1//===- StraightLineStrengthReduce.cpp - -----------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements straight-line strength reduction (SLSR). Unlike loop
10// strength reduction, this algorithm is designed to reduce arithmetic
11// redundancy in straight-line code instead of loops. It has proven to be
12// effective in simplifying arithmetic statements derived from an unrolled loop.
13// It can also simplify the logic of SeparateConstOffsetFromGEP.
14//
15// There are many optimizations we can perform in the domain of SLSR. This file
16// for now contains only an initial step. Specifically, we look for strength
17// reduction candidates in the following forms:
18//
19// Form 1: B + i * S
20// Form 2: (B + i) * S
21// Form 3: &B[i * S]
22//
23// where S is an integer variable, and i is a constant integer. If we found two
24// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
25// in a simpler way with respect to S1. For example,
26//
27// S1: X = B + i * S
28// S2: Y = B + i' * S   => X + (i' - i) * S
29//
30// S1: X = (B + i) * S
31// S2: Y = (B + i') * S => X + (i' - i) * S
32//
33// S1: X = &B[i * S]
34// S2: Y = &B[i' * S]   => &X[(i' - i) * S]
35//
36// Note: (i' - i) * S is folded to the extent possible.
37//
38// This rewriting is in general a good idea. The code patterns we focus on
39// usually come from loop unrolling, so (i' - i) * S is likely the same
40// across iterations and can be reused. When that happens, the optimized form
41// takes only one add starting from the second iteration.
42//
43// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
44// multiple bases, we choose to rewrite S2 with respect to its "immediate"
45// basis, the basis that is the closest ancestor in the dominator tree.
46//
47// TODO:
48//
49// - Floating point arithmetics when fast math is enabled.
50//
51// - SLSR may decrease ILP at the architecture level. Targets that are very
52//   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
53//   left as future work.
54//
55// - When (i' - i) is constant but i and i' are not, we could still perform
56//   SLSR.
57
58#include "llvm/ADT/APInt.h"
59#include "llvm/ADT/DepthFirstIterator.h"
60#include "llvm/ADT/SmallVector.h"
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/Analysis/TargetTransformInfo.h"
63#include "llvm/Analysis/ValueTracking.h"
64#include "llvm/IR/Constants.h"
65#include "llvm/IR/DataLayout.h"
66#include "llvm/IR/DerivedTypes.h"
67#include "llvm/IR/Dominators.h"
68#include "llvm/IR/GetElementPtrTypeIterator.h"
69#include "llvm/IR/IRBuilder.h"
70#include "llvm/IR/InstrTypes.h"
71#include "llvm/IR/Instruction.h"
72#include "llvm/IR/Instructions.h"
73#include "llvm/IR/Module.h"
74#include "llvm/IR/Operator.h"
75#include "llvm/IR/PatternMatch.h"
76#include "llvm/IR/Type.h"
77#include "llvm/IR/Value.h"
78#include "llvm/InitializePasses.h"
79#include "llvm/Pass.h"
80#include "llvm/Support/Casting.h"
81#include "llvm/Support/ErrorHandling.h"
82#include "llvm/Transforms/Scalar.h"
83#include "llvm/Transforms/Utils/Local.h"
84#include <cassert>
85#include <cstdint>
86#include <limits>
87#include <list>
88#include <vector>
89
90using namespace llvm;
91using namespace PatternMatch;
92
93static const unsigned UnknownAddressSpace =
94    std::numeric_limits<unsigned>::max();
95
96namespace {
97
98class StraightLineStrengthReduce : public FunctionPass {
99public:
100  // SLSR candidate. Such a candidate must be in one of the forms described in
101  // the header comments.
102  struct Candidate {
103    enum Kind {
104      Invalid, // reserved for the default constructor
105      Add,     // B + i * S
106      Mul,     // (B + i) * S
107      GEP,     // &B[..][i * S][..]
108    };
109
110    Candidate() = default;
111    Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
112              Instruction *I)
113        : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
114
115    Kind CandidateKind = Invalid;
116
117    const SCEV *Base = nullptr;
118
119    // Note that Index and Stride of a GEP candidate do not necessarily have the
120    // same integer type. In that case, during rewriting, Stride will be
121    // sign-extended or truncated to Index's type.
122    ConstantInt *Index = nullptr;
123
124    Value *Stride = nullptr;
125
126    // The instruction this candidate corresponds to. It helps us to rewrite a
127    // candidate with respect to its immediate basis. Note that one instruction
128    // can correspond to multiple candidates depending on how you associate the
129    // expression. For instance,
130    //
131    // (a + 1) * (b + 2)
132    //
133    // can be treated as
134    //
135    // <Base: a, Index: 1, Stride: b + 2>
136    //
137    // or
138    //
139    // <Base: b, Index: 2, Stride: a + 1>
140    Instruction *Ins = nullptr;
141
142    // Points to the immediate basis of this candidate, or nullptr if we cannot
143    // find any basis for this candidate.
144    Candidate *Basis = nullptr;
145  };
146
147  static char ID;
148
149  StraightLineStrengthReduce() : FunctionPass(ID) {
150    initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
151  }
152
153  void getAnalysisUsage(AnalysisUsage &AU) const override {
154    AU.addRequired<DominatorTreeWrapperPass>();
155    AU.addRequired<ScalarEvolutionWrapperPass>();
156    AU.addRequired<TargetTransformInfoWrapperPass>();
157    // We do not modify the shape of the CFG.
158    AU.setPreservesCFG();
159  }
160
161  bool doInitialization(Module &M) override {
162    DL = &M.getDataLayout();
163    return false;
164  }
165
166  bool runOnFunction(Function &F) override;
167
168private:
169  // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
170  // share the same base and stride.
171  bool isBasisFor(const Candidate &Basis, const Candidate &C);
172
173  // Returns whether the candidate can be folded into an addressing mode.
174  bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
175                  const DataLayout *DL);
176
177  // Returns true if C is already in a simplest form and not worth being
178  // rewritten.
179  bool isSimplestForm(const Candidate &C);
180
181  // Checks whether I is in a candidate form. If so, adds all the matching forms
182  // to Candidates, and tries to find the immediate basis for each of them.
183  void allocateCandidatesAndFindBasis(Instruction *I);
184
185  // Allocate candidates and find bases for Add instructions.
186  void allocateCandidatesAndFindBasisForAdd(Instruction *I);
187
188  // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
189  // candidate.
190  void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
191                                            Instruction *I);
192  // Allocate candidates and find bases for Mul instructions.
193  void allocateCandidatesAndFindBasisForMul(Instruction *I);
194
195  // Splits LHS into Base + Index and, if succeeds, calls
196  // allocateCandidatesAndFindBasis.
197  void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
198                                            Instruction *I);
199
200  // Allocate candidates and find bases for GetElementPtr instructions.
201  void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
202
203  // A helper function that scales Idx with ElementSize before invoking
204  // allocateCandidatesAndFindBasis.
205  void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
206                                            Value *S, uint64_t ElementSize,
207                                            Instruction *I);
208
209  // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
210  // basis.
211  void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
212                                      ConstantInt *Idx, Value *S,
213                                      Instruction *I);
214
215  // Rewrites candidate C with respect to Basis.
216  void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
217
218  // A helper function that factors ArrayIdx to a product of a stride and a
219  // constant index, and invokes allocateCandidatesAndFindBasis with the
220  // factorings.
221  void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
222                        GetElementPtrInst *GEP);
223
224  // Emit code that computes the "bump" from Basis to C. If the candidate is a
225  // GEP and the bump is not divisible by the element size of the GEP, this
226  // function sets the BumpWithUglyGEP flag to notify its caller to bump the
227  // basis using an ugly GEP.
228  static Value *emitBump(const Candidate &Basis, const Candidate &C,
229                         IRBuilder<> &Builder, const DataLayout *DL,
230                         bool &BumpWithUglyGEP);
231
232  const DataLayout *DL = nullptr;
233  DominatorTree *DT = nullptr;
234  ScalarEvolution *SE;
235  TargetTransformInfo *TTI = nullptr;
236  std::list<Candidate> Candidates;
237
238  // Temporarily holds all instructions that are unlinked (but not deleted) by
239  // rewriteCandidateWithBasis. These instructions will be actually removed
240  // after all rewriting finishes.
241  std::vector<Instruction *> UnlinkedInstructions;
242};
243
244} // end anonymous namespace
245
246char StraightLineStrengthReduce::ID = 0;
247
248INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
249                      "Straight line strength reduction", false, false)
250INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
251INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
252INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
253INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
254                    "Straight line strength reduction", false, false)
255
256FunctionPass *llvm::createStraightLineStrengthReducePass() {
257  return new StraightLineStrengthReduce();
258}
259
260bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
261                                            const Candidate &C) {
262  return (Basis.Ins != C.Ins && // skip the same instruction
263          // They must have the same type too. Basis.Base == C.Base doesn't
264          // guarantee their types are the same (PR23975).
265          Basis.Ins->getType() == C.Ins->getType() &&
266          // Basis must dominate C in order to rewrite C with respect to Basis.
267          DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
268          // They share the same base, stride, and candidate kind.
269          Basis.Base == C.Base && Basis.Stride == C.Stride &&
270          Basis.CandidateKind == C.CandidateKind);
271}
272
273static bool isGEPFoldable(GetElementPtrInst *GEP,
274                          const TargetTransformInfo *TTI) {
275  SmallVector<const Value*, 4> Indices;
276  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
277    Indices.push_back(*I);
278  return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
279                         Indices) == TargetTransformInfo::TCC_Free;
280}
281
282// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
283static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
284                          TargetTransformInfo *TTI) {
285  // Index->getSExtValue() may crash if Index is wider than 64-bit.
286  return Index->getBitWidth() <= 64 &&
287         TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
288                                    Index->getSExtValue(), UnknownAddressSpace);
289}
290
291bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
292                                            TargetTransformInfo *TTI,
293                                            const DataLayout *DL) {
294  if (C.CandidateKind == Candidate::Add)
295    return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
296  if (C.CandidateKind == Candidate::GEP)
297    return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
298  return false;
299}
300
301// Returns true if GEP has zero or one non-zero index.
302static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
303  unsigned NumNonZeroIndices = 0;
304  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
305    ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
306    if (ConstIdx == nullptr || !ConstIdx->isZero())
307      ++NumNonZeroIndices;
308  }
309  return NumNonZeroIndices <= 1;
310}
311
312bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
313  if (C.CandidateKind == Candidate::Add) {
314    // B + 1 * S or B + (-1) * S
315    return C.Index->isOne() || C.Index->isMinusOne();
316  }
317  if (C.CandidateKind == Candidate::Mul) {
318    // (B + 0) * S
319    return C.Index->isZero();
320  }
321  if (C.CandidateKind == Candidate::GEP) {
322    // (char*)B + S or (char*)B - S
323    return ((C.Index->isOne() || C.Index->isMinusOne()) &&
324            hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
325  }
326  return false;
327}
328
329// TODO: We currently implement an algorithm whose time complexity is linear in
330// the number of existing candidates. However, we could do better by using
331// ScopedHashTable. Specifically, while traversing the dominator tree, we could
332// maintain all the candidates that dominate the basic block being traversed in
333// a ScopedHashTable. This hash table is indexed by the base and the stride of
334// a candidate. Therefore, finding the immediate basis of a candidate boils down
335// to one hash-table look up.
336void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
337    Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
338    Instruction *I) {
339  Candidate C(CT, B, Idx, S, I);
340  // SLSR can complicate an instruction in two cases:
341  //
342  // 1. If we can fold I into an addressing mode, computing I is likely free or
343  // takes only one instruction.
344  //
345  // 2. I is already in a simplest form. For example, when
346  //      X = B + 8 * S
347  //      Y = B + S,
348  //    rewriting Y to X - 7 * S is probably a bad idea.
349  //
350  // In the above cases, we still add I to the candidate list so that I can be
351  // the basis of other candidates, but we leave I's basis blank so that I
352  // won't be rewritten.
353  if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
354    // Try to compute the immediate basis of C.
355    unsigned NumIterations = 0;
356    // Limit the scan radius to avoid running in quadratice time.
357    static const unsigned MaxNumIterations = 50;
358    for (auto Basis = Candidates.rbegin();
359         Basis != Candidates.rend() && NumIterations < MaxNumIterations;
360         ++Basis, ++NumIterations) {
361      if (isBasisFor(*Basis, C)) {
362        C.Basis = &(*Basis);
363        break;
364      }
365    }
366  }
367  // Regardless of whether we find a basis for C, we need to push C to the
368  // candidate list so that it can be the basis of other candidates.
369  Candidates.push_back(C);
370}
371
372void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
373    Instruction *I) {
374  switch (I->getOpcode()) {
375  case Instruction::Add:
376    allocateCandidatesAndFindBasisForAdd(I);
377    break;
378  case Instruction::Mul:
379    allocateCandidatesAndFindBasisForMul(I);
380    break;
381  case Instruction::GetElementPtr:
382    allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
383    break;
384  }
385}
386
387void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
388    Instruction *I) {
389  // Try matching B + i * S.
390  if (!isa<IntegerType>(I->getType()))
391    return;
392
393  assert(I->getNumOperands() == 2 && "isn't I an add?");
394  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
395  allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
396  if (LHS != RHS)
397    allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
398}
399
400void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
401    Value *LHS, Value *RHS, Instruction *I) {
402  Value *S = nullptr;
403  ConstantInt *Idx = nullptr;
404  if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
405    // I = LHS + RHS = LHS + Idx * S
406    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
407  } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
408    // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
409    APInt One(Idx->getBitWidth(), 1);
410    Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
411    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
412  } else {
413    // At least, I = LHS + 1 * RHS
414    ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
415    allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
416                                   I);
417  }
418}
419
420// Returns true if A matches B + C where C is constant.
421static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
422  return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
423          match(A, m_Add(m_ConstantInt(C), m_Value(B))));
424}
425
426// Returns true if A matches B | C where C is constant.
427static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
428  return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
429          match(A, m_Or(m_ConstantInt(C), m_Value(B))));
430}
431
432void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
433    Value *LHS, Value *RHS, Instruction *I) {
434  Value *B = nullptr;
435  ConstantInt *Idx = nullptr;
436  if (matchesAdd(LHS, B, Idx)) {
437    // If LHS is in the form of "Base + Index", then I is in the form of
438    // "(Base + Index) * RHS".
439    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
440  } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
441    // If LHS is in the form of "Base | Index" and Base and Index have no common
442    // bits set, then
443    //   Base | Index = Base + Index
444    // and I is thus in the form of "(Base + Index) * RHS".
445    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
446  } else {
447    // Otherwise, at least try the form (LHS + 0) * RHS.
448    ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
449    allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
450                                   I);
451  }
452}
453
454void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
455    Instruction *I) {
456  // Try matching (B + i) * S.
457  // TODO: we could extend SLSR to float and vector types.
458  if (!isa<IntegerType>(I->getType()))
459    return;
460
461  assert(I->getNumOperands() == 2 && "isn't I a mul?");
462  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
463  allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
464  if (LHS != RHS) {
465    // Symmetrically, try to split RHS to Base + Index.
466    allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
467  }
468}
469
470void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
471    const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
472    Instruction *I) {
473  // I = B + sext(Idx *nsw S) * ElementSize
474  //   = B + (sext(Idx) * sext(S)) * ElementSize
475  //   = B + (sext(Idx) * ElementSize) * sext(S)
476  // Casting to IntegerType is safe because we skipped vector GEPs.
477  IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
478  ConstantInt *ScaledIdx = ConstantInt::get(
479      IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
480  allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
481}
482
483void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
484                                                  const SCEV *Base,
485                                                  uint64_t ElementSize,
486                                                  GetElementPtrInst *GEP) {
487  // At least, ArrayIdx = ArrayIdx *nsw 1.
488  allocateCandidatesAndFindBasisForGEP(
489      Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
490      ArrayIdx, ElementSize, GEP);
491  Value *LHS = nullptr;
492  ConstantInt *RHS = nullptr;
493  // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
494  // itself. This would allow us to handle the shl case for free. However,
495  // matching SCEVs has two issues:
496  //
497  // 1. this would complicate rewriting because the rewriting procedure
498  // would have to translate SCEVs back to IR instructions. This translation
499  // is difficult when LHS is further evaluated to a composite SCEV.
500  //
501  // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
502  // to strip nsw/nuw flags which are critical for SLSR to trace into
503  // sext'ed multiplication.
504  if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
505    // SLSR is currently unsafe if i * S may overflow.
506    // GEP = Base + sext(LHS *nsw RHS) * ElementSize
507    allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
508  } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
509    // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
510    //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
511    APInt One(RHS->getBitWidth(), 1);
512    ConstantInt *PowerOf2 =
513        ConstantInt::get(RHS->getContext(), One << RHS->getValue());
514    allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
515  }
516}
517
518void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
519    GetElementPtrInst *GEP) {
520  // TODO: handle vector GEPs
521  if (GEP->getType()->isVectorTy())
522    return;
523
524  SmallVector<const SCEV *, 4> IndexExprs;
525  for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
526    IndexExprs.push_back(SE->getSCEV(*I));
527
528  gep_type_iterator GTI = gep_type_begin(GEP);
529  for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
530    if (GTI.isStruct())
531      continue;
532
533    const SCEV *OrigIndexExpr = IndexExprs[I - 1];
534    IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
535
536    // The base of this candidate is GEP's base plus the offsets of all
537    // indices except this current one.
538    const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
539    Value *ArrayIdx = GEP->getOperand(I);
540    uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
541    if (ArrayIdx->getType()->getIntegerBitWidth() <=
542        DL->getPointerSizeInBits(GEP->getAddressSpace())) {
543      // Skip factoring if ArrayIdx is wider than the pointer size, because
544      // ArrayIdx is implicitly truncated to the pointer size.
545      factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
546    }
547    // When ArrayIdx is the sext of a value, we try to factor that value as
548    // well.  Handling this case is important because array indices are
549    // typically sign-extended to the pointer size.
550    Value *TruncatedArrayIdx = nullptr;
551    if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
552        TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
553            DL->getPointerSizeInBits(GEP->getAddressSpace())) {
554      // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
555      // because TruncatedArrayIdx is implicitly truncated to the pointer size.
556      factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
557    }
558
559    IndexExprs[I - 1] = OrigIndexExpr;
560  }
561}
562
563// A helper function that unifies the bitwidth of A and B.
564static void unifyBitWidth(APInt &A, APInt &B) {
565  if (A.getBitWidth() < B.getBitWidth())
566    A = A.sext(B.getBitWidth());
567  else if (A.getBitWidth() > B.getBitWidth())
568    B = B.sext(A.getBitWidth());
569}
570
571Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
572                                            const Candidate &C,
573                                            IRBuilder<> &Builder,
574                                            const DataLayout *DL,
575                                            bool &BumpWithUglyGEP) {
576  APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
577  unifyBitWidth(Idx, BasisIdx);
578  APInt IndexOffset = Idx - BasisIdx;
579
580  BumpWithUglyGEP = false;
581  if (Basis.CandidateKind == Candidate::GEP) {
582    APInt ElementSize(
583        IndexOffset.getBitWidth(),
584        DL->getTypeAllocSize(
585            cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
586    APInt Q, R;
587    APInt::sdivrem(IndexOffset, ElementSize, Q, R);
588    if (R == 0)
589      IndexOffset = Q;
590    else
591      BumpWithUglyGEP = true;
592  }
593
594  // Compute Bump = C - Basis = (i' - i) * S.
595  // Common case 1: if (i' - i) is 1, Bump = S.
596  if (IndexOffset == 1)
597    return C.Stride;
598  // Common case 2: if (i' - i) is -1, Bump = -S.
599  if (IndexOffset.isAllOnesValue())
600    return Builder.CreateNeg(C.Stride);
601
602  // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
603  // have different bit widths.
604  IntegerType *DeltaType =
605      IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
606  Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
607  if (IndexOffset.isPowerOf2()) {
608    // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
609    ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
610    return Builder.CreateShl(ExtendedStride, Exponent);
611  }
612  if ((-IndexOffset).isPowerOf2()) {
613    // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
614    ConstantInt *Exponent =
615        ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
616    return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
617  }
618  Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
619  return Builder.CreateMul(ExtendedStride, Delta);
620}
621
622void StraightLineStrengthReduce::rewriteCandidateWithBasis(
623    const Candidate &C, const Candidate &Basis) {
624  assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
625         C.Stride == Basis.Stride);
626  // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
627  // basis of a candidate cannot be unlinked before the candidate.
628  assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
629
630  // An instruction can correspond to multiple candidates. Therefore, instead of
631  // simply deleting an instruction when we rewrite it, we mark its parent as
632  // nullptr (i.e. unlink it) so that we can skip the candidates whose
633  // instruction is already rewritten.
634  if (!C.Ins->getParent())
635    return;
636
637  IRBuilder<> Builder(C.Ins);
638  bool BumpWithUglyGEP;
639  Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
640  Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
641  switch (C.CandidateKind) {
642  case Candidate::Add:
643  case Candidate::Mul: {
644    // C = Basis + Bump
645    Value *NegBump;
646    if (match(Bump, m_Neg(m_Value(NegBump)))) {
647      // If Bump is a neg instruction, emit C = Basis - (-Bump).
648      Reduced = Builder.CreateSub(Basis.Ins, NegBump);
649      // We only use the negative argument of Bump, and Bump itself may be
650      // trivially dead.
651      RecursivelyDeleteTriviallyDeadInstructions(Bump);
652    } else {
653      // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
654      // usually unsound, e.g.,
655      //
656      // X = (-2 +nsw 1) *nsw INT_MAX
657      // Y = (-2 +nsw 3) *nsw INT_MAX
658      //   =>
659      // Y = X + 2 * INT_MAX
660      //
661      // Neither + and * in the resultant expression are nsw.
662      Reduced = Builder.CreateAdd(Basis.Ins, Bump);
663    }
664    break;
665  }
666  case Candidate::GEP:
667    {
668      Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
669      bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
670      if (BumpWithUglyGEP) {
671        // C = (char *)Basis + Bump
672        unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
673        Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
674        Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
675        if (InBounds)
676          Reduced =
677              Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
678        else
679          Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
680        Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
681      } else {
682        // C = gep Basis, Bump
683        // Canonicalize bump to pointer size.
684        Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
685        if (InBounds)
686          Reduced = Builder.CreateInBoundsGEP(
687              cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
688              Basis.Ins, Bump);
689        else
690          Reduced = Builder.CreateGEP(
691              cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
692              Basis.Ins, Bump);
693      }
694      break;
695    }
696  default:
697    llvm_unreachable("C.CandidateKind is invalid");
698  };
699  Reduced->takeName(C.Ins);
700  C.Ins->replaceAllUsesWith(Reduced);
701  // Unlink C.Ins so that we can skip other candidates also corresponding to
702  // C.Ins. The actual deletion is postponed to the end of runOnFunction.
703  C.Ins->removeFromParent();
704  UnlinkedInstructions.push_back(C.Ins);
705}
706
707bool StraightLineStrengthReduce::runOnFunction(Function &F) {
708  if (skipFunction(F))
709    return false;
710
711  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
712  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
713  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
714  // Traverse the dominator tree in the depth-first order. This order makes sure
715  // all bases of a candidate are in Candidates when we process it.
716  for (const auto Node : depth_first(DT))
717    for (auto &I : *(Node->getBlock()))
718      allocateCandidatesAndFindBasis(&I);
719
720  // Rewrite candidates in the reverse depth-first order. This order makes sure
721  // a candidate being rewritten is not a basis for any other candidate.
722  while (!Candidates.empty()) {
723    const Candidate &C = Candidates.back();
724    if (C.Basis != nullptr) {
725      rewriteCandidateWithBasis(C, *C.Basis);
726    }
727    Candidates.pop_back();
728  }
729
730  // Delete all unlink instructions.
731  for (auto *UnlinkedInst : UnlinkedInstructions) {
732    for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
733      Value *Op = UnlinkedInst->getOperand(I);
734      UnlinkedInst->setOperand(I, nullptr);
735      RecursivelyDeleteTriviallyDeadInstructions(Op);
736    }
737    UnlinkedInst->deleteValue();
738  }
739  bool Ret = !UnlinkedInstructions.empty();
740  UnlinkedInstructions.clear();
741  return Ret;
742}
743