1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements some loop unrolling utilities. It does not define any
10// actual pass or policy, but provides a single function to perform loop
11// unrolling.
12//
13// The process of unrolling can produce extraneous basic blocks linked with
14// unconditional branches.  This will be corrected in the future.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/Twine.h"
27#include "llvm/ADT/ilist_iterator.h"
28#include "llvm/ADT/iterator_range.h"
29#include "llvm/Analysis/AssumptionCache.h"
30#include "llvm/Analysis/DomTreeUpdater.h"
31#include "llvm/Analysis/InstructionSimplify.h"
32#include "llvm/Analysis/LoopInfo.h"
33#include "llvm/Analysis/LoopIterator.h"
34#include "llvm/Analysis/OptimizationRemarkEmitter.h"
35#include "llvm/Analysis/ScalarEvolution.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/CFG.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DebugInfoMetadata.h"
40#include "llvm/IR/DebugLoc.h"
41#include "llvm/IR/DiagnosticInfo.h"
42#include "llvm/IR/Dominators.h"
43#include "llvm/IR/Function.h"
44#include "llvm/IR/Instruction.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/IR/Metadata.h"
48#include "llvm/IR/Module.h"
49#include "llvm/IR/Use.h"
50#include "llvm/IR/User.h"
51#include "llvm/IR/ValueHandle.h"
52#include "llvm/IR/ValueMap.h"
53#include "llvm/Support/Casting.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/GenericDomTree.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/Transforms/Utils/BasicBlockUtils.h"
60#include "llvm/Transforms/Utils/Cloning.h"
61#include "llvm/Transforms/Utils/Local.h"
62#include "llvm/Transforms/Utils/LoopSimplify.h"
63#include "llvm/Transforms/Utils/LoopUtils.h"
64#include "llvm/Transforms/Utils/SimplifyIndVar.h"
65#include "llvm/Transforms/Utils/UnrollLoop.h"
66#include "llvm/Transforms/Utils/ValueMapper.h"
67#include <algorithm>
68#include <assert.h>
69#include <type_traits>
70#include <vector>
71
72namespace llvm {
73class DataLayout;
74class Value;
75} // namespace llvm
76
77using namespace llvm;
78
79#define DEBUG_TYPE "loop-unroll"
80
81// TODO: Should these be here or in LoopUnroll?
82STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
83STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
84STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
85                               "latch (completely or otherwise)");
86
87static cl::opt<bool>
88UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
89                    cl::desc("Allow runtime unrolled loops to be unrolled "
90                             "with epilog instead of prolog."));
91
92static cl::opt<bool>
93UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
94                    cl::desc("Verify domtree after unrolling"),
95#ifdef EXPENSIVE_CHECKS
96    cl::init(true)
97#else
98    cl::init(false)
99#endif
100                    );
101
102/// Check if unrolling created a situation where we need to insert phi nodes to
103/// preserve LCSSA form.
104/// \param Blocks is a vector of basic blocks representing unrolled loop.
105/// \param L is the outer loop.
106/// It's possible that some of the blocks are in L, and some are not. In this
107/// case, if there is a use is outside L, and definition is inside L, we need to
108/// insert a phi-node, otherwise LCSSA will be broken.
109/// The function is just a helper function for llvm::UnrollLoop that returns
110/// true if this situation occurs, indicating that LCSSA needs to be fixed.
111static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
112                                     LoopInfo *LI) {
113  for (BasicBlock *BB : Blocks) {
114    if (LI->getLoopFor(BB) == L)
115      continue;
116    for (Instruction &I : *BB) {
117      for (Use &U : I.operands()) {
118        if (auto Def = dyn_cast<Instruction>(U)) {
119          Loop *DefLoop = LI->getLoopFor(Def->getParent());
120          if (!DefLoop)
121            continue;
122          if (DefLoop->contains(L))
123            return true;
124        }
125      }
126    }
127  }
128  return false;
129}
130
131/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
132/// and adds a mapping from the original loop to the new loop to NewLoops.
133/// Returns nullptr if no new loop was created and a pointer to the
134/// original loop OriginalBB was part of otherwise.
135const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
136                                           BasicBlock *ClonedBB, LoopInfo *LI,
137                                           NewLoopsMap &NewLoops) {
138  // Figure out which loop New is in.
139  const Loop *OldLoop = LI->getLoopFor(OriginalBB);
140  assert(OldLoop && "Should (at least) be in the loop being unrolled!");
141
142  Loop *&NewLoop = NewLoops[OldLoop];
143  if (!NewLoop) {
144    // Found a new sub-loop.
145    assert(OriginalBB == OldLoop->getHeader() &&
146           "Header should be first in RPO");
147
148    NewLoop = LI->AllocateLoop();
149    Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
150
151    if (NewLoopParent)
152      NewLoopParent->addChildLoop(NewLoop);
153    else
154      LI->addTopLevelLoop(NewLoop);
155
156    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
157    return OldLoop;
158  } else {
159    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
160    return nullptr;
161  }
162}
163
164/// The function chooses which type of unroll (epilog or prolog) is more
165/// profitabale.
166/// Epilog unroll is more profitable when there is PHI that starts from
167/// constant.  In this case epilog will leave PHI start from constant,
168/// but prolog will convert it to non-constant.
169///
170/// loop:
171///   PN = PHI [I, Latch], [CI, PreHeader]
172///   I = foo(PN)
173///   ...
174///
175/// Epilog unroll case.
176/// loop:
177///   PN = PHI [I2, Latch], [CI, PreHeader]
178///   I1 = foo(PN)
179///   I2 = foo(I1)
180///   ...
181/// Prolog unroll case.
182///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
183/// loop:
184///   PN = PHI [I2, Latch], [NewPN, PreHeader]
185///   I1 = foo(PN)
186///   I2 = foo(I1)
187///   ...
188///
189static bool isEpilogProfitable(Loop *L) {
190  BasicBlock *PreHeader = L->getLoopPreheader();
191  BasicBlock *Header = L->getHeader();
192  assert(PreHeader && Header);
193  for (const PHINode &PN : Header->phis()) {
194    if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
195      return true;
196  }
197  return false;
198}
199
200/// Perform some cleanup and simplifications on loops after unrolling. It is
201/// useful to simplify the IV's in the new loop, as well as do a quick
202/// simplify/dce pass of the instructions.
203void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
204                                   ScalarEvolution *SE, DominatorTree *DT,
205                                   AssumptionCache *AC,
206                                   const TargetTransformInfo *TTI) {
207  // Simplify any new induction variables in the partially unrolled loop.
208  if (SE && SimplifyIVs) {
209    SmallVector<WeakTrackingVH, 16> DeadInsts;
210    simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
211
212    // Aggressively clean up dead instructions that simplifyLoopIVs already
213    // identified. Any remaining should be cleaned up below.
214    while (!DeadInsts.empty()) {
215      Value *V = DeadInsts.pop_back_val();
216      if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
217        RecursivelyDeleteTriviallyDeadInstructions(Inst);
218    }
219  }
220
221  // At this point, the code is well formed.  We now do a quick sweep over the
222  // inserted code, doing constant propagation and dead code elimination as we
223  // go.
224  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
225  for (BasicBlock *BB : L->getBlocks()) {
226    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
227      Instruction *Inst = &*I++;
228
229      if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
230        if (LI->replacementPreservesLCSSAForm(Inst, V))
231          Inst->replaceAllUsesWith(V);
232      if (isInstructionTriviallyDead(Inst))
233        BB->getInstList().erase(Inst);
234    }
235  }
236
237  // TODO: after peeling or unrolling, previously loop variant conditions are
238  // likely to fold to constants, eagerly propagating those here will require
239  // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
240  // appropriate.
241}
242
243/// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
244/// can only fail when the loop's latch block is not terminated by a conditional
245/// branch instruction. However, if the trip count (and multiple) are not known,
246/// loop unrolling will mostly produce more code that is no faster.
247///
248/// TripCount is the upper bound of the iteration on which control exits
249/// LatchBlock. Control may exit the loop prior to TripCount iterations either
250/// via an early branch in other loop block or via LatchBlock terminator. This
251/// is relaxed from the general definition of trip count which is the number of
252/// times the loop header executes. Note that UnrollLoop assumes that the loop
253/// counter test is in LatchBlock in order to remove unnecesssary instances of
254/// the test.  If control can exit the loop from the LatchBlock's terminator
255/// prior to TripCount iterations, flag PreserveCondBr needs to be set.
256///
257/// PreserveCondBr indicates whether the conditional branch of the LatchBlock
258/// needs to be preserved.  It is needed when we use trip count upper bound to
259/// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
260/// conditional branch needs to be preserved.
261///
262/// Similarly, TripMultiple divides the number of times that the LatchBlock may
263/// execute without exiting the loop.
264///
265/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
266/// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
267/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
268/// iterations before branching into the unrolled loop.  UnrollLoop will not
269/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
270/// AllowExpensiveTripCount is false.
271///
272/// If we want to perform PGO-based loop peeling, PeelCount is set to the
273/// number of iterations we want to peel off.
274///
275/// The LoopInfo Analysis that is passed will be kept consistent.
276///
277/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
278/// DominatorTree if they are non-null.
279///
280/// If RemainderLoop is non-null, it will receive the remainder loop (if
281/// required and not fully unrolled).
282LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
283                                  ScalarEvolution *SE, DominatorTree *DT,
284                                  AssumptionCache *AC,
285                                  const TargetTransformInfo *TTI,
286                                  OptimizationRemarkEmitter *ORE,
287                                  bool PreserveLCSSA, Loop **RemainderLoop) {
288
289  BasicBlock *Preheader = L->getLoopPreheader();
290  if (!Preheader) {
291    LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
292    return LoopUnrollResult::Unmodified;
293  }
294
295  BasicBlock *LatchBlock = L->getLoopLatch();
296  if (!LatchBlock) {
297    LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
298    return LoopUnrollResult::Unmodified;
299  }
300
301  // Loops with indirectbr cannot be cloned.
302  if (!L->isSafeToClone()) {
303    LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
304    return LoopUnrollResult::Unmodified;
305  }
306
307  // The current loop unroll pass can unroll loops that have
308  // (1) single latch; and
309  // (2a) latch is unconditional; or
310  // (2b) latch is conditional and is an exiting block
311  // FIXME: The implementation can be extended to work with more complicated
312  // cases, e.g. loops with multiple latches.
313  BasicBlock *Header = L->getHeader();
314  BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
315
316  // A conditional branch which exits the loop, which can be optimized to an
317  // unconditional branch in the unrolled loop in some cases.
318  BranchInst *ExitingBI = nullptr;
319  bool LatchIsExiting = L->isLoopExiting(LatchBlock);
320  if (LatchIsExiting)
321    ExitingBI = LatchBI;
322  else if (BasicBlock *ExitingBlock = L->getExitingBlock())
323    ExitingBI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
324  if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
325    LLVM_DEBUG(
326        dbgs() << "Can't unroll; a conditional latch must exit the loop");
327    return LoopUnrollResult::Unmodified;
328  }
329  LLVM_DEBUG({
330    if (ExitingBI)
331      dbgs() << "  Exiting Block = " << ExitingBI->getParent()->getName()
332             << "\n";
333    else
334      dbgs() << "  No single exiting block\n";
335  });
336
337  if (Header->hasAddressTaken()) {
338    // The loop-rotate pass can be helpful to avoid this in many cases.
339    LLVM_DEBUG(
340        dbgs() << "  Won't unroll loop: address of header block is taken.\n");
341    return LoopUnrollResult::Unmodified;
342  }
343
344  if (ULO.TripCount != 0)
345    LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
346  if (ULO.TripMultiple != 1)
347    LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
348
349  // Effectively "DCE" unrolled iterations that are beyond the tripcount
350  // and will never be executed.
351  if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
352    ULO.Count = ULO.TripCount;
353
354  // Don't enter the unroll code if there is nothing to do.
355  if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
356    LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
357    return LoopUnrollResult::Unmodified;
358  }
359
360  assert(ULO.Count > 0);
361  assert(ULO.TripMultiple > 0);
362  assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
363
364  // Are we eliminating the loop control altogether?
365  bool CompletelyUnroll = ULO.Count == ULO.TripCount;
366  SmallVector<BasicBlock *, 4> ExitBlocks;
367  L->getExitBlocks(ExitBlocks);
368  std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
369
370  // Go through all exits of L and see if there are any phi-nodes there. We just
371  // conservatively assume that they're inserted to preserve LCSSA form, which
372  // means that complete unrolling might break this form. We need to either fix
373  // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
374  // now we just recompute LCSSA for the outer loop, but it should be possible
375  // to fix it in-place.
376  bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
377                        any_of(ExitBlocks, [](const BasicBlock *BB) {
378                          return isa<PHINode>(BB->begin());
379                        });
380
381  // We assume a run-time trip count if the compiler cannot
382  // figure out the loop trip count and the unroll-runtime
383  // flag is specified.
384  bool RuntimeTripCount =
385      (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
386
387  assert((!RuntimeTripCount || !ULO.PeelCount) &&
388         "Did not expect runtime trip-count unrolling "
389         "and peeling for the same loop");
390
391  bool Peeled = false;
392  if (ULO.PeelCount) {
393    Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
394
395    // Successful peeling may result in a change in the loop preheader/trip
396    // counts. If we later unroll the loop, we want these to be updated.
397    if (Peeled) {
398      // According to our guards and profitability checks the only
399      // meaningful exit should be latch block. Other exits go to deopt,
400      // so we do not worry about them.
401      BasicBlock *ExitingBlock = L->getLoopLatch();
402      assert(ExitingBlock && "Loop without exiting block?");
403      assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
404      Preheader = L->getLoopPreheader();
405      ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
406      ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
407    }
408  }
409
410  // Loops containing convergent instructions must have a count that divides
411  // their TripMultiple.
412  LLVM_DEBUG(
413      {
414        bool HasConvergent = false;
415        for (auto &BB : L->blocks())
416          for (auto &I : *BB)
417            if (auto *CB = dyn_cast<CallBase>(&I))
418              HasConvergent |= CB->isConvergent();
419        assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
420               "Unroll count must divide trip multiple if loop contains a "
421               "convergent operation.");
422      });
423
424  bool EpilogProfitability =
425      UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
426                                              : isEpilogProfitable(L);
427
428  if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
429      !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
430                                  EpilogProfitability, ULO.UnrollRemainder,
431                                  ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
432                                  PreserveLCSSA, RemainderLoop)) {
433    if (ULO.Force)
434      RuntimeTripCount = false;
435    else {
436      LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
437                           "generated when assuming runtime trip count\n");
438      return LoopUnrollResult::Unmodified;
439    }
440  }
441
442  // If we know the trip count, we know the multiple...
443  unsigned BreakoutTrip = 0;
444  if (ULO.TripCount != 0) {
445    BreakoutTrip = ULO.TripCount % ULO.Count;
446    ULO.TripMultiple = 0;
447  } else {
448    // Figure out what multiple to use.
449    BreakoutTrip = ULO.TripMultiple =
450        (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
451  }
452
453  using namespace ore;
454  // Report the unrolling decision.
455  if (CompletelyUnroll) {
456    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
457                      << " with trip count " << ULO.TripCount << "!\n");
458    if (ORE)
459      ORE->emit([&]() {
460        return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
461                                  L->getHeader())
462               << "completely unrolled loop with "
463               << NV("UnrollCount", ULO.TripCount) << " iterations";
464      });
465  } else if (ULO.PeelCount) {
466    LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
467                      << " with iteration count " << ULO.PeelCount << "!\n");
468    if (ORE)
469      ORE->emit([&]() {
470        return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
471                                  L->getHeader())
472               << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
473               << " iterations";
474      });
475  } else {
476    auto DiagBuilder = [&]() {
477      OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
478                              L->getHeader());
479      return Diag << "unrolled loop by a factor of "
480                  << NV("UnrollCount", ULO.Count);
481    };
482
483    LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
484                      << ULO.Count);
485    if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
486      LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
487      if (ORE)
488        ORE->emit([&]() {
489          return DiagBuilder() << " with a breakout at trip "
490                               << NV("BreakoutTrip", BreakoutTrip);
491        });
492    } else if (ULO.TripMultiple != 1) {
493      LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
494      if (ORE)
495        ORE->emit([&]() {
496          return DiagBuilder()
497                 << " with " << NV("TripMultiple", ULO.TripMultiple)
498                 << " trips per branch";
499        });
500    } else if (RuntimeTripCount) {
501      LLVM_DEBUG(dbgs() << " with run-time trip count");
502      if (ORE)
503        ORE->emit(
504            [&]() { return DiagBuilder() << " with run-time trip count"; });
505    }
506    LLVM_DEBUG(dbgs() << "!\n");
507  }
508
509  // We are going to make changes to this loop. SCEV may be keeping cached info
510  // about it, in particular about backedge taken count. The changes we make
511  // are guaranteed to invalidate this information for our loop. It is tempting
512  // to only invalidate the loop being unrolled, but it is incorrect as long as
513  // all exiting branches from all inner loops have impact on the outer loops,
514  // and if something changes inside them then any of outer loops may also
515  // change. When we forget outermost loop, we also forget all contained loops
516  // and this is what we need here.
517  if (SE) {
518    if (ULO.ForgetAllSCEV)
519      SE->forgetAllLoops();
520    else
521      SE->forgetTopmostLoop(L);
522  }
523
524  if (!LatchIsExiting)
525    ++NumUnrolledNotLatch;
526  Optional<bool> ContinueOnTrue = None;
527  BasicBlock *LoopExit = nullptr;
528  if (ExitingBI) {
529    ContinueOnTrue = L->contains(ExitingBI->getSuccessor(0));
530    LoopExit = ExitingBI->getSuccessor(*ContinueOnTrue);
531  }
532
533  // For the first iteration of the loop, we should use the precloned values for
534  // PHI nodes.  Insert associations now.
535  ValueToValueMapTy LastValueMap;
536  std::vector<PHINode*> OrigPHINode;
537  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
538    OrigPHINode.push_back(cast<PHINode>(I));
539  }
540
541  std::vector<BasicBlock *> Headers;
542  std::vector<BasicBlock *> ExitingBlocks;
543  std::vector<BasicBlock *> ExitingSucc;
544  std::vector<BasicBlock *> Latches;
545  Headers.push_back(Header);
546  Latches.push_back(LatchBlock);
547  if (ExitingBI) {
548    ExitingBlocks.push_back(ExitingBI->getParent());
549    ExitingSucc.push_back(ExitingBI->getSuccessor(!(*ContinueOnTrue)));
550  }
551
552  // The current on-the-fly SSA update requires blocks to be processed in
553  // reverse postorder so that LastValueMap contains the correct value at each
554  // exit.
555  LoopBlocksDFS DFS(L);
556  DFS.perform(LI);
557
558  // Stash the DFS iterators before adding blocks to the loop.
559  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
560  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
561
562  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
563
564  // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
565  // might break loop-simplified form for these loops (as they, e.g., would
566  // share the same exit blocks). We'll keep track of loops for which we can
567  // break this so that later we can re-simplify them.
568  SmallSetVector<Loop *, 4> LoopsToSimplify;
569  for (Loop *SubLoop : *L)
570    LoopsToSimplify.insert(SubLoop);
571
572  if (Header->getParent()->isDebugInfoForProfiling())
573    for (BasicBlock *BB : L->getBlocks())
574      for (Instruction &I : *BB)
575        if (!isa<DbgInfoIntrinsic>(&I))
576          if (const DILocation *DIL = I.getDebugLoc()) {
577            auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
578            if (NewDIL)
579              I.setDebugLoc(NewDIL.getValue());
580            else
581              LLVM_DEBUG(dbgs()
582                         << "Failed to create new discriminator: "
583                         << DIL->getFilename() << " Line: " << DIL->getLine());
584          }
585
586  for (unsigned It = 1; It != ULO.Count; ++It) {
587    SmallVector<BasicBlock *, 8> NewBlocks;
588    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
589    NewLoops[L] = L;
590
591    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
592      ValueToValueMapTy VMap;
593      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
594      Header->getParent()->getBasicBlockList().push_back(New);
595
596      assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
597             "Header should not be in a sub-loop");
598      // Tell LI about New.
599      const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
600      if (OldLoop)
601        LoopsToSimplify.insert(NewLoops[OldLoop]);
602
603      if (*BB == Header)
604        // Loop over all of the PHI nodes in the block, changing them to use
605        // the incoming values from the previous block.
606        for (PHINode *OrigPHI : OrigPHINode) {
607          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
608          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
609          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
610            if (It > 1 && L->contains(InValI))
611              InVal = LastValueMap[InValI];
612          VMap[OrigPHI] = InVal;
613          New->getInstList().erase(NewPHI);
614        }
615
616      // Update our running map of newest clones
617      LastValueMap[*BB] = New;
618      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
619           VI != VE; ++VI)
620        LastValueMap[VI->first] = VI->second;
621
622      // Add phi entries for newly created values to all exit blocks.
623      for (BasicBlock *Succ : successors(*BB)) {
624        if (L->contains(Succ))
625          continue;
626        for (PHINode &PHI : Succ->phis()) {
627          Value *Incoming = PHI.getIncomingValueForBlock(*BB);
628          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
629          if (It != LastValueMap.end())
630            Incoming = It->second;
631          PHI.addIncoming(Incoming, New);
632        }
633      }
634      // Keep track of new headers and latches as we create them, so that
635      // we can insert the proper branches later.
636      if (*BB == Header)
637        Headers.push_back(New);
638      if (*BB == LatchBlock)
639        Latches.push_back(New);
640
641      // Keep track of the exiting block and its successor block contained in
642      // the loop for the current iteration.
643      if (ExitingBI) {
644        if (*BB == ExitingBlocks[0])
645          ExitingBlocks.push_back(New);
646        if (*BB == ExitingSucc[0])
647          ExitingSucc.push_back(New);
648      }
649
650      NewBlocks.push_back(New);
651      UnrolledLoopBlocks.push_back(New);
652
653      // Update DomTree: since we just copy the loop body, and each copy has a
654      // dedicated entry block (copy of the header block), this header's copy
655      // dominates all copied blocks. That means, dominance relations in the
656      // copied body are the same as in the original body.
657      if (DT) {
658        if (*BB == Header)
659          DT->addNewBlock(New, Latches[It - 1]);
660        else {
661          auto BBDomNode = DT->getNode(*BB);
662          auto BBIDom = BBDomNode->getIDom();
663          BasicBlock *OriginalBBIDom = BBIDom->getBlock();
664          DT->addNewBlock(
665              New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
666        }
667      }
668    }
669
670    // Remap all instructions in the most recent iteration
671    remapInstructionsInBlocks(NewBlocks, LastValueMap);
672    for (BasicBlock *NewBlock : NewBlocks) {
673      for (Instruction &I : *NewBlock) {
674        if (auto *II = dyn_cast<IntrinsicInst>(&I))
675          if (II->getIntrinsicID() == Intrinsic::assume)
676            AC->registerAssumption(II);
677      }
678    }
679  }
680
681  // Loop over the PHI nodes in the original block, setting incoming values.
682  for (PHINode *PN : OrigPHINode) {
683    if (CompletelyUnroll) {
684      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
685      Header->getInstList().erase(PN);
686    } else if (ULO.Count > 1) {
687      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
688      // If this value was defined in the loop, take the value defined by the
689      // last iteration of the loop.
690      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
691        if (L->contains(InValI))
692          InVal = LastValueMap[InVal];
693      }
694      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
695      PN->addIncoming(InVal, Latches.back());
696    }
697  }
698
699  auto setDest = [](BasicBlock *Src, BasicBlock *Dest, BasicBlock *BlockInLoop,
700                    bool NeedConditional, Optional<bool> ContinueOnTrue,
701                    bool IsDestLoopExit) {
702    auto *Term = cast<BranchInst>(Src->getTerminator());
703    if (NeedConditional) {
704      // Update the conditional branch's successor for the following
705      // iteration.
706      assert(ContinueOnTrue.hasValue() &&
707             "Expecting valid ContinueOnTrue when NeedConditional is true");
708      Term->setSuccessor(!(*ContinueOnTrue), Dest);
709    } else {
710      // Remove phi operands at this loop exit
711      if (!IsDestLoopExit) {
712        BasicBlock *BB = Src;
713        for (BasicBlock *Succ : successors(BB)) {
714          // Preserve the incoming value from BB if we are jumping to the block
715          // in the current loop.
716          if (Succ == BlockInLoop)
717            continue;
718          for (PHINode &Phi : Succ->phis())
719            Phi.removeIncomingValue(BB, false);
720        }
721      }
722      // Replace the conditional branch with an unconditional one.
723      BranchInst::Create(Dest, Term);
724      Term->eraseFromParent();
725    }
726  };
727
728  // Connect latches of the unrolled iterations to the headers of the next
729  // iteration. If the latch is also the exiting block, the conditional branch
730  // may have to be preserved.
731  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
732    // The branch destination.
733    unsigned j = (i + 1) % e;
734    BasicBlock *Dest = Headers[j];
735    bool NeedConditional = LatchIsExiting;
736
737    if (LatchIsExiting) {
738      if (RuntimeTripCount && j != 0)
739        NeedConditional = false;
740
741      // For a complete unroll, make the last iteration end with a branch
742      // to the exit block.
743      if (CompletelyUnroll) {
744        if (j == 0)
745          Dest = LoopExit;
746        // If using trip count upper bound to completely unroll, we need to
747        // keep the conditional branch except the last one because the loop
748        // may exit after any iteration.
749        assert(NeedConditional &&
750               "NeedCondition cannot be modified by both complete "
751               "unrolling and runtime unrolling");
752        NeedConditional =
753            (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
754      } else if (j != BreakoutTrip &&
755                 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
756        // If we know the trip count or a multiple of it, we can safely use an
757        // unconditional branch for some iterations.
758        NeedConditional = false;
759      }
760    }
761
762    setDest(Latches[i], Dest, Headers[i], NeedConditional, ContinueOnTrue,
763            Dest == LoopExit);
764  }
765
766  if (!LatchIsExiting) {
767    // If the latch is not exiting, we may be able to simplify the conditional
768    // branches in the unrolled exiting blocks.
769    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
770      // The branch destination.
771      unsigned j = (i + 1) % e;
772      bool NeedConditional = true;
773
774      if (RuntimeTripCount && j != 0)
775        NeedConditional = false;
776
777      if (CompletelyUnroll)
778        // We cannot drop the conditional branch for the last condition, as we
779        // may have to execute the loop body depending on the condition.
780        NeedConditional = j == 0 || ULO.PreserveCondBr;
781      else if (j != BreakoutTrip &&
782               (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
783        // If we know the trip count or a multiple of it, we can safely use an
784        // unconditional branch for some iterations.
785        NeedConditional = false;
786
787      // Conditional branches from non-latch exiting block have successors
788      // either in the same loop iteration or outside the loop. The branches are
789      // already correct.
790      if (NeedConditional)
791        continue;
792      setDest(ExitingBlocks[i], ExitingSucc[i], ExitingSucc[i], NeedConditional,
793              None, false);
794    }
795
796    // When completely unrolling, the last latch becomes unreachable.
797    if (CompletelyUnroll) {
798      BranchInst *Term = cast<BranchInst>(Latches.back()->getTerminator());
799      new UnreachableInst(Term->getContext(), Term);
800      Term->eraseFromParent();
801    }
802  }
803
804  // Update dominators of blocks we might reach through exits.
805  // Immediate dominator of such block might change, because we add more
806  // routes which can lead to the exit: we can now reach it from the copied
807  // iterations too.
808  if (DT && ULO.Count > 1) {
809    for (auto *BB : OriginalLoopBlocks) {
810      auto *BBDomNode = DT->getNode(BB);
811      SmallVector<BasicBlock *, 16> ChildrenToUpdate;
812      for (auto *ChildDomNode : BBDomNode->children()) {
813        auto *ChildBB = ChildDomNode->getBlock();
814        if (!L->contains(ChildBB))
815          ChildrenToUpdate.push_back(ChildBB);
816      }
817      BasicBlock *NewIDom;
818      if (ExitingBI && BB == ExitingBlocks[0]) {
819        // The latch is special because we emit unconditional branches in
820        // some cases where the original loop contained a conditional branch.
821        // Since the latch is always at the bottom of the loop, if the latch
822        // dominated an exit before unrolling, the new dominator of that exit
823        // must also be a latch.  Specifically, the dominator is the first
824        // latch which ends in a conditional branch, or the last latch if
825        // there is no such latch.
826        // For loops exiting from non latch exiting block, we limit the
827        // branch simplification to single exiting block loops.
828        NewIDom = ExitingBlocks.back();
829        for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
830          Instruction *Term = ExitingBlocks[i]->getTerminator();
831          if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
832            NewIDom =
833                DT->findNearestCommonDominator(ExitingBlocks[i], Latches[i]);
834            break;
835          }
836        }
837      } else {
838        // The new idom of the block will be the nearest common dominator
839        // of all copies of the previous idom. This is equivalent to the
840        // nearest common dominator of the previous idom and the first latch,
841        // which dominates all copies of the previous idom.
842        NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
843      }
844      for (auto *ChildBB : ChildrenToUpdate)
845        DT->changeImmediateDominator(ChildBB, NewIDom);
846    }
847  }
848
849  assert(!DT || !UnrollVerifyDomtree ||
850         DT->verify(DominatorTree::VerificationLevel::Fast));
851
852  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
853  // Merge adjacent basic blocks, if possible.
854  for (BasicBlock *Latch : Latches) {
855    BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
856    assert((Term ||
857            (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
858           "Need a branch as terminator, except when fully unrolling with "
859           "unconditional latch");
860    if (Term && Term->isUnconditional()) {
861      BasicBlock *Dest = Term->getSuccessor(0);
862      BasicBlock *Fold = Dest->getUniquePredecessor();
863      if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
864        // Dest has been folded into Fold. Update our worklists accordingly.
865        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
866        UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
867                                             UnrolledLoopBlocks.end(), Dest),
868                                 UnrolledLoopBlocks.end());
869      }
870    }
871  }
872  // Apply updates to the DomTree.
873  DT = &DTU.getDomTree();
874
875  // At this point, the code is well formed.  We now simplify the unrolled loop,
876  // doing constant propagation and dead code elimination as we go.
877  simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
878                          SE, DT, AC, TTI);
879
880  NumCompletelyUnrolled += CompletelyUnroll;
881  ++NumUnrolled;
882
883  Loop *OuterL = L->getParentLoop();
884  // Update LoopInfo if the loop is completely removed.
885  if (CompletelyUnroll)
886    LI->erase(L);
887
888  // After complete unrolling most of the blocks should be contained in OuterL.
889  // However, some of them might happen to be out of OuterL (e.g. if they
890  // precede a loop exit). In this case we might need to insert PHI nodes in
891  // order to preserve LCSSA form.
892  // We don't need to check this if we already know that we need to fix LCSSA
893  // form.
894  // TODO: For now we just recompute LCSSA for the outer loop in this case, but
895  // it should be possible to fix it in-place.
896  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
897    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
898
899  // If we have a pass and a DominatorTree we should re-simplify impacted loops
900  // to ensure subsequent analyses can rely on this form. We want to simplify
901  // at least one layer outside of the loop that was unrolled so that any
902  // changes to the parent loop exposed by the unrolling are considered.
903  if (DT) {
904    if (OuterL) {
905      // OuterL includes all loops for which we can break loop-simplify, so
906      // it's sufficient to simplify only it (it'll recursively simplify inner
907      // loops too).
908      if (NeedToFixLCSSA) {
909        // LCSSA must be performed on the outermost affected loop. The unrolled
910        // loop's last loop latch is guaranteed to be in the outermost loop
911        // after LoopInfo's been updated by LoopInfo::erase.
912        Loop *LatchLoop = LI->getLoopFor(Latches.back());
913        Loop *FixLCSSALoop = OuterL;
914        if (!FixLCSSALoop->contains(LatchLoop))
915          while (FixLCSSALoop->getParentLoop() != LatchLoop)
916            FixLCSSALoop = FixLCSSALoop->getParentLoop();
917
918        formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
919      } else if (PreserveLCSSA) {
920        assert(OuterL->isLCSSAForm(*DT) &&
921               "Loops should be in LCSSA form after loop-unroll.");
922      }
923
924      // TODO: That potentially might be compile-time expensive. We should try
925      // to fix the loop-simplified form incrementally.
926      simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
927    } else {
928      // Simplify loops for which we might've broken loop-simplify form.
929      for (Loop *SubLoop : LoopsToSimplify)
930        simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
931    }
932  }
933
934  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
935                          : LoopUnrollResult::PartiallyUnrolled;
936}
937
938/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
939/// node with the given name (for example, "llvm.loop.unroll.count"). If no
940/// such metadata node exists, then nullptr is returned.
941MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
942  // First operand should refer to the loop id itself.
943  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
944  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
945
946  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
947    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
948    if (!MD)
949      continue;
950
951    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
952    if (!S)
953      continue;
954
955    if (Name.equals(S->getString()))
956      return MD;
957  }
958  return nullptr;
959}
960