1//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the library calls simplifier. It does not implement
10// any pass, but can't be used by other passes to do simplifications.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15#include "llvm/ADT/APSInt.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/ADT/StringMap.h"
18#include "llvm/ADT/Triple.h"
19#include "llvm/Analysis/BlockFrequencyInfo.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Analysis/OptimizationRemarkEmitter.h"
22#include "llvm/Analysis/ProfileSummaryInfo.h"
23#include "llvm/Analysis/TargetLibraryInfo.h"
24#include "llvm/Transforms/Utils/Local.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Analysis/CaptureTracking.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/IRBuilder.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/PatternMatch.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/KnownBits.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Transforms/Utils/BuildLibCalls.h"
40#include "llvm/Transforms/Utils/SizeOpts.h"
41
42using namespace llvm;
43using namespace PatternMatch;
44
45static cl::opt<bool>
46    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                         cl::init(false),
48                         cl::desc("Enable unsafe double to float "
49                                  "shrinking for math lib calls"));
50
51//===----------------------------------------------------------------------===//
52// Helper Functions
53//===----------------------------------------------------------------------===//
54
55static bool ignoreCallingConv(LibFunc Func) {
56  return Func == LibFunc_abs || Func == LibFunc_labs ||
57         Func == LibFunc_llabs || Func == LibFunc_strlen;
58}
59
60static bool isCallingConvCCompatible(CallInst *CI) {
61  switch(CI->getCallingConv()) {
62  default:
63    return false;
64  case llvm::CallingConv::C:
65    return true;
66  case llvm::CallingConv::ARM_APCS:
67  case llvm::CallingConv::ARM_AAPCS:
68  case llvm::CallingConv::ARM_AAPCS_VFP: {
69
70    // The iOS ABI diverges from the standard in some cases, so for now don't
71    // try to simplify those calls.
72    if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73      return false;
74
75    auto *FuncTy = CI->getFunctionType();
76
77    if (!FuncTy->getReturnType()->isPointerTy() &&
78        !FuncTy->getReturnType()->isIntegerTy() &&
79        !FuncTy->getReturnType()->isVoidTy())
80      return false;
81
82    for (auto Param : FuncTy->params()) {
83      if (!Param->isPointerTy() && !Param->isIntegerTy())
84        return false;
85    }
86    return true;
87  }
88  }
89  return false;
90}
91
92/// Return true if it is only used in equality comparisons with With.
93static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94  for (User *U : V->users()) {
95    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96      if (IC->isEquality() && IC->getOperand(1) == With)
97        continue;
98    // Unknown instruction.
99    return false;
100  }
101  return true;
102}
103
104static bool callHasFloatingPointArgument(const CallInst *CI) {
105  return any_of(CI->operands(), [](const Use &OI) {
106    return OI->getType()->isFloatingPointTy();
107  });
108}
109
110static bool callHasFP128Argument(const CallInst *CI) {
111  return any_of(CI->operands(), [](const Use &OI) {
112    return OI->getType()->isFP128Ty();
113  });
114}
115
116static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117  if (Base < 2 || Base > 36)
118    // handle special zero base
119    if (Base != 0)
120      return nullptr;
121
122  char *End;
123  std::string nptr = Str.str();
124  errno = 0;
125  long long int Result = strtoll(nptr.c_str(), &End, Base);
126  if (errno)
127    return nullptr;
128
129  // if we assume all possible target locales are ASCII supersets,
130  // then if strtoll successfully parses a number on the host,
131  // it will also successfully parse the same way on the target
132  if (*End != '\0')
133    return nullptr;
134
135  if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136    return nullptr;
137
138  return ConstantInt::get(CI->getType(), Result);
139}
140
141static bool isOnlyUsedInComparisonWithZero(Value *V) {
142  for (User *U : V->users()) {
143    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
144      if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
145        if (C->isNullValue())
146          continue;
147    // Unknown instruction.
148    return false;
149  }
150  return true;
151}
152
153static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
154                                 const DataLayout &DL) {
155  if (!isOnlyUsedInComparisonWithZero(CI))
156    return false;
157
158  if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
159    return false;
160
161  if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
162    return false;
163
164  return true;
165}
166
167static void annotateDereferenceableBytes(CallInst *CI,
168                                         ArrayRef<unsigned> ArgNos,
169                                         uint64_t DereferenceableBytes) {
170  const Function *F = CI->getCaller();
171  if (!F)
172    return;
173  for (unsigned ArgNo : ArgNos) {
174    uint64_t DerefBytes = DereferenceableBytes;
175    unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
176    if (!llvm::NullPointerIsDefined(F, AS) ||
177        CI->paramHasAttr(ArgNo, Attribute::NonNull))
178      DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
179                                ArgNo + AttributeList::FirstArgIndex),
180                            DereferenceableBytes);
181
182    if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
183        DerefBytes) {
184      CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
185      if (!llvm::NullPointerIsDefined(F, AS) ||
186          CI->paramHasAttr(ArgNo, Attribute::NonNull))
187        CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
188      CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
189                                  CI->getContext(), DerefBytes));
190    }
191  }
192}
193
194static void annotateNonNullBasedOnAccess(CallInst *CI,
195                                         ArrayRef<unsigned> ArgNos) {
196  Function *F = CI->getCaller();
197  if (!F)
198    return;
199
200  for (unsigned ArgNo : ArgNos) {
201    if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
202      continue;
203    unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
204    if (llvm::NullPointerIsDefined(F, AS))
205      continue;
206
207    CI->addParamAttr(ArgNo, Attribute::NonNull);
208    annotateDereferenceableBytes(CI, ArgNo, 1);
209  }
210}
211
212static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
213                               Value *Size, const DataLayout &DL) {
214  if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
215    annotateNonNullBasedOnAccess(CI, ArgNos);
216    annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
217  } else if (isKnownNonZero(Size, DL)) {
218    annotateNonNullBasedOnAccess(CI, ArgNos);
219    const APInt *X, *Y;
220    uint64_t DerefMin = 1;
221    if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
222      DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
223      annotateDereferenceableBytes(CI, ArgNos, DerefMin);
224    }
225  }
226}
227
228//===----------------------------------------------------------------------===//
229// String and Memory Library Call Optimizations
230//===----------------------------------------------------------------------===//
231
232Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
233  // Extract some information from the instruction
234  Value *Dst = CI->getArgOperand(0);
235  Value *Src = CI->getArgOperand(1);
236  annotateNonNullBasedOnAccess(CI, {0, 1});
237
238  // See if we can get the length of the input string.
239  uint64_t Len = GetStringLength(Src);
240  if (Len)
241    annotateDereferenceableBytes(CI, 1, Len);
242  else
243    return nullptr;
244  --Len; // Unbias length.
245
246  // Handle the simple, do-nothing case: strcat(x, "") -> x
247  if (Len == 0)
248    return Dst;
249
250  return emitStrLenMemCpy(Src, Dst, Len, B);
251}
252
253Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
254                                           IRBuilderBase &B) {
255  // We need to find the end of the destination string.  That's where the
256  // memory is to be moved to. We just generate a call to strlen.
257  Value *DstLen = emitStrLen(Dst, B, DL, TLI);
258  if (!DstLen)
259    return nullptr;
260
261  // Now that we have the destination's length, we must index into the
262  // destination's pointer to get the actual memcpy destination (end of
263  // the string .. we're concatenating).
264  Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
265
266  // We have enough information to now generate the memcpy call to do the
267  // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
268  B.CreateMemCpy(
269      CpyDst, Align(1), Src, Align(1),
270      ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
271  return Dst;
272}
273
274Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
275  // Extract some information from the instruction.
276  Value *Dst = CI->getArgOperand(0);
277  Value *Src = CI->getArgOperand(1);
278  Value *Size = CI->getArgOperand(2);
279  uint64_t Len;
280  annotateNonNullBasedOnAccess(CI, 0);
281  if (isKnownNonZero(Size, DL))
282    annotateNonNullBasedOnAccess(CI, 1);
283
284  // We don't do anything if length is not constant.
285  ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
286  if (LengthArg) {
287    Len = LengthArg->getZExtValue();
288    // strncat(x, c, 0) -> x
289    if (!Len)
290      return Dst;
291  } else {
292    return nullptr;
293  }
294
295  // See if we can get the length of the input string.
296  uint64_t SrcLen = GetStringLength(Src);
297  if (SrcLen) {
298    annotateDereferenceableBytes(CI, 1, SrcLen);
299    --SrcLen; // Unbias length.
300  } else {
301    return nullptr;
302  }
303
304  // strncat(x, "", c) -> x
305  if (SrcLen == 0)
306    return Dst;
307
308  // We don't optimize this case.
309  if (Len < SrcLen)
310    return nullptr;
311
312  // strncat(x, s, c) -> strcat(x, s)
313  // s is constant so the strcat can be optimized further.
314  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
315}
316
317Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
318  Function *Callee = CI->getCalledFunction();
319  FunctionType *FT = Callee->getFunctionType();
320  Value *SrcStr = CI->getArgOperand(0);
321  annotateNonNullBasedOnAccess(CI, 0);
322
323  // If the second operand is non-constant, see if we can compute the length
324  // of the input string and turn this into memchr.
325  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
326  if (!CharC) {
327    uint64_t Len = GetStringLength(SrcStr);
328    if (Len)
329      annotateDereferenceableBytes(CI, 0, Len);
330    else
331      return nullptr;
332    if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
333      return nullptr;
334
335    return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
336                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
337                      B, DL, TLI);
338  }
339
340  // Otherwise, the character is a constant, see if the first argument is
341  // a string literal.  If so, we can constant fold.
342  StringRef Str;
343  if (!getConstantStringInfo(SrcStr, Str)) {
344    if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
345      if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
346        return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
347    return nullptr;
348  }
349
350  // Compute the offset, make sure to handle the case when we're searching for
351  // zero (a weird way to spell strlen).
352  size_t I = (0xFF & CharC->getSExtValue()) == 0
353                 ? Str.size()
354                 : Str.find(CharC->getSExtValue());
355  if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
356    return Constant::getNullValue(CI->getType());
357
358  // strchr(s+n,c)  -> gep(s+n+i,c)
359  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
360}
361
362Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
363  Value *SrcStr = CI->getArgOperand(0);
364  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
365  annotateNonNullBasedOnAccess(CI, 0);
366
367  // Cannot fold anything if we're not looking for a constant.
368  if (!CharC)
369    return nullptr;
370
371  StringRef Str;
372  if (!getConstantStringInfo(SrcStr, Str)) {
373    // strrchr(s, 0) -> strchr(s, 0)
374    if (CharC->isZero())
375      return emitStrChr(SrcStr, '\0', B, TLI);
376    return nullptr;
377  }
378
379  // Compute the offset.
380  size_t I = (0xFF & CharC->getSExtValue()) == 0
381                 ? Str.size()
382                 : Str.rfind(CharC->getSExtValue());
383  if (I == StringRef::npos) // Didn't find the char. Return null.
384    return Constant::getNullValue(CI->getType());
385
386  // strrchr(s+n,c) -> gep(s+n+i,c)
387  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
388}
389
390Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
391  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
392  if (Str1P == Str2P) // strcmp(x,x)  -> 0
393    return ConstantInt::get(CI->getType(), 0);
394
395  StringRef Str1, Str2;
396  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
397  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
398
399  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
400  if (HasStr1 && HasStr2)
401    return ConstantInt::get(CI->getType(), Str1.compare(Str2));
402
403  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
404    return B.CreateNeg(B.CreateZExt(
405        B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
406
407  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
408    return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
409                        CI->getType());
410
411  // strcmp(P, "x") -> memcmp(P, "x", 2)
412  uint64_t Len1 = GetStringLength(Str1P);
413  if (Len1)
414    annotateDereferenceableBytes(CI, 0, Len1);
415  uint64_t Len2 = GetStringLength(Str2P);
416  if (Len2)
417    annotateDereferenceableBytes(CI, 1, Len2);
418
419  if (Len1 && Len2) {
420    return emitMemCmp(Str1P, Str2P,
421                      ConstantInt::get(DL.getIntPtrType(CI->getContext()),
422                                       std::min(Len1, Len2)),
423                      B, DL, TLI);
424  }
425
426  // strcmp to memcmp
427  if (!HasStr1 && HasStr2) {
428    if (canTransformToMemCmp(CI, Str1P, Len2, DL))
429      return emitMemCmp(
430          Str1P, Str2P,
431          ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
432          TLI);
433  } else if (HasStr1 && !HasStr2) {
434    if (canTransformToMemCmp(CI, Str2P, Len1, DL))
435      return emitMemCmp(
436          Str1P, Str2P,
437          ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
438          TLI);
439  }
440
441  annotateNonNullBasedOnAccess(CI, {0, 1});
442  return nullptr;
443}
444
445Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
446  Value *Str1P = CI->getArgOperand(0);
447  Value *Str2P = CI->getArgOperand(1);
448  Value *Size = CI->getArgOperand(2);
449  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
450    return ConstantInt::get(CI->getType(), 0);
451
452  if (isKnownNonZero(Size, DL))
453    annotateNonNullBasedOnAccess(CI, {0, 1});
454  // Get the length argument if it is constant.
455  uint64_t Length;
456  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
457    Length = LengthArg->getZExtValue();
458  else
459    return nullptr;
460
461  if (Length == 0) // strncmp(x,y,0)   -> 0
462    return ConstantInt::get(CI->getType(), 0);
463
464  if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
465    return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
466
467  StringRef Str1, Str2;
468  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
469  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
470
471  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
472  if (HasStr1 && HasStr2) {
473    StringRef SubStr1 = Str1.substr(0, Length);
474    StringRef SubStr2 = Str2.substr(0, Length);
475    return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
476  }
477
478  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
479    return B.CreateNeg(B.CreateZExt(
480        B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
481
482  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
483    return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
484                        CI->getType());
485
486  uint64_t Len1 = GetStringLength(Str1P);
487  if (Len1)
488    annotateDereferenceableBytes(CI, 0, Len1);
489  uint64_t Len2 = GetStringLength(Str2P);
490  if (Len2)
491    annotateDereferenceableBytes(CI, 1, Len2);
492
493  // strncmp to memcmp
494  if (!HasStr1 && HasStr2) {
495    Len2 = std::min(Len2, Length);
496    if (canTransformToMemCmp(CI, Str1P, Len2, DL))
497      return emitMemCmp(
498          Str1P, Str2P,
499          ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
500          TLI);
501  } else if (HasStr1 && !HasStr2) {
502    Len1 = std::min(Len1, Length);
503    if (canTransformToMemCmp(CI, Str2P, Len1, DL))
504      return emitMemCmp(
505          Str1P, Str2P,
506          ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
507          TLI);
508  }
509
510  return nullptr;
511}
512
513Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
514  Value *Src = CI->getArgOperand(0);
515  ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
516  uint64_t SrcLen = GetStringLength(Src);
517  if (SrcLen && Size) {
518    annotateDereferenceableBytes(CI, 0, SrcLen);
519    if (SrcLen <= Size->getZExtValue() + 1)
520      return emitStrDup(Src, B, TLI);
521  }
522
523  return nullptr;
524}
525
526Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
527  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
528  if (Dst == Src) // strcpy(x,x)  -> x
529    return Src;
530
531  annotateNonNullBasedOnAccess(CI, {0, 1});
532  // See if we can get the length of the input string.
533  uint64_t Len = GetStringLength(Src);
534  if (Len)
535    annotateDereferenceableBytes(CI, 1, Len);
536  else
537    return nullptr;
538
539  // We have enough information to now generate the memcpy call to do the
540  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
541  CallInst *NewCI =
542      B.CreateMemCpy(Dst, Align(1), Src, Align(1),
543                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
544  NewCI->setAttributes(CI->getAttributes());
545  return Dst;
546}
547
548Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
549  Function *Callee = CI->getCalledFunction();
550  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
551  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
552    Value *StrLen = emitStrLen(Src, B, DL, TLI);
553    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
554  }
555
556  // See if we can get the length of the input string.
557  uint64_t Len = GetStringLength(Src);
558  if (Len)
559    annotateDereferenceableBytes(CI, 1, Len);
560  else
561    return nullptr;
562
563  Type *PT = Callee->getFunctionType()->getParamType(0);
564  Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
565  Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
566                              ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
567
568  // We have enough information to now generate the memcpy call to do the
569  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
570  CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
571  NewCI->setAttributes(CI->getAttributes());
572  return DstEnd;
573}
574
575Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) {
576  Function *Callee = CI->getCalledFunction();
577  Value *Dst = CI->getArgOperand(0);
578  Value *Src = CI->getArgOperand(1);
579  Value *Size = CI->getArgOperand(2);
580  annotateNonNullBasedOnAccess(CI, 0);
581  if (isKnownNonZero(Size, DL))
582    annotateNonNullBasedOnAccess(CI, 1);
583
584  uint64_t Len;
585  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
586    Len = LengthArg->getZExtValue();
587  else
588    return nullptr;
589
590  // strncpy(x, y, 0) -> x
591  if (Len == 0)
592    return Dst;
593
594  // See if we can get the length of the input string.
595  uint64_t SrcLen = GetStringLength(Src);
596  if (SrcLen) {
597    annotateDereferenceableBytes(CI, 1, SrcLen);
598    --SrcLen; // Unbias length.
599  } else {
600    return nullptr;
601  }
602
603  if (SrcLen == 0) {
604    // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
605    CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align(1));
606    AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
607    NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
608        CI->getContext(), 0, ArgAttrs));
609    return Dst;
610  }
611
612  // Let strncpy handle the zero padding
613  if (Len > SrcLen + 1)
614    return nullptr;
615
616  Type *PT = Callee->getFunctionType()->getParamType(0);
617  // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
618  CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
619                                   ConstantInt::get(DL.getIntPtrType(PT), Len));
620  NewCI->setAttributes(CI->getAttributes());
621  return Dst;
622}
623
624Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
625                                               unsigned CharSize) {
626  Value *Src = CI->getArgOperand(0);
627
628  // Constant folding: strlen("xyz") -> 3
629  if (uint64_t Len = GetStringLength(Src, CharSize))
630    return ConstantInt::get(CI->getType(), Len - 1);
631
632  // If s is a constant pointer pointing to a string literal, we can fold
633  // strlen(s + x) to strlen(s) - x, when x is known to be in the range
634  // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
635  // We only try to simplify strlen when the pointer s points to an array
636  // of i8. Otherwise, we would need to scale the offset x before doing the
637  // subtraction. This will make the optimization more complex, and it's not
638  // very useful because calling strlen for a pointer of other types is
639  // very uncommon.
640  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
641    if (!isGEPBasedOnPointerToString(GEP, CharSize))
642      return nullptr;
643
644    ConstantDataArraySlice Slice;
645    if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
646      uint64_t NullTermIdx;
647      if (Slice.Array == nullptr) {
648        NullTermIdx = 0;
649      } else {
650        NullTermIdx = ~((uint64_t)0);
651        for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
652          if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
653            NullTermIdx = I;
654            break;
655          }
656        }
657        // If the string does not have '\0', leave it to strlen to compute
658        // its length.
659        if (NullTermIdx == ~((uint64_t)0))
660          return nullptr;
661      }
662
663      Value *Offset = GEP->getOperand(2);
664      KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
665      Known.Zero.flipAllBits();
666      uint64_t ArrSize =
667             cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
668
669      // KnownZero's bits are flipped, so zeros in KnownZero now represent
670      // bits known to be zeros in Offset, and ones in KnowZero represent
671      // bits unknown in Offset. Therefore, Offset is known to be in range
672      // [0, NullTermIdx] when the flipped KnownZero is non-negative and
673      // unsigned-less-than NullTermIdx.
674      //
675      // If Offset is not provably in the range [0, NullTermIdx], we can still
676      // optimize if we can prove that the program has undefined behavior when
677      // Offset is outside that range. That is the case when GEP->getOperand(0)
678      // is a pointer to an object whose memory extent is NullTermIdx+1.
679      if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
680          (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
681           NullTermIdx == ArrSize - 1)) {
682        Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
683        return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
684                           Offset);
685      }
686    }
687
688    return nullptr;
689  }
690
691  // strlen(x?"foo":"bars") --> x ? 3 : 4
692  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
693    uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
694    uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
695    if (LenTrue && LenFalse) {
696      ORE.emit([&]() {
697        return OptimizationRemark("instcombine", "simplify-libcalls", CI)
698               << "folded strlen(select) to select of constants";
699      });
700      return B.CreateSelect(SI->getCondition(),
701                            ConstantInt::get(CI->getType(), LenTrue - 1),
702                            ConstantInt::get(CI->getType(), LenFalse - 1));
703    }
704  }
705
706  // strlen(x) != 0 --> *x != 0
707  // strlen(x) == 0 --> *x == 0
708  if (isOnlyUsedInZeroEqualityComparison(CI))
709    return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
710                        CI->getType());
711
712  return nullptr;
713}
714
715Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
716  if (Value *V = optimizeStringLength(CI, B, 8))
717    return V;
718  annotateNonNullBasedOnAccess(CI, 0);
719  return nullptr;
720}
721
722Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
723  Module &M = *CI->getModule();
724  unsigned WCharSize = TLI->getWCharSize(M) * 8;
725  // We cannot perform this optimization without wchar_size metadata.
726  if (WCharSize == 0)
727    return nullptr;
728
729  return optimizeStringLength(CI, B, WCharSize);
730}
731
732Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
733  StringRef S1, S2;
734  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
735  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
736
737  // strpbrk(s, "") -> nullptr
738  // strpbrk("", s) -> nullptr
739  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
740    return Constant::getNullValue(CI->getType());
741
742  // Constant folding.
743  if (HasS1 && HasS2) {
744    size_t I = S1.find_first_of(S2);
745    if (I == StringRef::npos) // No match.
746      return Constant::getNullValue(CI->getType());
747
748    return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
749                       "strpbrk");
750  }
751
752  // strpbrk(s, "a") -> strchr(s, 'a')
753  if (HasS2 && S2.size() == 1)
754    return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
755
756  return nullptr;
757}
758
759Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
760  Value *EndPtr = CI->getArgOperand(1);
761  if (isa<ConstantPointerNull>(EndPtr)) {
762    // With a null EndPtr, this function won't capture the main argument.
763    // It would be readonly too, except that it still may write to errno.
764    CI->addParamAttr(0, Attribute::NoCapture);
765  }
766
767  return nullptr;
768}
769
770Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
771  StringRef S1, S2;
772  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
773  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
774
775  // strspn(s, "") -> 0
776  // strspn("", s) -> 0
777  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
778    return Constant::getNullValue(CI->getType());
779
780  // Constant folding.
781  if (HasS1 && HasS2) {
782    size_t Pos = S1.find_first_not_of(S2);
783    if (Pos == StringRef::npos)
784      Pos = S1.size();
785    return ConstantInt::get(CI->getType(), Pos);
786  }
787
788  return nullptr;
789}
790
791Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
792  StringRef S1, S2;
793  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
794  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
795
796  // strcspn("", s) -> 0
797  if (HasS1 && S1.empty())
798    return Constant::getNullValue(CI->getType());
799
800  // Constant folding.
801  if (HasS1 && HasS2) {
802    size_t Pos = S1.find_first_of(S2);
803    if (Pos == StringRef::npos)
804      Pos = S1.size();
805    return ConstantInt::get(CI->getType(), Pos);
806  }
807
808  // strcspn(s, "") -> strlen(s)
809  if (HasS2 && S2.empty())
810    return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
811
812  return nullptr;
813}
814
815Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
816  // fold strstr(x, x) -> x.
817  if (CI->getArgOperand(0) == CI->getArgOperand(1))
818    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
819
820  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
821  if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
822    Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
823    if (!StrLen)
824      return nullptr;
825    Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
826                                 StrLen, B, DL, TLI);
827    if (!StrNCmp)
828      return nullptr;
829    for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
830      ICmpInst *Old = cast<ICmpInst>(*UI++);
831      Value *Cmp =
832          B.CreateICmp(Old->getPredicate(), StrNCmp,
833                       ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
834      replaceAllUsesWith(Old, Cmp);
835    }
836    return CI;
837  }
838
839  // See if either input string is a constant string.
840  StringRef SearchStr, ToFindStr;
841  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
842  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
843
844  // fold strstr(x, "") -> x.
845  if (HasStr2 && ToFindStr.empty())
846    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
847
848  // If both strings are known, constant fold it.
849  if (HasStr1 && HasStr2) {
850    size_t Offset = SearchStr.find(ToFindStr);
851
852    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
853      return Constant::getNullValue(CI->getType());
854
855    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
856    Value *Result = castToCStr(CI->getArgOperand(0), B);
857    Result =
858        B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
859    return B.CreateBitCast(Result, CI->getType());
860  }
861
862  // fold strstr(x, "y") -> strchr(x, 'y').
863  if (HasStr2 && ToFindStr.size() == 1) {
864    Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
865    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
866  }
867
868  annotateNonNullBasedOnAccess(CI, {0, 1});
869  return nullptr;
870}
871
872Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
873  if (isKnownNonZero(CI->getOperand(2), DL))
874    annotateNonNullBasedOnAccess(CI, 0);
875  return nullptr;
876}
877
878Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
879  Value *SrcStr = CI->getArgOperand(0);
880  Value *Size = CI->getArgOperand(2);
881  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
882  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
883  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
884
885  // memchr(x, y, 0) -> null
886  if (LenC) {
887    if (LenC->isZero())
888      return Constant::getNullValue(CI->getType());
889  } else {
890    // From now on we need at least constant length and string.
891    return nullptr;
892  }
893
894  StringRef Str;
895  if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
896    return nullptr;
897
898  // Truncate the string to LenC. If Str is smaller than LenC we will still only
899  // scan the string, as reading past the end of it is undefined and we can just
900  // return null if we don't find the char.
901  Str = Str.substr(0, LenC->getZExtValue());
902
903  // If the char is variable but the input str and length are not we can turn
904  // this memchr call into a simple bit field test. Of course this only works
905  // when the return value is only checked against null.
906  //
907  // It would be really nice to reuse switch lowering here but we can't change
908  // the CFG at this point.
909  //
910  // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
911  // != 0
912  //   after bounds check.
913  if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
914    unsigned char Max =
915        *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
916                          reinterpret_cast<const unsigned char *>(Str.end()));
917
918    // Make sure the bit field we're about to create fits in a register on the
919    // target.
920    // FIXME: On a 64 bit architecture this prevents us from using the
921    // interesting range of alpha ascii chars. We could do better by emitting
922    // two bitfields or shifting the range by 64 if no lower chars are used.
923    if (!DL.fitsInLegalInteger(Max + 1))
924      return nullptr;
925
926    // For the bit field use a power-of-2 type with at least 8 bits to avoid
927    // creating unnecessary illegal types.
928    unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
929
930    // Now build the bit field.
931    APInt Bitfield(Width, 0);
932    for (char C : Str)
933      Bitfield.setBit((unsigned char)C);
934    Value *BitfieldC = B.getInt(Bitfield);
935
936    // Adjust width of "C" to the bitfield width, then mask off the high bits.
937    Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
938    C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
939
940    // First check that the bit field access is within bounds.
941    Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
942                                 "memchr.bounds");
943
944    // Create code that checks if the given bit is set in the field.
945    Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
946    Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
947
948    // Finally merge both checks and cast to pointer type. The inttoptr
949    // implicitly zexts the i1 to intptr type.
950    return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
951  }
952
953  // Check if all arguments are constants.  If so, we can constant fold.
954  if (!CharC)
955    return nullptr;
956
957  // Compute the offset.
958  size_t I = Str.find(CharC->getSExtValue() & 0xFF);
959  if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
960    return Constant::getNullValue(CI->getType());
961
962  // memchr(s+n,c,l) -> gep(s+n+i,c)
963  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
964}
965
966static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
967                                         uint64_t Len, IRBuilderBase &B,
968                                         const DataLayout &DL) {
969  if (Len == 0) // memcmp(s1,s2,0) -> 0
970    return Constant::getNullValue(CI->getType());
971
972  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
973  if (Len == 1) {
974    Value *LHSV =
975        B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
976                     CI->getType(), "lhsv");
977    Value *RHSV =
978        B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
979                     CI->getType(), "rhsv");
980    return B.CreateSub(LHSV, RHSV, "chardiff");
981  }
982
983  // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
984  // TODO: The case where both inputs are constants does not need to be limited
985  // to legal integers or equality comparison. See block below this.
986  if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
987    IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
988    unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
989
990    // First, see if we can fold either argument to a constant.
991    Value *LHSV = nullptr;
992    if (auto *LHSC = dyn_cast<Constant>(LHS)) {
993      LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
994      LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
995    }
996    Value *RHSV = nullptr;
997    if (auto *RHSC = dyn_cast<Constant>(RHS)) {
998      RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
999      RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1000    }
1001
1002    // Don't generate unaligned loads. If either source is constant data,
1003    // alignment doesn't matter for that source because there is no load.
1004    if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1005        (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1006      if (!LHSV) {
1007        Type *LHSPtrTy =
1008            IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1009        LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1010      }
1011      if (!RHSV) {
1012        Type *RHSPtrTy =
1013            IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1014        RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1015      }
1016      return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1017    }
1018  }
1019
1020  // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1021  // TODO: This is limited to i8 arrays.
1022  StringRef LHSStr, RHSStr;
1023  if (getConstantStringInfo(LHS, LHSStr) &&
1024      getConstantStringInfo(RHS, RHSStr)) {
1025    // Make sure we're not reading out-of-bounds memory.
1026    if (Len > LHSStr.size() || Len > RHSStr.size())
1027      return nullptr;
1028    // Fold the memcmp and normalize the result.  This way we get consistent
1029    // results across multiple platforms.
1030    uint64_t Ret = 0;
1031    int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1032    if (Cmp < 0)
1033      Ret = -1;
1034    else if (Cmp > 0)
1035      Ret = 1;
1036    return ConstantInt::get(CI->getType(), Ret);
1037  }
1038
1039  return nullptr;
1040}
1041
1042// Most simplifications for memcmp also apply to bcmp.
1043Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1044                                                   IRBuilderBase &B) {
1045  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1046  Value *Size = CI->getArgOperand(2);
1047
1048  if (LHS == RHS) // memcmp(s,s,x) -> 0
1049    return Constant::getNullValue(CI->getType());
1050
1051  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1052  // Handle constant lengths.
1053  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1054  if (!LenC)
1055    return nullptr;
1056
1057  // memcmp(d,s,0) -> 0
1058  if (LenC->getZExtValue() == 0)
1059    return Constant::getNullValue(CI->getType());
1060
1061  if (Value *Res =
1062          optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1063    return Res;
1064  return nullptr;
1065}
1066
1067Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1068  if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1069    return V;
1070
1071  // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1072  // bcmp can be more efficient than memcmp because it only has to know that
1073  // there is a difference, not how different one is to the other.
1074  if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1075    Value *LHS = CI->getArgOperand(0);
1076    Value *RHS = CI->getArgOperand(1);
1077    Value *Size = CI->getArgOperand(2);
1078    return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1079  }
1080
1081  return nullptr;
1082}
1083
1084Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1085  return optimizeMemCmpBCmpCommon(CI, B);
1086}
1087
1088Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1089  Value *Size = CI->getArgOperand(2);
1090  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1091  if (isa<IntrinsicInst>(CI))
1092    return nullptr;
1093
1094  // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1095  CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1096                                   CI->getArgOperand(1), Align(1), Size);
1097  NewCI->setAttributes(CI->getAttributes());
1098  return CI->getArgOperand(0);
1099}
1100
1101Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1102  Value *Dst = CI->getArgOperand(0);
1103  Value *Src = CI->getArgOperand(1);
1104  ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1105  ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1106  StringRef SrcStr;
1107  if (CI->use_empty() && Dst == Src)
1108    return Dst;
1109  // memccpy(d, s, c, 0) -> nullptr
1110  if (N) {
1111    if (N->isNullValue())
1112      return Constant::getNullValue(CI->getType());
1113    if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1114                               /*TrimAtNul=*/false) ||
1115        !StopChar)
1116      return nullptr;
1117  } else {
1118    return nullptr;
1119  }
1120
1121  // Wrap arg 'c' of type int to char
1122  size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1123  if (Pos == StringRef::npos) {
1124    if (N->getZExtValue() <= SrcStr.size()) {
1125      B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3));
1126      return Constant::getNullValue(CI->getType());
1127    }
1128    return nullptr;
1129  }
1130
1131  Value *NewN =
1132      ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1133  // memccpy -> llvm.memcpy
1134  B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN);
1135  return Pos + 1 <= N->getZExtValue()
1136             ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1137             : Constant::getNullValue(CI->getType());
1138}
1139
1140Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1141  Value *Dst = CI->getArgOperand(0);
1142  Value *N = CI->getArgOperand(2);
1143  // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1144  CallInst *NewCI =
1145      B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1146  NewCI->setAttributes(CI->getAttributes());
1147  return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1148}
1149
1150Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1151  Value *Size = CI->getArgOperand(2);
1152  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1153  if (isa<IntrinsicInst>(CI))
1154    return nullptr;
1155
1156  // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1157  CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1158                                    CI->getArgOperand(1), Align(1), Size);
1159  NewCI->setAttributes(CI->getAttributes());
1160  return CI->getArgOperand(0);
1161}
1162
1163/// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1164Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilderBase &B) {
1165  // This has to be a memset of zeros (bzero).
1166  auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1167  if (!FillValue || FillValue->getZExtValue() != 0)
1168    return nullptr;
1169
1170  // TODO: We should handle the case where the malloc has more than one use.
1171  // This is necessary to optimize common patterns such as when the result of
1172  // the malloc is checked against null or when a memset intrinsic is used in
1173  // place of a memset library call.
1174  auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1175  if (!Malloc || !Malloc->hasOneUse())
1176    return nullptr;
1177
1178  // Is the inner call really malloc()?
1179  Function *InnerCallee = Malloc->getCalledFunction();
1180  if (!InnerCallee)
1181    return nullptr;
1182
1183  LibFunc Func;
1184  if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1185      Func != LibFunc_malloc)
1186    return nullptr;
1187
1188  // The memset must cover the same number of bytes that are malloc'd.
1189  if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1190    return nullptr;
1191
1192  // Replace the malloc with a calloc. We need the data layout to know what the
1193  // actual size of a 'size_t' parameter is.
1194  B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1195  const DataLayout &DL = Malloc->getModule()->getDataLayout();
1196  IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1197  if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1198                                 Malloc->getArgOperand(0),
1199                                 Malloc->getAttributes(), B, *TLI)) {
1200    substituteInParent(Malloc, Calloc);
1201    return Calloc;
1202  }
1203
1204  return nullptr;
1205}
1206
1207Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1208  Value *Size = CI->getArgOperand(2);
1209  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1210  if (isa<IntrinsicInst>(CI))
1211    return nullptr;
1212
1213  if (auto *Calloc = foldMallocMemset(CI, B))
1214    return Calloc;
1215
1216  // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1217  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1218  CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1219  NewCI->setAttributes(CI->getAttributes());
1220  return CI->getArgOperand(0);
1221}
1222
1223Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1224  if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1225    return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1226
1227  return nullptr;
1228}
1229
1230//===----------------------------------------------------------------------===//
1231// Math Library Optimizations
1232//===----------------------------------------------------------------------===//
1233
1234// Replace a libcall \p CI with a call to intrinsic \p IID
1235static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1236                               Intrinsic::ID IID) {
1237  // Propagate fast-math flags from the existing call to the new call.
1238  IRBuilderBase::FastMathFlagGuard Guard(B);
1239  B.setFastMathFlags(CI->getFastMathFlags());
1240
1241  Module *M = CI->getModule();
1242  Value *V = CI->getArgOperand(0);
1243  Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1244  CallInst *NewCall = B.CreateCall(F, V);
1245  NewCall->takeName(CI);
1246  return NewCall;
1247}
1248
1249/// Return a variant of Val with float type.
1250/// Currently this works in two cases: If Val is an FPExtension of a float
1251/// value to something bigger, simply return the operand.
1252/// If Val is a ConstantFP but can be converted to a float ConstantFP without
1253/// loss of precision do so.
1254static Value *valueHasFloatPrecision(Value *Val) {
1255  if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1256    Value *Op = Cast->getOperand(0);
1257    if (Op->getType()->isFloatTy())
1258      return Op;
1259  }
1260  if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1261    APFloat F = Const->getValueAPF();
1262    bool losesInfo;
1263    (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1264                    &losesInfo);
1265    if (!losesInfo)
1266      return ConstantFP::get(Const->getContext(), F);
1267  }
1268  return nullptr;
1269}
1270
1271/// Shrink double -> float functions.
1272static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1273                               bool isBinary, bool isPrecise = false) {
1274  Function *CalleeFn = CI->getCalledFunction();
1275  if (!CI->getType()->isDoubleTy() || !CalleeFn)
1276    return nullptr;
1277
1278  // If not all the uses of the function are converted to float, then bail out.
1279  // This matters if the precision of the result is more important than the
1280  // precision of the arguments.
1281  if (isPrecise)
1282    for (User *U : CI->users()) {
1283      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1284      if (!Cast || !Cast->getType()->isFloatTy())
1285        return nullptr;
1286    }
1287
1288  // If this is something like 'g((double) float)', convert to 'gf(float)'.
1289  Value *V[2];
1290  V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1291  V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1292  if (!V[0] || (isBinary && !V[1]))
1293    return nullptr;
1294
1295  // If call isn't an intrinsic, check that it isn't within a function with the
1296  // same name as the float version of this call, otherwise the result is an
1297  // infinite loop.  For example, from MinGW-w64:
1298  //
1299  // float expf(float val) { return (float) exp((double) val); }
1300  StringRef CalleeName = CalleeFn->getName();
1301  bool IsIntrinsic = CalleeFn->isIntrinsic();
1302  if (!IsIntrinsic) {
1303    StringRef CallerName = CI->getFunction()->getName();
1304    if (!CallerName.empty() && CallerName.back() == 'f' &&
1305        CallerName.size() == (CalleeName.size() + 1) &&
1306        CallerName.startswith(CalleeName))
1307      return nullptr;
1308  }
1309
1310  // Propagate the math semantics from the current function to the new function.
1311  IRBuilderBase::FastMathFlagGuard Guard(B);
1312  B.setFastMathFlags(CI->getFastMathFlags());
1313
1314  // g((double) float) -> (double) gf(float)
1315  Value *R;
1316  if (IsIntrinsic) {
1317    Module *M = CI->getModule();
1318    Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1319    Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1320    R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1321  } else {
1322    AttributeList CalleeAttrs = CalleeFn->getAttributes();
1323    R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1324                 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1325  }
1326  return B.CreateFPExt(R, B.getDoubleTy());
1327}
1328
1329/// Shrink double -> float for unary functions.
1330static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1331                                    bool isPrecise = false) {
1332  return optimizeDoubleFP(CI, B, false, isPrecise);
1333}
1334
1335/// Shrink double -> float for binary functions.
1336static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1337                                     bool isPrecise = false) {
1338  return optimizeDoubleFP(CI, B, true, isPrecise);
1339}
1340
1341// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1342Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1343  if (!CI->isFast())
1344    return nullptr;
1345
1346  // Propagate fast-math flags from the existing call to new instructions.
1347  IRBuilderBase::FastMathFlagGuard Guard(B);
1348  B.setFastMathFlags(CI->getFastMathFlags());
1349
1350  Value *Real, *Imag;
1351  if (CI->getNumArgOperands() == 1) {
1352    Value *Op = CI->getArgOperand(0);
1353    assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1354    Real = B.CreateExtractValue(Op, 0, "real");
1355    Imag = B.CreateExtractValue(Op, 1, "imag");
1356  } else {
1357    assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1358    Real = CI->getArgOperand(0);
1359    Imag = CI->getArgOperand(1);
1360  }
1361
1362  Value *RealReal = B.CreateFMul(Real, Real);
1363  Value *ImagImag = B.CreateFMul(Imag, Imag);
1364
1365  Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1366                                              CI->getType());
1367  return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1368}
1369
1370static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1371                                      IRBuilderBase &B) {
1372  if (!isa<FPMathOperator>(Call))
1373    return nullptr;
1374
1375  IRBuilderBase::FastMathFlagGuard Guard(B);
1376  B.setFastMathFlags(Call->getFastMathFlags());
1377
1378  // TODO: Can this be shared to also handle LLVM intrinsics?
1379  Value *X;
1380  switch (Func) {
1381  case LibFunc_sin:
1382  case LibFunc_sinf:
1383  case LibFunc_sinl:
1384  case LibFunc_tan:
1385  case LibFunc_tanf:
1386  case LibFunc_tanl:
1387    // sin(-X) --> -sin(X)
1388    // tan(-X) --> -tan(X)
1389    if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1390      return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1391    break;
1392  case LibFunc_cos:
1393  case LibFunc_cosf:
1394  case LibFunc_cosl:
1395    // cos(-X) --> cos(X)
1396    if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1397      return B.CreateCall(Call->getCalledFunction(), X, "cos");
1398    break;
1399  default:
1400    break;
1401  }
1402  return nullptr;
1403}
1404
1405static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) {
1406  // Multiplications calculated using Addition Chains.
1407  // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1408
1409  assert(Exp != 0 && "Incorrect exponent 0 not handled");
1410
1411  if (InnerChain[Exp])
1412    return InnerChain[Exp];
1413
1414  static const unsigned AddChain[33][2] = {
1415      {0, 0}, // Unused.
1416      {0, 0}, // Unused (base case = pow1).
1417      {1, 1}, // Unused (pre-computed).
1418      {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1419      {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1420      {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1421      {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1422      {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1423  };
1424
1425  InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1426                                 getPow(InnerChain, AddChain[Exp][1], B));
1427  return InnerChain[Exp];
1428}
1429
1430// Return a properly extended 32-bit integer if the operation is an itofp.
1431static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B) {
1432  if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1433    Value *Op = cast<Instruction>(I2F)->getOperand(0);
1434    // Make sure that the exponent fits inside an int32_t,
1435    // thus avoiding any range issues that FP has not.
1436    unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1437    if (BitWidth < 32 ||
1438        (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1439      return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1440                                  : B.CreateZExt(Op, B.getInt32Ty());
1441  }
1442
1443  return nullptr;
1444}
1445
1446/// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1447/// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1448/// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1449Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1450  Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1451  AttributeList Attrs; // Attributes are only meaningful on the original call
1452  Module *Mod = Pow->getModule();
1453  Type *Ty = Pow->getType();
1454  bool Ignored;
1455
1456  // Evaluate special cases related to a nested function as the base.
1457
1458  // pow(exp(x), y) -> exp(x * y)
1459  // pow(exp2(x), y) -> exp2(x * y)
1460  // If exp{,2}() is used only once, it is better to fold two transcendental
1461  // math functions into one.  If used again, exp{,2}() would still have to be
1462  // called with the original argument, then keep both original transcendental
1463  // functions.  However, this transformation is only safe with fully relaxed
1464  // math semantics, since, besides rounding differences, it changes overflow
1465  // and underflow behavior quite dramatically.  For example:
1466  //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1467  // Whereas:
1468  //   exp(1000 * 0.001) = exp(1)
1469  // TODO: Loosen the requirement for fully relaxed math semantics.
1470  // TODO: Handle exp10() when more targets have it available.
1471  CallInst *BaseFn = dyn_cast<CallInst>(Base);
1472  if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1473    LibFunc LibFn;
1474
1475    Function *CalleeFn = BaseFn->getCalledFunction();
1476    if (CalleeFn &&
1477        TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1478      StringRef ExpName;
1479      Intrinsic::ID ID;
1480      Value *ExpFn;
1481      LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1482
1483      switch (LibFn) {
1484      default:
1485        return nullptr;
1486      case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1487        ExpName = TLI->getName(LibFunc_exp);
1488        ID = Intrinsic::exp;
1489        LibFnFloat = LibFunc_expf;
1490        LibFnDouble = LibFunc_exp;
1491        LibFnLongDouble = LibFunc_expl;
1492        break;
1493      case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1494        ExpName = TLI->getName(LibFunc_exp2);
1495        ID = Intrinsic::exp2;
1496        LibFnFloat = LibFunc_exp2f;
1497        LibFnDouble = LibFunc_exp2;
1498        LibFnLongDouble = LibFunc_exp2l;
1499        break;
1500      }
1501
1502      // Create new exp{,2}() with the product as its argument.
1503      Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1504      ExpFn = BaseFn->doesNotAccessMemory()
1505              ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1506                             FMul, ExpName)
1507              : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1508                                     LibFnLongDouble, B,
1509                                     BaseFn->getAttributes());
1510
1511      // Since the new exp{,2}() is different from the original one, dead code
1512      // elimination cannot be trusted to remove it, since it may have side
1513      // effects (e.g., errno).  When the only consumer for the original
1514      // exp{,2}() is pow(), then it has to be explicitly erased.
1515      substituteInParent(BaseFn, ExpFn);
1516      return ExpFn;
1517    }
1518  }
1519
1520  // Evaluate special cases related to a constant base.
1521
1522  const APFloat *BaseF;
1523  if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1524    return nullptr;
1525
1526  // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1527  if (match(Base, m_SpecificFP(2.0)) &&
1528      (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1529      hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1530    if (Value *ExpoI = getIntToFPVal(Expo, B))
1531      return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1532                                   LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1533                                   B, Attrs);
1534  }
1535
1536  // pow(2.0 ** n, x) -> exp2(n * x)
1537  if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1538    APFloat BaseR = APFloat(1.0);
1539    BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1540    BaseR = BaseR / *BaseF;
1541    bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1542    const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1543    APSInt NI(64, false);
1544    if ((IsInteger || IsReciprocal) &&
1545        NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1546            APFloat::opOK &&
1547        NI > 1 && NI.isPowerOf2()) {
1548      double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1549      Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1550      if (Pow->doesNotAccessMemory())
1551        return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1552                            FMul, "exp2");
1553      else
1554        return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1555                                    LibFunc_exp2l, B, Attrs);
1556    }
1557  }
1558
1559  // pow(10.0, x) -> exp10(x)
1560  // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1561  if (match(Base, m_SpecificFP(10.0)) &&
1562      hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1563    return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1564                                LibFunc_exp10l, B, Attrs);
1565
1566  // pow(x, y) -> exp2(log2(x) * y)
1567  if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
1568      !BaseF->isNegative()) {
1569    // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
1570    // Luckily optimizePow has already handled the x == 1 case.
1571    assert(!match(Base, m_FPOne()) &&
1572           "pow(1.0, y) should have been simplified earlier!");
1573
1574    Value *Log = nullptr;
1575    if (Ty->isFloatTy())
1576      Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1577    else if (Ty->isDoubleTy())
1578      Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1579
1580    if (Log) {
1581      Value *FMul = B.CreateFMul(Log, Expo, "mul");
1582      if (Pow->doesNotAccessMemory())
1583        return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1584                            FMul, "exp2");
1585      else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1586        return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1587                                    LibFunc_exp2l, B, Attrs);
1588    }
1589  }
1590
1591  return nullptr;
1592}
1593
1594static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1595                          Module *M, IRBuilderBase &B,
1596                          const TargetLibraryInfo *TLI) {
1597  // If errno is never set, then use the intrinsic for sqrt().
1598  if (NoErrno) {
1599    Function *SqrtFn =
1600        Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1601    return B.CreateCall(SqrtFn, V, "sqrt");
1602  }
1603
1604  // Otherwise, use the libcall for sqrt().
1605  if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1606    // TODO: We also should check that the target can in fact lower the sqrt()
1607    // libcall. We currently have no way to ask this question, so we ask if
1608    // the target has a sqrt() libcall, which is not exactly the same.
1609    return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1610                                LibFunc_sqrtl, B, Attrs);
1611
1612  return nullptr;
1613}
1614
1615/// Use square root in place of pow(x, +/-0.5).
1616Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
1617  Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1618  AttributeList Attrs; // Attributes are only meaningful on the original call
1619  Module *Mod = Pow->getModule();
1620  Type *Ty = Pow->getType();
1621
1622  const APFloat *ExpoF;
1623  if (!match(Expo, m_APFloat(ExpoF)) ||
1624      (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1625    return nullptr;
1626
1627  // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1628  // so that requires fast-math-flags (afn or reassoc).
1629  if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1630    return nullptr;
1631
1632  Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1633  if (!Sqrt)
1634    return nullptr;
1635
1636  // Handle signed zero base by expanding to fabs(sqrt(x)).
1637  if (!Pow->hasNoSignedZeros()) {
1638    Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1639    Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1640  }
1641
1642  // Handle non finite base by expanding to
1643  // (x == -infinity ? +infinity : sqrt(x)).
1644  if (!Pow->hasNoInfs()) {
1645    Value *PosInf = ConstantFP::getInfinity(Ty),
1646          *NegInf = ConstantFP::getInfinity(Ty, true);
1647    Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1648    Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1649  }
1650
1651  // If the exponent is negative, then get the reciprocal.
1652  if (ExpoF->isNegative())
1653    Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1654
1655  return Sqrt;
1656}
1657
1658static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1659                                           IRBuilderBase &B) {
1660  Value *Args[] = {Base, Expo};
1661  Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1662  return B.CreateCall(F, Args);
1663}
1664
1665Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
1666  Value *Base = Pow->getArgOperand(0);
1667  Value *Expo = Pow->getArgOperand(1);
1668  Function *Callee = Pow->getCalledFunction();
1669  StringRef Name = Callee->getName();
1670  Type *Ty = Pow->getType();
1671  Module *M = Pow->getModule();
1672  Value *Shrunk = nullptr;
1673  bool AllowApprox = Pow->hasApproxFunc();
1674  bool Ignored;
1675
1676  // Propagate the math semantics from the call to any created instructions.
1677  IRBuilderBase::FastMathFlagGuard Guard(B);
1678  B.setFastMathFlags(Pow->getFastMathFlags());
1679
1680  // Shrink pow() to powf() if the arguments are single precision,
1681  // unless the result is expected to be double precision.
1682  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1683      hasFloatVersion(Name))
1684    Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1685
1686  // Evaluate special cases related to the base.
1687
1688  // pow(1.0, x) -> 1.0
1689  if (match(Base, m_FPOne()))
1690    return Base;
1691
1692  if (Value *Exp = replacePowWithExp(Pow, B))
1693    return Exp;
1694
1695  // Evaluate special cases related to the exponent.
1696
1697  // pow(x, -1.0) -> 1.0 / x
1698  if (match(Expo, m_SpecificFP(-1.0)))
1699    return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1700
1701  // pow(x, +/-0.0) -> 1.0
1702  if (match(Expo, m_AnyZeroFP()))
1703    return ConstantFP::get(Ty, 1.0);
1704
1705  // pow(x, 1.0) -> x
1706  if (match(Expo, m_FPOne()))
1707    return Base;
1708
1709  // pow(x, 2.0) -> x * x
1710  if (match(Expo, m_SpecificFP(2.0)))
1711    return B.CreateFMul(Base, Base, "square");
1712
1713  if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1714    return Sqrt;
1715
1716  // pow(x, n) -> x * x * x * ...
1717  const APFloat *ExpoF;
1718  if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1719    // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1720    // If the exponent is an integer+0.5 we generate a call to sqrt and an
1721    // additional fmul.
1722    // TODO: This whole transformation should be backend specific (e.g. some
1723    //       backends might prefer libcalls or the limit for the exponent might
1724    //       be different) and it should also consider optimizing for size.
1725    APFloat LimF(ExpoF->getSemantics(), 33),
1726            ExpoA(abs(*ExpoF));
1727    if (ExpoA < LimF) {
1728      // This transformation applies to integer or integer+0.5 exponents only.
1729      // For integer+0.5, we create a sqrt(Base) call.
1730      Value *Sqrt = nullptr;
1731      if (!ExpoA.isInteger()) {
1732        APFloat Expo2 = ExpoA;
1733        // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1734        // is no floating point exception and the result is an integer, then
1735        // ExpoA == integer + 0.5
1736        if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1737          return nullptr;
1738
1739        if (!Expo2.isInteger())
1740          return nullptr;
1741
1742        Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1743                           Pow->doesNotAccessMemory(), M, B, TLI);
1744      }
1745
1746      // We will memoize intermediate products of the Addition Chain.
1747      Value *InnerChain[33] = {nullptr};
1748      InnerChain[1] = Base;
1749      InnerChain[2] = B.CreateFMul(Base, Base, "square");
1750
1751      // We cannot readily convert a non-double type (like float) to a double.
1752      // So we first convert it to something which could be converted to double.
1753      ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1754      Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1755
1756      // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1757      if (Sqrt)
1758        FMul = B.CreateFMul(FMul, Sqrt);
1759
1760      // If the exponent is negative, then get the reciprocal.
1761      if (ExpoF->isNegative())
1762        FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1763
1764      return FMul;
1765    }
1766
1767    APSInt IntExpo(32, /*isUnsigned=*/false);
1768    // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1769    if (ExpoF->isInteger() &&
1770        ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1771            APFloat::opOK) {
1772      return createPowWithIntegerExponent(
1773          Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1774    }
1775  }
1776
1777  // powf(x, itofp(y)) -> powi(x, y)
1778  if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1779    if (Value *ExpoI = getIntToFPVal(Expo, B))
1780      return createPowWithIntegerExponent(Base, ExpoI, M, B);
1781  }
1782
1783  return Shrunk;
1784}
1785
1786Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
1787  Function *Callee = CI->getCalledFunction();
1788  AttributeList Attrs; // Attributes are only meaningful on the original call
1789  StringRef Name = Callee->getName();
1790  Value *Ret = nullptr;
1791  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1792      hasFloatVersion(Name))
1793    Ret = optimizeUnaryDoubleFP(CI, B, true);
1794
1795  Type *Ty = CI->getType();
1796  Value *Op = CI->getArgOperand(0);
1797
1798  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1799  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1800  if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1801      hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1802    if (Value *Exp = getIntToFPVal(Op, B))
1803      return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1804                                   LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1805                                   B, Attrs);
1806  }
1807
1808  return Ret;
1809}
1810
1811Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
1812  // If we can shrink the call to a float function rather than a double
1813  // function, do that first.
1814  Function *Callee = CI->getCalledFunction();
1815  StringRef Name = Callee->getName();
1816  if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1817    if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1818      return Ret;
1819
1820  // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1821  // the intrinsics for improved optimization (for example, vectorization).
1822  // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1823  // From the C standard draft WG14/N1256:
1824  // "Ideally, fmax would be sensitive to the sign of zero, for example
1825  // fmax(-0.0, +0.0) would return +0; however, implementation in software
1826  // might be impractical."
1827  IRBuilderBase::FastMathFlagGuard Guard(B);
1828  FastMathFlags FMF = CI->getFastMathFlags();
1829  FMF.setNoSignedZeros();
1830  B.setFastMathFlags(FMF);
1831
1832  Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1833                                                           : Intrinsic::maxnum;
1834  Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1835  return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1836}
1837
1838Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
1839  Function *LogFn = Log->getCalledFunction();
1840  AttributeList Attrs; // Attributes are only meaningful on the original call
1841  StringRef LogNm = LogFn->getName();
1842  Intrinsic::ID LogID = LogFn->getIntrinsicID();
1843  Module *Mod = Log->getModule();
1844  Type *Ty = Log->getType();
1845  Value *Ret = nullptr;
1846
1847  if (UnsafeFPShrink && hasFloatVersion(LogNm))
1848    Ret = optimizeUnaryDoubleFP(Log, B, true);
1849
1850  // The earlier call must also be 'fast' in order to do these transforms.
1851  CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1852  if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1853    return Ret;
1854
1855  LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1856
1857  // This is only applicable to log(), log2(), log10().
1858  if (TLI->getLibFunc(LogNm, LogLb))
1859    switch (LogLb) {
1860    case LibFunc_logf:
1861      LogID = Intrinsic::log;
1862      ExpLb = LibFunc_expf;
1863      Exp2Lb = LibFunc_exp2f;
1864      Exp10Lb = LibFunc_exp10f;
1865      PowLb = LibFunc_powf;
1866      break;
1867    case LibFunc_log:
1868      LogID = Intrinsic::log;
1869      ExpLb = LibFunc_exp;
1870      Exp2Lb = LibFunc_exp2;
1871      Exp10Lb = LibFunc_exp10;
1872      PowLb = LibFunc_pow;
1873      break;
1874    case LibFunc_logl:
1875      LogID = Intrinsic::log;
1876      ExpLb = LibFunc_expl;
1877      Exp2Lb = LibFunc_exp2l;
1878      Exp10Lb = LibFunc_exp10l;
1879      PowLb = LibFunc_powl;
1880      break;
1881    case LibFunc_log2f:
1882      LogID = Intrinsic::log2;
1883      ExpLb = LibFunc_expf;
1884      Exp2Lb = LibFunc_exp2f;
1885      Exp10Lb = LibFunc_exp10f;
1886      PowLb = LibFunc_powf;
1887      break;
1888    case LibFunc_log2:
1889      LogID = Intrinsic::log2;
1890      ExpLb = LibFunc_exp;
1891      Exp2Lb = LibFunc_exp2;
1892      Exp10Lb = LibFunc_exp10;
1893      PowLb = LibFunc_pow;
1894      break;
1895    case LibFunc_log2l:
1896      LogID = Intrinsic::log2;
1897      ExpLb = LibFunc_expl;
1898      Exp2Lb = LibFunc_exp2l;
1899      Exp10Lb = LibFunc_exp10l;
1900      PowLb = LibFunc_powl;
1901      break;
1902    case LibFunc_log10f:
1903      LogID = Intrinsic::log10;
1904      ExpLb = LibFunc_expf;
1905      Exp2Lb = LibFunc_exp2f;
1906      Exp10Lb = LibFunc_exp10f;
1907      PowLb = LibFunc_powf;
1908      break;
1909    case LibFunc_log10:
1910      LogID = Intrinsic::log10;
1911      ExpLb = LibFunc_exp;
1912      Exp2Lb = LibFunc_exp2;
1913      Exp10Lb = LibFunc_exp10;
1914      PowLb = LibFunc_pow;
1915      break;
1916    case LibFunc_log10l:
1917      LogID = Intrinsic::log10;
1918      ExpLb = LibFunc_expl;
1919      Exp2Lb = LibFunc_exp2l;
1920      Exp10Lb = LibFunc_exp10l;
1921      PowLb = LibFunc_powl;
1922      break;
1923    default:
1924      return Ret;
1925    }
1926  else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1927           LogID == Intrinsic::log10) {
1928    if (Ty->getScalarType()->isFloatTy()) {
1929      ExpLb = LibFunc_expf;
1930      Exp2Lb = LibFunc_exp2f;
1931      Exp10Lb = LibFunc_exp10f;
1932      PowLb = LibFunc_powf;
1933    } else if (Ty->getScalarType()->isDoubleTy()) {
1934      ExpLb = LibFunc_exp;
1935      Exp2Lb = LibFunc_exp2;
1936      Exp10Lb = LibFunc_exp10;
1937      PowLb = LibFunc_pow;
1938    } else
1939      return Ret;
1940  } else
1941    return Ret;
1942
1943  IRBuilderBase::FastMathFlagGuard Guard(B);
1944  B.setFastMathFlags(FastMathFlags::getFast());
1945
1946  Intrinsic::ID ArgID = Arg->getIntrinsicID();
1947  LibFunc ArgLb = NotLibFunc;
1948  TLI->getLibFunc(*Arg, ArgLb);
1949
1950  // log(pow(x,y)) -> y*log(x)
1951  if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1952    Value *LogX =
1953        Log->doesNotAccessMemory()
1954            ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1955                           Arg->getOperand(0), "log")
1956            : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1957    Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1958    // Since pow() may have side effects, e.g. errno,
1959    // dead code elimination may not be trusted to remove it.
1960    substituteInParent(Arg, MulY);
1961    return MulY;
1962  }
1963
1964  // log(exp{,2,10}(y)) -> y*log({e,2,10})
1965  // TODO: There is no exp10() intrinsic yet.
1966  if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1967           ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1968    Constant *Eul;
1969    if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1970      // FIXME: Add more precise value of e for long double.
1971      Eul = ConstantFP::get(Log->getType(), numbers::e);
1972    else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1973      Eul = ConstantFP::get(Log->getType(), 2.0);
1974    else
1975      Eul = ConstantFP::get(Log->getType(), 10.0);
1976    Value *LogE = Log->doesNotAccessMemory()
1977                      ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1978                                     Eul, "log")
1979                      : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1980    Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1981    // Since exp() may have side effects, e.g. errno,
1982    // dead code elimination may not be trusted to remove it.
1983    substituteInParent(Arg, MulY);
1984    return MulY;
1985  }
1986
1987  return Ret;
1988}
1989
1990Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
1991  Function *Callee = CI->getCalledFunction();
1992  Value *Ret = nullptr;
1993  // TODO: Once we have a way (other than checking for the existince of the
1994  // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1995  // condition below.
1996  if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1997                                  Callee->getIntrinsicID() == Intrinsic::sqrt))
1998    Ret = optimizeUnaryDoubleFP(CI, B, true);
1999
2000  if (!CI->isFast())
2001    return Ret;
2002
2003  Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2004  if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2005    return Ret;
2006
2007  // We're looking for a repeated factor in a multiplication tree,
2008  // so we can do this fold: sqrt(x * x) -> fabs(x);
2009  // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2010  Value *Op0 = I->getOperand(0);
2011  Value *Op1 = I->getOperand(1);
2012  Value *RepeatOp = nullptr;
2013  Value *OtherOp = nullptr;
2014  if (Op0 == Op1) {
2015    // Simple match: the operands of the multiply are identical.
2016    RepeatOp = Op0;
2017  } else {
2018    // Look for a more complicated pattern: one of the operands is itself
2019    // a multiply, so search for a common factor in that multiply.
2020    // Note: We don't bother looking any deeper than this first level or for
2021    // variations of this pattern because instcombine's visitFMUL and/or the
2022    // reassociation pass should give us this form.
2023    Value *OtherMul0, *OtherMul1;
2024    if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2025      // Pattern: sqrt((x * y) * z)
2026      if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2027        // Matched: sqrt((x * x) * z)
2028        RepeatOp = OtherMul0;
2029        OtherOp = Op1;
2030      }
2031    }
2032  }
2033  if (!RepeatOp)
2034    return Ret;
2035
2036  // Fast math flags for any created instructions should match the sqrt
2037  // and multiply.
2038  IRBuilderBase::FastMathFlagGuard Guard(B);
2039  B.setFastMathFlags(I->getFastMathFlags());
2040
2041  // If we found a repeated factor, hoist it out of the square root and
2042  // replace it with the fabs of that factor.
2043  Module *M = Callee->getParent();
2044  Type *ArgType = I->getType();
2045  Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2046  Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2047  if (OtherOp) {
2048    // If we found a non-repeated factor, we still need to get its square
2049    // root. We then multiply that by the value that was simplified out
2050    // of the square root calculation.
2051    Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2052    Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2053    return B.CreateFMul(FabsCall, SqrtCall);
2054  }
2055  return FabsCall;
2056}
2057
2058// TODO: Generalize to handle any trig function and its inverse.
2059Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2060  Function *Callee = CI->getCalledFunction();
2061  Value *Ret = nullptr;
2062  StringRef Name = Callee->getName();
2063  if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2064    Ret = optimizeUnaryDoubleFP(CI, B, true);
2065
2066  Value *Op1 = CI->getArgOperand(0);
2067  auto *OpC = dyn_cast<CallInst>(Op1);
2068  if (!OpC)
2069    return Ret;
2070
2071  // Both calls must be 'fast' in order to remove them.
2072  if (!CI->isFast() || !OpC->isFast())
2073    return Ret;
2074
2075  // tan(atan(x)) -> x
2076  // tanf(atanf(x)) -> x
2077  // tanl(atanl(x)) -> x
2078  LibFunc Func;
2079  Function *F = OpC->getCalledFunction();
2080  if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2081      ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2082       (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2083       (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2084    Ret = OpC->getArgOperand(0);
2085  return Ret;
2086}
2087
2088static bool isTrigLibCall(CallInst *CI) {
2089  // We can only hope to do anything useful if we can ignore things like errno
2090  // and floating-point exceptions.
2091  // We already checked the prototype.
2092  return CI->hasFnAttr(Attribute::NoUnwind) &&
2093         CI->hasFnAttr(Attribute::ReadNone);
2094}
2095
2096static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2097                             bool UseFloat, Value *&Sin, Value *&Cos,
2098                             Value *&SinCos) {
2099  Type *ArgTy = Arg->getType();
2100  Type *ResTy;
2101  StringRef Name;
2102
2103  Triple T(OrigCallee->getParent()->getTargetTriple());
2104  if (UseFloat) {
2105    Name = "__sincospif_stret";
2106
2107    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2108    // x86_64 can't use {float, float} since that would be returned in both
2109    // xmm0 and xmm1, which isn't what a real struct would do.
2110    ResTy = T.getArch() == Triple::x86_64
2111                ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2112                : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2113  } else {
2114    Name = "__sincospi_stret";
2115    ResTy = StructType::get(ArgTy, ArgTy);
2116  }
2117
2118  Module *M = OrigCallee->getParent();
2119  FunctionCallee Callee =
2120      M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2121
2122  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2123    // If the argument is an instruction, it must dominate all uses so put our
2124    // sincos call there.
2125    B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2126  } else {
2127    // Otherwise (e.g. for a constant) the beginning of the function is as
2128    // good a place as any.
2129    BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2130    B.SetInsertPoint(&EntryBB, EntryBB.begin());
2131  }
2132
2133  SinCos = B.CreateCall(Callee, Arg, "sincospi");
2134
2135  if (SinCos->getType()->isStructTy()) {
2136    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2137    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2138  } else {
2139    Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2140                                 "sinpi");
2141    Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2142                                 "cospi");
2143  }
2144}
2145
2146Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) {
2147  // Make sure the prototype is as expected, otherwise the rest of the
2148  // function is probably invalid and likely to abort.
2149  if (!isTrigLibCall(CI))
2150    return nullptr;
2151
2152  Value *Arg = CI->getArgOperand(0);
2153  SmallVector<CallInst *, 1> SinCalls;
2154  SmallVector<CallInst *, 1> CosCalls;
2155  SmallVector<CallInst *, 1> SinCosCalls;
2156
2157  bool IsFloat = Arg->getType()->isFloatTy();
2158
2159  // Look for all compatible sinpi, cospi and sincospi calls with the same
2160  // argument. If there are enough (in some sense) we can make the
2161  // substitution.
2162  Function *F = CI->getFunction();
2163  for (User *U : Arg->users())
2164    classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2165
2166  // It's only worthwhile if both sinpi and cospi are actually used.
2167  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2168    return nullptr;
2169
2170  Value *Sin, *Cos, *SinCos;
2171  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2172
2173  auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2174                                 Value *Res) {
2175    for (CallInst *C : Calls)
2176      replaceAllUsesWith(C, Res);
2177  };
2178
2179  replaceTrigInsts(SinCalls, Sin);
2180  replaceTrigInsts(CosCalls, Cos);
2181  replaceTrigInsts(SinCosCalls, SinCos);
2182
2183  return nullptr;
2184}
2185
2186void LibCallSimplifier::classifyArgUse(
2187    Value *Val, Function *F, bool IsFloat,
2188    SmallVectorImpl<CallInst *> &SinCalls,
2189    SmallVectorImpl<CallInst *> &CosCalls,
2190    SmallVectorImpl<CallInst *> &SinCosCalls) {
2191  CallInst *CI = dyn_cast<CallInst>(Val);
2192
2193  if (!CI)
2194    return;
2195
2196  // Don't consider calls in other functions.
2197  if (CI->getFunction() != F)
2198    return;
2199
2200  Function *Callee = CI->getCalledFunction();
2201  LibFunc Func;
2202  if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2203      !isTrigLibCall(CI))
2204    return;
2205
2206  if (IsFloat) {
2207    if (Func == LibFunc_sinpif)
2208      SinCalls.push_back(CI);
2209    else if (Func == LibFunc_cospif)
2210      CosCalls.push_back(CI);
2211    else if (Func == LibFunc_sincospif_stret)
2212      SinCosCalls.push_back(CI);
2213  } else {
2214    if (Func == LibFunc_sinpi)
2215      SinCalls.push_back(CI);
2216    else if (Func == LibFunc_cospi)
2217      CosCalls.push_back(CI);
2218    else if (Func == LibFunc_sincospi_stret)
2219      SinCosCalls.push_back(CI);
2220  }
2221}
2222
2223//===----------------------------------------------------------------------===//
2224// Integer Library Call Optimizations
2225//===----------------------------------------------------------------------===//
2226
2227Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2228  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2229  Value *Op = CI->getArgOperand(0);
2230  Type *ArgType = Op->getType();
2231  Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2232                                          Intrinsic::cttz, ArgType);
2233  Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2234  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2235  V = B.CreateIntCast(V, B.getInt32Ty(), false);
2236
2237  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2238  return B.CreateSelect(Cond, V, B.getInt32(0));
2239}
2240
2241Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2242  // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2243  Value *Op = CI->getArgOperand(0);
2244  Type *ArgType = Op->getType();
2245  Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2246                                          Intrinsic::ctlz, ArgType);
2247  Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2248  V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2249                  V);
2250  return B.CreateIntCast(V, CI->getType(), false);
2251}
2252
2253Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2254  // abs(x) -> x <s 0 ? -x : x
2255  // The negation has 'nsw' because abs of INT_MIN is undefined.
2256  Value *X = CI->getArgOperand(0);
2257  Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2258  Value *NegX = B.CreateNSWNeg(X, "neg");
2259  return B.CreateSelect(IsNeg, NegX, X);
2260}
2261
2262Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2263  // isdigit(c) -> (c-'0') <u 10
2264  Value *Op = CI->getArgOperand(0);
2265  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2266  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2267  return B.CreateZExt(Op, CI->getType());
2268}
2269
2270Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2271  // isascii(c) -> c <u 128
2272  Value *Op = CI->getArgOperand(0);
2273  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2274  return B.CreateZExt(Op, CI->getType());
2275}
2276
2277Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2278  // toascii(c) -> c & 0x7f
2279  return B.CreateAnd(CI->getArgOperand(0),
2280                     ConstantInt::get(CI->getType(), 0x7F));
2281}
2282
2283Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2284  StringRef Str;
2285  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2286    return nullptr;
2287
2288  return convertStrToNumber(CI, Str, 10);
2289}
2290
2291Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) {
2292  StringRef Str;
2293  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2294    return nullptr;
2295
2296  if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2297    return nullptr;
2298
2299  if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2300    return convertStrToNumber(CI, Str, CInt->getSExtValue());
2301  }
2302
2303  return nullptr;
2304}
2305
2306//===----------------------------------------------------------------------===//
2307// Formatting and IO Library Call Optimizations
2308//===----------------------------------------------------------------------===//
2309
2310static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2311
2312Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2313                                                 int StreamArg) {
2314  Function *Callee = CI->getCalledFunction();
2315  // Error reporting calls should be cold, mark them as such.
2316  // This applies even to non-builtin calls: it is only a hint and applies to
2317  // functions that the frontend might not understand as builtins.
2318
2319  // This heuristic was suggested in:
2320  // Improving Static Branch Prediction in a Compiler
2321  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2322  // Proceedings of PACT'98, Oct. 1998, IEEE
2323  if (!CI->hasFnAttr(Attribute::Cold) &&
2324      isReportingError(Callee, CI, StreamArg)) {
2325    CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2326  }
2327
2328  return nullptr;
2329}
2330
2331static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2332  if (!Callee || !Callee->isDeclaration())
2333    return false;
2334
2335  if (StreamArg < 0)
2336    return true;
2337
2338  // These functions might be considered cold, but only if their stream
2339  // argument is stderr.
2340
2341  if (StreamArg >= (int)CI->getNumArgOperands())
2342    return false;
2343  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2344  if (!LI)
2345    return false;
2346  GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2347  if (!GV || !GV->isDeclaration())
2348    return false;
2349  return GV->getName() == "stderr";
2350}
2351
2352Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2353  // Check for a fixed format string.
2354  StringRef FormatStr;
2355  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2356    return nullptr;
2357
2358  // Empty format string -> noop.
2359  if (FormatStr.empty()) // Tolerate printf's declared void.
2360    return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2361
2362  // Do not do any of the following transformations if the printf return value
2363  // is used, in general the printf return value is not compatible with either
2364  // putchar() or puts().
2365  if (!CI->use_empty())
2366    return nullptr;
2367
2368  // printf("x") -> putchar('x'), even for "%" and "%%".
2369  if (FormatStr.size() == 1 || FormatStr == "%%")
2370    return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2371
2372  // printf("%s", "a") --> putchar('a')
2373  if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2374    StringRef ChrStr;
2375    if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2376      return nullptr;
2377    if (ChrStr.size() != 1)
2378      return nullptr;
2379    return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2380  }
2381
2382  // printf("foo\n") --> puts("foo")
2383  if (FormatStr[FormatStr.size() - 1] == '\n' &&
2384      FormatStr.find('%') == StringRef::npos) { // No format characters.
2385    // Create a string literal with no \n on it.  We expect the constant merge
2386    // pass to be run after this pass, to merge duplicate strings.
2387    FormatStr = FormatStr.drop_back();
2388    Value *GV = B.CreateGlobalString(FormatStr, "str");
2389    return emitPutS(GV, B, TLI);
2390  }
2391
2392  // Optimize specific format strings.
2393  // printf("%c", chr) --> putchar(chr)
2394  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2395      CI->getArgOperand(1)->getType()->isIntegerTy())
2396    return emitPutChar(CI->getArgOperand(1), B, TLI);
2397
2398  // printf("%s\n", str) --> puts(str)
2399  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2400      CI->getArgOperand(1)->getType()->isPointerTy())
2401    return emitPutS(CI->getArgOperand(1), B, TLI);
2402  return nullptr;
2403}
2404
2405Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
2406
2407  Function *Callee = CI->getCalledFunction();
2408  FunctionType *FT = Callee->getFunctionType();
2409  if (Value *V = optimizePrintFString(CI, B)) {
2410    return V;
2411  }
2412
2413  // printf(format, ...) -> iprintf(format, ...) if no floating point
2414  // arguments.
2415  if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2416    Module *M = B.GetInsertBlock()->getParent()->getParent();
2417    FunctionCallee IPrintFFn =
2418        M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2419    CallInst *New = cast<CallInst>(CI->clone());
2420    New->setCalledFunction(IPrintFFn);
2421    B.Insert(New);
2422    return New;
2423  }
2424
2425  // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2426  // arguments.
2427  if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2428    Module *M = B.GetInsertBlock()->getParent()->getParent();
2429    auto SmallPrintFFn =
2430        M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2431                               FT, Callee->getAttributes());
2432    CallInst *New = cast<CallInst>(CI->clone());
2433    New->setCalledFunction(SmallPrintFFn);
2434    B.Insert(New);
2435    return New;
2436  }
2437
2438  annotateNonNullBasedOnAccess(CI, 0);
2439  return nullptr;
2440}
2441
2442Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
2443                                                IRBuilderBase &B) {
2444  // Check for a fixed format string.
2445  StringRef FormatStr;
2446  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2447    return nullptr;
2448
2449  // If we just have a format string (nothing else crazy) transform it.
2450  if (CI->getNumArgOperands() == 2) {
2451    // Make sure there's no % in the constant array.  We could try to handle
2452    // %% -> % in the future if we cared.
2453    if (FormatStr.find('%') != StringRef::npos)
2454      return nullptr; // we found a format specifier, bail out.
2455
2456    // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2457    B.CreateMemCpy(
2458        CI->getArgOperand(0), Align(1), CI->getArgOperand(1), Align(1),
2459        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2460                         FormatStr.size() + 1)); // Copy the null byte.
2461    return ConstantInt::get(CI->getType(), FormatStr.size());
2462  }
2463
2464  // The remaining optimizations require the format string to be "%s" or "%c"
2465  // and have an extra operand.
2466  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2467      CI->getNumArgOperands() < 3)
2468    return nullptr;
2469
2470  // Decode the second character of the format string.
2471  if (FormatStr[1] == 'c') {
2472    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2473    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2474      return nullptr;
2475    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2476    Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2477    B.CreateStore(V, Ptr);
2478    Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2479    B.CreateStore(B.getInt8(0), Ptr);
2480
2481    return ConstantInt::get(CI->getType(), 1);
2482  }
2483
2484  if (FormatStr[1] == 's') {
2485    // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2486    // strlen(str)+1)
2487    if (!CI->getArgOperand(2)->getType()->isPointerTy())
2488      return nullptr;
2489
2490    Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2491    if (!Len)
2492      return nullptr;
2493    Value *IncLen =
2494        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2495    B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(2),
2496                   Align(1), IncLen);
2497
2498    // The sprintf result is the unincremented number of bytes in the string.
2499    return B.CreateIntCast(Len, CI->getType(), false);
2500  }
2501  return nullptr;
2502}
2503
2504Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
2505  Function *Callee = CI->getCalledFunction();
2506  FunctionType *FT = Callee->getFunctionType();
2507  if (Value *V = optimizeSPrintFString(CI, B)) {
2508    return V;
2509  }
2510
2511  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2512  // point arguments.
2513  if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2514    Module *M = B.GetInsertBlock()->getParent()->getParent();
2515    FunctionCallee SIPrintFFn =
2516        M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2517    CallInst *New = cast<CallInst>(CI->clone());
2518    New->setCalledFunction(SIPrintFFn);
2519    B.Insert(New);
2520    return New;
2521  }
2522
2523  // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2524  // floating point arguments.
2525  if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2526    Module *M = B.GetInsertBlock()->getParent()->getParent();
2527    auto SmallSPrintFFn =
2528        M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2529                               FT, Callee->getAttributes());
2530    CallInst *New = cast<CallInst>(CI->clone());
2531    New->setCalledFunction(SmallSPrintFFn);
2532    B.Insert(New);
2533    return New;
2534  }
2535
2536  annotateNonNullBasedOnAccess(CI, {0, 1});
2537  return nullptr;
2538}
2539
2540Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
2541                                                 IRBuilderBase &B) {
2542  // Check for size
2543  ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2544  if (!Size)
2545    return nullptr;
2546
2547  uint64_t N = Size->getZExtValue();
2548  // Check for a fixed format string.
2549  StringRef FormatStr;
2550  if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2551    return nullptr;
2552
2553  // If we just have a format string (nothing else crazy) transform it.
2554  if (CI->getNumArgOperands() == 3) {
2555    // Make sure there's no % in the constant array.  We could try to handle
2556    // %% -> % in the future if we cared.
2557    if (FormatStr.find('%') != StringRef::npos)
2558      return nullptr; // we found a format specifier, bail out.
2559
2560    if (N == 0)
2561      return ConstantInt::get(CI->getType(), FormatStr.size());
2562    else if (N < FormatStr.size() + 1)
2563      return nullptr;
2564
2565    // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2566    // strlen(fmt)+1)
2567    B.CreateMemCpy(
2568        CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1),
2569        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2570                         FormatStr.size() + 1)); // Copy the null byte.
2571    return ConstantInt::get(CI->getType(), FormatStr.size());
2572  }
2573
2574  // The remaining optimizations require the format string to be "%s" or "%c"
2575  // and have an extra operand.
2576  if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2577      CI->getNumArgOperands() == 4) {
2578
2579    // Decode the second character of the format string.
2580    if (FormatStr[1] == 'c') {
2581      if (N == 0)
2582        return ConstantInt::get(CI->getType(), 1);
2583      else if (N == 1)
2584        return nullptr;
2585
2586      // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2587      if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2588        return nullptr;
2589      Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2590      Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2591      B.CreateStore(V, Ptr);
2592      Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2593      B.CreateStore(B.getInt8(0), Ptr);
2594
2595      return ConstantInt::get(CI->getType(), 1);
2596    }
2597
2598    if (FormatStr[1] == 's') {
2599      // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2600      StringRef Str;
2601      if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2602        return nullptr;
2603
2604      if (N == 0)
2605        return ConstantInt::get(CI->getType(), Str.size());
2606      else if (N < Str.size() + 1)
2607        return nullptr;
2608
2609      B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3),
2610                     Align(1), ConstantInt::get(CI->getType(), Str.size() + 1));
2611
2612      // The snprintf result is the unincremented number of bytes in the string.
2613      return ConstantInt::get(CI->getType(), Str.size());
2614    }
2615  }
2616  return nullptr;
2617}
2618
2619Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
2620  if (Value *V = optimizeSnPrintFString(CI, B)) {
2621    return V;
2622  }
2623
2624  if (isKnownNonZero(CI->getOperand(1), DL))
2625    annotateNonNullBasedOnAccess(CI, 0);
2626  return nullptr;
2627}
2628
2629Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
2630                                                IRBuilderBase &B) {
2631  optimizeErrorReporting(CI, B, 0);
2632
2633  // All the optimizations depend on the format string.
2634  StringRef FormatStr;
2635  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2636    return nullptr;
2637
2638  // Do not do any of the following transformations if the fprintf return
2639  // value is used, in general the fprintf return value is not compatible
2640  // with fwrite(), fputc() or fputs().
2641  if (!CI->use_empty())
2642    return nullptr;
2643
2644  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2645  if (CI->getNumArgOperands() == 2) {
2646    // Could handle %% -> % if we cared.
2647    if (FormatStr.find('%') != StringRef::npos)
2648      return nullptr; // We found a format specifier.
2649
2650    return emitFWrite(
2651        CI->getArgOperand(1),
2652        ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2653        CI->getArgOperand(0), B, DL, TLI);
2654  }
2655
2656  // The remaining optimizations require the format string to be "%s" or "%c"
2657  // and have an extra operand.
2658  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2659      CI->getNumArgOperands() < 3)
2660    return nullptr;
2661
2662  // Decode the second character of the format string.
2663  if (FormatStr[1] == 'c') {
2664    // fprintf(F, "%c", chr) --> fputc(chr, F)
2665    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2666      return nullptr;
2667    return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2668  }
2669
2670  if (FormatStr[1] == 's') {
2671    // fprintf(F, "%s", str) --> fputs(str, F)
2672    if (!CI->getArgOperand(2)->getType()->isPointerTy())
2673      return nullptr;
2674    return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2675  }
2676  return nullptr;
2677}
2678
2679Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
2680  Function *Callee = CI->getCalledFunction();
2681  FunctionType *FT = Callee->getFunctionType();
2682  if (Value *V = optimizeFPrintFString(CI, B)) {
2683    return V;
2684  }
2685
2686  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2687  // floating point arguments.
2688  if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2689    Module *M = B.GetInsertBlock()->getParent()->getParent();
2690    FunctionCallee FIPrintFFn =
2691        M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2692    CallInst *New = cast<CallInst>(CI->clone());
2693    New->setCalledFunction(FIPrintFFn);
2694    B.Insert(New);
2695    return New;
2696  }
2697
2698  // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2699  // 128-bit floating point arguments.
2700  if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2701    Module *M = B.GetInsertBlock()->getParent()->getParent();
2702    auto SmallFPrintFFn =
2703        M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2704                               FT, Callee->getAttributes());
2705    CallInst *New = cast<CallInst>(CI->clone());
2706    New->setCalledFunction(SmallFPrintFFn);
2707    B.Insert(New);
2708    return New;
2709  }
2710
2711  return nullptr;
2712}
2713
2714Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
2715  optimizeErrorReporting(CI, B, 3);
2716
2717  // Get the element size and count.
2718  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2719  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2720  if (SizeC && CountC) {
2721    uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2722
2723    // If this is writing zero records, remove the call (it's a noop).
2724    if (Bytes == 0)
2725      return ConstantInt::get(CI->getType(), 0);
2726
2727    // If this is writing one byte, turn it into fputc.
2728    // This optimisation is only valid, if the return value is unused.
2729    if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2730      Value *Char = B.CreateLoad(B.getInt8Ty(),
2731                                 castToCStr(CI->getArgOperand(0), B), "char");
2732      Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2733      return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2734    }
2735  }
2736
2737  return nullptr;
2738}
2739
2740Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
2741  optimizeErrorReporting(CI, B, 1);
2742
2743  // Don't rewrite fputs to fwrite when optimising for size because fwrite
2744  // requires more arguments and thus extra MOVs are required.
2745  bool OptForSize = CI->getFunction()->hasOptSize() ||
2746                    llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2747                                                PGSOQueryType::IRPass);
2748  if (OptForSize)
2749    return nullptr;
2750
2751  // We can't optimize if return value is used.
2752  if (!CI->use_empty())
2753    return nullptr;
2754
2755  // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2756  uint64_t Len = GetStringLength(CI->getArgOperand(0));
2757  if (!Len)
2758    return nullptr;
2759
2760  // Known to have no uses (see above).
2761  return emitFWrite(
2762      CI->getArgOperand(0),
2763      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2764      CI->getArgOperand(1), B, DL, TLI);
2765}
2766
2767Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
2768  annotateNonNullBasedOnAccess(CI, 0);
2769  if (!CI->use_empty())
2770    return nullptr;
2771
2772  // Check for a constant string.
2773  // puts("") -> putchar('\n')
2774  StringRef Str;
2775  if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2776    return emitPutChar(B.getInt32('\n'), B, TLI);
2777
2778  return nullptr;
2779}
2780
2781Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
2782  // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2783  return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0),
2784                         Align(1), CI->getArgOperand(2));
2785}
2786
2787bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2788  LibFunc Func;
2789  SmallString<20> FloatFuncName = FuncName;
2790  FloatFuncName += 'f';
2791  if (TLI->getLibFunc(FloatFuncName, Func))
2792    return TLI->has(Func);
2793  return false;
2794}
2795
2796Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2797                                                      IRBuilderBase &Builder) {
2798  LibFunc Func;
2799  Function *Callee = CI->getCalledFunction();
2800  // Check for string/memory library functions.
2801  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2802    // Make sure we never change the calling convention.
2803    assert((ignoreCallingConv(Func) ||
2804            isCallingConvCCompatible(CI)) &&
2805      "Optimizing string/memory libcall would change the calling convention");
2806    switch (Func) {
2807    case LibFunc_strcat:
2808      return optimizeStrCat(CI, Builder);
2809    case LibFunc_strncat:
2810      return optimizeStrNCat(CI, Builder);
2811    case LibFunc_strchr:
2812      return optimizeStrChr(CI, Builder);
2813    case LibFunc_strrchr:
2814      return optimizeStrRChr(CI, Builder);
2815    case LibFunc_strcmp:
2816      return optimizeStrCmp(CI, Builder);
2817    case LibFunc_strncmp:
2818      return optimizeStrNCmp(CI, Builder);
2819    case LibFunc_strcpy:
2820      return optimizeStrCpy(CI, Builder);
2821    case LibFunc_stpcpy:
2822      return optimizeStpCpy(CI, Builder);
2823    case LibFunc_strncpy:
2824      return optimizeStrNCpy(CI, Builder);
2825    case LibFunc_strlen:
2826      return optimizeStrLen(CI, Builder);
2827    case LibFunc_strpbrk:
2828      return optimizeStrPBrk(CI, Builder);
2829    case LibFunc_strndup:
2830      return optimizeStrNDup(CI, Builder);
2831    case LibFunc_strtol:
2832    case LibFunc_strtod:
2833    case LibFunc_strtof:
2834    case LibFunc_strtoul:
2835    case LibFunc_strtoll:
2836    case LibFunc_strtold:
2837    case LibFunc_strtoull:
2838      return optimizeStrTo(CI, Builder);
2839    case LibFunc_strspn:
2840      return optimizeStrSpn(CI, Builder);
2841    case LibFunc_strcspn:
2842      return optimizeStrCSpn(CI, Builder);
2843    case LibFunc_strstr:
2844      return optimizeStrStr(CI, Builder);
2845    case LibFunc_memchr:
2846      return optimizeMemChr(CI, Builder);
2847    case LibFunc_memrchr:
2848      return optimizeMemRChr(CI, Builder);
2849    case LibFunc_bcmp:
2850      return optimizeBCmp(CI, Builder);
2851    case LibFunc_memcmp:
2852      return optimizeMemCmp(CI, Builder);
2853    case LibFunc_memcpy:
2854      return optimizeMemCpy(CI, Builder);
2855    case LibFunc_memccpy:
2856      return optimizeMemCCpy(CI, Builder);
2857    case LibFunc_mempcpy:
2858      return optimizeMemPCpy(CI, Builder);
2859    case LibFunc_memmove:
2860      return optimizeMemMove(CI, Builder);
2861    case LibFunc_memset:
2862      return optimizeMemSet(CI, Builder);
2863    case LibFunc_realloc:
2864      return optimizeRealloc(CI, Builder);
2865    case LibFunc_wcslen:
2866      return optimizeWcslen(CI, Builder);
2867    case LibFunc_bcopy:
2868      return optimizeBCopy(CI, Builder);
2869    default:
2870      break;
2871    }
2872  }
2873  return nullptr;
2874}
2875
2876Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2877                                                       LibFunc Func,
2878                                                       IRBuilderBase &Builder) {
2879  // Don't optimize calls that require strict floating point semantics.
2880  if (CI->isStrictFP())
2881    return nullptr;
2882
2883  if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2884    return V;
2885
2886  switch (Func) {
2887  case LibFunc_sinpif:
2888  case LibFunc_sinpi:
2889  case LibFunc_cospif:
2890  case LibFunc_cospi:
2891    return optimizeSinCosPi(CI, Builder);
2892  case LibFunc_powf:
2893  case LibFunc_pow:
2894  case LibFunc_powl:
2895    return optimizePow(CI, Builder);
2896  case LibFunc_exp2l:
2897  case LibFunc_exp2:
2898  case LibFunc_exp2f:
2899    return optimizeExp2(CI, Builder);
2900  case LibFunc_fabsf:
2901  case LibFunc_fabs:
2902  case LibFunc_fabsl:
2903    return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2904  case LibFunc_sqrtf:
2905  case LibFunc_sqrt:
2906  case LibFunc_sqrtl:
2907    return optimizeSqrt(CI, Builder);
2908  case LibFunc_logf:
2909  case LibFunc_log:
2910  case LibFunc_logl:
2911  case LibFunc_log10f:
2912  case LibFunc_log10:
2913  case LibFunc_log10l:
2914  case LibFunc_log1pf:
2915  case LibFunc_log1p:
2916  case LibFunc_log1pl:
2917  case LibFunc_log2f:
2918  case LibFunc_log2:
2919  case LibFunc_log2l:
2920  case LibFunc_logbf:
2921  case LibFunc_logb:
2922  case LibFunc_logbl:
2923    return optimizeLog(CI, Builder);
2924  case LibFunc_tan:
2925  case LibFunc_tanf:
2926  case LibFunc_tanl:
2927    return optimizeTan(CI, Builder);
2928  case LibFunc_ceil:
2929    return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2930  case LibFunc_floor:
2931    return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2932  case LibFunc_round:
2933    return replaceUnaryCall(CI, Builder, Intrinsic::round);
2934  case LibFunc_roundeven:
2935    return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
2936  case LibFunc_nearbyint:
2937    return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2938  case LibFunc_rint:
2939    return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2940  case LibFunc_trunc:
2941    return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2942  case LibFunc_acos:
2943  case LibFunc_acosh:
2944  case LibFunc_asin:
2945  case LibFunc_asinh:
2946  case LibFunc_atan:
2947  case LibFunc_atanh:
2948  case LibFunc_cbrt:
2949  case LibFunc_cosh:
2950  case LibFunc_exp:
2951  case LibFunc_exp10:
2952  case LibFunc_expm1:
2953  case LibFunc_cos:
2954  case LibFunc_sin:
2955  case LibFunc_sinh:
2956  case LibFunc_tanh:
2957    if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2958      return optimizeUnaryDoubleFP(CI, Builder, true);
2959    return nullptr;
2960  case LibFunc_copysign:
2961    if (hasFloatVersion(CI->getCalledFunction()->getName()))
2962      return optimizeBinaryDoubleFP(CI, Builder);
2963    return nullptr;
2964  case LibFunc_fminf:
2965  case LibFunc_fmin:
2966  case LibFunc_fminl:
2967  case LibFunc_fmaxf:
2968  case LibFunc_fmax:
2969  case LibFunc_fmaxl:
2970    return optimizeFMinFMax(CI, Builder);
2971  case LibFunc_cabs:
2972  case LibFunc_cabsf:
2973  case LibFunc_cabsl:
2974    return optimizeCAbs(CI, Builder);
2975  default:
2976    return nullptr;
2977  }
2978}
2979
2980Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
2981  // TODO: Split out the code below that operates on FP calls so that
2982  //       we can all non-FP calls with the StrictFP attribute to be
2983  //       optimized.
2984  if (CI->isNoBuiltin())
2985    return nullptr;
2986
2987  LibFunc Func;
2988  Function *Callee = CI->getCalledFunction();
2989  bool isCallingConvC = isCallingConvCCompatible(CI);
2990
2991  SmallVector<OperandBundleDef, 2> OpBundles;
2992  CI->getOperandBundlesAsDefs(OpBundles);
2993
2994  IRBuilderBase::OperandBundlesGuard Guard(Builder);
2995  Builder.setDefaultOperandBundles(OpBundles);
2996
2997  // Command-line parameter overrides instruction attribute.
2998  // This can't be moved to optimizeFloatingPointLibCall() because it may be
2999  // used by the intrinsic optimizations.
3000  if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3001    UnsafeFPShrink = EnableUnsafeFPShrink;
3002  else if (isa<FPMathOperator>(CI) && CI->isFast())
3003    UnsafeFPShrink = true;
3004
3005  // First, check for intrinsics.
3006  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3007    if (!isCallingConvC)
3008      return nullptr;
3009    // The FP intrinsics have corresponding constrained versions so we don't
3010    // need to check for the StrictFP attribute here.
3011    switch (II->getIntrinsicID()) {
3012    case Intrinsic::pow:
3013      return optimizePow(CI, Builder);
3014    case Intrinsic::exp2:
3015      return optimizeExp2(CI, Builder);
3016    case Intrinsic::log:
3017    case Intrinsic::log2:
3018    case Intrinsic::log10:
3019      return optimizeLog(CI, Builder);
3020    case Intrinsic::sqrt:
3021      return optimizeSqrt(CI, Builder);
3022    // TODO: Use foldMallocMemset() with memset intrinsic.
3023    case Intrinsic::memset:
3024      return optimizeMemSet(CI, Builder);
3025    case Intrinsic::memcpy:
3026      return optimizeMemCpy(CI, Builder);
3027    case Intrinsic::memmove:
3028      return optimizeMemMove(CI, Builder);
3029    default:
3030      return nullptr;
3031    }
3032  }
3033
3034  // Also try to simplify calls to fortified library functions.
3035  if (Value *SimplifiedFortifiedCI =
3036          FortifiedSimplifier.optimizeCall(CI, Builder)) {
3037    // Try to further simplify the result.
3038    CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3039    if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3040      // Ensure that SimplifiedCI's uses are complete, since some calls have
3041      // their uses analyzed.
3042      replaceAllUsesWith(CI, SimplifiedCI);
3043
3044      // Set insertion point to SimplifiedCI to guarantee we reach all uses
3045      // we might replace later on.
3046      IRBuilderBase::InsertPointGuard Guard(Builder);
3047      Builder.SetInsertPoint(SimplifiedCI);
3048      if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
3049        // If we were able to further simplify, remove the now redundant call.
3050        substituteInParent(SimplifiedCI, V);
3051        return V;
3052      }
3053    }
3054    return SimplifiedFortifiedCI;
3055  }
3056
3057  // Then check for known library functions.
3058  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3059    // We never change the calling convention.
3060    if (!ignoreCallingConv(Func) && !isCallingConvC)
3061      return nullptr;
3062    if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3063      return V;
3064    if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3065      return V;
3066    switch (Func) {
3067    case LibFunc_ffs:
3068    case LibFunc_ffsl:
3069    case LibFunc_ffsll:
3070      return optimizeFFS(CI, Builder);
3071    case LibFunc_fls:
3072    case LibFunc_flsl:
3073    case LibFunc_flsll:
3074      return optimizeFls(CI, Builder);
3075    case LibFunc_abs:
3076    case LibFunc_labs:
3077    case LibFunc_llabs:
3078      return optimizeAbs(CI, Builder);
3079    case LibFunc_isdigit:
3080      return optimizeIsDigit(CI, Builder);
3081    case LibFunc_isascii:
3082      return optimizeIsAscii(CI, Builder);
3083    case LibFunc_toascii:
3084      return optimizeToAscii(CI, Builder);
3085    case LibFunc_atoi:
3086    case LibFunc_atol:
3087    case LibFunc_atoll:
3088      return optimizeAtoi(CI, Builder);
3089    case LibFunc_strtol:
3090    case LibFunc_strtoll:
3091      return optimizeStrtol(CI, Builder);
3092    case LibFunc_printf:
3093      return optimizePrintF(CI, Builder);
3094    case LibFunc_sprintf:
3095      return optimizeSPrintF(CI, Builder);
3096    case LibFunc_snprintf:
3097      return optimizeSnPrintF(CI, Builder);
3098    case LibFunc_fprintf:
3099      return optimizeFPrintF(CI, Builder);
3100    case LibFunc_fwrite:
3101      return optimizeFWrite(CI, Builder);
3102    case LibFunc_fputs:
3103      return optimizeFPuts(CI, Builder);
3104    case LibFunc_puts:
3105      return optimizePuts(CI, Builder);
3106    case LibFunc_perror:
3107      return optimizeErrorReporting(CI, Builder);
3108    case LibFunc_vfprintf:
3109    case LibFunc_fiprintf:
3110      return optimizeErrorReporting(CI, Builder, 0);
3111    default:
3112      return nullptr;
3113    }
3114  }
3115  return nullptr;
3116}
3117
3118LibCallSimplifier::LibCallSimplifier(
3119    const DataLayout &DL, const TargetLibraryInfo *TLI,
3120    OptimizationRemarkEmitter &ORE,
3121    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3122    function_ref<void(Instruction *, Value *)> Replacer,
3123    function_ref<void(Instruction *)> Eraser)
3124    : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3125      UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3126
3127void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3128  // Indirect through the replacer used in this instance.
3129  Replacer(I, With);
3130}
3131
3132void LibCallSimplifier::eraseFromParent(Instruction *I) {
3133  Eraser(I);
3134}
3135
3136// TODO:
3137//   Additional cases that we need to add to this file:
3138//
3139// cbrt:
3140//   * cbrt(expN(X))  -> expN(x/3)
3141//   * cbrt(sqrt(x))  -> pow(x,1/6)
3142//   * cbrt(cbrt(x))  -> pow(x,1/9)
3143//
3144// exp, expf, expl:
3145//   * exp(log(x))  -> x
3146//
3147// log, logf, logl:
3148//   * log(exp(x))   -> x
3149//   * log(exp(y))   -> y*log(e)
3150//   * log(exp10(y)) -> y*log(10)
3151//   * log(sqrt(x))  -> 0.5*log(x)
3152//
3153// pow, powf, powl:
3154//   * pow(sqrt(x),y) -> pow(x,y*0.5)
3155//   * pow(pow(x,y),z)-> pow(x,y*z)
3156//
3157// signbit:
3158//   * signbit(cnst) -> cnst'
3159//   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3160//
3161// sqrt, sqrtf, sqrtl:
3162//   * sqrt(expN(x))  -> expN(x*0.5)
3163//   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3164//   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3165//
3166
3167//===----------------------------------------------------------------------===//
3168// Fortified Library Call Optimizations
3169//===----------------------------------------------------------------------===//
3170
3171bool
3172FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3173                                                    unsigned ObjSizeOp,
3174                                                    Optional<unsigned> SizeOp,
3175                                                    Optional<unsigned> StrOp,
3176                                                    Optional<unsigned> FlagOp) {
3177  // If this function takes a flag argument, the implementation may use it to
3178  // perform extra checks. Don't fold into the non-checking variant.
3179  if (FlagOp) {
3180    ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3181    if (!Flag || !Flag->isZero())
3182      return false;
3183  }
3184
3185  if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3186    return true;
3187
3188  if (ConstantInt *ObjSizeCI =
3189          dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3190    if (ObjSizeCI->isMinusOne())
3191      return true;
3192    // If the object size wasn't -1 (unknown), bail out if we were asked to.
3193    if (OnlyLowerUnknownSize)
3194      return false;
3195    if (StrOp) {
3196      uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3197      // If the length is 0 we don't know how long it is and so we can't
3198      // remove the check.
3199      if (Len)
3200        annotateDereferenceableBytes(CI, *StrOp, Len);
3201      else
3202        return false;
3203      return ObjSizeCI->getZExtValue() >= Len;
3204    }
3205
3206    if (SizeOp) {
3207      if (ConstantInt *SizeCI =
3208              dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3209        return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3210    }
3211  }
3212  return false;
3213}
3214
3215Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3216                                                     IRBuilderBase &B) {
3217  if (isFortifiedCallFoldable(CI, 3, 2)) {
3218    CallInst *NewCI =
3219        B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3220                       Align(1), CI->getArgOperand(2));
3221    NewCI->setAttributes(CI->getAttributes());
3222    return CI->getArgOperand(0);
3223  }
3224  return nullptr;
3225}
3226
3227Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3228                                                      IRBuilderBase &B) {
3229  if (isFortifiedCallFoldable(CI, 3, 2)) {
3230    CallInst *NewCI =
3231        B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3232                        Align(1), CI->getArgOperand(2));
3233    NewCI->setAttributes(CI->getAttributes());
3234    return CI->getArgOperand(0);
3235  }
3236  return nullptr;
3237}
3238
3239Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3240                                                     IRBuilderBase &B) {
3241  // TODO: Try foldMallocMemset() here.
3242
3243  if (isFortifiedCallFoldable(CI, 3, 2)) {
3244    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3245    CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3246                                     CI->getArgOperand(2), Align(1));
3247    NewCI->setAttributes(CI->getAttributes());
3248    return CI->getArgOperand(0);
3249  }
3250  return nullptr;
3251}
3252
3253Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3254                                                      IRBuilderBase &B,
3255                                                      LibFunc Func) {
3256  const DataLayout &DL = CI->getModule()->getDataLayout();
3257  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3258        *ObjSize = CI->getArgOperand(2);
3259
3260  // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3261  if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3262    Value *StrLen = emitStrLen(Src, B, DL, TLI);
3263    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3264  }
3265
3266  // If a) we don't have any length information, or b) we know this will
3267  // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3268  // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3269  // TODO: It might be nice to get a maximum length out of the possible
3270  // string lengths for varying.
3271  if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3272    if (Func == LibFunc_strcpy_chk)
3273      return emitStrCpy(Dst, Src, B, TLI);
3274    else
3275      return emitStpCpy(Dst, Src, B, TLI);
3276  }
3277
3278  if (OnlyLowerUnknownSize)
3279    return nullptr;
3280
3281  // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3282  uint64_t Len = GetStringLength(Src);
3283  if (Len)
3284    annotateDereferenceableBytes(CI, 1, Len);
3285  else
3286    return nullptr;
3287
3288  Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3289  Value *LenV = ConstantInt::get(SizeTTy, Len);
3290  Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3291  // If the function was an __stpcpy_chk, and we were able to fold it into
3292  // a __memcpy_chk, we still need to return the correct end pointer.
3293  if (Ret && Func == LibFunc_stpcpy_chk)
3294    return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3295  return Ret;
3296}
3297
3298Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3299                                                     IRBuilderBase &B) {
3300  if (isFortifiedCallFoldable(CI, 1, None, 0))
3301    return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(),
3302                      TLI);
3303  return nullptr;
3304}
3305
3306Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3307                                                       IRBuilderBase &B,
3308                                                       LibFunc Func) {
3309  if (isFortifiedCallFoldable(CI, 3, 2)) {
3310    if (Func == LibFunc_strncpy_chk)
3311      return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3312                               CI->getArgOperand(2), B, TLI);
3313    else
3314      return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3315                         CI->getArgOperand(2), B, TLI);
3316  }
3317
3318  return nullptr;
3319}
3320
3321Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3322                                                      IRBuilderBase &B) {
3323  if (isFortifiedCallFoldable(CI, 4, 3))
3324    return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3325                       CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3326
3327  return nullptr;
3328}
3329
3330Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3331                                                       IRBuilderBase &B) {
3332  if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3333    SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3334    return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3335                        CI->getArgOperand(4), VariadicArgs, B, TLI);
3336  }
3337
3338  return nullptr;
3339}
3340
3341Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3342                                                      IRBuilderBase &B) {
3343  if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3344    SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3345    return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3346                       B, TLI);
3347  }
3348
3349  return nullptr;
3350}
3351
3352Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3353                                                     IRBuilderBase &B) {
3354  if (isFortifiedCallFoldable(CI, 2))
3355    return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3356
3357  return nullptr;
3358}
3359
3360Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3361                                                   IRBuilderBase &B) {
3362  if (isFortifiedCallFoldable(CI, 3))
3363    return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3364                       CI->getArgOperand(2), B, TLI);
3365
3366  return nullptr;
3367}
3368
3369Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3370                                                      IRBuilderBase &B) {
3371  if (isFortifiedCallFoldable(CI, 3))
3372    return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3373                       CI->getArgOperand(2), B, TLI);
3374
3375  return nullptr;
3376}
3377
3378Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3379                                                      IRBuilderBase &B) {
3380  if (isFortifiedCallFoldable(CI, 3))
3381    return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3382                       CI->getArgOperand(2), B, TLI);
3383
3384  return nullptr;
3385}
3386
3387Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3388                                                        IRBuilderBase &B) {
3389  if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3390    return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3391                         CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3392
3393  return nullptr;
3394}
3395
3396Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3397                                                       IRBuilderBase &B) {
3398  if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3399    return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3400                        CI->getArgOperand(4), B, TLI);
3401
3402  return nullptr;
3403}
3404
3405Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
3406                                                IRBuilderBase &Builder) {
3407  // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3408  // Some clang users checked for _chk libcall availability using:
3409  //   __has_builtin(__builtin___memcpy_chk)
3410  // When compiling with -fno-builtin, this is always true.
3411  // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3412  // end up with fortified libcalls, which isn't acceptable in a freestanding
3413  // environment which only provides their non-fortified counterparts.
3414  //
3415  // Until we change clang and/or teach external users to check for availability
3416  // differently, disregard the "nobuiltin" attribute and TLI::has.
3417  //
3418  // PR23093.
3419
3420  LibFunc Func;
3421  Function *Callee = CI->getCalledFunction();
3422  bool isCallingConvC = isCallingConvCCompatible(CI);
3423
3424  SmallVector<OperandBundleDef, 2> OpBundles;
3425  CI->getOperandBundlesAsDefs(OpBundles);
3426
3427  IRBuilderBase::OperandBundlesGuard Guard(Builder);
3428  Builder.setDefaultOperandBundles(OpBundles);
3429
3430  // First, check that this is a known library functions and that the prototype
3431  // is correct.
3432  if (!TLI->getLibFunc(*Callee, Func))
3433    return nullptr;
3434
3435  // We never change the calling convention.
3436  if (!ignoreCallingConv(Func) && !isCallingConvC)
3437    return nullptr;
3438
3439  switch (Func) {
3440  case LibFunc_memcpy_chk:
3441    return optimizeMemCpyChk(CI, Builder);
3442  case LibFunc_memmove_chk:
3443    return optimizeMemMoveChk(CI, Builder);
3444  case LibFunc_memset_chk:
3445    return optimizeMemSetChk(CI, Builder);
3446  case LibFunc_stpcpy_chk:
3447  case LibFunc_strcpy_chk:
3448    return optimizeStrpCpyChk(CI, Builder, Func);
3449  case LibFunc_strlen_chk:
3450    return optimizeStrLenChk(CI, Builder);
3451  case LibFunc_stpncpy_chk:
3452  case LibFunc_strncpy_chk:
3453    return optimizeStrpNCpyChk(CI, Builder, Func);
3454  case LibFunc_memccpy_chk:
3455    return optimizeMemCCpyChk(CI, Builder);
3456  case LibFunc_snprintf_chk:
3457    return optimizeSNPrintfChk(CI, Builder);
3458  case LibFunc_sprintf_chk:
3459    return optimizeSPrintfChk(CI, Builder);
3460  case LibFunc_strcat_chk:
3461    return optimizeStrCatChk(CI, Builder);
3462  case LibFunc_strlcat_chk:
3463    return optimizeStrLCat(CI, Builder);
3464  case LibFunc_strncat_chk:
3465    return optimizeStrNCatChk(CI, Builder);
3466  case LibFunc_strlcpy_chk:
3467    return optimizeStrLCpyChk(CI, Builder);
3468  case LibFunc_vsnprintf_chk:
3469    return optimizeVSNPrintfChk(CI, Builder);
3470  case LibFunc_vsprintf_chk:
3471    return optimizeVSPrintfChk(CI, Builder);
3472  default:
3473    break;
3474  }
3475  return nullptr;
3476}
3477
3478FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3479    const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3480    : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3481