx += Size;
5884          Cnt += Size;
5885          continue;
5886        }
5887        ++Cnt;
5888      }
5889      // Check if the whole array was vectorized already - exit.
5890      if (StartIdx >= Operands.size())
5891        break;
5892    }
5893  }
5894
5895  return Changed;
5896}
5897
5898void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5899  // Initialize the collections. We will make a single pass over the block.
5900  Stores.clear();
5901  GEPs.clear();
5902
5903  // Visit the store and getelementptr instructions in BB and organize them in
5904  // Stores and GEPs according to the underlying objects of their pointer
5905  // operands.
5906  for (Instruction &I : *BB) {
5907    // Ignore store instructions that are volatile or have a pointer operand
5908    // that doesn't point to a scalar type.
5909    if (auto *SI = dyn_cast<StoreInst>(&I)) {
5910      if (!SI->isSimple())
5911        continue;
5912      if (!isValidElementType(SI->getValueOperand()->getType()))
5913        continue;
5914      Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5915    }
5916
5917    // Ignore getelementptr instructions that have more than one index, a
5918    // constant index, or a pointer operand that doesn't point to a scalar
5919    // type.
5920    else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5921      auto Idx = GEP->idx_begin()->get();
5922      if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5923        continue;
5924      if (!isValidElementType(Idx->getType()))
5925        continue;
5926      if (GEP->getType()->isVectorTy())
5927        continue;
5928      GEPs[GEP->getPointerOperand()].push_back(GEP);
5929    }
5930  }
5931}
5932
5933bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5934  if (!A || !B)
5935    return false;
5936  Value *VL[] = {A, B};
5937  return tryToVectorizeList(VL, R, /*AllowReorder=*/true);
5938}
5939
5940bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5941                                           bool AllowReorder,
5942                                           ArrayRef<Value *> InsertUses) {
5943  if (VL.size() < 2)
5944    return false;
5945
5946  LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
5947                    << VL.size() << ".\n");
5948
5949  // Check that all of the parts are instructions of the same type,
5950  // we permit an alternate opcode via InstructionsState.
5951  InstructionsState S = getSameOpcode(VL);
5952  if (!S.getOpcode())
5953    return false;
5954
5955  Instruction *I0 = cast<Instruction>(S.OpValue);
5956  // Make sure invalid types (including vector type) are rejected before
5957  // determining vectorization factor for scalar instructions.
5958  for (Value *V : VL) {
5959    Type *Ty = V->getType();
5960    if (!isValidElementType(Ty)) {
5961      // NOTE: the following will give user internal llvm type name, which may
5962      // not be useful.
5963      R.getORE()->emit([&]() {
5964        std::string type_str;
5965        llvm::raw_string_ostream rso(type_str);
5966        Ty->print(rso);
5967        return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
5968               << "Cannot SLP vectorize list: type "
5969               << rso.str() + " is unsupported by vectorizer";
5970      });
5971      return false;
5972    }
5973  }
5974
5975  unsigned Sz = R.getVectorElementSize(I0);
5976  unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5977  unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5978  if (MaxVF < 2) {
5979    R.getORE()->emit([&]() {
5980      return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
5981             << "Cannot SLP vectorize list: vectorization factor "
5982             << "less than 2 is not supported";
5983    });
5984    return false;
5985  }
5986
5987  bool Changed = false;
5988  bool CandidateFound = false;
5989  int MinCost = SLPCostThreshold;
5990
5991  bool CompensateUseCost =
5992      !InsertUses.empty() && llvm::all_of(InsertUses, [](const Value *V) {
5993        return V && isa<InsertElementInst>(V);
5994      });
5995  assert((!CompensateUseCost || InsertUses.size() == VL.size()) &&
5996         "Each scalar expected to have an associated InsertElement user.");
5997
5998  unsigned NextInst = 0, MaxInst = VL.size();
5999  for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
6000    // No actual vectorization should happen, if number of parts is the same as
6001    // provided vectorization factor (i.e. the scalar type is used for vector
6002    // code during codegen).
6003    auto *VecTy = FixedVectorType::get(VL[0]->getType(), VF);
6004    if (TTI->getNumberOfParts(VecTy) == VF)
6005      continue;
6006    for (unsigned I = NextInst; I < MaxInst; ++I) {
6007      unsigned OpsWidth = 0;
6008
6009      if (I + VF > MaxInst)
6010        OpsWidth = MaxInst - I;
6011      else
6012        OpsWidth = VF;
6013
6014      if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
6015        break;
6016
6017      ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
6018      // Check that a previous iteration of this loop did not delete the Value.
6019      if (llvm::any_of(Ops, [&R](Value *V) {
6020            auto *I = dyn_cast<Instruction>(V);
6021            return I && R.isDeleted(I);
6022          }))
6023        continue;
6024
6025      LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
6026                        << "\n");
6027
6028      R.buildTree(Ops);
6029      Optional<ArrayRef<unsigned>> Order = R.bestOrder();
6030      // TODO: check if we can allow reordering for more cases.
6031      if (AllowReorder && Order) {
6032        // TODO: reorder tree nodes without tree rebuilding.
6033        // Conceptually, there is nothing actually preventing us from trying to
6034        // reorder a larger list. In fact, we do exactly this when vectorizing
6035        // reductions. However, at this point, we only expect to get here when
6036        // there are exactly two operations.
6037        assert(Ops.size() == 2);
6038        Value *ReorderedOps[] = {Ops[1], Ops[0]};
6039        R.buildTree(ReorderedOps, None);
6040      }
6041      if (R.isTreeTinyAndNotFullyVectorizable())
6042        continue;
6043
6044      R.computeMinimumValueSizes();
6045      int Cost = R.getTreeCost();
6046      CandidateFound = true;
6047      if (CompensateUseCost) {
6048        // TODO: Use TTI's getScalarizationOverhead for sequence of inserts
6049        // rather than sum of single inserts as the latter may overestimate
6050        // cost. This work should imply improving cost estimation for extracts
6051        // that added in for external (for vectorization tree) users,i.e. that
6052        // part should also switch to same interface.
6053        // For example, the following case is projected code after SLP:
6054        //  %4 = extractelement <4 x i64> %3, i32 0
6055        //  %v0 = insertelement <4 x i64> undef, i64 %4, i32 0
6056        //  %5 = extractelement <4 x i64> %3, i32 1
6057        //  %v1 = insertelement <4 x i64> %v0, i64 %5, i32 1
6058        //  %6 = extractelement <4 x i64> %3, i32 2
6059        //  %v2 = insertelement <4 x i64> %v1, i64 %6, i32 2
6060        //  %7 = extractelement <4 x i64> %3, i32 3
6061        //  %v3 = insertelement <4 x i64> %v2, i64 %7, i32 3
6062        //
6063        // Extracts here added by SLP in order to feed users (the inserts) of
6064        // original scalars and contribute to "ExtractCost" at cost evaluation.
6065        // The inserts in turn form sequence to build an aggregate that
6066        // detected by findBuildAggregate routine.
6067        // SLP makes an assumption that such sequence will be optimized away
6068        // later (instcombine) so it tries to compensate ExctractCost with
6069        // cost of insert sequence.
6070        // Current per element cost calculation approach is not quite accurate
6071        // and tends to create bias toward favoring vectorization.
6072        // Switching to the TTI interface might help a bit.
6073        // Alternative solution could be pattern-match to detect a no-op or
6074        // shuffle.
6075        unsigned UserCost = 0;
6076        for (unsigned Lane = 0; Lane < OpsWidth; Lane++) {
6077          auto *IE = cast<InsertElementInst>(InsertUses[I + Lane]);
6078          if (auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)))
6079            UserCost += TTI->getVectorInstrCost(
6080                Instruction::InsertElement, IE->getType(), CI->getZExtValue());
6081        }
6082        LLVM_DEBUG(dbgs() << "SLP: Compensate cost of users by: " << UserCost
6083                          << ".\n");
6084        Cost -= UserCost;
6085      }
6086
6087      MinCost = std::min(MinCost, Cost);
6088
6089      if (Cost < -SLPCostThreshold) {
6090        LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
6091        R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
6092                                                    cast<Instruction>(Ops[0]))
6093                                 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
6094                                 << " and with tree size "
6095                                 << ore::NV("TreeSize", R.getTreeSize()));
6096
6097        R.vectorizeTree();
6098        // Move to the next bundle.
6099        I += VF - 1;
6100        NextInst = I + 1;
6101        Changed = true;
6102      }
6103    }
6104  }
6105
6106  if (!Changed && CandidateFound) {
6107    R.getORE()->emit([&]() {
6108      return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
6109             << "List vectorization was possible but not beneficial with cost "
6110             << ore::NV("Cost", MinCost) << " >= "
6111             << ore::NV("Treshold", -SLPCostThreshold);
6112    });
6113  } else if (!Changed) {
6114    R.getORE()->emit([&]() {
6115      return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
6116             << "Cannot SLP vectorize list: vectorization was impossible"
6117             << " with available vectorization factors";
6118    });
6119  }
6120  return Changed;
6121}
6122
6123bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
6124  if (!I)
6125    return false;
6126
6127  if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
6128    return false;
6129
6130  Value *P = I->getParent();
6131
6132  // Vectorize in current basic block only.
6133  auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
6134  auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
6135  if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
6136    return false;
6137
6138  // Try to vectorize V.
6139  if (tryToVectorizePair(Op0, Op1, R))
6140    return true;
6141
6142  auto *A = dyn_cast<BinaryOperator>(Op0);
6143  auto *B = dyn_cast<BinaryOperator>(Op1);
6144  // Try to skip B.
6145  if (B && B->hasOneUse()) {
6146    auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
6147    auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
6148    if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
6149      return true;
6150    if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
6151      return true;
6152  }
6153
6154  // Try to skip A.
6155  if (A && A->hasOneUse()) {
6156    auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
6157    auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
6158    if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
6159      return true;
6160    if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
6161      return true;
6162  }
6163  return false;
6164}
6165
6166/// Generate a shuffle mask to be used in a reduction tree.
6167///
6168/// \param VecLen The length of the vector to be reduced.
6169/// \param NumEltsToRdx The number of elements that should be reduced in the
6170///        vector.
6171/// \param IsPairwise Whether the reduction is a pairwise or splitting
6172///        reduction. A pairwise reduction will generate a mask of
6173///        <0,2,...> or <1,3,..> while a splitting reduction will generate
6174///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
6175/// \param IsLeft True will generate a mask of even elements, odd otherwise.
6176static SmallVector<int, 32> createRdxShuffleMask(unsigned VecLen,
6177                                                 unsigned NumEltsToRdx,
6178                                                 bool IsPairwise, bool IsLeft) {
6179  assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
6180
6181  SmallVector<int, 32> ShuffleMask(VecLen, -1);
6182
6183  if (IsPairwise)
6184    // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
6185    for (unsigned i = 0; i != NumEltsToRdx; ++i)
6186      ShuffleMask[i] = 2 * i + !IsLeft;
6187  else
6188    // Move the upper half of the vector to the lower half.
6189    for (unsigned i = 0; i != NumEltsToRdx; ++i)
6190      ShuffleMask[i] = NumEltsToRdx + i;
6191
6192  return ShuffleMask;
6193}
6194
6195namespace {
6196
6197/// Model horizontal reductions.
6198///
6199/// A horizontal reduction is a tree of reduction operations (currently add and
6200/// fadd) that has operations that can be put into a vector as its leaf.
6201/// For example, this tree:
6202///
6203/// mul mul mul mul
6204///  \  /    \  /
6205///   +       +
6206///    \     /
6207///       +
6208/// This tree has "mul" as its reduced values and "+" as its reduction
6209/// operations. A reduction might be feeding into a store or a binary operation
6210/// feeding a phi.
6211///    ...
6212///    \  /
6213///     +
6214///     |
6215///  phi +=
6216///
6217///  Or:
6218///    ...
6219///    \  /
6220///     +
6221///     |
6222///   *p =
6223///
6224class HorizontalReduction {
6225  using ReductionOpsType = SmallVector<Value *, 16>;
6226  using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
6227  ReductionOpsListType  ReductionOps;
6228  SmallVector<Value *, 32> ReducedVals;
6229  // Use map vector to make stable output.
6230  MapVector<Instruction *, Value *> ExtraArgs;
6231
6232  /// Kind of the reduction data.
6233  enum ReductionKind {
6234    RK_None,       /// Not a reduction.
6235    RK_Arithmetic, /// Binary reduction data.
6236    RK_Min,        /// Minimum reduction data.
6237    RK_UMin,       /// Unsigned minimum reduction data.
6238    RK_Max,        /// Maximum reduction data.
6239    RK_UMax,       /// Unsigned maximum reduction data.
6240  };
6241
6242  /// Contains info about operation, like its opcode, left and right operands.
6243  class OperationData {
6244    /// Opcode of the instruction.
6245    unsigned Opcode = 0;
6246
6247    /// Left operand of the reduction operation.
6248    Value *LHS = nullptr;
6249
6250    /// Right operand of the reduction operation.
6251    Value *RHS = nullptr;
6252
6253    /// Kind of the reduction operation.
6254    ReductionKind Kind = RK_None;
6255
6256    /// True if float point min/max reduction has no NaNs.
6257    bool NoNaN = false;
6258
6259    /// Checks if the reduction operation can be vectorized.
6260    bool isVectorizable() const {
6261      return LHS && RHS &&
6262             // We currently only support add/mul/logical && min/max reductions.
6263             ((Kind == RK_Arithmetic &&
6264               (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
6265                Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
6266                Opcode == Instruction::And || Opcode == Instruction::Or ||
6267                Opcode == Instruction::Xor)) ||
6268              ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
6269               (Kind == RK_Min || Kind == RK_Max)) ||
6270              (Opcode == Instruction::ICmp &&
6271               (Kind == RK_UMin || Kind == RK_UMax)));
6272    }
6273
6274    /// Creates reduction operation with the current opcode.
6275    Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
6276      assert(isVectorizable() &&
6277             "Expected add|fadd or min/max reduction operation.");
6278      Value *Cmp = nullptr;
6279      switch (Kind) {
6280      case RK_Arithmetic:
6281        return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
6282                                   Name);
6283      case RK_Min:
6284        Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
6285                                          : Builder.CreateFCmpOLT(LHS, RHS);
6286        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6287      case RK_Max:
6288        Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
6289                                          : Builder.CreateFCmpOGT(LHS, RHS);
6290        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6291      case RK_UMin:
6292        assert(Opcode == Instruction::ICmp && "Expected integer types.");
6293        Cmp = Builder.CreateICmpULT(LHS, RHS);
6294        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6295      case RK_UMax:
6296        assert(Opcode == Instruction::ICmp && "Expected integer types.");
6297        Cmp = Builder.CreateICmpUGT(LHS, RHS);
6298        return Builder.CreateSelect(Cmp, LHS, RHS, Name);
6299      case RK_None:
6300        break;
6301      }
6302      llvm_unreachable("Unknown reduction operation.");
6303    }
6304
6305  public:
6306    explicit OperationData() = default;
6307
6308    /// Construction for reduced values. They are identified by opcode only and
6309    /// don't have associated LHS/RHS values.
6310    explicit OperationData(Value *V) {
6311      if (auto *I = dyn_cast<Instruction>(V))
6312        Opcode = I->getOpcode();
6313    }
6314
6315    /// Constructor for reduction operations with opcode and its left and
6316    /// right operands.
6317    OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
6318                  bool NoNaN = false)
6319        : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
6320      assert(Kind != RK_None && "One of the reduction operations is expected.");
6321    }
6322
6323    explicit operator bool() const { return Opcode; }
6324
6325    /// Return true if this operation is any kind of minimum or maximum.
6326    bool isMinMax() const {
6327      switch (Kind) {
6328      case RK_Arithmetic:
6329        return false;
6330      case RK_Min:
6331      case RK_Max:
6332      case RK_UMin:
6333      case RK_UMax:
6334        return true;
6335      case RK_None:
6336        break;
6337      }
6338      llvm_unreachable("Reduction kind is not set");
6339    }
6340
6341    /// Get the index of the first operand.
6342    unsigned getFirstOperandIndex() const {
6343      assert(!!*this && "The opcode is not set.");
6344      // We allow calling this before 'Kind' is set, so handle that specially.
6345      if (Kind == RK_None)
6346        return 0;
6347      return isMinMax() ? 1 : 0;
6348    }
6349
6350    /// Total number of operands in the reduction operation.
6351    unsigned getNumberOfOperands() const {
6352      assert(Kind != RK_None && !!*this && LHS && RHS &&
6353             "Expected reduction operation.");
6354      return isMinMax() ? 3 : 2;
6355    }
6356
6357    /// Checks if the operation has the same parent as \p P.
6358    bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
6359      assert(Kind != RK_None && !!*this && LHS && RHS &&
6360             "Expected reduction operation.");
6361      if (!IsRedOp)
6362        return I->getParent() == P;
6363      if (isMinMax()) {
6364        // SelectInst must be used twice while the condition op must have single
6365        // use only.
6366        auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
6367        return I->getParent() == P && Cmp && Cmp->getParent() == P;
6368      }
6369      // Arithmetic reduction operation must be used once only.
6370      return I->getParent() == P;
6371    }
6372
6373    /// Expected number of uses for reduction operations/reduced values.
6374    bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
6375      assert(Kind != RK_None && !!*this && LHS && RHS &&
6376             "Expected reduction operation.");
6377      if (isMinMax())
6378        return I->hasNUses(2) &&
6379               (!IsReductionOp ||
6380                cast<SelectInst>(I)->getCondition()->hasOneUse());
6381      return I->hasOneUse();
6382    }
6383
6384    /// Initializes the list of reduction operations.
6385    void initReductionOps(ReductionOpsListType &ReductionOps) {
6386      assert(Kind != RK_None && !!*this && LHS && RHS &&
6387             "Expected reduction operation.");
6388      if (isMinMax())
6389        ReductionOps.assign(2, ReductionOpsType());
6390      else
6391        ReductionOps.assign(1, ReductionOpsType());
6392    }
6393
6394    /// Add all reduction operations for the reduction instruction \p I.
6395    void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
6396      assert(Kind != RK_None && !!*this && LHS && RHS &&
6397             "Expected reduction operation.");
6398      if (isMinMax()) {
6399        ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
6400        ReductionOps[1].emplace_back(I);
6401      } else {
6402        ReductionOps[0].emplace_back(I);
6403      }
6404    }
6405
6406    /// Checks if instruction is associative and can be vectorized.
6407    bool isAssociative(Instruction *I) const {
6408      assert(Kind != RK_None && *this && LHS && RHS &&
6409             "Expected reduction operation.");
6410      switch (Kind) {
6411      case RK_Arithmetic:
6412        return I->isAssociative();
6413      case RK_Min:
6414      case RK_Max:
6415        return Opcode == Instruction::ICmp ||
6416               cast<Instruction>(I->getOperand(0))->isFast();
6417      case RK_UMin:
6418      case RK_UMax:
6419        assert(Opcode == Instruction::ICmp &&
6420               "Only integer compare operation is expected.");
6421        return true;
6422      case RK_None:
6423        break;
6424      }
6425      llvm_unreachable("Reduction kind is not set");
6426    }
6427
6428    /// Checks if the reduction operation can be vectorized.
6429    bool isVectorizable(Instruction *I) const {
6430      return isVectorizable() && isAssociative(I);
6431    }
6432
6433    /// Checks if two operation data are both a reduction op or both a reduced
6434    /// value.
6435    bool operator==(const OperationData &OD) const {
6436      assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
6437             "One of the comparing operations is incorrect.");
6438      return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
6439    }
6440    bool operator!=(const OperationData &OD) const { return !(*this == OD); }
6441    void clear() {
6442      Opcode = 0;
6443      LHS = nullptr;
6444      RHS = nullptr;
6445      Kind = RK_None;
6446      NoNaN = false;
6447    }
6448
6449    /// Get the opcode of the reduction operation.
6450    unsigned getOpcode() const {
6451      assert(isVectorizable() && "Expected vectorizable operation.");
6452      return Opcode;
6453    }
6454
6455    /// Get kind of reduction data.
6456    ReductionKind getKind() const { return Kind; }
6457    Value *getLHS() const { return LHS; }
6458    Value *getRHS() const { return RHS; }
6459    Type *getConditionType() const {
6460      return isMinMax() ? CmpInst::makeCmpResultType(LHS->getType()) : nullptr;
6461    }
6462
6463    /// Creates reduction operation with the current opcode with the IR flags
6464    /// from \p ReductionOps.
6465    Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6466                    const ReductionOpsListType &ReductionOps) const {
6467      assert(isVectorizable() &&
6468             "Expected add|fadd or min/max reduction operation.");
6469      auto *Op = createOp(Builder, Name);
6470      switch (Kind) {
6471      case RK_Arithmetic:
6472        propagateIRFlags(Op, ReductionOps[0]);
6473        return Op;
6474      case RK_Min:
6475      case RK_Max:
6476      case RK_UMin:
6477      case RK_UMax:
6478        if (auto *SI = dyn_cast<SelectInst>(Op))
6479          propagateIRFlags(SI->getCondition(), ReductionOps[0]);
6480        propagateIRFlags(Op, ReductionOps[1]);
6481        return Op;
6482      case RK_None:
6483        break;
6484      }
6485      llvm_unreachable("Unknown reduction operation.");
6486    }
6487    /// Creates reduction operation with the current opcode with the IR flags
6488    /// from \p I.
6489    Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6490                    Instruction *I) const {
6491      assert(isVectorizable() &&
6492             "Expected add|fadd or min/max reduction operation.");
6493      auto *Op = createOp(Builder, Name);
6494      switch (Kind) {
6495      case RK_Arithmetic:
6496        propagateIRFlags(Op, I);
6497        return Op;
6498      case RK_Min:
6499      case RK_Max:
6500      case RK_UMin:
6501      case RK_UMax:
6502        if (auto *SI = dyn_cast<SelectInst>(Op)) {
6503          propagateIRFlags(SI->getCondition(),
6504                           cast<SelectInst>(I)->getCondition());
6505        }
6506        propagateIRFlags(Op, I);
6507        return Op;
6508      case RK_None:
6509        break;
6510      }
6511      llvm_unreachable("Unknown reduction operation.");
6512    }
6513
6514    TargetTransformInfo::ReductionFlags getFlags() const {
6515      TargetTransformInfo::ReductionFlags Flags;
6516      Flags.NoNaN = NoNaN;
6517      switch (Kind) {
6518      case RK_Arithmetic:
6519        break;
6520      case RK_Min:
6521        Flags.IsSigned = Opcode == Instruction::ICmp;
6522        Flags.IsMaxOp = false;
6523        break;
6524      case RK_Max:
6525        Flags.IsSigned = Opcode == Instruction::ICmp;
6526        Flags.IsMaxOp = true;
6527        break;
6528      case RK_UMin:
6529        Flags.IsSigned = false;
6530        Flags.IsMaxOp = false;
6531        break;
6532      case RK_UMax:
6533        Flags.IsSigned = false;
6534        Flags.IsMaxOp = true;
6535        break;
6536      case RK_None:
6537        llvm_unreachable("Reduction kind is not set");
6538      }
6539      return Flags;
6540    }
6541  };
6542
6543  WeakTrackingVH ReductionRoot;
6544
6545  /// The operation data of the reduction operation.
6546  OperationData ReductionData;
6547
6548  /// The operation data of the values we perform a reduction on.
6549  OperationData ReducedValueData;
6550
6551  /// Should we model this reduction as a pairwise reduction tree or a tree that
6552  /// splits the vector in halves and adds those halves.
6553  bool IsPairwiseReduction = false;
6554
6555  /// Checks if the ParentStackElem.first should be marked as a reduction
6556  /// operation with an extra argument or as extra argument itself.
6557  void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6558                    Value *ExtraArg) {
6559    if (ExtraArgs.count(ParentStackElem.first)) {
6560      ExtraArgs[ParentStackElem.first] = nullptr;
6561      // We ran into something like:
6562      // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6563      // The whole ParentStackElem.first should be considered as an extra value
6564      // in this case.
6565      // Do not perform analysis of remaining operands of ParentStackElem.first
6566      // instruction, this whole instruction is an extra argument.
6567      ParentStackElem.second = ParentStackElem.first->getNumOperands();
6568    } else {
6569      // We ran into something like:
6570      // ParentStackElem.first += ... + ExtraArg + ...
6571      ExtraArgs[ParentStackElem.first] = ExtraArg;
6572    }
6573  }
6574
6575  static OperationData getOperationData(Value *V) {
6576    if (!V)
6577      return OperationData();
6578
6579    Value *LHS;
6580    Value *RHS;
6581    if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
6582      return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
6583                           RK_Arithmetic);
6584    }
6585    if (auto *Select = dyn_cast<SelectInst>(V)) {
6586      // Look for a min/max pattern.
6587      if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6588        return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6589      } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6590        return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6591      } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
6592                 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6593        return OperationData(
6594            Instruction::FCmp, LHS, RHS, RK_Min,
6595            cast<Instruction>(Select->getCondition())->hasNoNaNs());
6596      } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6597        return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6598      } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6599        return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6600      } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
6601                 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6602        return OperationData(
6603            Instruction::FCmp, LHS, RHS, RK_Max,
6604            cast<Instruction>(Select->getCondition())->hasNoNaNs());
6605      } else {
6606        // Try harder: look for min/max pattern based on instructions producing
6607        // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6608        // During the intermediate stages of SLP, it's very common to have
6609        // pattern like this (since optimizeGatherSequence is run only once
6610        // at the end):
6611        // %1 = extractelement <2 x i32> %a, i32 0
6612        // %2 = extractelement <2 x i32> %a, i32 1
6613        // %cond = icmp sgt i32 %1, %2
6614        // %3 = extractelement <2 x i32> %a, i32 0
6615        // %4 = extractelement <2 x i32> %a, i32 1
6616        // %select = select i1 %cond, i32 %3, i32 %4
6617        CmpInst::Predicate Pred;
6618        Instruction *L1;
6619        Instruction *L2;
6620
6621        LHS = Select->getTrueValue();
6622        RHS = Select->getFalseValue();
6623        Value *Cond = Select->getCondition();
6624
6625        // TODO: Support inverse predicates.
6626        if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6627          if (!isa<ExtractElementInst>(RHS) ||
6628              !L2->isIdenticalTo(cast<Instruction>(RHS)))
6629            return OperationData(V);
6630        } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6631          if (!isa<ExtractElementInst>(LHS) ||
6632              !L1->isIdenticalTo(cast<Instruction>(LHS)))
6633            return OperationData(V);
6634        } else {
6635          if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6636            return OperationData(V);
6637          if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6638              !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6639              !L2->isIdenticalTo(cast<Instruction>(RHS)))
6640            return OperationData(V);
6641        }
6642        switch (Pred) {
6643        default:
6644          return OperationData(V);
6645
6646        case CmpInst::ICMP_ULT:
6647        case CmpInst::ICMP_ULE:
6648          return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6649
6650        case CmpInst::ICMP_SLT:
6651        case CmpInst::ICMP_SLE:
6652          return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6653
6654        case CmpInst::FCMP_OLT:
6655        case CmpInst::FCMP_OLE:
6656        case CmpInst::FCMP_ULT:
6657        case CmpInst::FCMP_ULE:
6658          return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
6659                               cast<Instruction>(Cond)->hasNoNaNs());
6660
6661        case CmpInst::ICMP_UGT:
6662        case CmpInst::ICMP_UGE:
6663          return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6664
6665        case CmpInst::ICMP_SGT:
6666        case CmpInst::ICMP_SGE:
6667          return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6668
6669        case CmpInst::FCMP_OGT:
6670        case CmpInst::FCMP_OGE:
6671        case CmpInst::FCMP_UGT:
6672        case CmpInst::FCMP_UGE:
6673          return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
6674                               cast<Instruction>(Cond)->hasNoNaNs());
6675        }
6676      }
6677    }
6678    return OperationData(V);
6679  }
6680
6681public:
6682  HorizontalReduction() = default;
6683
6684  /// Try to find a reduction tree.
6685  bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6686    assert((!Phi || is_contained(Phi->operands(), B)) &&
6687           "Thi phi needs to use the binary operator");
6688
6689    ReductionData = getOperationData(B);
6690
6691    // We could have a initial reductions that is not an add.
6692    //  r *= v1 + v2 + v3 + v4
6693    // In such a case start looking for a tree rooted in the first '+'.
6694    if (Phi) {
6695      if (ReductionData.getLHS() == Phi) {
6696        Phi = nullptr;
6697        B = dyn_cast<Instruction>(ReductionData.getRHS());
6698        ReductionData = getOperationData(B);
6699      } else if (ReductionData.getRHS() == Phi) {
6700        Phi = nullptr;
6701        B = dyn_cast<Instruction>(ReductionData.getLHS());
6702        ReductionData = getOperationData(B);
6703      }
6704    }
6705
6706    if (!ReductionData.isVectorizable(B))
6707      return false;
6708
6709    Type *Ty = B->getType();
6710    if (!isValidElementType(Ty))
6711      return false;
6712    if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6713      return false;
6714
6715    ReducedValueData.clear();
6716    ReductionRoot = B;
6717
6718    // Post order traverse the reduction tree starting at B. We only handle true
6719    // trees containing only binary operators.
6720    SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6721    Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6722    ReductionData.initReductionOps(ReductionOps);
6723    while (!Stack.empty()) {
6724      Instruction *TreeN = Stack.back().first;
6725      unsigned EdgeToVist = Stack.back().second++;
6726      OperationData OpData = getOperationData(TreeN);
6727      bool IsReducedValue = OpData != ReductionData;
6728
6729      // Postorder vist.
6730      if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6731        if (IsReducedValue)
6732          ReducedVals.push_back(TreeN);
6733        else {
6734          auto I = ExtraArgs.find(TreeN);
6735          if (I != ExtraArgs.end() && !I->second) {
6736            // Check if TreeN is an extra argument of its parent operation.
6737            if (Stack.size() <= 1) {
6738              // TreeN can't be an extra argument as it is a root reduction
6739              // operation.
6740              return false;
6741            }
6742            // Yes, TreeN is an extra argument, do not add it to a list of
6743            // reduction operations.
6744            // Stack[Stack.size() - 2] always points to the parent operation.
6745            markExtraArg(Stack[Stack.size() - 2], TreeN);
6746            ExtraArgs.erase(TreeN);
6747          } else
6748            ReductionData.addReductionOps(TreeN, ReductionOps);
6749        }
6750        // Retract.
6751        Stack.pop_back();
6752        continue;
6753      }
6754
6755      // Visit left or right.
6756      Value *NextV = TreeN->getOperand(EdgeToVist);
6757      if (NextV != Phi) {
6758        auto *I = dyn_cast<Instruction>(NextV);
6759        OpData = getOperationData(I);
6760        // Continue analysis if the next operand is a reduction operation or
6761        // (possibly) a reduced value. If the reduced value opcode is not set,
6762        // the first met operation != reduction operation is considered as the
6763        // reduced value class.
6764        if (I && (!ReducedValueData || OpData == ReducedValueData ||
6765                  OpData == ReductionData)) {
6766          const bool IsReductionOperation = OpData == ReductionData;
6767          // Only handle trees in the current basic block.
6768          if (!ReductionData.hasSameParent(I, B->getParent(),
6769                                           IsReductionOperation)) {
6770            // I is an extra argument for TreeN (its parent operation).
6771            markExtraArg(Stack.back(), I);
6772            continue;
6773          }
6774
6775          // Each tree node needs to have minimal number of users except for the
6776          // ultimate reduction.
6777          if (!ReductionData.hasRequiredNumberOfUses(I,
6778                                                     OpData == ReductionData) &&
6779              I != B) {
6780            // I is an extra argument for TreeN (its parent operation).
6781            markExtraArg(Stack.back(), I);
6782            continue;
6783          }
6784
6785          if (IsReductionOperation) {
6786            // We need to be able to reassociate the reduction operations.
6787            if (!OpData.isAssociative(I)) {
6788              // I is an extra argument for TreeN (its parent operation).
6789              markExtraArg(Stack.back(), I);
6790              continue;
6791            }
6792          } else if (ReducedValueData &&
6793                     ReducedValueData != OpData) {
6794            // Make sure that the opcodes of the operations that we are going to
6795            // reduce match.
6796            // I is an extra argument for TreeN (its parent operation).
6797            markExtraArg(Stack.back(), I);
6798            continue;
6799          } else if (!ReducedValueData)
6800            ReducedValueData = OpData;
6801
6802          Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6803          continue;
6804        }
6805      }
6806      // NextV is an extra argument for TreeN (its parent operation).
6807      markExtraArg(Stack.back(), NextV);
6808    }
6809    return true;
6810  }
6811
6812  /// Attempt to vectorize the tree found by
6813  /// matchAssociativeReduction.
6814  bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6815    if (ReducedVals.empty())
6816      return false;
6817
6818    // If there is a sufficient number of reduction values, reduce
6819    // to a nearby power-of-2. Can safely generate oversized
6820    // vectors and rely on the backend to split them to legal sizes.
6821    unsigned NumReducedVals = ReducedVals.size();
6822    if (NumReducedVals < 4)
6823      return false;
6824
6825    unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6826
6827    Value *VectorizedTree = nullptr;
6828
6829    // FIXME: Fast-math-flags should be set based on the instructions in the
6830    //        reduction (not all of 'fast' are required).
6831    IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6832    FastMathFlags Unsafe;
6833    Unsafe.setFast();
6834    Builder.setFastMathFlags(Unsafe);
6835    unsigned i = 0;
6836
6837    BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6838    // The same extra argument may be used several time, so log each attempt
6839    // to use it.
6840    for (auto &Pair : ExtraArgs) {
6841      assert(Pair.first && "DebugLoc must be set.");
6842      ExternallyUsedValues[Pair.second].push_back(Pair.first);
6843    }
6844
6845    // The compare instruction of a min/max is the insertion point for new
6846    // instructions and may be replaced with a new compare instruction.
6847    auto getCmpForMinMaxReduction = [](Instruction *RdxRootInst) {
6848      assert(isa<SelectInst>(RdxRootInst) &&
6849             "Expected min/max reduction to have select root instruction");
6850      Value *ScalarCond = cast<SelectInst>(RdxRootInst)->getCondition();
6851      assert(isa<Instruction>(ScalarCond) &&
6852             "Expected min/max reduction to have compare condition");
6853      return cast<Instruction>(ScalarCond);
6854    };
6855
6856    // The reduction root is used as the insertion point for new instructions,
6857    // so set it as externally used to prevent it from being deleted.
6858    ExternallyUsedValues[ReductionRoot];
6859    SmallVector<Value *, 16> IgnoreList;
6860    for (auto &V : ReductionOps)
6861      IgnoreList.append(V.begin(), V.end());
6862    while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6863      auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6864      V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6865      Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6866      // TODO: Handle orders of size less than number of elements in the vector.
6867      if (Order && Order->size() == VL.size()) {
6868        // TODO: reorder tree nodes without tree rebuilding.
6869        SmallVector<Value *, 4> ReorderedOps(VL.size());
6870        llvm::transform(*Order, ReorderedOps.begin(),
6871                        [VL](const unsigned Idx) { return VL[Idx]; });
6872        V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6873      }
6874      if (V.isTreeTinyAndNotFullyVectorizable())
6875        break;
6876      if (V.isLoadCombineReductionCandidate(ReductionData.getOpcode()))
6877        break;
6878
6879      V.computeMinimumValueSizes();
6880
6881      // Estimate cost.
6882      int TreeCost = V.getTreeCost();
6883      int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6884      int Cost = TreeCost + ReductionCost;
6885      if (Cost >= -SLPCostThreshold) {
6886          V.getORE()->emit([&]() {
6887              return OptimizationRemarkMissed(
6888                         SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6889                     << "Vectorizing horizontal reduction is possible"
6890                     << "but not beneficial with cost "
6891                     << ore::NV("Cost", Cost) << " and threshold "
6892                     << ore::NV("Threshold", -SLPCostThreshold);
6893          });
6894          break;
6895      }
6896
6897      LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
6898                        << Cost << ". (HorRdx)\n");
6899      V.getORE()->emit([&]() {
6900          return OptimizationRemark(
6901                     SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6902          << "Vectorized horizontal reduction with cost "
6903          << ore::NV("Cost", Cost) << " and with tree size "
6904          << ore::NV("TreeSize", V.getTreeSize());
6905      });
6906
6907      // Vectorize a tree.
6908      DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6909      Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6910
6911      // Emit a reduction. For min/max, the root is a select, but the insertion
6912      // point is the compare condition of that select.
6913      Instruction *RdxRootInst = cast<Instruction>(ReductionRoot);
6914      if (ReductionData.isMinMax())
6915        Builder.SetInsertPoint(getCmpForMinMaxReduction(RdxRootInst));
6916      else
6917        Builder.SetInsertPoint(RdxRootInst);
6918
6919      Value *ReducedSubTree =
6920          emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6921      if (VectorizedTree) {
6922        Builder.SetCurrentDebugLocation(Loc);
6923        OperationData VectReductionData(ReductionData.getOpcode(),
6924                                        VectorizedTree, ReducedSubTree,
6925                                        ReductionData.getKind());
6926        VectorizedTree =
6927            VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6928      } else
6929        VectorizedTree = ReducedSubTree;
6930      i += ReduxWidth;
6931      ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6932    }
6933
6934    if (VectorizedTree) {
6935      // Finish the reduction.
6936      for (; i < NumReducedVals; ++i) {
6937        auto *I = cast<Instruction>(ReducedVals[i]);
6938        Builder.SetCurrentDebugLocation(I->getDebugLoc());
6939        OperationData VectReductionData(ReductionData.getOpcode(),
6940                                        VectorizedTree, I,
6941                                        ReductionData.getKind());
6942        VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6943      }
6944      for (auto &Pair : ExternallyUsedValues) {
6945        // Add each externally used value to the final reduction.
6946        for (auto *I : Pair.second) {
6947          Builder.SetCurrentDebugLocation(I->getDebugLoc());
6948          OperationData VectReductionData(ReductionData.getOpcode(),
6949                                          VectorizedTree, Pair.first,
6950                                          ReductionData.getKind());
6951          VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6952        }
6953      }
6954
6955      // Update users. For a min/max reduction that ends with a compare and
6956      // select, we also have to RAUW for the compare instruction feeding the
6957      // reduction root. That's because the original compare may have extra uses
6958      // besides the final select of the reduction.
6959      if (ReductionData.isMinMax()) {
6960        if (auto *VecSelect = dyn_cast<SelectInst>(VectorizedTree)) {
6961          Instruction *ScalarCmp =
6962              getCmpForMinMaxReduction(cast<Instruction>(ReductionRoot));
6963          ScalarCmp->replaceAllUsesWith(VecSelect->getCondition());
6964        }
6965      }
6966      ReductionRoot->replaceAllUsesWith(VectorizedTree);
6967
6968      // Mark all scalar reduction ops for deletion, they are replaced by the
6969      // vector reductions.
6970      V.eraseInstructions(IgnoreList);
6971    }
6972    return VectorizedTree != nullptr;
6973  }
6974
6975  unsigned numReductionValues() const {
6976    return ReducedVals.size();
6977  }
6978
6979private:
6980  /// Calculate the cost of a reduction.
6981  int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6982                       unsigned ReduxWidth) {
6983    Type *ScalarTy = FirstReducedVal->getType();
6984    auto *VecTy = FixedVectorType::get(ScalarTy, ReduxWidth);
6985
6986    int PairwiseRdxCost;
6987    int SplittingRdxCost;
6988    switch (ReductionData.getKind()) {
6989    case RK_Arithmetic:
6990      PairwiseRdxCost =
6991          TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6992                                          /*IsPairwiseForm=*/true);
6993      SplittingRdxCost =
6994          TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6995                                          /*IsPairwiseForm=*/false);
6996      break;
6997    case RK_Min:
6998    case RK_Max:
6999    case RK_UMin:
7000    case RK_UMax: {
7001      auto *VecCondTy = cast<VectorType>(CmpInst::makeCmpResultType(VecTy));
7002      bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
7003                        ReductionData.getKind() == RK_UMax;
7004      PairwiseRdxCost =
7005          TTI->getMinMaxReductionCost(VecTy, VecCondTy,
7006                                      /*IsPairwiseForm=*/true, IsUnsigned);
7007      SplittingRdxCost =
7008          TTI->getMinMaxReductionCost(VecTy, VecCondTy,
7009                                      /*IsPairwiseForm=*/false, IsUnsigned);
7010      break;
7011    }
7012    case RK_None:
7013      llvm_unreachable("Expected arithmetic or min/max reduction operation");
7014    }
7015
7016    IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
7017    int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
7018
7019    int ScalarReduxCost = 0;
7020    switch (ReductionData.getKind()) {
7021    case RK_Arithmetic:
7022      ScalarReduxCost =
7023          TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
7024      break;
7025    case RK_Min:
7026    case RK_Max:
7027    case RK_UMin:
7028    case RK_UMax:
7029      ScalarReduxCost =
7030          TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
7031          TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
7032                                  CmpInst::makeCmpResultType(ScalarTy));
7033      break;
7034    case RK_None:
7035      llvm_unreachable("Expected arithmetic or min/max reduction operation");
7036    }
7037    ScalarReduxCost *= (ReduxWidth - 1);
7038
7039    LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
7040                      << " for reduction that starts with " << *FirstReducedVal
7041                      << " (It is a "
7042                      << (IsPairwiseReduction ? "pairwise" : "splitting")
7043                      << " reduction)\n");
7044
7045    return VecReduxCost - ScalarReduxCost;
7046  }
7047
7048  /// Emit a horizontal reduction of the vectorized value.
7049  Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
7050                       unsigned ReduxWidth, const TargetTransformInfo *TTI) {
7051    assert(VectorizedValue && "Need to have a vectorized tree node");
7052    assert(isPowerOf2_32(ReduxWidth) &&
7053           "We only handle power-of-two reductions for now");
7054
7055    if (!IsPairwiseReduction) {
7056      // FIXME: The builder should use an FMF guard. It should not be hard-coded
7057      //        to 'fast'.
7058      assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
7059      return createSimpleTargetReduction(
7060          Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
7061          ReductionData.getFlags(), ReductionOps.back());
7062    }
7063
7064    Value *TmpVec = VectorizedValue;
7065    for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
7066      auto LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true);
7067      auto RightMask = createRdxShuffleMask(ReduxWidth, i, true, false);
7068
7069      Value *LeftShuf = Builder.CreateShuffleVector(
7070          TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
7071      Value *RightShuf = Builder.CreateShuffleVector(
7072          TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
7073          "rdx.shuf.r");
7074      OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
7075                                      RightShuf, ReductionData.getKind());
7076      TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
7077    }
7078
7079    // The result is in the first element of the vector.
7080    return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
7081  }
7082};
7083
7084} // end anonymous namespace
7085
7086/// Recognize construction of vectors like
7087///  %ra = insertelement <4 x float> undef, float %s0, i32 0
7088///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
7089///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
7090///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
7091///  starting from the last insertelement or insertvalue instruction.
7092///
7093/// Also recognize aggregates like {<2 x float>, <2 x float>},
7094/// {{float, float}, {float, float}}, [2 x {float, float}] and so on.
7095/// See llvm/test/Transforms/SLPVectorizer/X86/pr42022.ll for examples.
7096///
7097/// Assume LastInsertInst is of InsertElementInst or InsertValueInst type.
7098///
7099/// \return true if it matches.
7100static bool findBuildAggregate(Value *LastInsertInst, TargetTransformInfo *TTI,
7101                               SmallVectorImpl<Value *> &BuildVectorOpds,
7102                               SmallVectorImpl<Value *> &InsertElts) {
7103  assert((isa<InsertElementInst>(LastInsertInst) ||
7104          isa<InsertValueInst>(LastInsertInst)) &&
7105         "Expected insertelement or insertvalue instruction!");
7106  do {
7107    Value *InsertedOperand;
7108    auto *IE = dyn_cast<InsertElementInst>(LastInsertInst);
7109    if (IE) {
7110      InsertedOperand = IE->getOperand(1);
7111      LastInsertInst = IE->getOperand(0);
7112    } else {
7113      auto *IV = cast<InsertValueInst>(LastInsertInst);
7114      InsertedOperand = IV->getInsertedValueOperand();
7115      LastInsertInst = IV->getAggregateOperand();
7116    }
7117    if (isa<InsertElementInst>(InsertedOperand) ||
7118        isa<InsertValueInst>(InsertedOperand)) {
7119      SmallVector<Value *, 8> TmpBuildVectorOpds;
7120      SmallVector<Value *, 8> TmpInsertElts;
7121      if (!findBuildAggregate(InsertedOperand, TTI, TmpBuildVectorOpds,
7122                              TmpInsertElts))
7123        return false;
7124      BuildVectorOpds.append(TmpBuildVectorOpds.rbegin(),
7125                             TmpBuildVectorOpds.rend());
7126      InsertElts.append(TmpInsertElts.rbegin(), TmpInsertElts.rend());
7127    } else {
7128      BuildVectorOpds.push_back(InsertedOperand);
7129      InsertElts.push_back(IE);
7130    }
7131    if (isa<UndefValue>(LastInsertInst))
7132      break;
7133    if ((!isa<InsertValueInst>(LastInsertInst) &&
7134         !isa<InsertElementInst>(LastInsertInst)) ||
7135        !LastInsertInst->hasOneUse())
7136      return false;
7137  } while (true);
7138  std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
7139  std::reverse(InsertElts.begin(), InsertElts.end());
7140  return true;
7141}
7142
7143static bool PhiTypeSorterFunc(Value *V, Value *V2) {
7144  return V->getType() < V2->getType();
7145}
7146
7147/// Try and get a reduction value from a phi node.
7148///
7149/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
7150/// if they come from either \p ParentBB or a containing loop latch.
7151///
7152/// \returns A candidate reduction value if possible, or \code nullptr \endcode
7153/// if not possible.
7154static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
7155                                BasicBlock *ParentBB, LoopInfo *LI) {
7156  // There are situations where the reduction value is not dominated by the
7157  // reduction phi. Vectorizing such cases has been reported to cause
7158  // miscompiles. See PR25787.
7159  auto DominatedReduxValue = [&](Value *R) {
7160    return isa<Instruction>(R) &&
7161           DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
7162  };
7163
7164  Value *Rdx = nullptr;
7165
7166  // Return the incoming value if it comes from the same BB as the phi node.
7167  if (P->getIncomingBlock(0) == ParentBB) {
7168    Rdx = P->getIncomingValue(0);
7169  } else if (P->getIncomingBlock(1) == ParentBB) {
7170    Rdx = P->getIncomingValue(1);
7171  }
7172
7173  if (Rdx && DominatedReduxValue(Rdx))
7174    return Rdx;
7175
7176  // Otherwise, check whether we have a loop latch to look at.
7177  Loop *BBL = LI->getLoopFor(ParentBB);
7178  if (!BBL)
7179    return nullptr;
7180  BasicBlock *BBLatch = BBL->getLoopLatch();
7181  if (!BBLatch)
7182    return nullptr;
7183
7184  // There is a loop latch, return the incoming value if it comes from
7185  // that. This reduction pattern occasionally turns up.
7186  if (P->getIncomingBlock(0) == BBLatch) {
7187    Rdx = P->getIncomingValue(0);
7188  } else if (P->getIncomingBlock(1) == BBLatch) {
7189    Rdx = P->getIncomingValue(1);
7190  }
7191
7192  if (Rdx && DominatedReduxValue(Rdx))
7193    return Rdx;
7194
7195  return nullptr;
7196}
7197
7198/// Attempt to reduce a horizontal reduction.
7199/// If it is legal to match a horizontal reduction feeding the phi node \a P
7200/// with reduction operators \a Root (or one of its operands) in a basic block
7201/// \a BB, then check if it can be done. If horizontal reduction is not found
7202/// and root instruction is a binary operation, vectorization of the operands is
7203/// attempted.
7204/// \returns true if a horizontal reduction was matched and reduced or operands
7205/// of one of the binary instruction were vectorized.
7206/// \returns false if a horizontal reduction was not matched (or not possible)
7207/// or no vectorization of any binary operation feeding \a Root instruction was
7208/// performed.
7209static bool tryToVectorizeHorReductionOrInstOperands(
7210    PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
7211    TargetTransformInfo *TTI,
7212    const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
7213  if (!ShouldVectorizeHor)
7214    return false;
7215
7216  if (!Root)
7217    return false;
7218
7219  if (Root->getParent() != BB || isa<PHINode>(Root))
7220    return false;
7221  // Start analysis starting from Root instruction. If horizontal reduction is
7222  // found, try to vectorize it. If it is not a horizontal reduction or
7223  // vectorization is not possible or not effective, and currently analyzed
7224  // instruction is a binary operation, try to vectorize the operands, using
7225  // pre-order DFS traversal order. If the operands were not vectorized, repeat
7226  // the same procedure considering each operand as a possible root of the
7227  // horizontal reduction.
7228  // Interrupt the process if the Root instruction itself was vectorized or all
7229  // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
7230  SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
7231  SmallPtrSet<Value *, 8> VisitedInstrs;
7232  bool Res = false;
7233  while (!Stack.empty()) {
7234    Instruction *Inst;
7235    unsigned Level;
7236    std::tie(Inst, Level) = Stack.pop_back_val();
7237    auto *BI = dyn_cast<BinaryOperator>(Inst);
7238    auto *SI = dyn_cast<SelectInst>(Inst);
7239    if (BI || SI) {
7240      HorizontalReduction HorRdx;
7241      if (HorRdx.matchAssociativeReduction(P, Inst)) {
7242        if (HorRdx.tryToReduce(R, TTI)) {
7243          Res = true;
7244          // Set P to nullptr to avoid re-analysis of phi node in
7245          // matchAssociativeReduction function unless this is the root node.
7246          P = nullptr;
7247          continue;
7248        }
7249      }
7250      if (P && BI) {
7251        Inst = dyn_cast<Instruction>(BI->getOperand(0));
7252        if (Inst == P)
7253          Inst = dyn_cast<Instruction>(BI->getOperand(1));
7254        if (!Inst) {
7255          // Set P to nullptr to avoid re-analysis of phi node in
7256          // matchAssociativeReduction function unless this is the root node.
7257          P = nullptr;
7258          continue;
7259        }
7260      }
7261    }
7262    // Set P to nullptr to avoid re-analysis of phi node in
7263    // matchAssociativeReduction function unless this is the root node.
7264    P = nullptr;
7265    if (Vectorize(Inst, R)) {
7266      Res = true;
7267      continue;
7268    }
7269
7270    // Try to vectorize operands.
7271    // Continue analysis for the instruction from the same basic block only to
7272    // save compile time.
7273    if (++Level < RecursionMaxDepth)
7274      for (auto *Op : Inst->operand_values())
7275        if (VisitedInstrs.insert(Op).second)
7276          if (auto *I = dyn_cast<Instruction>(Op))
7277            if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
7278              Stack.emplace_back(I, Level);
7279  }
7280  return Res;
7281}
7282
7283bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
7284                                                 BasicBlock *BB, BoUpSLP &R,
7285                                                 TargetTransformInfo *TTI) {
7286  if (!V)
7287    return false;
7288  auto *I = dyn_cast<Instruction>(V);
7289  if (!I)
7290    return false;
7291
7292  if (!isa<BinaryOperator>(I))
7293    P = nullptr;
7294  // Try to match and vectorize a horizontal reduction.
7295  auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
7296    return tryToVectorize(I, R);
7297  };
7298  return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
7299                                                  ExtraVectorization);
7300}
7301
7302bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
7303                                                 BasicBlock *BB, BoUpSLP &R) {
7304  const DataLayout &DL = BB->getModule()->getDataLayout();
7305  if (!R.canMapToVector(IVI->getType(), DL))
7306    return false;
7307
7308  SmallVector<Value *, 16> BuildVectorOpds;
7309  SmallVector<Value *, 16> BuildVectorInsts;
7310  if (!findBuildAggregate(IVI, TTI, BuildVectorOpds, BuildVectorInsts) ||
7311      BuildVectorOpds.size() < 2)
7312    return false;
7313
7314  LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
7315  // Aggregate value is unlikely to be processed in vector register, we need to
7316  // extract scalars into scalar registers, so NeedExtraction is set true.
7317  return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7318                            BuildVectorInsts);
7319}
7320
7321bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
7322                                                   BasicBlock *BB, BoUpSLP &R) {
7323  SmallVector<Value *, 16> BuildVectorInsts;
7324  SmallVector<Value *, 16> BuildVectorOpds;
7325  if (!findBuildAggregate(IEI, TTI, BuildVectorOpds, BuildVectorInsts) ||
7326      BuildVectorOpds.size() < 2 ||
7327      (llvm::all_of(BuildVectorOpds,
7328                    [](Value *V) { return isa<ExtractElementInst>(V); }) &&
7329       isShuffle(BuildVectorOpds)))
7330    return false;
7331
7332  // Vectorize starting with the build vector operands ignoring the BuildVector
7333  // instructions for the purpose of scheduling and user extraction.
7334  return tryToVectorizeList(BuildVectorOpds, R, /*AllowReorder=*/false,
7335                            BuildVectorInsts);
7336}
7337
7338bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
7339                                         BoUpSLP &R) {
7340  if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
7341    return true;
7342
7343  bool OpsChanged = false;
7344  for (int Idx = 0; Idx < 2; ++Idx) {
7345    OpsChanged |=
7346        vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
7347  }
7348  return OpsChanged;
7349}
7350
7351bool SLPVectorizerPass::vectorizeSimpleInstructions(
7352    SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
7353  bool OpsChanged = false;
7354  for (auto *I : reverse(Instructions)) {
7355    if (R.isDeleted(I))
7356      continue;
7357    if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
7358      OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
7359    else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
7360      OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
7361    else if (auto *CI = dyn_cast<CmpInst>(I))
7362      OpsChanged |= vectorizeCmpInst(CI, BB, R);
7363  }
7364  Instructions.clear();
7365  return OpsChanged;
7366}
7367
7368bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
7369  bool Changed = false;
7370  SmallVector<Value *, 4> Incoming;
7371  SmallPtrSet<Value *, 16> VisitedInstrs;
7372  unsigned MaxVecRegSize = R.getMaxVecRegSize();
7373
7374  bool HaveVectorizedPhiNodes = true;
7375  while (HaveVectorizedPhiNodes) {
7376    HaveVectorizedPhiNodes = false;
7377
7378    // Collect the incoming values from the PHIs.
7379    Incoming.clear();
7380    for (Instruction &I : *BB) {
7381      PHINode *P = dyn_cast<PHINode>(&I);
7382      if (!P)
7383        break;
7384
7385      if (!VisitedInstrs.count(P) && !R.isDeleted(P))
7386        Incoming.push_back(P);
7387    }
7388
7389    // Sort by type.
7390    llvm::stable_sort(Incoming, PhiTypeSorterFunc);
7391
7392    // Try to vectorize elements base on their type.
7393    for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
7394                                           E = Incoming.end();
7395         IncIt != E;) {
7396
7397      // Look for the next elements with the same type.
7398      SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
7399      Type *EltTy = (*IncIt)->getType();
7400
7401      assert(EltTy->isSized() &&
7402             "Instructions should all be sized at this point");
7403      TypeSize EltTS = DL->getTypeSizeInBits(EltTy);
7404      if (EltTS.isScalable()) {
7405        // For now, just ignore vectorizing scalable types.
7406        ++IncIt;
7407        continue;
7408      }
7409
7410      unsigned EltSize = EltTS.getFixedSize();
7411      unsigned MaxNumElts = MaxVecRegSize / EltSize;
7412      if (MaxNumElts < 2) {
7413        ++IncIt;
7414        continue;
7415      }
7416
7417      while (SameTypeIt != E &&
7418             (*SameTypeIt)->getType() == EltTy &&
7419             (SameTypeIt - IncIt) < MaxNumElts) {
7420        VisitedInstrs.insert(*SameTypeIt);
7421        ++SameTypeIt;
7422      }
7423
7424      // Try to vectorize them.
7425      unsigned NumElts = (SameTypeIt - IncIt);
7426      LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
7427                        << NumElts << ")\n");
7428      // The order in which the phi nodes appear in the program does not matter.
7429      // So allow tryToVectorizeList to reorder them if it is beneficial. This
7430      // is done when there are exactly two elements since tryToVectorizeList
7431      // asserts that there are only two values when AllowReorder is true.
7432      bool AllowReorder = NumElts == 2;
7433      if (NumElts > 1 &&
7434          tryToVectorizeList(makeArrayRef(IncIt, NumElts), R, AllowReorder)) {
7435        // Success start over because instructions might have been changed.
7436        HaveVectorizedPhiNodes = true;
7437        Changed = true;
7438        break;
7439      }
7440
7441      // Start over at the next instruction of a different type (or the end).
7442      IncIt = SameTypeIt;
7443    }
7444  }
7445
7446  VisitedInstrs.clear();
7447
7448  SmallVector<Instruction *, 8> PostProcessInstructions;
7449  SmallDenseSet<Instruction *, 4> KeyNodes;
7450  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
7451    // Skip instructions marked for the deletion.
7452    if (R.isDeleted(&*it))
7453      continue;
7454    // We may go through BB multiple times so skip the one we have checked.
7455    if (!VisitedInstrs.insert(&*it).second) {
7456      if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
7457          vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
7458        // We would like to start over since some instructions are deleted
7459        // and the iterator may become invalid value.
7460        Changed = true;
7461        it = BB->begin();
7462        e = BB->end();
7463      }
7464      continue;
7465    }
7466
7467    if (isa<DbgInfoIntrinsic>(it))
7468      continue;
7469
7470    // Try to vectorize reductions that use PHINodes.
7471    if (PHINode *P = dyn_cast<PHINode>(it)) {
7472      // Check that the PHI is a reduction PHI.
7473      if (P->getNumIncomingValues() != 2)
7474        return Changed;
7475
7476      // Try to match and vectorize a horizontal reduction.
7477      if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
7478                                   TTI)) {
7479        Changed = true;
7480        it = BB->begin();
7481        e = BB->end();
7482        continue;
7483      }
7484      continue;
7485    }
7486
7487    // Ran into an instruction without users, like terminator, or function call
7488    // with ignored return value, store. Ignore unused instructions (basing on
7489    // instruction type, except for CallInst and InvokeInst).
7490    if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
7491                            isa<InvokeInst>(it))) {
7492      KeyNodes.insert(&*it);
7493      bool OpsChanged = false;
7494      if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
7495        for (auto *V : it->operand_values()) {
7496          // Try to match and vectorize a horizontal reduction.
7497          OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
7498        }
7499      }
7500      // Start vectorization of post-process list of instructions from the
7501      // top-tree instructions to try to vectorize as many instructions as
7502      // possible.
7503      OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
7504      if (OpsChanged) {
7505        // We would like to start over since some instructions are deleted
7506        // and the iterator may become invalid value.
7507        Changed = true;
7508        it = BB->begin();
7509        e = BB->end();
7510        continue;
7511      }
7512    }
7513
7514    if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
7515        isa<InsertValueInst>(it))
7516      PostProcessInstructions.push_back(&*it);
7517  }
7518
7519  return Changed;
7520}
7521
7522bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
7523  auto Changed = false;
7524  for (auto &Entry : GEPs) {
7525    // If the getelementptr list has fewer than two elements, there's nothing
7526    // to do.
7527    if (Entry.second.size() < 2)
7528      continue;
7529
7530    LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
7531                      << Entry.second.size() << ".\n");
7532
7533    // Process the GEP list in chunks suitable for the target's supported
7534    // vector size. If a vector register can't hold 1 element, we are done. We
7535    // are trying to vectorize the index computations, so the maximum number of
7536    // elements is based on the size of the index expression, rather than the
7537    // size of the GEP itself (the target's pointer size).
7538    unsigned MaxVecRegSize = R.getMaxVecRegSize();
7539    unsigned EltSize = R.getVectorElementSize(*Entry.second[0]->idx_begin());
7540    if (MaxVecRegSize < EltSize)
7541      continue;
7542
7543    unsigned MaxElts = MaxVecRegSize / EltSize;
7544    for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += MaxElts) {
7545      auto Len = std::min<unsigned>(BE - BI, MaxElts);
7546      auto GEPList = makeArrayRef(&Entry.second[BI], Len);
7547
7548      // Initialize a set a candidate getelementptrs. Note that we use a
7549      // SetVector here to preserve program order. If the index computations
7550      // are vectorizable and begin with loads, we want to minimize the chance
7551      // of having to reorder them later.
7552      SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
7553
7554      // Some of the candidates may have already been vectorized after we
7555      // initially collected them. If so, they are marked as deleted, so remove
7556      // them from the set of candidates.
7557      Candidates.remove_if(
7558          [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7559
7560      // Remove from the set of candidates all pairs of getelementptrs with
7561      // constant differences. Such getelementptrs are likely not good
7562      // candidates for vectorization in a bottom-up phase since one can be
7563      // computed from the other. We also ensure all candidate getelementptr
7564      // indices are unique.
7565      for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7566        auto *GEPI = GEPList[I];
7567        if (!Candidates.count(GEPI))
7568          continue;
7569        auto *SCEVI = SE->getSCEV(GEPList[I]);
7570        for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7571          auto *GEPJ = GEPList[J];
7572          auto *SCEVJ = SE->getSCEV(GEPList[J]);
7573          if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7574            Candidates.remove(GEPI);
7575            Candidates.remove(GEPJ);
7576          } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7577            Candidates.remove(GEPJ);
7578          }
7579        }
7580      }
7581
7582      // We break out of the above computation as soon as we know there are
7583      // fewer than two candidates remaining.
7584      if (Candidates.size() < 2)
7585        continue;
7586
7587      // Add the single, non-constant index of each candidate to the bundle. We
7588      // ensured the indices met these constraints when we originally collected
7589      // the getelementptrs.
7590      SmallVector<Value *, 16> Bundle(Candidates.size());
7591      auto BundleIndex = 0u;
7592      for (auto *V : Candidates) {
7593        auto *GEP = cast<GetElementPtrInst>(V);
7594        auto *GEPIdx = GEP->idx_begin()->get();
7595        assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7596        Bundle[BundleIndex++] = GEPIdx;
7597      }
7598
7599      // Try and vectorize the indices. We are currently only interested in
7600      // gather-like cases of the form:
7601      //
7602      // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7603      //
7604      // where the loads of "a", the loads of "b", and the subtractions can be
7605      // performed in parallel. It's likely that detecting this pattern in a
7606      // bottom-up phase will be simpler and less costly than building a
7607      // full-blown top-down phase beginning at the consecutive loads.
7608      Changed |= tryToVectorizeList(Bundle, R);
7609    }
7610  }
7611  return Changed;
7612}
7613
7614bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7615  bool Changed = false;
7616  // Attempt to sort and vectorize each of the store-groups.
7617  for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7618       ++it) {
7619    if (it->second.size() < 2)
7620      continue;
7621
7622    LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
7623                      << it->second.size() << ".\n");
7624
7625    Changed |= vectorizeStores(it->second, R);
7626  }
7627  return Changed;
7628}
7629
7630char SLPVectorizer::ID = 0;
7631
7632static const char lv_name[] = "SLP Vectorizer";
7633
7634INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
7635INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7636INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7637INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7638INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7639INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7640INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7641INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7642INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7643INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
7644
7645Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }
7646