1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This transformation analyzes and transforms the induction variables (and
10// computations derived from them) into forms suitable for efficient execution
11// on the target.
12//
13// This pass performs a strength reduction on array references inside loops that
14// have as one or more of their components the loop induction variable, it
15// rewrites expressions to take advantage of scaled-index addressing modes
16// available on the target, and it performs a variety of other optimizations
17// related to loop induction variables.
18//
19// Terminology note: this code has a lot of handling for "post-increment" or
20// "post-inc" users. This is not talking about post-increment addressing modes;
21// it is instead talking about code like this:
22//
23//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24//   ...
25//   %i.next = add %i, 1
26//   %c = icmp eq %i.next, %n
27//
28// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29// it's useful to think about these as the same register, with some uses using
30// the value of the register before the add and some using it after. In this
31// example, the icmp is a post-increment user, since it uses %i.next, which is
32// the value of the induction variable after the increment. The other common
33// case of post-increment users is users outside the loop.
34//
35// TODO: More sophistication in the way Formulae are generated and filtered.
36//
37// TODO: Handle multiple loops at a time.
38//
39// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40//       of a GlobalValue?
41//
42// TODO: When truncation is free, truncate ICmp users' operands to make it a
43//       smaller encoding (on x86 at least).
44//
45// TODO: When a negated register is used by an add (such as in a list of
46//       multiple base registers, or as the increment expression in an addrec),
47//       we may not actually need both reg and (-1 * reg) in registers; the
48//       negation can be implemented by using a sub instead of an add. The
49//       lack of support for taking this into consideration when making
50//       register pressure decisions is partly worked around by the "Special"
51//       use kind.
52//
53//===----------------------------------------------------------------------===//
54
55#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56#include "llvm/ADT/APInt.h"
57#include "llvm/ADT/DenseMap.h"
58#include "llvm/ADT/DenseSet.h"
59#include "llvm/ADT/Hashing.h"
60#include "llvm/ADT/PointerIntPair.h"
61#include "llvm/ADT/STLExtras.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/iterator_range.h"
68#include "llvm/Analysis/AssumptionCache.h"
69#include "llvm/Analysis/IVUsers.h"
70#include "llvm/Analysis/LoopAnalysisManager.h"
71#include "llvm/Analysis/LoopInfo.h"
72#include "llvm/Analysis/LoopPass.h"
73#include "llvm/Analysis/MemorySSA.h"
74#include "llvm/Analysis/MemorySSAUpdater.h"
75#include "llvm/Analysis/ScalarEvolution.h"
76#include "llvm/Analysis/ScalarEvolutionExpressions.h"
77#include "llvm/Analysis/ScalarEvolutionNormalization.h"
78#include "llvm/Analysis/TargetTransformInfo.h"
79#include "llvm/Config/llvm-config.h"
80#include "llvm/IR/BasicBlock.h"
81#include "llvm/IR/Constant.h"
82#include "llvm/IR/Constants.h"
83#include "llvm/IR/DerivedTypes.h"
84#include "llvm/IR/Dominators.h"
85#include "llvm/IR/GlobalValue.h"
86#include "llvm/IR/IRBuilder.h"
87#include "llvm/IR/InstrTypes.h"
88#include "llvm/IR/Instruction.h"
89#include "llvm/IR/Instructions.h"
90#include "llvm/IR/IntrinsicInst.h"
91#include "llvm/IR/Intrinsics.h"
92#include "llvm/IR/Module.h"
93#include "llvm/IR/OperandTraits.h"
94#include "llvm/IR/Operator.h"
95#include "llvm/IR/PassManager.h"
96#include "llvm/IR/Type.h"
97#include "llvm/IR/Use.h"
98#include "llvm/IR/User.h"
99#include "llvm/IR/Value.h"
100#include "llvm/IR/ValueHandle.h"
101#include "llvm/InitializePasses.h"
102#include "llvm/Pass.h"
103#include "llvm/Support/Casting.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/Compiler.h"
106#include "llvm/Support/Debug.h"
107#include "llvm/Support/ErrorHandling.h"
108#include "llvm/Support/MathExtras.h"
109#include "llvm/Support/raw_ostream.h"
110#include "llvm/Transforms/Scalar.h"
111#include "llvm/Transforms/Utils.h"
112#include "llvm/Transforms/Utils/BasicBlockUtils.h"
113#include "llvm/Transforms/Utils/Local.h"
114#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
115#include <algorithm>
116#include <cassert>
117#include <cstddef>
118#include <cstdint>
119#include <cstdlib>
120#include <iterator>
121#include <limits>
122#include <map>
123#include <numeric>
124#include <utility>
125
126using namespace llvm;
127
128#define DEBUG_TYPE "loop-reduce"
129
130/// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
131/// bail out. This threshold is far beyond the number of users that LSR can
132/// conceivably solve, so it should not affect generated code, but catches the
133/// worst cases before LSR burns too much compile time and stack space.
134static const unsigned MaxIVUsers = 200;
135
136// Temporary flag to cleanup congruent phis after LSR phi expansion.
137// It's currently disabled until we can determine whether it's truly useful or
138// not. The flag should be removed after the v3.0 release.
139// This is now needed for ivchains.
140static cl::opt<bool> EnablePhiElim(
141  "enable-lsr-phielim", cl::Hidden, cl::init(true),
142  cl::desc("Enable LSR phi elimination"));
143
144// The flag adds instruction count to solutions cost comparision.
145static cl::opt<bool> InsnsCost(
146  "lsr-insns-cost", cl::Hidden, cl::init(true),
147  cl::desc("Add instruction count to a LSR cost model"));
148
149// Flag to choose how to narrow complex lsr solution
150static cl::opt<bool> LSRExpNarrow(
151  "lsr-exp-narrow", cl::Hidden, cl::init(false),
152  cl::desc("Narrow LSR complex solution using"
153           " expectation of registers number"));
154
155// Flag to narrow search space by filtering non-optimal formulae with
156// the same ScaledReg and Scale.
157static cl::opt<bool> FilterSameScaledReg(
158    "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
159    cl::desc("Narrow LSR search space by filtering non-optimal formulae"
160             " with the same ScaledReg and Scale"));
161
162static cl::opt<bool> EnableBackedgeIndexing(
163  "lsr-backedge-indexing", cl::Hidden, cl::init(true),
164  cl::desc("Enable the generation of cross iteration indexed memops"));
165
166static cl::opt<unsigned> ComplexityLimit(
167  "lsr-complexity-limit", cl::Hidden,
168  cl::init(std::numeric_limits<uint16_t>::max()),
169  cl::desc("LSR search space complexity limit"));
170
171static cl::opt<unsigned> SetupCostDepthLimit(
172    "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
173    cl::desc("The limit on recursion depth for LSRs setup cost"));
174
175#ifndef NDEBUG
176// Stress test IV chain generation.
177static cl::opt<bool> StressIVChain(
178  "stress-ivchain", cl::Hidden, cl::init(false),
179  cl::desc("Stress test LSR IV chains"));
180#else
181static bool StressIVChain = false;
182#endif
183
184namespace {
185
186struct MemAccessTy {
187  /// Used in situations where the accessed memory type is unknown.
188  static const unsigned UnknownAddressSpace =
189      std::numeric_limits<unsigned>::max();
190
191  Type *MemTy = nullptr;
192  unsigned AddrSpace = UnknownAddressSpace;
193
194  MemAccessTy() = default;
195  MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
196
197  bool operator==(MemAccessTy Other) const {
198    return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
199  }
200
201  bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
202
203  static MemAccessTy getUnknown(LLVMContext &Ctx,
204                                unsigned AS = UnknownAddressSpace) {
205    return MemAccessTy(Type::getVoidTy(Ctx), AS);
206  }
207
208  Type *getType() { return MemTy; }
209};
210
211/// This class holds data which is used to order reuse candidates.
212class RegSortData {
213public:
214  /// This represents the set of LSRUse indices which reference
215  /// a particular register.
216  SmallBitVector UsedByIndices;
217
218  void print(raw_ostream &OS) const;
219  void dump() const;
220};
221
222} // end anonymous namespace
223
224#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
225void RegSortData::print(raw_ostream &OS) const {
226  OS << "[NumUses=" << UsedByIndices.count() << ']';
227}
228
229LLVM_DUMP_METHOD void RegSortData::dump() const {
230  print(errs()); errs() << '\n';
231}
232#endif
233
234namespace {
235
236/// Map register candidates to information about how they are used.
237class RegUseTracker {
238  using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
239
240  RegUsesTy RegUsesMap;
241  SmallVector<const SCEV *, 16> RegSequence;
242
243public:
244  void countRegister(const SCEV *Reg, size_t LUIdx);
245  void dropRegister(const SCEV *Reg, size_t LUIdx);
246  void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
247
248  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
249
250  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
251
252  void clear();
253
254  using iterator = SmallVectorImpl<const SCEV *>::iterator;
255  using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
256
257  iterator begin() { return RegSequence.begin(); }
258  iterator end()   { return RegSequence.end(); }
259  const_iterator begin() const { return RegSequence.begin(); }
260  const_iterator end() const   { return RegSequence.end(); }
261};
262
263} // end anonymous namespace
264
265void
266RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
267  std::pair<RegUsesTy::iterator, bool> Pair =
268    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
269  RegSortData &RSD = Pair.first->second;
270  if (Pair.second)
271    RegSequence.push_back(Reg);
272  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
273  RSD.UsedByIndices.set(LUIdx);
274}
275
276void
277RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
278  RegUsesTy::iterator It = RegUsesMap.find(Reg);
279  assert(It != RegUsesMap.end());
280  RegSortData &RSD = It->second;
281  assert(RSD.UsedByIndices.size() > LUIdx);
282  RSD.UsedByIndices.reset(LUIdx);
283}
284
285void
286RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
287  assert(LUIdx <= LastLUIdx);
288
289  // Update RegUses. The data structure is not optimized for this purpose;
290  // we must iterate through it and update each of the bit vectors.
291  for (auto &Pair : RegUsesMap) {
292    SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
293    if (LUIdx < UsedByIndices.size())
294      UsedByIndices[LUIdx] =
295        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
296    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
297  }
298}
299
300bool
301RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
302  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
303  if (I == RegUsesMap.end())
304    return false;
305  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
306  int i = UsedByIndices.find_first();
307  if (i == -1) return false;
308  if ((size_t)i != LUIdx) return true;
309  return UsedByIndices.find_next(i) != -1;
310}
311
312const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
313  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
314  assert(I != RegUsesMap.end() && "Unknown register!");
315  return I->second.UsedByIndices;
316}
317
318void RegUseTracker::clear() {
319  RegUsesMap.clear();
320  RegSequence.clear();
321}
322
323namespace {
324
325/// This class holds information that describes a formula for computing
326/// satisfying a use. It may include broken-out immediates and scaled registers.
327struct Formula {
328  /// Global base address used for complex addressing.
329  GlobalValue *BaseGV = nullptr;
330
331  /// Base offset for complex addressing.
332  int64_t BaseOffset = 0;
333
334  /// Whether any complex addressing has a base register.
335  bool HasBaseReg = false;
336
337  /// The scale of any complex addressing.
338  int64_t Scale = 0;
339
340  /// The list of "base" registers for this use. When this is non-empty. The
341  /// canonical representation of a formula is
342  /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
343  /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
344  /// 3. The reg containing recurrent expr related with currect loop in the
345  /// formula should be put in the ScaledReg.
346  /// #1 enforces that the scaled register is always used when at least two
347  /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
348  /// #2 enforces that 1 * reg is reg.
349  /// #3 ensures invariant regs with respect to current loop can be combined
350  /// together in LSR codegen.
351  /// This invariant can be temporarily broken while building a formula.
352  /// However, every formula inserted into the LSRInstance must be in canonical
353  /// form.
354  SmallVector<const SCEV *, 4> BaseRegs;
355
356  /// The 'scaled' register for this use. This should be non-null when Scale is
357  /// not zero.
358  const SCEV *ScaledReg = nullptr;
359
360  /// An additional constant offset which added near the use. This requires a
361  /// temporary register, but the offset itself can live in an add immediate
362  /// field rather than a register.
363  int64_t UnfoldedOffset = 0;
364
365  Formula() = default;
366
367  void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
368
369  bool isCanonical(const Loop &L) const;
370
371  void canonicalize(const Loop &L);
372
373  bool unscale();
374
375  bool hasZeroEnd() const;
376
377  size_t getNumRegs() const;
378  Type *getType() const;
379
380  void deleteBaseReg(const SCEV *&S);
381
382  bool referencesReg(const SCEV *S) const;
383  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
384                                  const RegUseTracker &RegUses) const;
385
386  void print(raw_ostream &OS) const;
387  void dump() const;
388};
389
390} // end anonymous namespace
391
392/// Recursion helper for initialMatch.
393static void DoInitialMatch(const SCEV *S, Loop *L,
394                           SmallVectorImpl<const SCEV *> &Good,
395                           SmallVectorImpl<const SCEV *> &Bad,
396                           ScalarEvolution &SE) {
397  // Collect expressions which properly dominate the loop header.
398  if (SE.properlyDominates(S, L->getHeader())) {
399    Good.push_back(S);
400    return;
401  }
402
403  // Look at add operands.
404  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
405    for (const SCEV *S : Add->operands())
406      DoInitialMatch(S, L, Good, Bad, SE);
407    return;
408  }
409
410  // Look at addrec operands.
411  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
412    if (!AR->getStart()->isZero() && AR->isAffine()) {
413      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
414      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
415                                      AR->getStepRecurrence(SE),
416                                      // FIXME: AR->getNoWrapFlags()
417                                      AR->getLoop(), SCEV::FlagAnyWrap),
418                     L, Good, Bad, SE);
419      return;
420    }
421
422  // Handle a multiplication by -1 (negation) if it didn't fold.
423  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
424    if (Mul->getOperand(0)->isAllOnesValue()) {
425      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
426      const SCEV *NewMul = SE.getMulExpr(Ops);
427
428      SmallVector<const SCEV *, 4> MyGood;
429      SmallVector<const SCEV *, 4> MyBad;
430      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
431      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
432        SE.getEffectiveSCEVType(NewMul->getType())));
433      for (const SCEV *S : MyGood)
434        Good.push_back(SE.getMulExpr(NegOne, S));
435      for (const SCEV *S : MyBad)
436        Bad.push_back(SE.getMulExpr(NegOne, S));
437      return;
438    }
439
440  // Ok, we can't do anything interesting. Just stuff the whole thing into a
441  // register and hope for the best.
442  Bad.push_back(S);
443}
444
445/// Incorporate loop-variant parts of S into this Formula, attempting to keep
446/// all loop-invariant and loop-computable values in a single base register.
447void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
448  SmallVector<const SCEV *, 4> Good;
449  SmallVector<const SCEV *, 4> Bad;
450  DoInitialMatch(S, L, Good, Bad, SE);
451  if (!Good.empty()) {
452    const SCEV *Sum = SE.getAddExpr(Good);
453    if (!Sum->isZero())
454      BaseRegs.push_back(Sum);
455    HasBaseReg = true;
456  }
457  if (!Bad.empty()) {
458    const SCEV *Sum = SE.getAddExpr(Bad);
459    if (!Sum->isZero())
460      BaseRegs.push_back(Sum);
461    HasBaseReg = true;
462  }
463  canonicalize(*L);
464}
465
466/// Check whether or not this formula satisfies the canonical
467/// representation.
468/// \see Formula::BaseRegs.
469bool Formula::isCanonical(const Loop &L) const {
470  if (!ScaledReg)
471    return BaseRegs.size() <= 1;
472
473  if (Scale != 1)
474    return true;
475
476  if (Scale == 1 && BaseRegs.empty())
477    return false;
478
479  const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
480  if (SAR && SAR->getLoop() == &L)
481    return true;
482
483  // If ScaledReg is not a recurrent expr, or it is but its loop is not current
484  // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
485  // loop, we want to swap the reg in BaseRegs with ScaledReg.
486  auto I =
487      find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
488        return isa<const SCEVAddRecExpr>(S) &&
489               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
490      });
491  return I == BaseRegs.end();
492}
493
494/// Helper method to morph a formula into its canonical representation.
495/// \see Formula::BaseRegs.
496/// Every formula having more than one base register, must use the ScaledReg
497/// field. Otherwise, we would have to do special cases everywhere in LSR
498/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
499/// On the other hand, 1*reg should be canonicalized into reg.
500void Formula::canonicalize(const Loop &L) {
501  if (isCanonical(L))
502    return;
503  // So far we did not need this case. This is easy to implement but it is
504  // useless to maintain dead code. Beside it could hurt compile time.
505  assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
506
507  // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
508  if (!ScaledReg) {
509    ScaledReg = BaseRegs.back();
510    BaseRegs.pop_back();
511    Scale = 1;
512  }
513
514  // If ScaledReg is an invariant with respect to L, find the reg from
515  // BaseRegs containing the recurrent expr related with Loop L. Swap the
516  // reg with ScaledReg.
517  const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
518  if (!SAR || SAR->getLoop() != &L) {
519    auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
520                     [&](const SCEV *S) {
521                       return isa<const SCEVAddRecExpr>(S) &&
522                              (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
523                     });
524    if (I != BaseRegs.end())
525      std::swap(ScaledReg, *I);
526  }
527}
528
529/// Get rid of the scale in the formula.
530/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
531/// \return true if it was possible to get rid of the scale, false otherwise.
532/// \note After this operation the formula may not be in the canonical form.
533bool Formula::unscale() {
534  if (Scale != 1)
535    return false;
536  Scale = 0;
537  BaseRegs.push_back(ScaledReg);
538  ScaledReg = nullptr;
539  return true;
540}
541
542bool Formula::hasZeroEnd() const {
543  if (UnfoldedOffset || BaseOffset)
544    return false;
545  if (BaseRegs.size() != 1 || ScaledReg)
546    return false;
547  return true;
548}
549
550/// Return the total number of register operands used by this formula. This does
551/// not include register uses implied by non-constant addrec strides.
552size_t Formula::getNumRegs() const {
553  return !!ScaledReg + BaseRegs.size();
554}
555
556/// Return the type of this formula, if it has one, or null otherwise. This type
557/// is meaningless except for the bit size.
558Type *Formula::getType() const {
559  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
560         ScaledReg ? ScaledReg->getType() :
561         BaseGV ? BaseGV->getType() :
562         nullptr;
563}
564
565/// Delete the given base reg from the BaseRegs list.
566void Formula::deleteBaseReg(const SCEV *&S) {
567  if (&S != &BaseRegs.back())
568    std::swap(S, BaseRegs.back());
569  BaseRegs.pop_back();
570}
571
572/// Test if this formula references the given register.
573bool Formula::referencesReg(const SCEV *S) const {
574  return S == ScaledReg || is_contained(BaseRegs, S);
575}
576
577/// Test whether this formula uses registers which are used by uses other than
578/// the use with the given index.
579bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
580                                         const RegUseTracker &RegUses) const {
581  if (ScaledReg)
582    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
583      return true;
584  for (const SCEV *BaseReg : BaseRegs)
585    if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
586      return true;
587  return false;
588}
589
590#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
591void Formula::print(raw_ostream &OS) const {
592  bool First = true;
593  if (BaseGV) {
594    if (!First) OS << " + "; else First = false;
595    BaseGV->printAsOperand(OS, /*PrintType=*/false);
596  }
597  if (BaseOffset != 0) {
598    if (!First) OS << " + "; else First = false;
599    OS << BaseOffset;
600  }
601  for (const SCEV *BaseReg : BaseRegs) {
602    if (!First) OS << " + "; else First = false;
603    OS << "reg(" << *BaseReg << ')';
604  }
605  if (HasBaseReg && BaseRegs.empty()) {
606    if (!First) OS << " + "; else First = false;
607    OS << "**error: HasBaseReg**";
608  } else if (!HasBaseReg && !BaseRegs.empty()) {
609    if (!First) OS << " + "; else First = false;
610    OS << "**error: !HasBaseReg**";
611  }
612  if (Scale != 0) {
613    if (!First) OS << " + "; else First = false;
614    OS << Scale << "*reg(";
615    if (ScaledReg)
616      OS << *ScaledReg;
617    else
618      OS << "<unknown>";
619    OS << ')';
620  }
621  if (UnfoldedOffset != 0) {
622    if (!First) OS << " + ";
623    OS << "imm(" << UnfoldedOffset << ')';
624  }
625}
626
627LLVM_DUMP_METHOD void Formula::dump() const {
628  print(errs()); errs() << '\n';
629}
630#endif
631
632/// Return true if the given addrec can be sign-extended without changing its
633/// value.
634static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
635  Type *WideTy =
636    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
637  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
638}
639
640/// Return true if the given add can be sign-extended without changing its
641/// value.
642static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
643  Type *WideTy =
644    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
645  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
646}
647
648/// Return true if the given mul can be sign-extended without changing its
649/// value.
650static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
651  Type *WideTy =
652    IntegerType::get(SE.getContext(),
653                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
654  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
655}
656
657/// Return an expression for LHS /s RHS, if it can be determined and if the
658/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
659/// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
660/// the multiplication may overflow, which is useful when the result will be
661/// used in a context where the most significant bits are ignored.
662static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
663                                ScalarEvolution &SE,
664                                bool IgnoreSignificantBits = false) {
665  // Handle the trivial case, which works for any SCEV type.
666  if (LHS == RHS)
667    return SE.getConstant(LHS->getType(), 1);
668
669  // Handle a few RHS special cases.
670  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
671  if (RC) {
672    const APInt &RA = RC->getAPInt();
673    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
674    // some folding.
675    if (RA.isAllOnesValue())
676      return SE.getMulExpr(LHS, RC);
677    // Handle x /s 1 as x.
678    if (RA == 1)
679      return LHS;
680  }
681
682  // Check for a division of a constant by a constant.
683  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
684    if (!RC)
685      return nullptr;
686    const APInt &LA = C->getAPInt();
687    const APInt &RA = RC->getAPInt();
688    if (LA.srem(RA) != 0)
689      return nullptr;
690    return SE.getConstant(LA.sdiv(RA));
691  }
692
693  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
694  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
695    if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
696      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
697                                      IgnoreSignificantBits);
698      if (!Step) return nullptr;
699      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
700                                       IgnoreSignificantBits);
701      if (!Start) return nullptr;
702      // FlagNW is independent of the start value, step direction, and is
703      // preserved with smaller magnitude steps.
704      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
705      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
706    }
707    return nullptr;
708  }
709
710  // Distribute the sdiv over add operands, if the add doesn't overflow.
711  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
712    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
713      SmallVector<const SCEV *, 8> Ops;
714      for (const SCEV *S : Add->operands()) {
715        const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
716        if (!Op) return nullptr;
717        Ops.push_back(Op);
718      }
719      return SE.getAddExpr(Ops);
720    }
721    return nullptr;
722  }
723
724  // Check for a multiply operand that we can pull RHS out of.
725  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
726    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
727      SmallVector<const SCEV *, 4> Ops;
728      bool Found = false;
729      for (const SCEV *S : Mul->operands()) {
730        if (!Found)
731          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
732                                           IgnoreSignificantBits)) {
733            S = Q;
734            Found = true;
735          }
736        Ops.push_back(S);
737      }
738      return Found ? SE.getMulExpr(Ops) : nullptr;
739    }
740    return nullptr;
741  }
742
743  // Otherwise we don't know.
744  return nullptr;
745}
746
747/// If S involves the addition of a constant integer value, return that integer
748/// value, and mutate S to point to a new SCEV with that value excluded.
749static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
750  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
751    if (C->getAPInt().getMinSignedBits() <= 64) {
752      S = SE.getConstant(C->getType(), 0);
753      return C->getValue()->getSExtValue();
754    }
755  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
756    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
757    int64_t Result = ExtractImmediate(NewOps.front(), SE);
758    if (Result != 0)
759      S = SE.getAddExpr(NewOps);
760    return Result;
761  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
762    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
763    int64_t Result = ExtractImmediate(NewOps.front(), SE);
764    if (Result != 0)
765      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
766                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
767                           SCEV::FlagAnyWrap);
768    return Result;
769  }
770  return 0;
771}
772
773/// If S involves the addition of a GlobalValue address, return that symbol, and
774/// mutate S to point to a new SCEV with that value excluded.
775static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
776  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
777    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
778      S = SE.getConstant(GV->getType(), 0);
779      return GV;
780    }
781  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
782    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
783    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
784    if (Result)
785      S = SE.getAddExpr(NewOps);
786    return Result;
787  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
788    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
789    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
790    if (Result)
791      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
792                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
793                           SCEV::FlagAnyWrap);
794    return Result;
795  }
796  return nullptr;
797}
798
799/// Returns true if the specified instruction is using the specified value as an
800/// address.
801static bool isAddressUse(const TargetTransformInfo &TTI,
802                         Instruction *Inst, Value *OperandVal) {
803  bool isAddress = isa<LoadInst>(Inst);
804  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
805    if (SI->getPointerOperand() == OperandVal)
806      isAddress = true;
807  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
808    // Addressing modes can also be folded into prefetches and a variety
809    // of intrinsics.
810    switch (II->getIntrinsicID()) {
811    case Intrinsic::memset:
812    case Intrinsic::prefetch:
813    case Intrinsic::masked_load:
814      if (II->getArgOperand(0) == OperandVal)
815        isAddress = true;
816      break;
817    case Intrinsic::masked_store:
818      if (II->getArgOperand(1) == OperandVal)
819        isAddress = true;
820      break;
821    case Intrinsic::memmove:
822    case Intrinsic::memcpy:
823      if (II->getArgOperand(0) == OperandVal ||
824          II->getArgOperand(1) == OperandVal)
825        isAddress = true;
826      break;
827    default: {
828      MemIntrinsicInfo IntrInfo;
829      if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
830        if (IntrInfo.PtrVal == OperandVal)
831          isAddress = true;
832      }
833    }
834    }
835  } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
836    if (RMW->getPointerOperand() == OperandVal)
837      isAddress = true;
838  } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
839    if (CmpX->getPointerOperand() == OperandVal)
840      isAddress = true;
841  }
842  return isAddress;
843}
844
845/// Return the type of the memory being accessed.
846static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
847                                 Instruction *Inst, Value *OperandVal) {
848  MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
849  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
850    AccessTy.MemTy = SI->getOperand(0)->getType();
851    AccessTy.AddrSpace = SI->getPointerAddressSpace();
852  } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
853    AccessTy.AddrSpace = LI->getPointerAddressSpace();
854  } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
855    AccessTy.AddrSpace = RMW->getPointerAddressSpace();
856  } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
857    AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
858  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
859    switch (II->getIntrinsicID()) {
860    case Intrinsic::prefetch:
861    case Intrinsic::memset:
862      AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
863      AccessTy.MemTy = OperandVal->getType();
864      break;
865    case Intrinsic::memmove:
866    case Intrinsic::memcpy:
867      AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
868      AccessTy.MemTy = OperandVal->getType();
869      break;
870    case Intrinsic::masked_load:
871      AccessTy.AddrSpace =
872          II->getArgOperand(0)->getType()->getPointerAddressSpace();
873      break;
874    case Intrinsic::masked_store:
875      AccessTy.MemTy = II->getOperand(0)->getType();
876      AccessTy.AddrSpace =
877          II->getArgOperand(1)->getType()->getPointerAddressSpace();
878      break;
879    default: {
880      MemIntrinsicInfo IntrInfo;
881      if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
882        AccessTy.AddrSpace
883          = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
884      }
885
886      break;
887    }
888    }
889  }
890
891  // All pointers have the same requirements, so canonicalize them to an
892  // arbitrary pointer type to minimize variation.
893  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
894    AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
895                                      PTy->getAddressSpace());
896
897  return AccessTy;
898}
899
900/// Return true if this AddRec is already a phi in its loop.
901static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
902  for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
903    if (SE.isSCEVable(PN.getType()) &&
904        (SE.getEffectiveSCEVType(PN.getType()) ==
905         SE.getEffectiveSCEVType(AR->getType())) &&
906        SE.getSCEV(&PN) == AR)
907      return true;
908  }
909  return false;
910}
911
912/// Check if expanding this expression is likely to incur significant cost. This
913/// is tricky because SCEV doesn't track which expressions are actually computed
914/// by the current IR.
915///
916/// We currently allow expansion of IV increments that involve adds,
917/// multiplication by constants, and AddRecs from existing phis.
918///
919/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
920/// obvious multiple of the UDivExpr.
921static bool isHighCostExpansion(const SCEV *S,
922                                SmallPtrSetImpl<const SCEV*> &Processed,
923                                ScalarEvolution &SE) {
924  // Zero/One operand expressions
925  switch (S->getSCEVType()) {
926  case scUnknown:
927  case scConstant:
928    return false;
929  case scTruncate:
930    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
931                               Processed, SE);
932  case scZeroExtend:
933    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
934                               Processed, SE);
935  case scSignExtend:
936    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
937                               Processed, SE);
938  }
939
940  if (!Processed.insert(S).second)
941    return false;
942
943  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
944    for (const SCEV *S : Add->operands()) {
945      if (isHighCostExpansion(S, Processed, SE))
946        return true;
947    }
948    return false;
949  }
950
951  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
952    if (Mul->getNumOperands() == 2) {
953      // Multiplication by a constant is ok
954      if (isa<SCEVConstant>(Mul->getOperand(0)))
955        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
956
957      // If we have the value of one operand, check if an existing
958      // multiplication already generates this expression.
959      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
960        Value *UVal = U->getValue();
961        for (User *UR : UVal->users()) {
962          // If U is a constant, it may be used by a ConstantExpr.
963          Instruction *UI = dyn_cast<Instruction>(UR);
964          if (UI && UI->getOpcode() == Instruction::Mul &&
965              SE.isSCEVable(UI->getType())) {
966            return SE.getSCEV(UI) == Mul;
967          }
968        }
969      }
970    }
971  }
972
973  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
974    if (isExistingPhi(AR, SE))
975      return false;
976  }
977
978  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
979  return true;
980}
981
982namespace {
983
984class LSRUse;
985
986} // end anonymous namespace
987
988/// Check if the addressing mode defined by \p F is completely
989/// folded in \p LU at isel time.
990/// This includes address-mode folding and special icmp tricks.
991/// This function returns true if \p LU can accommodate what \p F
992/// defines and up to 1 base + 1 scaled + offset.
993/// In other words, if \p F has several base registers, this function may
994/// still return true. Therefore, users still need to account for
995/// additional base registers and/or unfolded offsets to derive an
996/// accurate cost model.
997static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
998                                 const LSRUse &LU, const Formula &F);
999
1000// Get the cost of the scaling factor used in F for LU.
1001static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1002                                     const LSRUse &LU, const Formula &F,
1003                                     const Loop &L);
1004
1005namespace {
1006
1007/// This class is used to measure and compare candidate formulae.
1008class Cost {
1009  const Loop *L = nullptr;
1010  ScalarEvolution *SE = nullptr;
1011  const TargetTransformInfo *TTI = nullptr;
1012  TargetTransformInfo::LSRCost C;
1013
1014public:
1015  Cost() = delete;
1016  Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1017    L(L), SE(&SE), TTI(&TTI) {
1018    C.Insns = 0;
1019    C.NumRegs = 0;
1020    C.AddRecCost = 0;
1021    C.NumIVMuls = 0;
1022    C.NumBaseAdds = 0;
1023    C.ImmCost = 0;
1024    C.SetupCost = 0;
1025    C.ScaleCost = 0;
1026  }
1027
1028  bool isLess(Cost &Other);
1029
1030  void Lose();
1031
1032#ifndef NDEBUG
1033  // Once any of the metrics loses, they must all remain losers.
1034  bool isValid() {
1035    return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1036             | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1037      || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1038           & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1039  }
1040#endif
1041
1042  bool isLoser() {
1043    assert(isValid() && "invalid cost");
1044    return C.NumRegs == ~0u;
1045  }
1046
1047  void RateFormula(const Formula &F,
1048                   SmallPtrSetImpl<const SCEV *> &Regs,
1049                   const DenseSet<const SCEV *> &VisitedRegs,
1050                   const LSRUse &LU,
1051                   SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1052
1053  void print(raw_ostream &OS) const;
1054  void dump() const;
1055
1056private:
1057  void RateRegister(const Formula &F, const SCEV *Reg,
1058                    SmallPtrSetImpl<const SCEV *> &Regs);
1059  void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1060                           SmallPtrSetImpl<const SCEV *> &Regs,
1061                           SmallPtrSetImpl<const SCEV *> *LoserRegs);
1062};
1063
1064/// An operand value in an instruction which is to be replaced with some
1065/// equivalent, possibly strength-reduced, replacement.
1066struct LSRFixup {
1067  /// The instruction which will be updated.
1068  Instruction *UserInst = nullptr;
1069
1070  /// The operand of the instruction which will be replaced. The operand may be
1071  /// used more than once; every instance will be replaced.
1072  Value *OperandValToReplace = nullptr;
1073
1074  /// If this user is to use the post-incremented value of an induction
1075  /// variable, this set is non-empty and holds the loops associated with the
1076  /// induction variable.
1077  PostIncLoopSet PostIncLoops;
1078
1079  /// A constant offset to be added to the LSRUse expression.  This allows
1080  /// multiple fixups to share the same LSRUse with different offsets, for
1081  /// example in an unrolled loop.
1082  int64_t Offset = 0;
1083
1084  LSRFixup() = default;
1085
1086  bool isUseFullyOutsideLoop(const Loop *L) const;
1087
1088  void print(raw_ostream &OS) const;
1089  void dump() const;
1090};
1091
1092/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1093/// SmallVectors of const SCEV*.
1094struct UniquifierDenseMapInfo {
1095  static SmallVector<const SCEV *, 4> getEmptyKey() {
1096    SmallVector<const SCEV *, 4>  V;
1097    V.push_back(reinterpret_cast<const SCEV *>(-1));
1098    return V;
1099  }
1100
1101  static SmallVector<const SCEV *, 4> getTombstoneKey() {
1102    SmallVector<const SCEV *, 4> V;
1103    V.push_back(reinterpret_cast<const SCEV *>(-2));
1104    return V;
1105  }
1106
1107  static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1108    return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1109  }
1110
1111  static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1112                      const SmallVector<const SCEV *, 4> &RHS) {
1113    return LHS == RHS;
1114  }
1115};
1116
1117/// This class holds the state that LSR keeps for each use in IVUsers, as well
1118/// as uses invented by LSR itself. It includes information about what kinds of
1119/// things can be folded into the user, information about the user itself, and
1120/// information about how the use may be satisfied.  TODO: Represent multiple
1121/// users of the same expression in common?
1122class LSRUse {
1123  DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1124
1125public:
1126  /// An enum for a kind of use, indicating what types of scaled and immediate
1127  /// operands it might support.
1128  enum KindType {
1129    Basic,   ///< A normal use, with no folding.
1130    Special, ///< A special case of basic, allowing -1 scales.
1131    Address, ///< An address use; folding according to TargetLowering
1132    ICmpZero ///< An equality icmp with both operands folded into one.
1133    // TODO: Add a generic icmp too?
1134  };
1135
1136  using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1137
1138  KindType Kind;
1139  MemAccessTy AccessTy;
1140
1141  /// The list of operands which are to be replaced.
1142  SmallVector<LSRFixup, 8> Fixups;
1143
1144  /// Keep track of the min and max offsets of the fixups.
1145  int64_t MinOffset = std::numeric_limits<int64_t>::max();
1146  int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1147
1148  /// This records whether all of the fixups using this LSRUse are outside of
1149  /// the loop, in which case some special-case heuristics may be used.
1150  bool AllFixupsOutsideLoop = true;
1151
1152  /// RigidFormula is set to true to guarantee that this use will be associated
1153  /// with a single formula--the one that initially matched. Some SCEV
1154  /// expressions cannot be expanded. This allows LSR to consider the registers
1155  /// used by those expressions without the need to expand them later after
1156  /// changing the formula.
1157  bool RigidFormula = false;
1158
1159  /// This records the widest use type for any fixup using this
1160  /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1161  /// fixup widths to be equivalent, because the narrower one may be relying on
1162  /// the implicit truncation to truncate away bogus bits.
1163  Type *WidestFixupType = nullptr;
1164
1165  /// A list of ways to build a value that can satisfy this user.  After the
1166  /// list is populated, one of these is selected heuristically and used to
1167  /// formulate a replacement for OperandValToReplace in UserInst.
1168  SmallVector<Formula, 12> Formulae;
1169
1170  /// The set of register candidates used by all formulae in this LSRUse.
1171  SmallPtrSet<const SCEV *, 4> Regs;
1172
1173  LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1174
1175  LSRFixup &getNewFixup() {
1176    Fixups.push_back(LSRFixup());
1177    return Fixups.back();
1178  }
1179
1180  void pushFixup(LSRFixup &f) {
1181    Fixups.push_back(f);
1182    if (f.Offset > MaxOffset)
1183      MaxOffset = f.Offset;
1184    if (f.Offset < MinOffset)
1185      MinOffset = f.Offset;
1186  }
1187
1188  bool HasFormulaWithSameRegs(const Formula &F) const;
1189  float getNotSelectedProbability(const SCEV *Reg) const;
1190  bool InsertFormula(const Formula &F, const Loop &L);
1191  void DeleteFormula(Formula &F);
1192  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1193
1194  void print(raw_ostream &OS) const;
1195  void dump() const;
1196};
1197
1198} // end anonymous namespace
1199
1200static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1201                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1202                                 GlobalValue *BaseGV, int64_t BaseOffset,
1203                                 bool HasBaseReg, int64_t Scale,
1204                                 Instruction *Fixup = nullptr);
1205
1206static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1207  if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1208    return 1;
1209  if (Depth == 0)
1210    return 0;
1211  if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1212    return getSetupCost(S->getStart(), Depth - 1);
1213  if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1214    return getSetupCost(S->getOperand(), Depth - 1);
1215  if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1216    return std::accumulate(S->op_begin(), S->op_end(), 0,
1217                           [&](unsigned i, const SCEV *Reg) {
1218                             return i + getSetupCost(Reg, Depth - 1);
1219                           });
1220  if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1221    return getSetupCost(S->getLHS(), Depth - 1) +
1222           getSetupCost(S->getRHS(), Depth - 1);
1223  return 0;
1224}
1225
1226/// Tally up interesting quantities from the given register.
1227void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1228                        SmallPtrSetImpl<const SCEV *> &Regs) {
1229  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1230    // If this is an addrec for another loop, it should be an invariant
1231    // with respect to L since L is the innermost loop (at least
1232    // for now LSR only handles innermost loops).
1233    if (AR->getLoop() != L) {
1234      // If the AddRec exists, consider it's register free and leave it alone.
1235      if (isExistingPhi(AR, *SE) && !TTI->shouldFavorPostInc())
1236        return;
1237
1238      // It is bad to allow LSR for current loop to add induction variables
1239      // for its sibling loops.
1240      if (!AR->getLoop()->contains(L)) {
1241        Lose();
1242        return;
1243      }
1244
1245      // Otherwise, it will be an invariant with respect to Loop L.
1246      ++C.NumRegs;
1247      return;
1248    }
1249
1250    unsigned LoopCost = 1;
1251    if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1252        TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1253
1254      // If the step size matches the base offset, we could use pre-indexed
1255      // addressing.
1256      if (TTI->shouldFavorBackedgeIndex(L)) {
1257        if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1258          if (Step->getAPInt() == F.BaseOffset)
1259            LoopCost = 0;
1260      }
1261
1262      if (TTI->shouldFavorPostInc()) {
1263        const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1264        if (isa<SCEVConstant>(LoopStep)) {
1265          const SCEV *LoopStart = AR->getStart();
1266          if (!isa<SCEVConstant>(LoopStart) &&
1267              SE->isLoopInvariant(LoopStart, L))
1268            LoopCost = 0;
1269        }
1270      }
1271    }
1272    C.AddRecCost += LoopCost;
1273
1274    // Add the step value register, if it needs one.
1275    // TODO: The non-affine case isn't precisely modeled here.
1276    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1277      if (!Regs.count(AR->getOperand(1))) {
1278        RateRegister(F, AR->getOperand(1), Regs);
1279        if (isLoser())
1280          return;
1281      }
1282    }
1283  }
1284  ++C.NumRegs;
1285
1286  // Rough heuristic; favor registers which don't require extra setup
1287  // instructions in the preheader.
1288  C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1289  // Ensure we don't, even with the recusion limit, produce invalid costs.
1290  C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1291
1292  C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1293               SE->hasComputableLoopEvolution(Reg, L);
1294}
1295
1296/// Record this register in the set. If we haven't seen it before, rate
1297/// it. Optional LoserRegs provides a way to declare any formula that refers to
1298/// one of those regs an instant loser.
1299void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1300                               SmallPtrSetImpl<const SCEV *> &Regs,
1301                               SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1302  if (LoserRegs && LoserRegs->count(Reg)) {
1303    Lose();
1304    return;
1305  }
1306  if (Regs.insert(Reg).second) {
1307    RateRegister(F, Reg, Regs);
1308    if (LoserRegs && isLoser())
1309      LoserRegs->insert(Reg);
1310  }
1311}
1312
1313void Cost::RateFormula(const Formula &F,
1314                       SmallPtrSetImpl<const SCEV *> &Regs,
1315                       const DenseSet<const SCEV *> &VisitedRegs,
1316                       const LSRUse &LU,
1317                       SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1318  assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1319  // Tally up the registers.
1320  unsigned PrevAddRecCost = C.AddRecCost;
1321  unsigned PrevNumRegs = C.NumRegs;
1322  unsigned PrevNumBaseAdds = C.NumBaseAdds;
1323  if (const SCEV *ScaledReg = F.ScaledReg) {
1324    if (VisitedRegs.count(ScaledReg)) {
1325      Lose();
1326      return;
1327    }
1328    RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1329    if (isLoser())
1330      return;
1331  }
1332  for (const SCEV *BaseReg : F.BaseRegs) {
1333    if (VisitedRegs.count(BaseReg)) {
1334      Lose();
1335      return;
1336    }
1337    RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1338    if (isLoser())
1339      return;
1340  }
1341
1342  // Determine how many (unfolded) adds we'll need inside the loop.
1343  size_t NumBaseParts = F.getNumRegs();
1344  if (NumBaseParts > 1)
1345    // Do not count the base and a possible second register if the target
1346    // allows to fold 2 registers.
1347    C.NumBaseAdds +=
1348        NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1349  C.NumBaseAdds += (F.UnfoldedOffset != 0);
1350
1351  // Accumulate non-free scaling amounts.
1352  C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1353
1354  // Tally up the non-zero immediates.
1355  for (const LSRFixup &Fixup : LU.Fixups) {
1356    int64_t O = Fixup.Offset;
1357    int64_t Offset = (uint64_t)O + F.BaseOffset;
1358    if (F.BaseGV)
1359      C.ImmCost += 64; // Handle symbolic values conservatively.
1360                     // TODO: This should probably be the pointer size.
1361    else if (Offset != 0)
1362      C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1363
1364    // Check with target if this offset with this instruction is
1365    // specifically not supported.
1366    if (LU.Kind == LSRUse::Address && Offset != 0 &&
1367        !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1368                              Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1369      C.NumBaseAdds++;
1370  }
1371
1372  // If we don't count instruction cost exit here.
1373  if (!InsnsCost) {
1374    assert(isValid() && "invalid cost");
1375    return;
1376  }
1377
1378  // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1379  // additional instruction (at least fill).
1380  // TODO: Need distinguish register class?
1381  unsigned TTIRegNum = TTI->getNumberOfRegisters(
1382                       TTI->getRegisterClassForType(false, F.getType())) - 1;
1383  if (C.NumRegs > TTIRegNum) {
1384    // Cost already exceeded TTIRegNum, then only newly added register can add
1385    // new instructions.
1386    if (PrevNumRegs > TTIRegNum)
1387      C.Insns += (C.NumRegs - PrevNumRegs);
1388    else
1389      C.Insns += (C.NumRegs - TTIRegNum);
1390  }
1391
1392  // If ICmpZero formula ends with not 0, it could not be replaced by
1393  // just add or sub. We'll need to compare final result of AddRec.
1394  // That means we'll need an additional instruction. But if the target can
1395  // macro-fuse a compare with a branch, don't count this extra instruction.
1396  // For -10 + {0, +, 1}:
1397  // i = i + 1;
1398  // cmp i, 10
1399  //
1400  // For {-10, +, 1}:
1401  // i = i + 1;
1402  if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1403      !TTI->canMacroFuseCmp())
1404    C.Insns++;
1405  // Each new AddRec adds 1 instruction to calculation.
1406  C.Insns += (C.AddRecCost - PrevAddRecCost);
1407
1408  // BaseAdds adds instructions for unfolded registers.
1409  if (LU.Kind != LSRUse::ICmpZero)
1410    C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1411  assert(isValid() && "invalid cost");
1412}
1413
1414/// Set this cost to a losing value.
1415void Cost::Lose() {
1416  C.Insns = std::numeric_limits<unsigned>::max();
1417  C.NumRegs = std::numeric_limits<unsigned>::max();
1418  C.AddRecCost = std::numeric_limits<unsigned>::max();
1419  C.NumIVMuls = std::numeric_limits<unsigned>::max();
1420  C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1421  C.ImmCost = std::numeric_limits<unsigned>::max();
1422  C.SetupCost = std::numeric_limits<unsigned>::max();
1423  C.ScaleCost = std::numeric_limits<unsigned>::max();
1424}
1425
1426/// Choose the lower cost.
1427bool Cost::isLess(Cost &Other) {
1428  if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1429      C.Insns != Other.C.Insns)
1430    return C.Insns < Other.C.Insns;
1431  return TTI->isLSRCostLess(C, Other.C);
1432}
1433
1434#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1435void Cost::print(raw_ostream &OS) const {
1436  if (InsnsCost)
1437    OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1438  OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1439  if (C.AddRecCost != 0)
1440    OS << ", with addrec cost " << C.AddRecCost;
1441  if (C.NumIVMuls != 0)
1442    OS << ", plus " << C.NumIVMuls << " IV mul"
1443       << (C.NumIVMuls == 1 ? "" : "s");
1444  if (C.NumBaseAdds != 0)
1445    OS << ", plus " << C.NumBaseAdds << " base add"
1446       << (C.NumBaseAdds == 1 ? "" : "s");
1447  if (C.ScaleCost != 0)
1448    OS << ", plus " << C.ScaleCost << " scale cost";
1449  if (C.ImmCost != 0)
1450    OS << ", plus " << C.ImmCost << " imm cost";
1451  if (C.SetupCost != 0)
1452    OS << ", plus " << C.SetupCost << " setup cost";
1453}
1454
1455LLVM_DUMP_METHOD void Cost::dump() const {
1456  print(errs()); errs() << '\n';
1457}
1458#endif
1459
1460/// Test whether this fixup always uses its value outside of the given loop.
1461bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1462  // PHI nodes use their value in their incoming blocks.
1463  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1464    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1465      if (PN->getIncomingValue(i) == OperandValToReplace &&
1466          L->contains(PN->getIncomingBlock(i)))
1467        return false;
1468    return true;
1469  }
1470
1471  return !L->contains(UserInst);
1472}
1473
1474#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1475void LSRFixup::print(raw_ostream &OS) const {
1476  OS << "UserInst=";
1477  // Store is common and interesting enough to be worth special-casing.
1478  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1479    OS << "store ";
1480    Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1481  } else if (UserInst->getType()->isVoidTy())
1482    OS << UserInst->getOpcodeName();
1483  else
1484    UserInst->printAsOperand(OS, /*PrintType=*/false);
1485
1486  OS << ", OperandValToReplace=";
1487  OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1488
1489  for (const Loop *PIL : PostIncLoops) {
1490    OS << ", PostIncLoop=";
1491    PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1492  }
1493
1494  if (Offset != 0)
1495    OS << ", Offset=" << Offset;
1496}
1497
1498LLVM_DUMP_METHOD void LSRFixup::dump() const {
1499  print(errs()); errs() << '\n';
1500}
1501#endif
1502
1503/// Test whether this use as a formula which has the same registers as the given
1504/// formula.
1505bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1506  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1507  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1508  // Unstable sort by host order ok, because this is only used for uniquifying.
1509  llvm::sort(Key);
1510  return Uniquifier.count(Key);
1511}
1512
1513/// The function returns a probability of selecting formula without Reg.
1514float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1515  unsigned FNum = 0;
1516  for (const Formula &F : Formulae)
1517    if (F.referencesReg(Reg))
1518      FNum++;
1519  return ((float)(Formulae.size() - FNum)) / Formulae.size();
1520}
1521
1522/// If the given formula has not yet been inserted, add it to the list, and
1523/// return true. Return false otherwise.  The formula must be in canonical form.
1524bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1525  assert(F.isCanonical(L) && "Invalid canonical representation");
1526
1527  if (!Formulae.empty() && RigidFormula)
1528    return false;
1529
1530  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1531  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1532  // Unstable sort by host order ok, because this is only used for uniquifying.
1533  llvm::sort(Key);
1534
1535  if (!Uniquifier.insert(Key).second)
1536    return false;
1537
1538  // Using a register to hold the value of 0 is not profitable.
1539  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1540         "Zero allocated in a scaled register!");
1541#ifndef NDEBUG
1542  for (const SCEV *BaseReg : F.BaseRegs)
1543    assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1544#endif
1545
1546  // Add the formula to the list.
1547  Formulae.push_back(F);
1548
1549  // Record registers now being used by this use.
1550  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1551  if (F.ScaledReg)
1552    Regs.insert(F.ScaledReg);
1553
1554  return true;
1555}
1556
1557/// Remove the given formula from this use's list.
1558void LSRUse::DeleteFormula(Formula &F) {
1559  if (&F != &Formulae.back())
1560    std::swap(F, Formulae.back());
1561  Formulae.pop_back();
1562}
1563
1564/// Recompute the Regs field, and update RegUses.
1565void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1566  // Now that we've filtered out some formulae, recompute the Regs set.
1567  SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1568  Regs.clear();
1569  for (const Formula &F : Formulae) {
1570    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1571    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1572  }
1573
1574  // Update the RegTracker.
1575  for (const SCEV *S : OldRegs)
1576    if (!Regs.count(S))
1577      RegUses.dropRegister(S, LUIdx);
1578}
1579
1580#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1581void LSRUse::print(raw_ostream &OS) const {
1582  OS << "LSR Use: Kind=";
1583  switch (Kind) {
1584  case Basic:    OS << "Basic"; break;
1585  case Special:  OS << "Special"; break;
1586  case ICmpZero: OS << "ICmpZero"; break;
1587  case Address:
1588    OS << "Address of ";
1589    if (AccessTy.MemTy->isPointerTy())
1590      OS << "pointer"; // the full pointer type could be really verbose
1591    else {
1592      OS << *AccessTy.MemTy;
1593    }
1594
1595    OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1596  }
1597
1598  OS << ", Offsets={";
1599  bool NeedComma = false;
1600  for (const LSRFixup &Fixup : Fixups) {
1601    if (NeedComma) OS << ',';
1602    OS << Fixup.Offset;
1603    NeedComma = true;
1604  }
1605  OS << '}';
1606
1607  if (AllFixupsOutsideLoop)
1608    OS << ", all-fixups-outside-loop";
1609
1610  if (WidestFixupType)
1611    OS << ", widest fixup type: " << *WidestFixupType;
1612}
1613
1614LLVM_DUMP_METHOD void LSRUse::dump() const {
1615  print(errs()); errs() << '\n';
1616}
1617#endif
1618
1619static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1620                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1621                                 GlobalValue *BaseGV, int64_t BaseOffset,
1622                                 bool HasBaseReg, int64_t Scale,
1623                                 Instruction *Fixup/*= nullptr*/) {
1624  switch (Kind) {
1625  case LSRUse::Address:
1626    return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1627                                     HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1628
1629  case LSRUse::ICmpZero:
1630    // There's not even a target hook for querying whether it would be legal to
1631    // fold a GV into an ICmp.
1632    if (BaseGV)
1633      return false;
1634
1635    // ICmp only has two operands; don't allow more than two non-trivial parts.
1636    if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1637      return false;
1638
1639    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1640    // putting the scaled register in the other operand of the icmp.
1641    if (Scale != 0 && Scale != -1)
1642      return false;
1643
1644    // If we have low-level target information, ask the target if it can fold an
1645    // integer immediate on an icmp.
1646    if (BaseOffset != 0) {
1647      // We have one of:
1648      // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1649      // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1650      // Offs is the ICmp immediate.
1651      if (Scale == 0)
1652        // The cast does the right thing with
1653        // std::numeric_limits<int64_t>::min().
1654        BaseOffset = -(uint64_t)BaseOffset;
1655      return TTI.isLegalICmpImmediate(BaseOffset);
1656    }
1657
1658    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1659    return true;
1660
1661  case LSRUse::Basic:
1662    // Only handle single-register values.
1663    return !BaseGV && Scale == 0 && BaseOffset == 0;
1664
1665  case LSRUse::Special:
1666    // Special case Basic to handle -1 scales.
1667    return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1668  }
1669
1670  llvm_unreachable("Invalid LSRUse Kind!");
1671}
1672
1673static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1674                                 int64_t MinOffset, int64_t MaxOffset,
1675                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1676                                 GlobalValue *BaseGV, int64_t BaseOffset,
1677                                 bool HasBaseReg, int64_t Scale) {
1678  // Check for overflow.
1679  if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1680      (MinOffset > 0))
1681    return false;
1682  MinOffset = (uint64_t)BaseOffset + MinOffset;
1683  if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1684      (MaxOffset > 0))
1685    return false;
1686  MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1687
1688  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1689                              HasBaseReg, Scale) &&
1690         isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1691                              HasBaseReg, Scale);
1692}
1693
1694static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1695                                 int64_t MinOffset, int64_t MaxOffset,
1696                                 LSRUse::KindType Kind, MemAccessTy AccessTy,
1697                                 const Formula &F, const Loop &L) {
1698  // For the purpose of isAMCompletelyFolded either having a canonical formula
1699  // or a scale not equal to zero is correct.
1700  // Problems may arise from non canonical formulae having a scale == 0.
1701  // Strictly speaking it would best to just rely on canonical formulae.
1702  // However, when we generate the scaled formulae, we first check that the
1703  // scaling factor is profitable before computing the actual ScaledReg for
1704  // compile time sake.
1705  assert((F.isCanonical(L) || F.Scale != 0));
1706  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1707                              F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1708}
1709
1710/// Test whether we know how to expand the current formula.
1711static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1712                       int64_t MaxOffset, LSRUse::KindType Kind,
1713                       MemAccessTy AccessTy, GlobalValue *BaseGV,
1714                       int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1715  // We know how to expand completely foldable formulae.
1716  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1717                              BaseOffset, HasBaseReg, Scale) ||
1718         // Or formulae that use a base register produced by a sum of base
1719         // registers.
1720         (Scale == 1 &&
1721          isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1722                               BaseGV, BaseOffset, true, 0));
1723}
1724
1725static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1726                       int64_t MaxOffset, LSRUse::KindType Kind,
1727                       MemAccessTy AccessTy, const Formula &F) {
1728  return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1729                    F.BaseOffset, F.HasBaseReg, F.Scale);
1730}
1731
1732static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1733                                 const LSRUse &LU, const Formula &F) {
1734  // Target may want to look at the user instructions.
1735  if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1736    for (const LSRFixup &Fixup : LU.Fixups)
1737      if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1738                                (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1739                                F.Scale, Fixup.UserInst))
1740        return false;
1741    return true;
1742  }
1743
1744  return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1745                              LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1746                              F.Scale);
1747}
1748
1749static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1750                                     const LSRUse &LU, const Formula &F,
1751                                     const Loop &L) {
1752  if (!F.Scale)
1753    return 0;
1754
1755  // If the use is not completely folded in that instruction, we will have to
1756  // pay an extra cost only for scale != 1.
1757  if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1758                            LU.AccessTy, F, L))
1759    return F.Scale != 1;
1760
1761  switch (LU.Kind) {
1762  case LSRUse::Address: {
1763    // Check the scaling factor cost with both the min and max offsets.
1764    int ScaleCostMinOffset = TTI.getScalingFactorCost(
1765        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1766        F.Scale, LU.AccessTy.AddrSpace);
1767    int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1768        LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1769        F.Scale, LU.AccessTy.AddrSpace);
1770
1771    assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1772           "Legal addressing mode has an illegal cost!");
1773    return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1774  }
1775  case LSRUse::ICmpZero:
1776  case LSRUse::Basic:
1777  case LSRUse::Special:
1778    // The use is completely folded, i.e., everything is folded into the
1779    // instruction.
1780    return 0;
1781  }
1782
1783  llvm_unreachable("Invalid LSRUse Kind!");
1784}
1785
1786static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1787                             LSRUse::KindType Kind, MemAccessTy AccessTy,
1788                             GlobalValue *BaseGV, int64_t BaseOffset,
1789                             bool HasBaseReg) {
1790  // Fast-path: zero is always foldable.
1791  if (BaseOffset == 0 && !BaseGV) return true;
1792
1793  // Conservatively, create an address with an immediate and a
1794  // base and a scale.
1795  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1796
1797  // Canonicalize a scale of 1 to a base register if the formula doesn't
1798  // already have a base register.
1799  if (!HasBaseReg && Scale == 1) {
1800    Scale = 0;
1801    HasBaseReg = true;
1802  }
1803
1804  return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1805                              HasBaseReg, Scale);
1806}
1807
1808static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1809                             ScalarEvolution &SE, int64_t MinOffset,
1810                             int64_t MaxOffset, LSRUse::KindType Kind,
1811                             MemAccessTy AccessTy, const SCEV *S,
1812                             bool HasBaseReg) {
1813  // Fast-path: zero is always foldable.
1814  if (S->isZero()) return true;
1815
1816  // Conservatively, create an address with an immediate and a
1817  // base and a scale.
1818  int64_t BaseOffset = ExtractImmediate(S, SE);
1819  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1820
1821  // If there's anything else involved, it's not foldable.
1822  if (!S->isZero()) return false;
1823
1824  // Fast-path: zero is always foldable.
1825  if (BaseOffset == 0 && !BaseGV) return true;
1826
1827  // Conservatively, create an address with an immediate and a
1828  // base and a scale.
1829  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1830
1831  return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1832                              BaseOffset, HasBaseReg, Scale);
1833}
1834
1835namespace {
1836
1837/// An individual increment in a Chain of IV increments.  Relate an IV user to
1838/// an expression that computes the IV it uses from the IV used by the previous
1839/// link in the Chain.
1840///
1841/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1842/// original IVOperand. The head of the chain's IVOperand is only valid during
1843/// chain collection, before LSR replaces IV users. During chain generation,
1844/// IncExpr can be used to find the new IVOperand that computes the same
1845/// expression.
1846struct IVInc {
1847  Instruction *UserInst;
1848  Value* IVOperand;
1849  const SCEV *IncExpr;
1850
1851  IVInc(Instruction *U, Value *O, const SCEV *E)
1852      : UserInst(U), IVOperand(O), IncExpr(E) {}
1853};
1854
1855// The list of IV increments in program order.  We typically add the head of a
1856// chain without finding subsequent links.
1857struct IVChain {
1858  SmallVector<IVInc, 1> Incs;
1859  const SCEV *ExprBase = nullptr;
1860
1861  IVChain() = default;
1862  IVChain(const IVInc &Head, const SCEV *Base)
1863      : Incs(1, Head), ExprBase(Base) {}
1864
1865  using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1866
1867  // Return the first increment in the chain.
1868  const_iterator begin() const {
1869    assert(!Incs.empty());
1870    return std::next(Incs.begin());
1871  }
1872  const_iterator end() const {
1873    return Incs.end();
1874  }
1875
1876  // Returns true if this chain contains any increments.
1877  bool hasIncs() const { return Incs.size() >= 2; }
1878
1879  // Add an IVInc to the end of this chain.
1880  void add(const IVInc &X) { Incs.push_back(X); }
1881
1882  // Returns the last UserInst in the chain.
1883  Instruction *tailUserInst() const { return Incs.back().UserInst; }
1884
1885  // Returns true if IncExpr can be profitably added to this chain.
1886  bool isProfitableIncrement(const SCEV *OperExpr,
1887                             const SCEV *IncExpr,
1888                             ScalarEvolution&);
1889};
1890
1891/// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1892/// between FarUsers that definitely cross IV increments and NearUsers that may
1893/// be used between IV increments.
1894struct ChainUsers {
1895  SmallPtrSet<Instruction*, 4> FarUsers;
1896  SmallPtrSet<Instruction*, 4> NearUsers;
1897};
1898
1899/// This class holds state for the main loop strength reduction logic.
1900class LSRInstance {
1901  IVUsers &IU;
1902  ScalarEvolution &SE;
1903  DominatorTree &DT;
1904  LoopInfo &LI;
1905  AssumptionCache &AC;
1906  TargetLibraryInfo &TLI;
1907  const TargetTransformInfo &TTI;
1908  Loop *const L;
1909  MemorySSAUpdater *MSSAU;
1910  bool FavorBackedgeIndex = false;
1911  bool Changed = false;
1912
1913  /// This is the insert position that the current loop's induction variable
1914  /// increment should be placed. In simple loops, this is the latch block's
1915  /// terminator. But in more complicated cases, this is a position which will
1916  /// dominate all the in-loop post-increment users.
1917  Instruction *IVIncInsertPos = nullptr;
1918
1919  /// Interesting factors between use strides.
1920  ///
1921  /// We explicitly use a SetVector which contains a SmallSet, instead of the
1922  /// default, a SmallDenseSet, because we need to use the full range of
1923  /// int64_ts, and there's currently no good way of doing that with
1924  /// SmallDenseSet.
1925  SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1926
1927  /// Interesting use types, to facilitate truncation reuse.
1928  SmallSetVector<Type *, 4> Types;
1929
1930  /// The list of interesting uses.
1931  mutable SmallVector<LSRUse, 16> Uses;
1932
1933  /// Track which uses use which register candidates.
1934  RegUseTracker RegUses;
1935
1936  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1937  // have more than a few IV increment chains in a loop. Missing a Chain falls
1938  // back to normal LSR behavior for those uses.
1939  static const unsigned MaxChains = 8;
1940
1941  /// IV users can form a chain of IV increments.
1942  SmallVector<IVChain, MaxChains> IVChainVec;
1943
1944  /// IV users that belong to profitable IVChains.
1945  SmallPtrSet<Use*, MaxChains> IVIncSet;
1946
1947  void OptimizeShadowIV();
1948  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1949  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1950  void OptimizeLoopTermCond();
1951
1952  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1953                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
1954  void FinalizeChain(IVChain &Chain);
1955  void CollectChains();
1956  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1957                       SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1958
1959  void CollectInterestingTypesAndFactors();
1960  void CollectFixupsAndInitialFormulae();
1961
1962  // Support for sharing of LSRUses between LSRFixups.
1963  using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1964  UseMapTy UseMap;
1965
1966  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1967                          LSRUse::KindType Kind, MemAccessTy AccessTy);
1968
1969  std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1970                                    MemAccessTy AccessTy);
1971
1972  void DeleteUse(LSRUse &LU, size_t LUIdx);
1973
1974  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1975
1976  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1977  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1978  void CountRegisters(const Formula &F, size_t LUIdx);
1979  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1980
1981  void CollectLoopInvariantFixupsAndFormulae();
1982
1983  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1984                              unsigned Depth = 0);
1985
1986  void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1987                                  const Formula &Base, unsigned Depth,
1988                                  size_t Idx, bool IsScaledReg = false);
1989  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1990  void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1991                                   const Formula &Base, size_t Idx,
1992                                   bool IsScaledReg = false);
1993  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1994  void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1995                                   const Formula &Base,
1996                                   const SmallVectorImpl<int64_t> &Worklist,
1997                                   size_t Idx, bool IsScaledReg = false);
1998  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1999  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2000  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2001  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2002  void GenerateCrossUseConstantOffsets();
2003  void GenerateAllReuseFormulae();
2004
2005  void FilterOutUndesirableDedicatedRegisters();
2006
2007  size_t EstimateSearchSpaceComplexity() const;
2008  void NarrowSearchSpaceByDetectingSupersets();
2009  void NarrowSearchSpaceByCollapsingUnrolledCode();
2010  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2011  void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2012  void NarrowSearchSpaceByFilterPostInc();
2013  void NarrowSearchSpaceByDeletingCostlyFormulas();
2014  void NarrowSearchSpaceByPickingWinnerRegs();
2015  void NarrowSearchSpaceUsingHeuristics();
2016
2017  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2018                    Cost &SolutionCost,
2019                    SmallVectorImpl<const Formula *> &Workspace,
2020                    const Cost &CurCost,
2021                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
2022                    DenseSet<const SCEV *> &VisitedRegs) const;
2023  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2024
2025  BasicBlock::iterator
2026    HoistInsertPosition(BasicBlock::iterator IP,
2027                        const SmallVectorImpl<Instruction *> &Inputs) const;
2028  BasicBlock::iterator
2029    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2030                                  const LSRFixup &LF,
2031                                  const LSRUse &LU,
2032                                  SCEVExpander &Rewriter) const;
2033
2034  Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2035                BasicBlock::iterator IP, SCEVExpander &Rewriter,
2036                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2037  void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2038                     const Formula &F, SCEVExpander &Rewriter,
2039                     SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2040  void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2041               SCEVExpander &Rewriter,
2042               SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2043  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2044
2045public:
2046  LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2047              LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2048              TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2049
2050  bool getChanged() const { return Changed; }
2051
2052  void print_factors_and_types(raw_ostream &OS) const;
2053  void print_fixups(raw_ostream &OS) const;
2054  void print_uses(raw_ostream &OS) const;
2055  void print(raw_ostream &OS) const;
2056  void dump() const;
2057};
2058
2059} // end anonymous namespace
2060
2061/// If IV is used in a int-to-float cast inside the loop then try to eliminate
2062/// the cast operation.
2063void LSRInstance::OptimizeShadowIV() {
2064  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2065  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2066    return;
2067
2068  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2069       UI != E; /* empty */) {
2070    IVUsers::const_iterator CandidateUI = UI;
2071    ++UI;
2072    Instruction *ShadowUse = CandidateUI->getUser();
2073    Type *DestTy = nullptr;
2074    bool IsSigned = false;
2075
2076    /* If shadow use is a int->float cast then insert a second IV
2077       to eliminate this cast.
2078
2079         for (unsigned i = 0; i < n; ++i)
2080           foo((double)i);
2081
2082       is transformed into
2083
2084         double d = 0.0;
2085         for (unsigned i = 0; i < n; ++i, ++d)
2086           foo(d);
2087    */
2088    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2089      IsSigned = false;
2090      DestTy = UCast->getDestTy();
2091    }
2092    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2093      IsSigned = true;
2094      DestTy = SCast->getDestTy();
2095    }
2096    if (!DestTy) continue;
2097
2098    // If target does not support DestTy natively then do not apply
2099    // this transformation.
2100    if (!TTI.isTypeLegal(DestTy)) continue;
2101
2102    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2103    if (!PH) continue;
2104    if (PH->getNumIncomingValues() != 2) continue;
2105
2106    // If the calculation in integers overflows, the result in FP type will
2107    // differ. So we only can do this transformation if we are guaranteed to not
2108    // deal with overflowing values
2109    const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2110    if (!AR) continue;
2111    if (IsSigned && !AR->hasNoSignedWrap()) continue;
2112    if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2113
2114    Type *SrcTy = PH->getType();
2115    int Mantissa = DestTy->getFPMantissaWidth();
2116    if (Mantissa == -1) continue;
2117    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2118      continue;
2119
2120    unsigned Entry, Latch;
2121    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2122      Entry = 0;
2123      Latch = 1;
2124    } else {
2125      Entry = 1;
2126      Latch = 0;
2127    }
2128
2129    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2130    if (!Init) continue;
2131    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2132                                        (double)Init->getSExtValue() :
2133                                        (double)Init->getZExtValue());
2134
2135    BinaryOperator *Incr =
2136      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2137    if (!Incr) continue;
2138    if (Incr->getOpcode() != Instruction::Add
2139        && Incr->getOpcode() != Instruction::Sub)
2140      continue;
2141
2142    /* Initialize new IV, double d = 0.0 in above example. */
2143    ConstantInt *C = nullptr;
2144    if (Incr->getOperand(0) == PH)
2145      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2146    else if (Incr->getOperand(1) == PH)
2147      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2148    else
2149      continue;
2150
2151    if (!C) continue;
2152
2153    // Ignore negative constants, as the code below doesn't handle them
2154    // correctly. TODO: Remove this restriction.
2155    if (!C->getValue().isStrictlyPositive()) continue;
2156
2157    /* Add new PHINode. */
2158    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2159
2160    /* create new increment. '++d' in above example. */
2161    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2162    BinaryOperator *NewIncr =
2163      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2164                               Instruction::FAdd : Instruction::FSub,
2165                             NewPH, CFP, "IV.S.next.", Incr);
2166
2167    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2168    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2169
2170    /* Remove cast operation */
2171    ShadowUse->replaceAllUsesWith(NewPH);
2172    ShadowUse->eraseFromParent();
2173    Changed = true;
2174    break;
2175  }
2176}
2177
2178/// If Cond has an operand that is an expression of an IV, set the IV user and
2179/// stride information and return true, otherwise return false.
2180bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2181  for (IVStrideUse &U : IU)
2182    if (U.getUser() == Cond) {
2183      // NOTE: we could handle setcc instructions with multiple uses here, but
2184      // InstCombine does it as well for simple uses, it's not clear that it
2185      // occurs enough in real life to handle.
2186      CondUse = &U;
2187      return true;
2188    }
2189  return false;
2190}
2191
2192/// Rewrite the loop's terminating condition if it uses a max computation.
2193///
2194/// This is a narrow solution to a specific, but acute, problem. For loops
2195/// like this:
2196///
2197///   i = 0;
2198///   do {
2199///     p[i] = 0.0;
2200///   } while (++i < n);
2201///
2202/// the trip count isn't just 'n', because 'n' might not be positive. And
2203/// unfortunately this can come up even for loops where the user didn't use
2204/// a C do-while loop. For example, seemingly well-behaved top-test loops
2205/// will commonly be lowered like this:
2206///
2207///   if (n > 0) {
2208///     i = 0;
2209///     do {
2210///       p[i] = 0.0;
2211///     } while (++i < n);
2212///   }
2213///
2214/// and then it's possible for subsequent optimization to obscure the if
2215/// test in such a way that indvars can't find it.
2216///
2217/// When indvars can't find the if test in loops like this, it creates a
2218/// max expression, which allows it to give the loop a canonical
2219/// induction variable:
2220///
2221///   i = 0;
2222///   max = n < 1 ? 1 : n;
2223///   do {
2224///     p[i] = 0.0;
2225///   } while (++i != max);
2226///
2227/// Canonical induction variables are necessary because the loop passes
2228/// are designed around them. The most obvious example of this is the
2229/// LoopInfo analysis, which doesn't remember trip count values. It
2230/// expects to be able to rediscover the trip count each time it is
2231/// needed, and it does this using a simple analysis that only succeeds if
2232/// the loop has a canonical induction variable.
2233///
2234/// However, when it comes time to generate code, the maximum operation
2235/// can be quite costly, especially if it's inside of an outer loop.
2236///
2237/// This function solves this problem by detecting this type of loop and
2238/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2239/// the instructions for the maximum computation.
2240ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2241  // Check that the loop matches the pattern we're looking for.
2242  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2243      Cond->getPredicate() != CmpInst::ICMP_NE)
2244    return Cond;
2245
2246  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2247  if (!Sel || !Sel->hasOneUse()) return Cond;
2248
2249  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2250  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2251    return Cond;
2252  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2253
2254  // Add one to the backedge-taken count to get the trip count.
2255  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2256  if (IterationCount != SE.getSCEV(Sel)) return Cond;
2257
2258  // Check for a max calculation that matches the pattern. There's no check
2259  // for ICMP_ULE here because the comparison would be with zero, which
2260  // isn't interesting.
2261  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2262  const SCEVNAryExpr *Max = nullptr;
2263  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2264    Pred = ICmpInst::ICMP_SLE;
2265    Max = S;
2266  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2267    Pred = ICmpInst::ICMP_SLT;
2268    Max = S;
2269  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2270    Pred = ICmpInst::ICMP_ULT;
2271    Max = U;
2272  } else {
2273    // No match; bail.
2274    return Cond;
2275  }
2276
2277  // To handle a max with more than two operands, this optimization would
2278  // require additional checking and setup.
2279  if (Max->getNumOperands() != 2)
2280    return Cond;
2281
2282  const SCEV *MaxLHS = Max->getOperand(0);
2283  const SCEV *MaxRHS = Max->getOperand(1);
2284
2285  // ScalarEvolution canonicalizes constants to the left. For < and >, look
2286  // for a comparison with 1. For <= and >=, a comparison with zero.
2287  if (!MaxLHS ||
2288      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2289    return Cond;
2290
2291  // Check the relevant induction variable for conformance to
2292  // the pattern.
2293  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2294  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2295  if (!AR || !AR->isAffine() ||
2296      AR->getStart() != One ||
2297      AR->getStepRecurrence(SE) != One)
2298    return Cond;
2299
2300  assert(AR->getLoop() == L &&
2301         "Loop condition operand is an addrec in a different loop!");
2302
2303  // Check the right operand of the select, and remember it, as it will
2304  // be used in the new comparison instruction.
2305  Value *NewRHS = nullptr;
2306  if (ICmpInst::isTrueWhenEqual(Pred)) {
2307    // Look for n+1, and grab n.
2308    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2309      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2310         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2311           NewRHS = BO->getOperand(0);
2312    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2313      if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2314        if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2315          NewRHS = BO->getOperand(0);
2316    if (!NewRHS)
2317      return Cond;
2318  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2319    NewRHS = Sel->getOperand(1);
2320  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2321    NewRHS = Sel->getOperand(2);
2322  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2323    NewRHS = SU->getValue();
2324  else
2325    // Max doesn't match expected pattern.
2326    return Cond;
2327
2328  // Determine the new comparison opcode. It may be signed or unsigned,
2329  // and the original comparison may be either equality or inequality.
2330  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2331    Pred = CmpInst::getInversePredicate(Pred);
2332
2333  // Ok, everything looks ok to change the condition into an SLT or SGE and
2334  // delete the max calculation.
2335  ICmpInst *NewCond =
2336    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2337
2338  // Delete the max calculation instructions.
2339  Cond->replaceAllUsesWith(NewCond);
2340  CondUse->setUser(NewCond);
2341  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2342  Cond->eraseFromParent();
2343  Sel->eraseFromParent();
2344  if (Cmp->use_empty())
2345    Cmp->eraseFromParent();
2346  return NewCond;
2347}
2348
2349/// Change loop terminating condition to use the postinc iv when possible.
2350void
2351LSRInstance::OptimizeLoopTermCond() {
2352  SmallPtrSet<Instruction *, 4> PostIncs;
2353
2354  // We need a different set of heuristics for rotated and non-rotated loops.
2355  // If a loop is rotated then the latch is also the backedge, so inserting
2356  // post-inc expressions just before the latch is ideal. To reduce live ranges
2357  // it also makes sense to rewrite terminating conditions to use post-inc
2358  // expressions.
2359  //
2360  // If the loop is not rotated then the latch is not a backedge; the latch
2361  // check is done in the loop head. Adding post-inc expressions before the
2362  // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2363  // in the loop body. In this case we do *not* want to use post-inc expressions
2364  // in the latch check, and we want to insert post-inc expressions before
2365  // the backedge.
2366  BasicBlock *LatchBlock = L->getLoopLatch();
2367  SmallVector<BasicBlock*, 8> ExitingBlocks;
2368  L->getExitingBlocks(ExitingBlocks);
2369  if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2370        return LatchBlock != BB;
2371      })) {
2372    // The backedge doesn't exit the loop; treat this as a head-tested loop.
2373    IVIncInsertPos = LatchBlock->getTerminator();
2374    return;
2375  }
2376
2377  // Otherwise treat this as a rotated loop.
2378  for (BasicBlock *ExitingBlock : ExitingBlocks) {
2379    // Get the terminating condition for the loop if possible.  If we
2380    // can, we want to change it to use a post-incremented version of its
2381    // induction variable, to allow coalescing the live ranges for the IV into
2382    // one register value.
2383
2384    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2385    if (!TermBr)
2386      continue;
2387    // FIXME: Overly conservative, termination condition could be an 'or' etc..
2388    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2389      continue;
2390
2391    // Search IVUsesByStride to find Cond's IVUse if there is one.
2392    IVStrideUse *CondUse = nullptr;
2393    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2394    if (!FindIVUserForCond(Cond, CondUse))
2395      continue;
2396
2397    // If the trip count is computed in terms of a max (due to ScalarEvolution
2398    // being unable to find a sufficient guard, for example), change the loop
2399    // comparison to use SLT or ULT instead of NE.
2400    // One consequence of doing this now is that it disrupts the count-down
2401    // optimization. That's not always a bad thing though, because in such
2402    // cases it may still be worthwhile to avoid a max.
2403    Cond = OptimizeMax(Cond, CondUse);
2404
2405    // If this exiting block dominates the latch block, it may also use
2406    // the post-inc value if it won't be shared with other uses.
2407    // Check for dominance.
2408    if (!DT.dominates(ExitingBlock, LatchBlock))
2409      continue;
2410
2411    // Conservatively avoid trying to use the post-inc value in non-latch
2412    // exits if there may be pre-inc users in intervening blocks.
2413    if (LatchBlock != ExitingBlock)
2414      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2415        // Test if the use is reachable from the exiting block. This dominator
2416        // query is a conservative approximation of reachability.
2417        if (&*UI != CondUse &&
2418            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2419          // Conservatively assume there may be reuse if the quotient of their
2420          // strides could be a legal scale.
2421          const SCEV *A = IU.getStride(*CondUse, L);
2422          const SCEV *B = IU.getStride(*UI, L);
2423          if (!A || !B) continue;
2424          if (SE.getTypeSizeInBits(A->getType()) !=
2425              SE.getTypeSizeInBits(B->getType())) {
2426            if (SE.getTypeSizeInBits(A->getType()) >
2427                SE.getTypeSizeInBits(B->getType()))
2428              B = SE.getSignExtendExpr(B, A->getType());
2429            else
2430              A = SE.getSignExtendExpr(A, B->getType());
2431          }
2432          if (const SCEVConstant *D =
2433                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2434            const ConstantInt *C = D->getValue();
2435            // Stride of one or negative one can have reuse with non-addresses.
2436            if (C->isOne() || C->isMinusOne())
2437              goto decline_post_inc;
2438            // Avoid weird situations.
2439            if (C->getValue().getMinSignedBits() >= 64 ||
2440                C->getValue().isMinSignedValue())
2441              goto decline_post_inc;
2442            // Check for possible scaled-address reuse.
2443            if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2444              MemAccessTy AccessTy = getAccessType(
2445                  TTI, UI->getUser(), UI->getOperandValToReplace());
2446              int64_t Scale = C->getSExtValue();
2447              if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2448                                            /*BaseOffset=*/0,
2449                                            /*HasBaseReg=*/false, Scale,
2450                                            AccessTy.AddrSpace))
2451                goto decline_post_inc;
2452              Scale = -Scale;
2453              if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2454                                            /*BaseOffset=*/0,
2455                                            /*HasBaseReg=*/false, Scale,
2456                                            AccessTy.AddrSpace))
2457                goto decline_post_inc;
2458            }
2459          }
2460        }
2461
2462    LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2463                      << *Cond << '\n');
2464
2465    // It's possible for the setcc instruction to be anywhere in the loop, and
2466    // possible for it to have multiple users.  If it is not immediately before
2467    // the exiting block branch, move it.
2468    if (&*++BasicBlock::iterator(Cond) != TermBr) {
2469      if (Cond->hasOneUse()) {
2470        Cond->moveBefore(TermBr);
2471      } else {
2472        // Clone the terminating condition and insert into the loopend.
2473        ICmpInst *OldCond = Cond;
2474        Cond = cast<ICmpInst>(Cond->clone());
2475        Cond->setName(L->getHeader()->getName() + ".termcond");
2476        ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2477
2478        // Clone the IVUse, as the old use still exists!
2479        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2480        TermBr->replaceUsesOfWith(OldCond, Cond);
2481      }
2482    }
2483
2484    // If we get to here, we know that we can transform the setcc instruction to
2485    // use the post-incremented version of the IV, allowing us to coalesce the
2486    // live ranges for the IV correctly.
2487    CondUse->transformToPostInc(L);
2488    Changed = true;
2489
2490    PostIncs.insert(Cond);
2491  decline_post_inc:;
2492  }
2493
2494  // Determine an insertion point for the loop induction variable increment. It
2495  // must dominate all the post-inc comparisons we just set up, and it must
2496  // dominate the loop latch edge.
2497  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2498  for (Instruction *Inst : PostIncs) {
2499    BasicBlock *BB =
2500      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2501                                    Inst->getParent());
2502    if (BB == Inst->getParent())
2503      IVIncInsertPos = Inst;
2504    else if (BB != IVIncInsertPos->getParent())
2505      IVIncInsertPos = BB->getTerminator();
2506  }
2507}
2508
2509/// Determine if the given use can accommodate a fixup at the given offset and
2510/// other details. If so, update the use and return true.
2511bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2512                                     bool HasBaseReg, LSRUse::KindType Kind,
2513                                     MemAccessTy AccessTy) {
2514  int64_t NewMinOffset = LU.MinOffset;
2515  int64_t NewMaxOffset = LU.MaxOffset;
2516  MemAccessTy NewAccessTy = AccessTy;
2517
2518  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2519  // something conservative, however this can pessimize in the case that one of
2520  // the uses will have all its uses outside the loop, for example.
2521  if (LU.Kind != Kind)
2522    return false;
2523
2524  // Check for a mismatched access type, and fall back conservatively as needed.
2525  // TODO: Be less conservative when the type is similar and can use the same
2526  // addressing modes.
2527  if (Kind == LSRUse::Address) {
2528    if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2529      NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2530                                            AccessTy.AddrSpace);
2531    }
2532  }
2533
2534  // Conservatively assume HasBaseReg is true for now.
2535  if (NewOffset < LU.MinOffset) {
2536    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2537                          LU.MaxOffset - NewOffset, HasBaseReg))
2538      return false;
2539    NewMinOffset = NewOffset;
2540  } else if (NewOffset > LU.MaxOffset) {
2541    if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2542                          NewOffset - LU.MinOffset, HasBaseReg))
2543      return false;
2544    NewMaxOffset = NewOffset;
2545  }
2546
2547  // Update the use.
2548  LU.MinOffset = NewMinOffset;
2549  LU.MaxOffset = NewMaxOffset;
2550  LU.AccessTy = NewAccessTy;
2551  return true;
2552}
2553
2554/// Return an LSRUse index and an offset value for a fixup which needs the given
2555/// expression, with the given kind and optional access type.  Either reuse an
2556/// existing use or create a new one, as needed.
2557std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2558                                               LSRUse::KindType Kind,
2559                                               MemAccessTy AccessTy) {
2560  const SCEV *Copy = Expr;
2561  int64_t Offset = ExtractImmediate(Expr, SE);
2562
2563  // Basic uses can't accept any offset, for example.
2564  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2565                        Offset, /*HasBaseReg=*/ true)) {
2566    Expr = Copy;
2567    Offset = 0;
2568  }
2569
2570  std::pair<UseMapTy::iterator, bool> P =
2571    UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2572  if (!P.second) {
2573    // A use already existed with this base.
2574    size_t LUIdx = P.first->second;
2575    LSRUse &LU = Uses[LUIdx];
2576    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2577      // Reuse this use.
2578      return std::make_pair(LUIdx, Offset);
2579  }
2580
2581  // Create a new use.
2582  size_t LUIdx = Uses.size();
2583  P.first->second = LUIdx;
2584  Uses.push_back(LSRUse(Kind, AccessTy));
2585  LSRUse &LU = Uses[LUIdx];
2586
2587  LU.MinOffset = Offset;
2588  LU.MaxOffset = Offset;
2589  return std::make_pair(LUIdx, Offset);
2590}
2591
2592/// Delete the given use from the Uses list.
2593void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2594  if (&LU != &Uses.back())
2595    std::swap(LU, Uses.back());
2596  Uses.pop_back();
2597
2598  // Update RegUses.
2599  RegUses.swapAndDropUse(LUIdx, Uses.size());
2600}
2601
2602/// Look for a use distinct from OrigLU which is has a formula that has the same
2603/// registers as the given formula.
2604LSRUse *
2605LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2606                                       const LSRUse &OrigLU) {
2607  // Search all uses for the formula. This could be more clever.
2608  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2609    LSRUse &LU = Uses[LUIdx];
2610    // Check whether this use is close enough to OrigLU, to see whether it's
2611    // worthwhile looking through its formulae.
2612    // Ignore ICmpZero uses because they may contain formulae generated by
2613    // GenerateICmpZeroScales, in which case adding fixup offsets may
2614    // be invalid.
2615    if (&LU != &OrigLU &&
2616        LU.Kind != LSRUse::ICmpZero &&
2617        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2618        LU.WidestFixupType == OrigLU.WidestFixupType &&
2619        LU.HasFormulaWithSameRegs(OrigF)) {
2620      // Scan through this use's formulae.
2621      for (const Formula &F : LU.Formulae) {
2622        // Check to see if this formula has the same registers and symbols
2623        // as OrigF.
2624        if (F.BaseRegs == OrigF.BaseRegs &&
2625            F.ScaledReg == OrigF.ScaledReg &&
2626            F.BaseGV == OrigF.BaseGV &&
2627            F.Scale == OrigF.Scale &&
2628            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2629          if (F.BaseOffset == 0)
2630            return &LU;
2631          // This is the formula where all the registers and symbols matched;
2632          // there aren't going to be any others. Since we declined it, we
2633          // can skip the rest of the formulae and proceed to the next LSRUse.
2634          break;
2635        }
2636      }
2637    }
2638  }
2639
2640  // Nothing looked good.
2641  return nullptr;
2642}
2643
2644void LSRInstance::CollectInterestingTypesAndFactors() {
2645  SmallSetVector<const SCEV *, 4> Strides;
2646
2647  // Collect interesting types and strides.
2648  SmallVector<const SCEV *, 4> Worklist;
2649  for (const IVStrideUse &U : IU) {
2650    const SCEV *Expr = IU.getExpr(U);
2651
2652    // Collect interesting types.
2653    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2654
2655    // Add strides for mentioned loops.
2656    Worklist.push_back(Expr);
2657    do {
2658      const SCEV *S = Worklist.pop_back_val();
2659      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2660        if (AR->getLoop() == L)
2661          Strides.insert(AR->getStepRecurrence(SE));
2662        Worklist.push_back(AR->getStart());
2663      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2664        Worklist.append(Add->op_begin(), Add->op_end());
2665      }
2666    } while (!Worklist.empty());
2667  }
2668
2669  // Compute interesting factors from the set of interesting strides.
2670  for (SmallSetVector<const SCEV *, 4>::const_iterator
2671       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2672    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2673         std::next(I); NewStrideIter != E; ++NewStrideIter) {
2674      const SCEV *OldStride = *I;
2675      const SCEV *NewStride = *NewStrideIter;
2676
2677      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2678          SE.getTypeSizeInBits(NewStride->getType())) {
2679        if (SE.getTypeSizeInBits(OldStride->getType()) >
2680            SE.getTypeSizeInBits(NewStride->getType()))
2681          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2682        else
2683          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2684      }
2685      if (const SCEVConstant *Factor =
2686            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2687                                                        SE, true))) {
2688        if (Factor->getAPInt().getMinSignedBits() <= 64)
2689          Factors.insert(Factor->getAPInt().getSExtValue());
2690      } else if (const SCEVConstant *Factor =
2691                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2692                                                               NewStride,
2693                                                               SE, true))) {
2694        if (Factor->getAPInt().getMinSignedBits() <= 64)
2695          Factors.insert(Factor->getAPInt().getSExtValue());
2696      }
2697    }
2698
2699  // If all uses use the same type, don't bother looking for truncation-based
2700  // reuse.
2701  if (Types.size() == 1)
2702    Types.clear();
2703
2704  LLVM_DEBUG(print_factors_and_types(dbgs()));
2705}
2706
2707/// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2708/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2709/// IVStrideUses, we could partially skip this.
2710static User::op_iterator
2711findIVOperand(User::op_iterator OI, User::op_iterator OE,
2712              Loop *L, ScalarEvolution &SE) {
2713  for(; OI != OE; ++OI) {
2714    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2715      if (!SE.isSCEVable(Oper->getType()))
2716        continue;
2717
2718      if (const SCEVAddRecExpr *AR =
2719          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2720        if (AR->getLoop() == L)
2721          break;
2722      }
2723    }
2724  }
2725  return OI;
2726}
2727
2728/// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2729/// a convenient helper.
2730static Value *getWideOperand(Value *Oper) {
2731  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2732    return Trunc->getOperand(0);
2733  return Oper;
2734}
2735
2736/// Return true if we allow an IV chain to include both types.
2737static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2738  Type *LType = LVal->getType();
2739  Type *RType = RVal->getType();
2740  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2741                              // Different address spaces means (possibly)
2742                              // different types of the pointer implementation,
2743                              // e.g. i16 vs i32 so disallow that.
2744                              (LType->getPointerAddressSpace() ==
2745                               RType->getPointerAddressSpace()));
2746}
2747
2748/// Return an approximation of this SCEV expression's "base", or NULL for any
2749/// constant. Returning the expression itself is conservative. Returning a
2750/// deeper subexpression is more precise and valid as long as it isn't less
2751/// complex than another subexpression. For expressions involving multiple
2752/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2753/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2754/// IVInc==b-a.
2755///
2756/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2757/// SCEVUnknown, we simply return the rightmost SCEV operand.
2758static const SCEV *getExprBase(const SCEV *S) {
2759  switch (S->getSCEVType()) {
2760  default: // uncluding scUnknown.
2761    return S;
2762  case scConstant:
2763    return nullptr;
2764  case scTruncate:
2765    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2766  case scZeroExtend:
2767    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2768  case scSignExtend:
2769    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2770  case scAddExpr: {
2771    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2772    // there's nothing more complex.
2773    // FIXME: not sure if we want to recognize negation.
2774    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2775    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2776           E(Add->op_begin()); I != E; ++I) {
2777      const SCEV *SubExpr = *I;
2778      if (SubExpr->getSCEVType() == scAddExpr)
2779        return getExprBase(SubExpr);
2780
2781      if (SubExpr->getSCEVType() != scMulExpr)
2782        return SubExpr;
2783    }
2784    return S; // all operands are scaled, be conservative.
2785  }
2786  case scAddRecExpr:
2787    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2788  }
2789}
2790
2791/// Return true if the chain increment is profitable to expand into a loop
2792/// invariant value, which may require its own register. A profitable chain
2793/// increment will be an offset relative to the same base. We allow such offsets
2794/// to potentially be used as chain increment as long as it's not obviously
2795/// expensive to expand using real instructions.
2796bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2797                                    const SCEV *IncExpr,
2798                                    ScalarEvolution &SE) {
2799  // Aggressively form chains when -stress-ivchain.
2800  if (StressIVChain)
2801    return true;
2802
2803  // Do not replace a constant offset from IV head with a nonconstant IV
2804  // increment.
2805  if (!isa<SCEVConstant>(IncExpr)) {
2806    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2807    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2808      return false;
2809  }
2810
2811  SmallPtrSet<const SCEV*, 8> Processed;
2812  return !isHighCostExpansion(IncExpr, Processed, SE);
2813}
2814
2815/// Return true if the number of registers needed for the chain is estimated to
2816/// be less than the number required for the individual IV users. First prohibit
2817/// any IV users that keep the IV live across increments (the Users set should
2818/// be empty). Next count the number and type of increments in the chain.
2819///
2820/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2821/// effectively use postinc addressing modes. Only consider it profitable it the
2822/// increments can be computed in fewer registers when chained.
2823///
2824/// TODO: Consider IVInc free if it's already used in another chains.
2825static bool isProfitableChain(IVChain &Chain,
2826                              SmallPtrSetImpl<Instruction *> &Users,
2827                              ScalarEvolution &SE,
2828                              const TargetTransformInfo &TTI) {
2829  if (StressIVChain)
2830    return true;
2831
2832  if (!Chain.hasIncs())
2833    return false;
2834
2835  if (!Users.empty()) {
2836    LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2837               for (Instruction *Inst
2838                    : Users) { dbgs() << "  " << *Inst << "\n"; });
2839    return false;
2840  }
2841  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2842
2843  // The chain itself may require a register, so intialize cost to 1.
2844  int cost = 1;
2845
2846  // A complete chain likely eliminates the need for keeping the original IV in
2847  // a register. LSR does not currently know how to form a complete chain unless
2848  // the header phi already exists.
2849  if (isa<PHINode>(Chain.tailUserInst())
2850      && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2851    --cost;
2852  }
2853  const SCEV *LastIncExpr = nullptr;
2854  unsigned NumConstIncrements = 0;
2855  unsigned NumVarIncrements = 0;
2856  unsigned NumReusedIncrements = 0;
2857
2858  if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2859    return true;
2860
2861  for (const IVInc &Inc : Chain) {
2862    if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2863      return true;
2864
2865    if (Inc.IncExpr->isZero())
2866      continue;
2867
2868    // Incrementing by zero or some constant is neutral. We assume constants can
2869    // be folded into an addressing mode or an add's immediate operand.
2870    if (isa<SCEVConstant>(Inc.IncExpr)) {
2871      ++NumConstIncrements;
2872      continue;
2873    }
2874
2875    if (Inc.IncExpr == LastIncExpr)
2876      ++NumReusedIncrements;
2877    else
2878      ++NumVarIncrements;
2879
2880    LastIncExpr = Inc.IncExpr;
2881  }
2882  // An IV chain with a single increment is handled by LSR's postinc
2883  // uses. However, a chain with multiple increments requires keeping the IV's
2884  // value live longer than it needs to be if chained.
2885  if (NumConstIncrements > 1)
2886    --cost;
2887
2888  // Materializing increment expressions in the preheader that didn't exist in
2889  // the original code may cost a register. For example, sign-extended array
2890  // indices can produce ridiculous increments like this:
2891  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2892  cost += NumVarIncrements;
2893
2894  // Reusing variable increments likely saves a register to hold the multiple of
2895  // the stride.
2896  cost -= NumReusedIncrements;
2897
2898  LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2899                    << "\n");
2900
2901  return cost < 0;
2902}
2903
2904/// Add this IV user to an existing chain or make it the head of a new chain.
2905void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2906                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2907  // When IVs are used as types of varying widths, they are generally converted
2908  // to a wider type with some uses remaining narrow under a (free) trunc.
2909  Value *const NextIV = getWideOperand(IVOper);
2910  const SCEV *const OperExpr = SE.getSCEV(NextIV);
2911  const SCEV *const OperExprBase = getExprBase(OperExpr);
2912
2913  // Visit all existing chains. Check if its IVOper can be computed as a
2914  // profitable loop invariant increment from the last link in the Chain.
2915  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2916  const SCEV *LastIncExpr = nullptr;
2917  for (; ChainIdx < NChains; ++ChainIdx) {
2918    IVChain &Chain = IVChainVec[ChainIdx];
2919
2920    // Prune the solution space aggressively by checking that both IV operands
2921    // are expressions that operate on the same unscaled SCEVUnknown. This
2922    // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2923    // first avoids creating extra SCEV expressions.
2924    if (!StressIVChain && Chain.ExprBase != OperExprBase)
2925      continue;
2926
2927    Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2928    if (!isCompatibleIVType(PrevIV, NextIV))
2929      continue;
2930
2931    // A phi node terminates a chain.
2932    if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2933      continue;
2934
2935    // The increment must be loop-invariant so it can be kept in a register.
2936    const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2937    const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2938    if (!SE.isLoopInvariant(IncExpr, L))
2939      continue;
2940
2941    if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2942      LastIncExpr = IncExpr;
2943      break;
2944    }
2945  }
2946  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2947  // bother for phi nodes, because they must be last in the chain.
2948  if (ChainIdx == NChains) {
2949    if (isa<PHINode>(UserInst))
2950      return;
2951    if (NChains >= MaxChains && !StressIVChain) {
2952      LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2953      return;
2954    }
2955    LastIncExpr = OperExpr;
2956    // IVUsers may have skipped over sign/zero extensions. We don't currently
2957    // attempt to form chains involving extensions unless they can be hoisted
2958    // into this loop's AddRec.
2959    if (!isa<SCEVAddRecExpr>(LastIncExpr))
2960      return;
2961    ++NChains;
2962    IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2963                                 OperExprBase));
2964    ChainUsersVec.resize(NChains);
2965    LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2966                      << ") IV=" << *LastIncExpr << "\n");
2967  } else {
2968    LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2969                      << ") IV+" << *LastIncExpr << "\n");
2970    // Add this IV user to the end of the chain.
2971    IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2972  }
2973  IVChain &Chain = IVChainVec[ChainIdx];
2974
2975  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2976  // This chain's NearUsers become FarUsers.
2977  if (!LastIncExpr->isZero()) {
2978    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2979                                            NearUsers.end());
2980    NearUsers.clear();
2981  }
2982
2983  // All other uses of IVOperand become near uses of the chain.
2984  // We currently ignore intermediate values within SCEV expressions, assuming
2985  // they will eventually be used be the current chain, or can be computed
2986  // from one of the chain increments. To be more precise we could
2987  // transitively follow its user and only add leaf IV users to the set.
2988  for (User *U : IVOper->users()) {
2989    Instruction *OtherUse = dyn_cast<Instruction>(U);
2990    if (!OtherUse)
2991      continue;
2992    // Uses in the chain will no longer be uses if the chain is formed.
2993    // Include the head of the chain in this iteration (not Chain.begin()).
2994    IVChain::const_iterator IncIter = Chain.Incs.begin();
2995    IVChain::const_iterator IncEnd = Chain.Incs.end();
2996    for( ; IncIter != IncEnd; ++IncIter) {
2997      if (IncIter->UserInst == OtherUse)
2998        break;
2999    }
3000    if (IncIter != IncEnd)
3001      continue;
3002
3003    if (SE.isSCEVable(OtherUse->getType())
3004        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3005        && IU.isIVUserOrOperand(OtherUse)) {
3006      continue;
3007    }
3008    NearUsers.insert(OtherUse);
3009  }
3010
3011  // Since this user is part of the chain, it's no longer considered a use
3012  // of the chain.
3013  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3014}
3015
3016/// Populate the vector of Chains.
3017///
3018/// This decreases ILP at the architecture level. Targets with ample registers,
3019/// multiple memory ports, and no register renaming probably don't want
3020/// this. However, such targets should probably disable LSR altogether.
3021///
3022/// The job of LSR is to make a reasonable choice of induction variables across
3023/// the loop. Subsequent passes can easily "unchain" computation exposing more
3024/// ILP *within the loop* if the target wants it.
3025///
3026/// Finding the best IV chain is potentially a scheduling problem. Since LSR
3027/// will not reorder memory operations, it will recognize this as a chain, but
3028/// will generate redundant IV increments. Ideally this would be corrected later
3029/// by a smart scheduler:
3030///        = A[i]
3031///        = A[i+x]
3032/// A[i]   =
3033/// A[i+x] =
3034///
3035/// TODO: Walk the entire domtree within this loop, not just the path to the
3036/// loop latch. This will discover chains on side paths, but requires
3037/// maintaining multiple copies of the Chains state.
3038void LSRInstance::CollectChains() {
3039  LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3040  SmallVector<ChainUsers, 8> ChainUsersVec;
3041
3042  SmallVector<BasicBlock *,8> LatchPath;
3043  BasicBlock *LoopHeader = L->getHeader();
3044  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3045       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3046    LatchPath.push_back(Rung->getBlock());
3047  }
3048  LatchPath.push_back(LoopHeader);
3049
3050  // Walk the instruction stream from the loop header to the loop latch.
3051  for (BasicBlock *BB : reverse(LatchPath)) {
3052    for (Instruction &I : *BB) {
3053      // Skip instructions that weren't seen by IVUsers analysis.
3054      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3055        continue;
3056
3057      // Ignore users that are part of a SCEV expression. This way we only
3058      // consider leaf IV Users. This effectively rediscovers a portion of
3059      // IVUsers analysis but in program order this time.
3060      if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3061          continue;
3062
3063      // Remove this instruction from any NearUsers set it may be in.
3064      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3065           ChainIdx < NChains; ++ChainIdx) {
3066        ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3067      }
3068      // Search for operands that can be chained.
3069      SmallPtrSet<Instruction*, 4> UniqueOperands;
3070      User::op_iterator IVOpEnd = I.op_end();
3071      User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3072      while (IVOpIter != IVOpEnd) {
3073        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3074        if (UniqueOperands.insert(IVOpInst).second)
3075          ChainInstruction(&I, IVOpInst, ChainUsersVec);
3076        IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3077      }
3078    } // Continue walking down the instructions.
3079  } // Continue walking down the domtree.
3080  // Visit phi backedges to determine if the chain can generate the IV postinc.
3081  for (PHINode &PN : L->getHeader()->phis()) {
3082    if (!SE.isSCEVable(PN.getType()))
3083      continue;
3084
3085    Instruction *IncV =
3086        dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3087    if (IncV)
3088      ChainInstruction(&PN, IncV, ChainUsersVec);
3089  }
3090  // Remove any unprofitable chains.
3091  unsigned ChainIdx = 0;
3092  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3093       UsersIdx < NChains; ++UsersIdx) {
3094    if (!isProfitableChain(IVChainVec[UsersIdx],
3095                           ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3096      continue;
3097    // Preserve the chain at UsesIdx.
3098    if (ChainIdx != UsersIdx)
3099      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3100    FinalizeChain(IVChainVec[ChainIdx]);
3101    ++ChainIdx;
3102  }
3103  IVChainVec.resize(ChainIdx);
3104}
3105
3106void LSRInstance::FinalizeChain(IVChain &Chain) {
3107  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3108  LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3109
3110  for (const IVInc &Inc : Chain) {
3111    LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3112    auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3113    assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3114    IVIncSet.insert(UseI);
3115  }
3116}
3117
3118/// Return true if the IVInc can be folded into an addressing mode.
3119static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3120                             Value *Operand, const TargetTransformInfo &TTI) {
3121  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3122  if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3123    return false;
3124
3125  if (IncConst->getAPInt().getMinSignedBits() > 64)
3126    return false;
3127
3128  MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3129  int64_t IncOffset = IncConst->getValue()->getSExtValue();
3130  if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3131                        IncOffset, /*HasBaseReg=*/false))
3132    return false;
3133
3134  return true;
3135}
3136
3137/// Generate an add or subtract for each IVInc in a chain to materialize the IV
3138/// user's operand from the previous IV user's operand.
3139void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3140                                  SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3141  // Find the new IVOperand for the head of the chain. It may have been replaced
3142  // by LSR.
3143  const IVInc &Head = Chain.Incs[0];
3144  User::op_iterator IVOpEnd = Head.UserInst->op_end();
3145  // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3146  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3147                                             IVOpEnd, L, SE);
3148  Value *IVSrc = nullptr;
3149  while (IVOpIter != IVOpEnd) {
3150    IVSrc = getWideOperand(*IVOpIter);
3151
3152    // If this operand computes the expression that the chain needs, we may use
3153    // it. (Check this after setting IVSrc which is used below.)
3154    //
3155    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3156    // narrow for the chain, so we can no longer use it. We do allow using a
3157    // wider phi, assuming the LSR checked for free truncation. In that case we
3158    // should already have a truncate on this operand such that
3159    // getSCEV(IVSrc) == IncExpr.
3160    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3161        || SE.getSCEV(IVSrc) == Head.IncExpr) {
3162      break;
3163    }
3164    IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3165  }
3166  if (IVOpIter == IVOpEnd) {
3167    // Gracefully give up on this chain.
3168    LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3169    return;
3170  }
3171  assert(IVSrc && "Failed to find IV chain source");
3172
3173  LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3174  Type *IVTy = IVSrc->getType();
3175  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3176  const SCEV *LeftOverExpr = nullptr;
3177  for (const IVInc &Inc : Chain) {
3178    Instruction *InsertPt = Inc.UserInst;
3179    if (isa<PHINode>(InsertPt))
3180      InsertPt = L->getLoopLatch()->getTerminator();
3181
3182    // IVOper will replace the current IV User's operand. IVSrc is the IV
3183    // value currently held in a register.
3184    Value *IVOper = IVSrc;
3185    if (!Inc.IncExpr->isZero()) {
3186      // IncExpr was the result of subtraction of two narrow values, so must
3187      // be signed.
3188      const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3189      LeftOverExpr = LeftOverExpr ?
3190        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3191    }
3192    if (LeftOverExpr && !LeftOverExpr->isZero()) {
3193      // Expand the IV increment.
3194      Rewriter.clearPostInc();
3195      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3196      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3197                                             SE.getUnknown(IncV));
3198      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3199
3200      // If an IV increment can't be folded, use it as the next IV value.
3201      if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3202        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3203        IVSrc = IVOper;
3204        LeftOverExpr = nullptr;
3205      }
3206    }
3207    Type *OperTy = Inc.IVOperand->getType();
3208    if (IVTy != OperTy) {
3209      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3210             "cannot extend a chained IV");
3211      IRBuilder<> Builder(InsertPt);
3212      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3213    }
3214    Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3215    if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3216      DeadInsts.emplace_back(OperandIsInstr);
3217  }
3218  // If LSR created a new, wider phi, we may also replace its postinc. We only
3219  // do this if we also found a wide value for the head of the chain.
3220  if (isa<PHINode>(Chain.tailUserInst())) {
3221    for (PHINode &Phi : L->getHeader()->phis()) {
3222      if (!isCompatibleIVType(&Phi, IVSrc))
3223        continue;
3224      Instruction *PostIncV = dyn_cast<Instruction>(
3225          Phi.getIncomingValueForBlock(L->getLoopLatch()));
3226      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3227        continue;
3228      Value *IVOper = IVSrc;
3229      Type *PostIncTy = PostIncV->getType();
3230      if (IVTy != PostIncTy) {
3231        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3232        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3233        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3234        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3235      }
3236      Phi.replaceUsesOfWith(PostIncV, IVOper);
3237      DeadInsts.emplace_back(PostIncV);
3238    }
3239  }
3240}
3241
3242void LSRInstance::CollectFixupsAndInitialFormulae() {
3243  BranchInst *ExitBranch = nullptr;
3244  bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3245
3246  for (const IVStrideUse &U : IU) {
3247    Instruction *UserInst = U.getUser();
3248    // Skip IV users that are part of profitable IV Chains.
3249    User::op_iterator UseI =
3250        find(UserInst->operands(), U.getOperandValToReplace());
3251    assert(UseI != UserInst->op_end() && "cannot find IV operand");
3252    if (IVIncSet.count(UseI)) {
3253      LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3254      continue;
3255    }
3256
3257    LSRUse::KindType Kind = LSRUse::Basic;
3258    MemAccessTy AccessTy;
3259    if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3260      Kind = LSRUse::Address;
3261      AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3262    }
3263
3264    const SCEV *S = IU.getExpr(U);
3265    PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3266
3267    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3268    // (N - i == 0), and this allows (N - i) to be the expression that we work
3269    // with rather than just N or i, so we can consider the register
3270    // requirements for both N and i at the same time. Limiting this code to
3271    // equality icmps is not a problem because all interesting loops use
3272    // equality icmps, thanks to IndVarSimplify.
3273    if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3274      // If CI can be saved in some target, like replaced inside hardware loop
3275      // in PowerPC, no need to generate initial formulae for it.
3276      if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3277        continue;
3278      if (CI->isEquality()) {
3279        // Swap the operands if needed to put the OperandValToReplace on the
3280        // left, for consistency.
3281        Value *NV = CI->getOperand(1);
3282        if (NV == U.getOperandValToReplace()) {
3283          CI->setOperand(1, CI->getOperand(0));
3284          CI->setOperand(0, NV);
3285          NV = CI->getOperand(1);
3286          Changed = true;
3287        }
3288
3289        // x == y  -->  x - y == 0
3290        const SCEV *N = SE.getSCEV(NV);
3291        if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3292          // S is normalized, so normalize N before folding it into S
3293          // to keep the result normalized.
3294          N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3295          Kind = LSRUse::ICmpZero;
3296          S = SE.getMinusSCEV(N, S);
3297        }
3298
3299        // -1 and the negations of all interesting strides (except the negation
3300        // of -1) are now also interesting.
3301        for (size_t i = 0, e = Factors.size(); i != e; ++i)
3302          if (Factors[i] != -1)
3303            Factors.insert(-(uint64_t)Factors[i]);
3304        Factors.insert(-1);
3305      }
3306    }
3307
3308    // Get or create an LSRUse.
3309    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3310    size_t LUIdx = P.first;
3311    int64_t Offset = P.second;
3312    LSRUse &LU = Uses[LUIdx];
3313
3314    // Record the fixup.
3315    LSRFixup &LF = LU.getNewFixup();
3316    LF.UserInst = UserInst;
3317    LF.OperandValToReplace = U.getOperandValToReplace();
3318    LF.PostIncLoops = TmpPostIncLoops;
3319    LF.Offset = Offset;
3320    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3321
3322    if (!LU.WidestFixupType ||
3323        SE.getTypeSizeInBits(LU.WidestFixupType) <
3324        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3325      LU.WidestFixupType = LF.OperandValToReplace->getType();
3326
3327    // If this is the first use of this LSRUse, give it a formula.
3328    if (LU.Formulae.empty()) {
3329      InsertInitialFormula(S, LU, LUIdx);
3330      CountRegisters(LU.Formulae.back(), LUIdx);
3331    }
3332  }
3333
3334  LLVM_DEBUG(print_fixups(dbgs()));
3335}
3336
3337/// Insert a formula for the given expression into the given use, separating out
3338/// loop-variant portions from loop-invariant and loop-computable portions.
3339void
3340LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3341  // Mark uses whose expressions cannot be expanded.
3342  if (!isSafeToExpand(S, SE))
3343    LU.RigidFormula = true;
3344
3345  Formula F;
3346  F.initialMatch(S, L, SE);
3347  bool Inserted = InsertFormula(LU, LUIdx, F);
3348  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3349}
3350
3351/// Insert a simple single-register formula for the given expression into the
3352/// given use.
3353void
3354LSRInstance::InsertSupplementalFormula(const SCEV *S,
3355                                       LSRUse &LU, size_t LUIdx) {
3356  Formula F;
3357  F.BaseRegs.push_back(S);
3358  F.HasBaseReg = true;
3359  bool Inserted = InsertFormula(LU, LUIdx, F);
3360  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3361}
3362
3363/// Note which registers are used by the given formula, updating RegUses.
3364void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3365  if (F.ScaledReg)
3366    RegUses.countRegister(F.ScaledReg, LUIdx);
3367  for (const SCEV *BaseReg : F.BaseRegs)
3368    RegUses.countRegister(BaseReg, LUIdx);
3369}
3370
3371/// If the given formula has not yet been inserted, add it to the list, and
3372/// return true. Return false otherwise.
3373bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3374  // Do not insert formula that we will not be able to expand.
3375  assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3376         "Formula is illegal");
3377
3378  if (!LU.InsertFormula(F, *L))
3379    return false;
3380
3381  CountRegisters(F, LUIdx);
3382  return true;
3383}
3384
3385/// Check for other uses of loop-invariant values which we're tracking. These
3386/// other uses will pin these values in registers, making them less profitable
3387/// for elimination.
3388/// TODO: This currently misses non-constant addrec step registers.
3389/// TODO: Should this give more weight to users inside the loop?
3390void
3391LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3392  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3393  SmallPtrSet<const SCEV *, 32> Visited;
3394
3395  while (!Worklist.empty()) {
3396    const SCEV *S = Worklist.pop_back_val();
3397
3398    // Don't process the same SCEV twice
3399    if (!Visited.insert(S).second)
3400      continue;
3401
3402    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3403      Worklist.append(N->op_begin(), N->op_end());
3404    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3405      Worklist.push_back(C->getOperand());
3406    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3407      Worklist.push_back(D->getLHS());
3408      Worklist.push_back(D->getRHS());
3409    } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3410      const Value *V = US->getValue();
3411      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3412        // Look for instructions defined outside the loop.
3413        if (L->contains(Inst)) continue;
3414      } else if (isa<UndefValue>(V))
3415        // Undef doesn't have a live range, so it doesn't matter.
3416        continue;
3417      for (const Use &U : V->uses()) {
3418        const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3419        // Ignore non-instructions.
3420        if (!UserInst)
3421          continue;
3422        // Ignore instructions in other functions (as can happen with
3423        // Constants).
3424        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3425          continue;
3426        // Ignore instructions not dominated by the loop.
3427        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3428          UserInst->getParent() :
3429          cast<PHINode>(UserInst)->getIncomingBlock(
3430            PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3431        if (!DT.dominates(L->getHeader(), UseBB))
3432          continue;
3433        // Don't bother if the instruction is in a BB which ends in an EHPad.
3434        if (UseBB->getTerminator()->isEHPad())
3435          continue;
3436        // Don't bother rewriting PHIs in catchswitch blocks.
3437        if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3438          continue;
3439        // Ignore uses which are part of other SCEV expressions, to avoid
3440        // analyzing them multiple times.
3441        if (SE.isSCEVable(UserInst->getType())) {
3442          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3443          // If the user is a no-op, look through to its uses.
3444          if (!isa<SCEVUnknown>(UserS))
3445            continue;
3446          if (UserS == US) {
3447            Worklist.push_back(
3448              SE.getUnknown(const_cast<Instruction *>(UserInst)));
3449            continue;
3450          }
3451        }
3452        // Ignore icmp instructions which are already being analyzed.
3453        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3454          unsigned OtherIdx = !U.getOperandNo();
3455          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3456          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3457            continue;
3458        }
3459
3460        std::pair<size_t, int64_t> P = getUse(
3461            S, LSRUse::Basic, MemAccessTy());
3462        size_t LUIdx = P.first;
3463        int64_t Offset = P.second;
3464        LSRUse &LU = Uses[LUIdx];
3465        LSRFixup &LF = LU.getNewFixup();
3466        LF.UserInst = const_cast<Instruction *>(UserInst);
3467        LF.OperandValToReplace = U;
3468        LF.Offset = Offset;
3469        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3470        if (!LU.WidestFixupType ||
3471            SE.getTypeSizeInBits(LU.WidestFixupType) <
3472            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3473          LU.WidestFixupType = LF.OperandValToReplace->getType();
3474        InsertSupplementalFormula(US, LU, LUIdx);
3475        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3476        break;
3477      }
3478    }
3479  }
3480}
3481
3482/// Split S into subexpressions which can be pulled out into separate
3483/// registers. If C is non-null, multiply each subexpression by C.
3484///
3485/// Return remainder expression after factoring the subexpressions captured by
3486/// Ops. If Ops is complete, return NULL.
3487static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3488                                   SmallVectorImpl<const SCEV *> &Ops,
3489                                   const Loop *L,
3490                                   ScalarEvolution &SE,
3491                                   unsigned Depth = 0) {
3492  // Arbitrarily cap recursion to protect compile time.
3493  if (Depth >= 3)
3494    return S;
3495
3496  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3497    // Break out add operands.
3498    for (const SCEV *S : Add->operands()) {
3499      const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3500      if (Remainder)
3501        Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3502    }
3503    return nullptr;
3504  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3505    // Split a non-zero base out of an addrec.
3506    if (AR->getStart()->isZero() || !AR->isAffine())
3507      return S;
3508
3509    const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3510                                            C, Ops, L, SE, Depth+1);
3511    // Split the non-zero AddRec unless it is part of a nested recurrence that
3512    // does not pertain to this loop.
3513    if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3514      Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3515      Remainder = nullptr;
3516    }
3517    if (Remainder != AR->getStart()) {
3518      if (!Remainder)
3519        Remainder = SE.getConstant(AR->getType(), 0);
3520      return SE.getAddRecExpr(Remainder,
3521                              AR->getStepRecurrence(SE),
3522                              AR->getLoop(),
3523                              //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3524                              SCEV::FlagAnyWrap);
3525    }
3526  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3527    // Break (C * (a + b + c)) into C*a + C*b + C*c.
3528    if (Mul->getNumOperands() != 2)
3529      return S;
3530    if (const SCEVConstant *Op0 =
3531        dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3532      C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3533      const SCEV *Remainder =
3534        CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3535      if (Remainder)
3536        Ops.push_back(SE.getMulExpr(C, Remainder));
3537      return nullptr;
3538    }
3539  }
3540  return S;
3541}
3542
3543/// Return true if the SCEV represents a value that may end up as a
3544/// post-increment operation.
3545static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3546                              LSRUse &LU, const SCEV *S, const Loop *L,
3547                              ScalarEvolution &SE) {
3548  if (LU.Kind != LSRUse::Address ||
3549      !LU.AccessTy.getType()->isIntOrIntVectorTy())
3550    return false;
3551  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3552  if (!AR)
3553    return false;
3554  const SCEV *LoopStep = AR->getStepRecurrence(SE);
3555  if (!isa<SCEVConstant>(LoopStep))
3556    return false;
3557  // Check if a post-indexed load/store can be used.
3558  if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3559      TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3560    const SCEV *LoopStart = AR->getStart();
3561    if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3562      return true;
3563  }
3564  return false;
3565}
3566
3567/// Helper function for LSRInstance::GenerateReassociations.
3568void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3569                                             const Formula &Base,
3570                                             unsigned Depth, size_t Idx,
3571                                             bool IsScaledReg) {
3572  const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3573  // Don't generate reassociations for the base register of a value that
3574  // may generate a post-increment operator. The reason is that the
3575  // reassociations cause extra base+register formula to be created,
3576  // and possibly chosen, but the post-increment is more efficient.
3577  if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3578    return;
3579  SmallVector<const SCEV *, 8> AddOps;
3580  const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3581  if (Remainder)
3582    AddOps.push_back(Remainder);
3583
3584  if (AddOps.size() == 1)
3585    return;
3586
3587  for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3588                                                     JE = AddOps.end();
3589       J != JE; ++J) {
3590    // Loop-variant "unknown" values are uninteresting; we won't be able to
3591    // do anything meaningful with them.
3592    if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3593      continue;
3594
3595    // Don't pull a constant into a register if the constant could be folded
3596    // into an immediate field.
3597    if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3598                         LU.AccessTy, *J, Base.getNumRegs() > 1))
3599      continue;
3600
3601    // Collect all operands except *J.
3602    SmallVector<const SCEV *, 8> InnerAddOps(
3603        ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3604    InnerAddOps.append(std::next(J),
3605                       ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3606
3607    // Don't leave just a constant behind in a register if the constant could
3608    // be folded into an immediate field.
3609    if (InnerAddOps.size() == 1 &&
3610        isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3611                         LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3612      continue;
3613
3614    const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3615    if (InnerSum->isZero())
3616      continue;
3617    Formula F = Base;
3618
3619    // Add the remaining pieces of the add back into the new formula.
3620    const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3621    if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3622        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3623                                InnerSumSC->getValue()->getZExtValue())) {
3624      F.UnfoldedOffset =
3625          (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3626      if (IsScaledReg)
3627        F.ScaledReg = nullptr;
3628      else
3629        F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3630    } else if (IsScaledReg)
3631      F.ScaledReg = InnerSum;
3632    else
3633      F.BaseRegs[Idx] = InnerSum;
3634
3635    // Add J as its own register, or an unfolded immediate.
3636    const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3637    if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3638        TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3639                                SC->getValue()->getZExtValue()))
3640      F.UnfoldedOffset =
3641          (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3642    else
3643      F.BaseRegs.push_back(*J);
3644    // We may have changed the number of register in base regs, adjust the
3645    // formula accordingly.
3646    F.canonicalize(*L);
3647
3648    if (InsertFormula(LU, LUIdx, F))
3649      // If that formula hadn't been seen before, recurse to find more like
3650      // it.
3651      // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3652      // Because just Depth is not enough to bound compile time.
3653      // This means that every time AddOps.size() is greater 16^x we will add
3654      // x to Depth.
3655      GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3656                             Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3657  }
3658}
3659
3660/// Split out subexpressions from adds and the bases of addrecs.
3661void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3662                                         Formula Base, unsigned Depth) {
3663  assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3664  // Arbitrarily cap recursion to protect compile time.
3665  if (Depth >= 3)
3666    return;
3667
3668  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3669    GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3670
3671  if (Base.Scale == 1)
3672    GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3673                               /* Idx */ -1, /* IsScaledReg */ true);
3674}
3675
3676///  Generate a formula consisting of all of the loop-dominating registers added
3677/// into a single register.
3678void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3679                                       Formula Base) {
3680  // This method is only interesting on a plurality of registers.
3681  if (Base.BaseRegs.size() + (Base.Scale == 1) +
3682      (Base.UnfoldedOffset != 0) <= 1)
3683    return;
3684
3685  // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3686  // processing the formula.
3687  Base.unscale();
3688  SmallVector<const SCEV *, 4> Ops;
3689  Formula NewBase = Base;
3690  NewBase.BaseRegs.clear();
3691  Type *CombinedIntegerType = nullptr;
3692  for (const SCEV *BaseReg : Base.BaseRegs) {
3693    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3694        !SE.hasComputableLoopEvolution(BaseReg, L)) {
3695      if (!CombinedIntegerType)
3696        CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3697      Ops.push_back(BaseReg);
3698    }
3699    else
3700      NewBase.BaseRegs.push_back(BaseReg);
3701  }
3702
3703  // If no register is relevant, we're done.
3704  if (Ops.size() == 0)
3705    return;
3706
3707  // Utility function for generating the required variants of the combined
3708  // registers.
3709  auto GenerateFormula = [&](const SCEV *Sum) {
3710    Formula F = NewBase;
3711
3712    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3713    // opportunity to fold something. For now, just ignore such cases
3714    // rather than proceed with zero in a register.
3715    if (Sum->isZero())
3716      return;
3717
3718    F.BaseRegs.push_back(Sum);
3719    F.canonicalize(*L);
3720    (void)InsertFormula(LU, LUIdx, F);
3721  };
3722
3723  // If we collected at least two registers, generate a formula combining them.
3724  if (Ops.size() > 1) {
3725    SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3726    GenerateFormula(SE.getAddExpr(OpsCopy));
3727  }
3728
3729  // If we have an unfolded offset, generate a formula combining it with the
3730  // registers collected.
3731  if (NewBase.UnfoldedOffset) {
3732    assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3733    Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3734                                 true));
3735    NewBase.UnfoldedOffset = 0;
3736    GenerateFormula(SE.getAddExpr(Ops));
3737  }
3738}
3739
3740/// Helper function for LSRInstance::GenerateSymbolicOffsets.
3741void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3742                                              const Formula &Base, size_t Idx,
3743                                              bool IsScaledReg) {
3744  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3745  GlobalValue *GV = ExtractSymbol(G, SE);
3746  if (G->isZero() || !GV)
3747    return;
3748  Formula F = Base;
3749  F.BaseGV = GV;
3750  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3751    return;
3752  if (IsScaledReg)
3753    F.ScaledReg = G;
3754  else
3755    F.BaseRegs[Idx] = G;
3756  (void)InsertFormula(LU, LUIdx, F);
3757}
3758
3759/// Generate reuse formulae using symbolic offsets.
3760void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3761                                          Formula Base) {
3762  // We can't add a symbolic offset if the address already contains one.
3763  if (Base.BaseGV) return;
3764
3765  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3766    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3767  if (Base.Scale == 1)
3768    GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3769                                /* IsScaledReg */ true);
3770}
3771
3772/// Helper function for LSRInstance::GenerateConstantOffsets.
3773void LSRInstance::GenerateConstantOffsetsImpl(
3774    LSRUse &LU, unsigned LUIdx, const Formula &Base,
3775    const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3776
3777  auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3778    Formula F = Base;
3779    F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3780
3781    if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3782                   LU.AccessTy, F)) {
3783      // Add the offset to the base register.
3784      const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3785      // If it cancelled out, drop the base register, otherwise update it.
3786      if (NewG->isZero()) {
3787        if (IsScaledReg) {
3788          F.Scale = 0;
3789          F.ScaledReg = nullptr;
3790        } else
3791          F.deleteBaseReg(F.BaseRegs[Idx]);
3792        F.canonicalize(*L);
3793      } else if (IsScaledReg)
3794        F.ScaledReg = NewG;
3795      else
3796        F.BaseRegs[Idx] = NewG;
3797
3798      (void)InsertFormula(LU, LUIdx, F);
3799    }
3800  };
3801
3802  const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3803
3804  // With constant offsets and constant steps, we can generate pre-inc
3805  // accesses by having the offset equal the step. So, for access #0 with a
3806  // step of 8, we generate a G - 8 base which would require the first access
3807  // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3808  // for itself and hopefully becomes the base for other accesses. This means
3809  // means that a single pre-indexed access can be generated to become the new
3810  // base pointer for each iteration of the loop, resulting in no extra add/sub
3811  // instructions for pointer updating.
3812  if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3813    if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3814      if (auto *StepRec =
3815          dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3816        const APInt &StepInt = StepRec->getAPInt();
3817        int64_t Step = StepInt.isNegative() ?
3818          StepInt.getSExtValue() : StepInt.getZExtValue();
3819
3820        for (int64_t Offset : Worklist) {
3821          Offset -= Step;
3822          GenerateOffset(G, Offset);
3823        }
3824      }
3825    }
3826  }
3827  for (int64_t Offset : Worklist)
3828    GenerateOffset(G, Offset);
3829
3830  int64_t Imm = ExtractImmediate(G, SE);
3831  if (G->isZero() || Imm == 0)
3832    return;
3833  Formula F = Base;
3834  F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3835  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3836    return;
3837  if (IsScaledReg)
3838    F.ScaledReg = G;
3839  else
3840    F.BaseRegs[Idx] = G;
3841  (void)InsertFormula(LU, LUIdx, F);
3842}
3843
3844/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3845void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3846                                          Formula Base) {
3847  // TODO: For now, just add the min and max offset, because it usually isn't
3848  // worthwhile looking at everything inbetween.
3849  SmallVector<int64_t, 2> Worklist;
3850  Worklist.push_back(LU.MinOffset);
3851  if (LU.MaxOffset != LU.MinOffset)
3852    Worklist.push_back(LU.MaxOffset);
3853
3854  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3855    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3856  if (Base.Scale == 1)
3857    GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3858                                /* IsScaledReg */ true);
3859}
3860
3861/// For ICmpZero, check to see if we can scale up the comparison. For example, x
3862/// == y -> x*c == y*c.
3863void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3864                                         Formula Base) {
3865  if (LU.Kind != LSRUse::ICmpZero) return;
3866
3867  // Determine the integer type for the base formula.
3868  Type *IntTy = Base.getType();
3869  if (!IntTy) return;
3870  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3871
3872  // Don't do this if there is more than one offset.
3873  if (LU.MinOffset != LU.MaxOffset) return;
3874
3875  // Check if transformation is valid. It is illegal to multiply pointer.
3876  if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3877    return;
3878  for (const SCEV *BaseReg : Base.BaseRegs)
3879    if (BaseReg->getType()->isPointerTy())
3880      return;
3881  assert(!Base.BaseGV && "ICmpZero use is not legal!");
3882
3883  // Check each interesting stride.
3884  for (int64_t Factor : Factors) {
3885    // Check that the multiplication doesn't overflow.
3886    if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3887      continue;
3888    int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3889    if (NewBaseOffset / Factor != Base.BaseOffset)
3890      continue;
3891    // If the offset will be truncated at this use, check that it is in bounds.
3892    if (!IntTy->isPointerTy() &&
3893        !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3894      continue;
3895
3896    // Check that multiplying with the use offset doesn't overflow.
3897    int64_t Offset = LU.MinOffset;
3898    if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3899      continue;
3900    Offset = (uint64_t)Offset * Factor;
3901    if (Offset / Factor != LU.MinOffset)
3902      continue;
3903    // If the offset will be truncated at this use, check that it is in bounds.
3904    if (!IntTy->isPointerTy() &&
3905        !ConstantInt::isValueValidForType(IntTy, Offset))
3906      continue;
3907
3908    Formula F = Base;
3909    F.BaseOffset = NewBaseOffset;
3910
3911    // Check that this scale is legal.
3912    if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3913      continue;
3914
3915    // Compensate for the use having MinOffset built into it.
3916    F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3917
3918    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3919
3920    // Check that multiplying with each base register doesn't overflow.
3921    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3922      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3923      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3924        goto next;
3925    }
3926
3927    // Check that multiplying with the scaled register doesn't overflow.
3928    if (F.ScaledReg) {
3929      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3930      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3931        continue;
3932    }
3933
3934    // Check that multiplying with the unfolded offset doesn't overflow.
3935    if (F.UnfoldedOffset != 0) {
3936      if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3937          Factor == -1)
3938        continue;
3939      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3940      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3941        continue;
3942      // If the offset will be truncated, check that it is in bounds.
3943      if (!IntTy->isPointerTy() &&
3944          !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3945        continue;
3946    }
3947
3948    // If we make it here and it's legal, add it.
3949    (void)InsertFormula(LU, LUIdx, F);
3950  next:;
3951  }
3952}
3953
3954/// Generate stride factor reuse formulae by making use of scaled-offset address
3955/// modes, for example.
3956void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3957  // Determine the integer type for the base formula.
3958  Type *IntTy = Base.getType();
3959  if (!IntTy) return;
3960
3961  // If this Formula already has a scaled register, we can't add another one.
3962  // Try to unscale the formula to generate a better scale.
3963  if (Base.Scale != 0 && !Base.unscale())
3964    return;
3965
3966  assert(Base.Scale == 0 && "unscale did not did its job!");
3967
3968  // Check each interesting stride.
3969  for (int64_t Factor : Factors) {
3970    Base.Scale = Factor;
3971    Base.HasBaseReg = Base.BaseRegs.size() > 1;
3972    // Check whether this scale is going to be legal.
3973    if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3974                    Base)) {
3975      // As a special-case, handle special out-of-loop Basic users specially.
3976      // TODO: Reconsider this special case.
3977      if (LU.Kind == LSRUse::Basic &&
3978          isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3979                     LU.AccessTy, Base) &&
3980          LU.AllFixupsOutsideLoop)
3981        LU.Kind = LSRUse::Special;
3982      else
3983        continue;
3984    }
3985    // For an ICmpZero, negating a solitary base register won't lead to
3986    // new solutions.
3987    if (LU.Kind == LSRUse::ICmpZero &&
3988        !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3989      continue;
3990    // For each addrec base reg, if its loop is current loop, apply the scale.
3991    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3992      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3993      if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3994        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3995        if (FactorS->isZero())
3996          continue;
3997        // Divide out the factor, ignoring high bits, since we'll be
3998        // scaling the value back up in the end.
3999        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4000          // TODO: This could be optimized to avoid all the copying.
4001          Formula F = Base;
4002          F.ScaledReg = Quotient;
4003          F.deleteBaseReg(F.BaseRegs[i]);
4004          // The canonical representation of 1*reg is reg, which is already in
4005          // Base. In that case, do not try to insert the formula, it will be
4006          // rejected anyway.
4007          if (F.Scale == 1 && (F.BaseRegs.empty() ||
4008                               (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4009            continue;
4010          // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4011          // non canonical Formula with ScaledReg's loop not being L.
4012          if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4013            F.canonicalize(*L);
4014          (void)InsertFormula(LU, LUIdx, F);
4015        }
4016      }
4017    }
4018  }
4019}
4020
4021/// Generate reuse formulae from different IV types.
4022void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4023  // Don't bother truncating symbolic values.
4024  if (Base.BaseGV) return;
4025
4026  // Determine the integer type for the base formula.
4027  Type *DstTy = Base.getType();
4028  if (!DstTy) return;
4029  DstTy = SE.getEffectiveSCEVType(DstTy);
4030
4031  for (Type *SrcTy : Types) {
4032    if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4033      Formula F = Base;
4034
4035      // Sometimes SCEV is able to prove zero during ext transform. It may
4036      // happen if SCEV did not do all possible transforms while creating the
4037      // initial node (maybe due to depth limitations), but it can do them while
4038      // taking ext.
4039      if (F.ScaledReg) {
4040        const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4041        if (NewScaledReg->isZero())
4042         continue;
4043        F.ScaledReg = NewScaledReg;
4044      }
4045      bool HasZeroBaseReg = false;
4046      for (const SCEV *&BaseReg : F.BaseRegs) {
4047        const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4048        if (NewBaseReg->isZero()) {
4049          HasZeroBaseReg = true;
4050          break;
4051        }
4052        BaseReg = NewBaseReg;
4053      }
4054      if (HasZeroBaseReg)
4055        continue;
4056
4057      // TODO: This assumes we've done basic processing on all uses and
4058      // have an idea what the register usage is.
4059      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4060        continue;
4061
4062      F.canonicalize(*L);
4063      (void)InsertFormula(LU, LUIdx, F);
4064    }
4065  }
4066}
4067
4068namespace {
4069
4070/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4071/// modifications so that the search phase doesn't have to worry about the data
4072/// structures moving underneath it.
4073struct WorkItem {
4074  size_t LUIdx;
4075  int64_t Imm;
4076  const SCEV *OrigReg;
4077
4078  WorkItem(size_t LI, int64_t I, const SCEV *R)
4079      : LUIdx(LI), Imm(I), OrigReg(R) {}
4080
4081  void print(raw_ostream &OS) const;
4082  void dump() const;
4083};
4084
4085} // end anonymous namespace
4086
4087#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4088void WorkItem::print(raw_ostream &OS) const {
4089  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4090     << " , add offset " << Imm;
4091}
4092
4093LLVM_DUMP_METHOD void WorkItem::dump() const {
4094  print(errs()); errs() << '\n';
4095}
4096#endif
4097
4098/// Look for registers which are a constant distance apart and try to form reuse
4099/// opportunities between them.
4100void LSRInstance::GenerateCrossUseConstantOffsets() {
4101  // Group the registers by their value without any added constant offset.
4102  using ImmMapTy = std::map<int64_t, const SCEV *>;
4103
4104  DenseMap<const SCEV *, ImmMapTy> Map;
4105  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4106  SmallVector<const SCEV *, 8> Sequence;
4107  for (const SCEV *Use : RegUses) {
4108    const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4109    int64_t Imm = ExtractImmediate(Reg, SE);
4110    auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4111    if (Pair.second)
4112      Sequence.push_back(Reg);
4113    Pair.first->second.insert(std::make_pair(Imm, Use));
4114    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4115  }
4116
4117  // Now examine each set of registers with the same base value. Build up
4118  // a list of work to do and do the work in a separate step so that we're
4119  // not adding formulae and register counts while we're searching.
4120  SmallVector<WorkItem, 32> WorkItems;
4121  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4122  for (const SCEV *Reg : Sequence) {
4123    const ImmMapTy &Imms = Map.find(Reg)->second;
4124
4125    // It's not worthwhile looking for reuse if there's only one offset.
4126    if (Imms.size() == 1)
4127      continue;
4128
4129    LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4130               for (const auto &Entry
4131                    : Imms) dbgs()
4132               << ' ' << Entry.first;
4133               dbgs() << '\n');
4134
4135    // Examine each offset.
4136    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4137         J != JE; ++J) {
4138      const SCEV *OrigReg = J->second;
4139
4140      int64_t JImm = J->first;
4141      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4142
4143      if (!isa<SCEVConstant>(OrigReg) &&
4144          UsedByIndicesMap[Reg].count() == 1) {
4145        LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4146                          << '\n');
4147        continue;
4148      }
4149
4150      // Conservatively examine offsets between this orig reg a few selected
4151      // other orig regs.
4152      int64_t First = Imms.begin()->first;
4153      int64_t Last = std::prev(Imms.end())->first;
4154      // Compute (First + Last)  / 2 without overflow using the fact that
4155      // First + Last = 2 * (First + Last) + (First ^ Last).
4156      int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4157      // If the result is negative and First is odd and Last even (or vice versa),
4158      // we rounded towards -inf. Add 1 in that case, to round towards 0.
4159      Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4160      ImmMapTy::const_iterator OtherImms[] = {
4161          Imms.begin(), std::prev(Imms.end()),
4162         Imms.lower_bound(Avg)};
4163      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4164        ImmMapTy::const_iterator M = OtherImms[i];
4165        if (M == J || M == JE) continue;
4166
4167        // Compute the difference between the two.
4168        int64_t Imm = (uint64_t)JImm - M->first;
4169        for (unsigned LUIdx : UsedByIndices.set_bits())
4170          // Make a memo of this use, offset, and register tuple.
4171          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4172            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4173      }
4174    }
4175  }
4176
4177  Map.clear();
4178  Sequence.clear();
4179  UsedByIndicesMap.clear();
4180  UniqueItems.clear();
4181
4182  // Now iterate through the worklist and add new formulae.
4183  for (const WorkItem &WI : WorkItems) {
4184    size_t LUIdx = WI.LUIdx;
4185    LSRUse &LU = Uses[LUIdx];
4186    int64_t Imm = WI.Imm;
4187    const SCEV *OrigReg = WI.OrigReg;
4188
4189    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4190    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4191    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4192
4193    // TODO: Use a more targeted data structure.
4194    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4195      Formula F = LU.Formulae[L];
4196      // FIXME: The code for the scaled and unscaled registers looks
4197      // very similar but slightly different. Investigate if they
4198      // could be merged. That way, we would not have to unscale the
4199      // Formula.
4200      F.unscale();
4201      // Use the immediate in the scaled register.
4202      if (F.ScaledReg == OrigReg) {
4203        int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4204        // Don't create 50 + reg(-50).
4205        if (F.referencesReg(SE.getSCEV(
4206                   ConstantInt::get(IntTy, -(uint64_t)Offset))))
4207          continue;
4208        Formula NewF = F;
4209        NewF.BaseOffset = Offset;
4210        if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4211                        NewF))
4212          continue;
4213        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4214
4215        // If the new scale is a constant in a register, and adding the constant
4216        // value to the immediate would produce a value closer to zero than the
4217        // immediate itself, then the formula isn't worthwhile.
4218        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4219          if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4220              (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4221                  .ule(std::abs(NewF.BaseOffset)))
4222            continue;
4223
4224        // OK, looks good.
4225        NewF.canonicalize(*this->L);
4226        (void)InsertFormula(LU, LUIdx, NewF);
4227      } else {
4228        // Use the immediate in a base register.
4229        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4230          const SCEV *BaseReg = F.BaseRegs[N];
4231          if (BaseReg != OrigReg)
4232            continue;
4233          Formula NewF = F;
4234          NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4235          if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4236                          LU.Kind, LU.AccessTy, NewF)) {
4237            if (TTI.shouldFavorPostInc() &&
4238                mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4239              continue;
4240            if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4241              continue;
4242            NewF = F;
4243            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4244          }
4245          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4246
4247          // If the new formula has a constant in a register, and adding the
4248          // constant value to the immediate would produce a value closer to
4249          // zero than the immediate itself, then the formula isn't worthwhile.
4250          for (const SCEV *NewReg : NewF.BaseRegs)
4251            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4252              if ((C->getAPInt() + NewF.BaseOffset)
4253                      .abs()
4254                      .slt(std::abs(NewF.BaseOffset)) &&
4255                  (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4256                      countTrailingZeros<uint64_t>(NewF.BaseOffset))
4257                goto skip_formula;
4258
4259          // Ok, looks good.
4260          NewF.canonicalize(*this->L);
4261          (void)InsertFormula(LU, LUIdx, NewF);
4262          break;
4263        skip_formula:;
4264        }
4265      }
4266    }
4267  }
4268}
4269
4270/// Generate formulae for each use.
4271void
4272LSRInstance::GenerateAllReuseFormulae() {
4273  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4274  // queries are more precise.
4275  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4276    LSRUse &LU = Uses[LUIdx];
4277    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4278      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4279    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4280      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4281  }
4282  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4283    LSRUse &LU = Uses[LUIdx];
4284    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4285      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4286    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4287      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4288    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4289      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4290    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4291      GenerateScales(LU, LUIdx, LU.Formulae[i]);
4292  }
4293  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4294    LSRUse &LU = Uses[LUIdx];
4295    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4296      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4297  }
4298
4299  GenerateCrossUseConstantOffsets();
4300
4301  LLVM_DEBUG(dbgs() << "\n"
4302                       "After generating reuse formulae:\n";
4303             print_uses(dbgs()));
4304}
4305
4306/// If there are multiple formulae with the same set of registers used
4307/// by other uses, pick the best one and delete the others.
4308void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4309  DenseSet<const SCEV *> VisitedRegs;
4310  SmallPtrSet<const SCEV *, 16> Regs;
4311  SmallPtrSet<const SCEV *, 16> LoserRegs;
4312#ifndef NDEBUG
4313  bool ChangedFormulae = false;
4314#endif
4315
4316  // Collect the best formula for each unique set of shared registers. This
4317  // is reset for each use.
4318  using BestFormulaeTy =
4319      DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4320
4321  BestFormulaeTy BestFormulae;
4322
4323  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4324    LSRUse &LU = Uses[LUIdx];
4325    LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4326               dbgs() << '\n');
4327
4328    bool Any = false;
4329    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4330         FIdx != NumForms; ++FIdx) {
4331      Formula &F = LU.Formulae[FIdx];
4332
4333      // Some formulas are instant losers. For example, they may depend on
4334      // nonexistent AddRecs from other loops. These need to be filtered
4335      // immediately, otherwise heuristics could choose them over others leading
4336      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4337      // avoids the need to recompute this information across formulae using the
4338      // same bad AddRec. Passing LoserRegs is also essential unless we remove
4339      // the corresponding bad register from the Regs set.
4340      Cost CostF(L, SE, TTI);
4341      Regs.clear();
4342      CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4343      if (CostF.isLoser()) {
4344        // During initial formula generation, undesirable formulae are generated
4345        // by uses within other loops that have some non-trivial address mode or
4346        // use the postinc form of the IV. LSR needs to provide these formulae
4347        // as the basis of rediscovering the desired formula that uses an AddRec
4348        // corresponding to the existing phi. Once all formulae have been
4349        // generated, these initial losers may be pruned.
4350        LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4351                   dbgs() << "\n");
4352      }
4353      else {
4354        SmallVector<const SCEV *, 4> Key;
4355        for (const SCEV *Reg : F.BaseRegs) {
4356          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4357            Key.push_back(Reg);
4358        }
4359        if (F.ScaledReg &&
4360            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4361          Key.push_back(F.ScaledReg);
4362        // Unstable sort by host order ok, because this is only used for
4363        // uniquifying.
4364        llvm::sort(Key);
4365
4366        std::pair<BestFormulaeTy::const_iterator, bool> P =
4367          BestFormulae.insert(std::make_pair(Key, FIdx));
4368        if (P.second)
4369          continue;
4370
4371        Formula &Best = LU.Formulae[P.first->second];
4372
4373        Cost CostBest(L, SE, TTI);
4374        Regs.clear();
4375        CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4376        if (CostF.isLess(CostBest))
4377          std::swap(F, Best);
4378        LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4379                   dbgs() << "\n"
4380                             "    in favor of formula ";
4381                   Best.print(dbgs()); dbgs() << '\n');
4382      }
4383#ifndef NDEBUG
4384      ChangedFormulae = true;
4385#endif
4386      LU.DeleteFormula(F);
4387      --FIdx;
4388      --NumForms;
4389      Any = true;
4390    }
4391
4392    // Now that we've filtered out some formulae, recompute the Regs set.
4393    if (Any)
4394      LU.RecomputeRegs(LUIdx, RegUses);
4395
4396    // Reset this to prepare for the next use.
4397    BestFormulae.clear();
4398  }
4399
4400  LLVM_DEBUG(if (ChangedFormulae) {
4401    dbgs() << "\n"
4402              "After filtering out undesirable candidates:\n";
4403    print_uses(dbgs());
4404  });
4405}
4406
4407/// Estimate the worst-case number of solutions the solver might have to
4408/// consider. It almost never considers this many solutions because it prune the
4409/// search space, but the pruning isn't always sufficient.
4410size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4411  size_t Power = 1;
4412  for (const LSRUse &LU : Uses) {
4413    size_t FSize = LU.Formulae.size();
4414    if (FSize >= ComplexityLimit) {
4415      Power = ComplexityLimit;
4416      break;
4417    }
4418    Power *= FSize;
4419    if (Power >= ComplexityLimit)
4420      break;
4421  }
4422  return Power;
4423}
4424
4425/// When one formula uses a superset of the registers of another formula, it
4426/// won't help reduce register pressure (though it may not necessarily hurt
4427/// register pressure); remove it to simplify the system.
4428void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4429  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4430    LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4431
4432    LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4433                         "which use a superset of registers used by other "
4434                         "formulae.\n");
4435
4436    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4437      LSRUse &LU = Uses[LUIdx];
4438      bool Any = false;
4439      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4440        Formula &F = LU.Formulae[i];
4441        // Look for a formula with a constant or GV in a register. If the use
4442        // also has a formula with that same value in an immediate field,
4443        // delete the one that uses a register.
4444        for (SmallVectorImpl<const SCEV *>::const_iterator
4445             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4446          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4447            Formula NewF = F;
4448            //FIXME: Formulas should store bitwidth to do wrapping properly.
4449            //       See PR41034.
4450            NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4451            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4452                                (I - F.BaseRegs.begin()));
4453            if (LU.HasFormulaWithSameRegs(NewF)) {
4454              LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4455                         dbgs() << '\n');
4456              LU.DeleteFormula(F);
4457              --i;
4458              --e;
4459              Any = true;
4460              break;
4461            }
4462          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4463            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4464              if (!F.BaseGV) {
4465                Formula NewF = F;
4466                NewF.BaseGV = GV;
4467                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4468                                    (I - F.BaseRegs.begin()));
4469                if (LU.HasFormulaWithSameRegs(NewF)) {
4470                  LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4471                             dbgs() << '\n');
4472                  LU.DeleteFormula(F);
4473                  --i;
4474                  --e;
4475                  Any = true;
4476                  break;
4477                }
4478              }
4479          }
4480        }
4481      }
4482      if (Any)
4483        LU.RecomputeRegs(LUIdx, RegUses);
4484    }
4485
4486    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4487  }
4488}
4489
4490/// When there are many registers for expressions like A, A+1, A+2, etc.,
4491/// allocate a single register for them.
4492void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4493  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4494    return;
4495
4496  LLVM_DEBUG(
4497      dbgs() << "The search space is too complex.\n"
4498                "Narrowing the search space by assuming that uses separated "
4499                "by a constant offset will use the same registers.\n");
4500
4501  // This is especially useful for unrolled loops.
4502
4503  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4504    LSRUse &LU = Uses[LUIdx];
4505    for (const Formula &F : LU.Formulae) {
4506      if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4507        continue;
4508
4509      LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4510      if (!LUThatHas)
4511        continue;
4512
4513      if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4514                              LU.Kind, LU.AccessTy))
4515        continue;
4516
4517      LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4518
4519      LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4520
4521      // Transfer the fixups of LU to LUThatHas.
4522      for (LSRFixup &Fixup : LU.Fixups) {
4523        Fixup.Offset += F.BaseOffset;
4524        LUThatHas->pushFixup(Fixup);
4525        LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4526      }
4527
4528      // Delete formulae from the new use which are no longer legal.
4529      bool Any = false;
4530      for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4531        Formula &F = LUThatHas->Formulae[i];
4532        if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4533                        LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4534          LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4535          LUThatHas->DeleteFormula(F);
4536          --i;
4537          --e;
4538          Any = true;
4539        }
4540      }
4541
4542      if (Any)
4543        LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4544
4545      // Delete the old use.
4546      DeleteUse(LU, LUIdx);
4547      --LUIdx;
4548      --NumUses;
4549      break;
4550    }
4551  }
4552
4553  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4554}
4555
4556/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4557/// we've done more filtering, as it may be able to find more formulae to
4558/// eliminate.
4559void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4560  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4561    LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4562
4563    LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4564                         "undesirable dedicated registers.\n");
4565
4566    FilterOutUndesirableDedicatedRegisters();
4567
4568    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4569  }
4570}
4571
4572/// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4573/// Pick the best one and delete the others.
4574/// This narrowing heuristic is to keep as many formulae with different
4575/// Scale and ScaledReg pair as possible while narrowing the search space.
4576/// The benefit is that it is more likely to find out a better solution
4577/// from a formulae set with more Scale and ScaledReg variations than
4578/// a formulae set with the same Scale and ScaledReg. The picking winner
4579/// reg heuristic will often keep the formulae with the same Scale and
4580/// ScaledReg and filter others, and we want to avoid that if possible.
4581void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4582  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4583    return;
4584
4585  LLVM_DEBUG(
4586      dbgs() << "The search space is too complex.\n"
4587                "Narrowing the search space by choosing the best Formula "
4588                "from the Formulae with the same Scale and ScaledReg.\n");
4589
4590  // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4591  using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4592
4593  BestFormulaeTy BestFormulae;
4594#ifndef NDEBUG
4595  bool ChangedFormulae = false;
4596#endif
4597  DenseSet<const SCEV *> VisitedRegs;
4598  SmallPtrSet<const SCEV *, 16> Regs;
4599
4600  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4601    LSRUse &LU = Uses[LUIdx];
4602    LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4603               dbgs() << '\n');
4604
4605    // Return true if Formula FA is better than Formula FB.
4606    auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4607      // First we will try to choose the Formula with fewer new registers.
4608      // For a register used by current Formula, the more the register is
4609      // shared among LSRUses, the less we increase the register number
4610      // counter of the formula.
4611      size_t FARegNum = 0;
4612      for (const SCEV *Reg : FA.BaseRegs) {
4613        const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4614        FARegNum += (NumUses - UsedByIndices.count() + 1);
4615      }
4616      size_t FBRegNum = 0;
4617      for (const SCEV *Reg : FB.BaseRegs) {
4618        const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4619        FBRegNum += (NumUses - UsedByIndices.count() + 1);
4620      }
4621      if (FARegNum != FBRegNum)
4622        return FARegNum < FBRegNum;
4623
4624      // If the new register numbers are the same, choose the Formula with
4625      // less Cost.
4626      Cost CostFA(L, SE, TTI);
4627      Cost CostFB(L, SE, TTI);
4628      Regs.clear();
4629      CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4630      Regs.clear();
4631      CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4632      return CostFA.isLess(CostFB);
4633    };
4634
4635    bool Any = false;
4636    for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4637         ++FIdx) {
4638      Formula &F = LU.Formulae[FIdx];
4639      if (!F.ScaledReg)
4640        continue;
4641      auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4642      if (P.second)
4643        continue;
4644
4645      Formula &Best = LU.Formulae[P.first->second];
4646      if (IsBetterThan(F, Best))
4647        std::swap(F, Best);
4648      LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4649                 dbgs() << "\n"
4650                           "    in favor of formula ";
4651                 Best.print(dbgs()); dbgs() << '\n');
4652#ifndef NDEBUG
4653      ChangedFormulae = true;
4654#endif
4655      LU.DeleteFormula(F);
4656      --FIdx;
4657      --NumForms;
4658      Any = true;
4659    }
4660    if (Any)
4661      LU.RecomputeRegs(LUIdx, RegUses);
4662
4663    // Reset this to prepare for the next use.
4664    BestFormulae.clear();
4665  }
4666
4667  LLVM_DEBUG(if (ChangedFormulae) {
4668    dbgs() << "\n"
4669              "After filtering out undesirable candidates:\n";
4670    print_uses(dbgs());
4671  });
4672}
4673
4674/// If we are over the complexity limit, filter out any post-inc prefering
4675/// variables to only post-inc values.
4676void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4677  if (!TTI.shouldFavorPostInc())
4678    return;
4679  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4680    return;
4681
4682  LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4683                       "Narrowing the search space by choosing the lowest "
4684                       "register Formula for PostInc Uses.\n");
4685
4686  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4687    LSRUse &LU = Uses[LUIdx];
4688
4689    if (LU.Kind != LSRUse::Address)
4690      continue;
4691    if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4692        !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4693      continue;
4694
4695    size_t MinRegs = std::numeric_limits<size_t>::max();
4696    for (const Formula &F : LU.Formulae)
4697      MinRegs = std::min(F.getNumRegs(), MinRegs);
4698
4699    bool Any = false;
4700    for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4701         ++FIdx) {
4702      Formula &F = LU.Formulae[FIdx];
4703      if (F.getNumRegs() > MinRegs) {
4704        LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4705                   dbgs() << "\n");
4706        LU.DeleteFormula(F);
4707        --FIdx;
4708        --NumForms;
4709        Any = true;
4710      }
4711    }
4712    if (Any)
4713      LU.RecomputeRegs(LUIdx, RegUses);
4714
4715    if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4716      break;
4717  }
4718
4719  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4720}
4721
4722/// The function delete formulas with high registers number expectation.
4723/// Assuming we don't know the value of each formula (already delete
4724/// all inefficient), generate probability of not selecting for each
4725/// register.
4726/// For example,
4727/// Use1:
4728///  reg(a) + reg({0,+,1})
4729///  reg(a) + reg({-1,+,1}) + 1
4730///  reg({a,+,1})
4731/// Use2:
4732///  reg(b) + reg({0,+,1})
4733///  reg(b) + reg({-1,+,1}) + 1
4734///  reg({b,+,1})
4735/// Use3:
4736///  reg(c) + reg(b) + reg({0,+,1})
4737///  reg(c) + reg({b,+,1})
4738///
4739/// Probability of not selecting
4740///                 Use1   Use2    Use3
4741/// reg(a)         (1/3) *   1   *   1
4742/// reg(b)           1   * (1/3) * (1/2)
4743/// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4744/// reg({-1,+,1})  (2/3) * (2/3) *   1
4745/// reg({a,+,1})   (2/3) *   1   *   1
4746/// reg({b,+,1})     1   * (2/3) * (2/3)
4747/// reg(c)           1   *   1   *   0
4748///
4749/// Now count registers number mathematical expectation for each formula:
4750/// Note that for each use we exclude probability if not selecting for the use.
4751/// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4752/// probabilty 1/3 of not selecting for Use1).
4753/// Use1:
4754///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4755///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4756///  reg({a,+,1})                   1
4757/// Use2:
4758///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4759///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4760///  reg({b,+,1})                   2/3
4761/// Use3:
4762///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4763///  reg(c) + reg({b,+,1})          1 + 2/3
4764void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4765  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4766    return;
4767  // Ok, we have too many of formulae on our hands to conveniently handle.
4768  // Use a rough heuristic to thin out the list.
4769
4770  // Set of Regs wich will be 100% used in final solution.
4771  // Used in each formula of a solution (in example above this is reg(c)).
4772  // We can skip them in calculations.
4773  SmallPtrSet<const SCEV *, 4> UniqRegs;
4774  LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4775
4776  // Map each register to probability of not selecting
4777  DenseMap <const SCEV *, float> RegNumMap;
4778  for (const SCEV *Reg : RegUses) {
4779    if (UniqRegs.count(Reg))
4780      continue;
4781    float PNotSel = 1;
4782    for (const LSRUse &LU : Uses) {
4783      if (!LU.Regs.count(Reg))
4784        continue;
4785      float P = LU.getNotSelectedProbability(Reg);
4786      if (P != 0.0)
4787        PNotSel *= P;
4788      else
4789        UniqRegs.insert(Reg);
4790    }
4791    RegNumMap.insert(std::make_pair(Reg, PNotSel));
4792  }
4793
4794  LLVM_DEBUG(
4795      dbgs() << "Narrowing the search space by deleting costly formulas\n");
4796
4797  // Delete formulas where registers number expectation is high.
4798  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4799    LSRUse &LU = Uses[LUIdx];
4800    // If nothing to delete - continue.
4801    if (LU.Formulae.size() < 2)
4802      continue;
4803    // This is temporary solution to test performance. Float should be
4804    // replaced with round independent type (based on integers) to avoid
4805    // different results for different target builds.
4806    float FMinRegNum = LU.Formulae[0].getNumRegs();
4807    float FMinARegNum = LU.Formulae[0].getNumRegs();
4808    size_t MinIdx = 0;
4809    for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4810      Formula &F = LU.Formulae[i];
4811      float FRegNum = 0;
4812      float FARegNum = 0;
4813      for (const SCEV *BaseReg : F.BaseRegs) {
4814        if (UniqRegs.count(BaseReg))
4815          continue;
4816        FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4817        if (isa<SCEVAddRecExpr>(BaseReg))
4818          FARegNum +=
4819              RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4820      }
4821      if (const SCEV *ScaledReg = F.ScaledReg) {
4822        if (!UniqRegs.count(ScaledReg)) {
4823          FRegNum +=
4824              RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4825          if (isa<SCEVAddRecExpr>(ScaledReg))
4826            FARegNum +=
4827                RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4828        }
4829      }
4830      if (FMinRegNum > FRegNum ||
4831          (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4832        FMinRegNum = FRegNum;
4833        FMinARegNum = FARegNum;
4834        MinIdx = i;
4835      }
4836    }
4837    LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4838               dbgs() << " with min reg num " << FMinRegNum << '\n');
4839    if (MinIdx != 0)
4840      std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4841    while (LU.Formulae.size() != 1) {
4842      LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4843                 dbgs() << '\n');
4844      LU.Formulae.pop_back();
4845    }
4846    LU.RecomputeRegs(LUIdx, RegUses);
4847    assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4848    Formula &F = LU.Formulae[0];
4849    LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4850    // When we choose the formula, the regs become unique.
4851    UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4852    if (F.ScaledReg)
4853      UniqRegs.insert(F.ScaledReg);
4854  }
4855  LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4856}
4857
4858/// Pick a register which seems likely to be profitable, and then in any use
4859/// which has any reference to that register, delete all formulae which do not
4860/// reference that register.
4861void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4862  // With all other options exhausted, loop until the system is simple
4863  // enough to handle.
4864  SmallPtrSet<const SCEV *, 4> Taken;
4865  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4866    // Ok, we have too many of formulae on our hands to conveniently handle.
4867    // Use a rough heuristic to thin out the list.
4868    LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4869
4870    // Pick the register which is used by the most LSRUses, which is likely
4871    // to be a good reuse register candidate.
4872    const SCEV *Best = nullptr;
4873    unsigned BestNum = 0;
4874    for (const SCEV *Reg : RegUses) {
4875      if (Taken.count(Reg))
4876        continue;
4877      if (!Best) {
4878        Best = Reg;
4879        BestNum = RegUses.getUsedByIndices(Reg).count();
4880      } else {
4881        unsigned Count = RegUses.getUsedByIndices(Reg).count();
4882        if (Count > BestNum) {
4883          Best = Reg;
4884          BestNum = Count;
4885        }
4886      }
4887    }
4888    assert(Best && "Failed to find best LSRUse candidate");
4889
4890    LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4891                      << " will yield profitable reuse.\n");
4892    Taken.insert(Best);
4893
4894    // In any use with formulae which references this register, delete formulae
4895    // which don't reference it.
4896    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4897      LSRUse &LU = Uses[LUIdx];
4898      if (!LU.Regs.count(Best)) continue;
4899
4900      bool Any = false;
4901      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4902        Formula &F = LU.Formulae[i];
4903        if (!F.referencesReg(Best)) {
4904          LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4905          LU.DeleteFormula(F);
4906          --e;
4907          --i;
4908          Any = true;
4909          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4910          continue;
4911        }
4912      }
4913
4914      if (Any)
4915        LU.RecomputeRegs(LUIdx, RegUses);
4916    }
4917
4918    LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4919  }
4920}
4921
4922/// If there are an extraordinary number of formulae to choose from, use some
4923/// rough heuristics to prune down the number of formulae. This keeps the main
4924/// solver from taking an extraordinary amount of time in some worst-case
4925/// scenarios.
4926void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4927  NarrowSearchSpaceByDetectingSupersets();
4928  NarrowSearchSpaceByCollapsingUnrolledCode();
4929  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4930  if (FilterSameScaledReg)
4931    NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4932  NarrowSearchSpaceByFilterPostInc();
4933  if (LSRExpNarrow)
4934    NarrowSearchSpaceByDeletingCostlyFormulas();
4935  else
4936    NarrowSearchSpaceByPickingWinnerRegs();
4937}
4938
4939/// This is the recursive solver.
4940void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4941                               Cost &SolutionCost,
4942                               SmallVectorImpl<const Formula *> &Workspace,
4943                               const Cost &CurCost,
4944                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
4945                               DenseSet<const SCEV *> &VisitedRegs) const {
4946  // Some ideas:
4947  //  - prune more:
4948  //    - use more aggressive filtering
4949  //    - sort the formula so that the most profitable solutions are found first
4950  //    - sort the uses too
4951  //  - search faster:
4952  //    - don't compute a cost, and then compare. compare while computing a cost
4953  //      and bail early.
4954  //    - track register sets with SmallBitVector
4955
4956  const LSRUse &LU = Uses[Workspace.size()];
4957
4958  // If this use references any register that's already a part of the
4959  // in-progress solution, consider it a requirement that a formula must
4960  // reference that register in order to be considered. This prunes out
4961  // unprofitable searching.
4962  SmallSetVector<const SCEV *, 4> ReqRegs;
4963  for (const SCEV *S : CurRegs)
4964    if (LU.Regs.count(S))
4965      ReqRegs.insert(S);
4966
4967  SmallPtrSet<const SCEV *, 16> NewRegs;
4968  Cost NewCost(L, SE, TTI);
4969  for (const Formula &F : LU.Formulae) {
4970    // Ignore formulae which may not be ideal in terms of register reuse of
4971    // ReqRegs.  The formula should use all required registers before
4972    // introducing new ones.
4973    // This can sometimes (notably when trying to favour postinc) lead to
4974    // sub-optimial decisions. There it is best left to the cost modelling to
4975    // get correct.
4976    if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) {
4977      int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4978      for (const SCEV *Reg : ReqRegs) {
4979        if ((F.ScaledReg && F.ScaledReg == Reg) ||
4980            is_contained(F.BaseRegs, Reg)) {
4981          --NumReqRegsToFind;
4982          if (NumReqRegsToFind == 0)
4983            break;
4984        }
4985      }
4986      if (NumReqRegsToFind != 0) {
4987        // If none of the formulae satisfied the required registers, then we could
4988        // clear ReqRegs and try again. Currently, we simply give up in this case.
4989        continue;
4990      }
4991    }
4992
4993    // Evaluate the cost of the current formula. If it's already worse than
4994    // the current best, prune the search at that point.
4995    NewCost = CurCost;
4996    NewRegs = CurRegs;
4997    NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4998    if (NewCost.isLess(SolutionCost)) {
4999      Workspace.push_back(&F);
5000      if (Workspace.size() != Uses.size()) {
5001        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5002                     NewRegs, VisitedRegs);
5003        if (F.getNumRegs() == 1 && Workspace.size() == 1)
5004          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5005      } else {
5006        LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5007                   dbgs() << ".\nRegs:\n";
5008                   for (const SCEV *S : NewRegs) dbgs()
5009                      << "- " << *S << "\n";
5010                   dbgs() << '\n');
5011
5012        SolutionCost = NewCost;
5013        Solution = Workspace;
5014      }
5015      Workspace.pop_back();
5016    }
5017  }
5018}
5019
5020/// Choose one formula from each use. Return the results in the given Solution
5021/// vector.
5022void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5023  SmallVector<const Formula *, 8> Workspace;
5024  Cost SolutionCost(L, SE, TTI);
5025  SolutionCost.Lose();
5026  Cost CurCost(L, SE, TTI);
5027  SmallPtrSet<const SCEV *, 16> CurRegs;
5028  DenseSet<const SCEV *> VisitedRegs;
5029  Workspace.reserve(Uses.size());
5030
5031  // SolveRecurse does all the work.
5032  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5033               CurRegs, VisitedRegs);
5034  if (Solution.empty()) {
5035    LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5036    return;
5037  }
5038
5039  // Ok, we've now made all our decisions.
5040  LLVM_DEBUG(dbgs() << "\n"
5041                       "The chosen solution requires ";
5042             SolutionCost.print(dbgs()); dbgs() << ":\n";
5043             for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5044               dbgs() << "  ";
5045               Uses[i].print(dbgs());
5046               dbgs() << "\n"
5047                         "    ";
5048               Solution[i]->print(dbgs());
5049               dbgs() << '\n';
5050             });
5051
5052  assert(Solution.size() == Uses.size() && "Malformed solution!");
5053}
5054
5055/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5056/// we can go while still being dominated by the input positions. This helps
5057/// canonicalize the insert position, which encourages sharing.
5058BasicBlock::iterator
5059LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5060                                 const SmallVectorImpl<Instruction *> &Inputs)
5061                                                                         const {
5062  Instruction *Tentative = &*IP;
5063  while (true) {
5064    bool AllDominate = true;
5065    Instruction *BetterPos = nullptr;
5066    // Don't bother attempting to insert before a catchswitch, their basic block
5067    // cannot have other non-PHI instructions.
5068    if (isa<CatchSwitchInst>(Tentative))
5069      return IP;
5070
5071    for (Instruction *Inst : Inputs) {
5072      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5073        AllDominate = false;
5074        break;
5075      }
5076      // Attempt to find an insert position in the middle of the block,
5077      // instead of at the end, so that it can be used for other expansions.
5078      if (Tentative->getParent() == Inst->getParent() &&
5079          (!BetterPos || !DT.dominates(Inst, BetterPos)))
5080        BetterPos = &*std::next(BasicBlock::iterator(Inst));
5081    }
5082    if (!AllDominate)
5083      break;
5084    if (BetterPos)
5085      IP = BetterPos->getIterator();
5086    else
5087      IP = Tentative->getIterator();
5088
5089    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5090    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5091
5092    BasicBlock *IDom;
5093    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5094      if (!Rung) return IP;
5095      Rung = Rung->getIDom();
5096      if (!Rung) return IP;
5097      IDom = Rung->getBlock();
5098
5099      // Don't climb into a loop though.
5100      const Loop *IDomLoop = LI.getLoopFor(IDom);
5101      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5102      if (IDomDepth <= IPLoopDepth &&
5103          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5104        break;
5105    }
5106
5107    Tentative = IDom->getTerminator();
5108  }
5109
5110  return IP;
5111}
5112
5113/// Determine an input position which will be dominated by the operands and
5114/// which will dominate the result.
5115BasicBlock::iterator
5116LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5117                                           const LSRFixup &LF,
5118                                           const LSRUse &LU,
5119                                           SCEVExpander &Rewriter) const {
5120  // Collect some instructions which must be dominated by the
5121  // expanding replacement. These must be dominated by any operands that
5122  // will be required in the expansion.
5123  SmallVector<Instruction *, 4> Inputs;
5124  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5125    Inputs.push_back(I);
5126  if (LU.Kind == LSRUse::ICmpZero)
5127    if (Instruction *I =
5128          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5129      Inputs.push_back(I);
5130  if (LF.PostIncLoops.count(L)) {
5131    if (LF.isUseFullyOutsideLoop(L))
5132      Inputs.push_back(L->getLoopLatch()->getTerminator());
5133    else
5134      Inputs.push_back(IVIncInsertPos);
5135  }
5136  // The expansion must also be dominated by the increment positions of any
5137  // loops it for which it is using post-inc mode.
5138  for (const Loop *PIL : LF.PostIncLoops) {
5139    if (PIL == L) continue;
5140
5141    // Be dominated by the loop exit.
5142    SmallVector<BasicBlock *, 4> ExitingBlocks;
5143    PIL->getExitingBlocks(ExitingBlocks);
5144    if (!ExitingBlocks.empty()) {
5145      BasicBlock *BB = ExitingBlocks[0];
5146      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5147        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5148      Inputs.push_back(BB->getTerminator());
5149    }
5150  }
5151
5152  assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5153         && !isa<DbgInfoIntrinsic>(LowestIP) &&
5154         "Insertion point must be a normal instruction");
5155
5156  // Then, climb up the immediate dominator tree as far as we can go while
5157  // still being dominated by the input positions.
5158  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5159
5160  // Don't insert instructions before PHI nodes.
5161  while (isa<PHINode>(IP)) ++IP;
5162
5163  // Ignore landingpad instructions.
5164  while (IP->isEHPad()) ++IP;
5165
5166  // Ignore debug intrinsics.
5167  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5168
5169  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5170  // IP consistent across expansions and allows the previously inserted
5171  // instructions to be reused by subsequent expansion.
5172  while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5173    ++IP;
5174
5175  return IP;
5176}
5177
5178/// Emit instructions for the leading candidate expression for this LSRUse (this
5179/// is called "expanding").
5180Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5181                           const Formula &F, BasicBlock::iterator IP,
5182                           SCEVExpander &Rewriter,
5183                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5184  if (LU.RigidFormula)
5185    return LF.OperandValToReplace;
5186
5187  // Determine an input position which will be dominated by the operands and
5188  // which will dominate the result.
5189  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5190  Rewriter.setInsertPoint(&*IP);
5191
5192  // Inform the Rewriter if we have a post-increment use, so that it can
5193  // perform an advantageous expansion.
5194  Rewriter.setPostInc(LF.PostIncLoops);
5195
5196  // This is the type that the user actually needs.
5197  Type *OpTy = LF.OperandValToReplace->getType();
5198  // This will be the type that we'll initially expand to.
5199  Type *Ty = F.getType();
5200  if (!Ty)
5201    // No type known; just expand directly to the ultimate type.
5202    Ty = OpTy;
5203  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5204    // Expand directly to the ultimate type if it's the right size.
5205    Ty = OpTy;
5206  // This is the type to do integer arithmetic in.
5207  Type *IntTy = SE.getEffectiveSCEVType(Ty);
5208
5209  // Build up a list of operands to add together to form the full base.
5210  SmallVector<const SCEV *, 8> Ops;
5211
5212  // Expand the BaseRegs portion.
5213  for (const SCEV *Reg : F.BaseRegs) {
5214    assert(!Reg->isZero() && "Zero allocated in a base register!");
5215
5216    // If we're expanding for a post-inc user, make the post-inc adjustment.
5217    Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5218    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5219  }
5220
5221  // Expand the ScaledReg portion.
5222  Value *ICmpScaledV = nullptr;
5223  if (F.Scale != 0) {
5224    const SCEV *ScaledS = F.ScaledReg;
5225
5226    // If we're expanding for a post-inc user, make the post-inc adjustment.
5227    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5228    ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5229
5230    if (LU.Kind == LSRUse::ICmpZero) {
5231      // Expand ScaleReg as if it was part of the base regs.
5232      if (F.Scale == 1)
5233        Ops.push_back(
5234            SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5235      else {
5236        // An interesting way of "folding" with an icmp is to use a negated
5237        // scale, which we'll implement by inserting it into the other operand
5238        // of the icmp.
5239        assert(F.Scale == -1 &&
5240               "The only scale supported by ICmpZero uses is -1!");
5241        ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5242      }
5243    } else {
5244      // Otherwise just expand the scaled register and an explicit scale,
5245      // which is expected to be matched as part of the address.
5246
5247      // Flush the operand list to suppress SCEVExpander hoisting address modes.
5248      // Unless the addressing mode will not be folded.
5249      if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5250          isAMCompletelyFolded(TTI, LU, F)) {
5251        Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5252        Ops.clear();
5253        Ops.push_back(SE.getUnknown(FullV));
5254      }
5255      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5256      if (F.Scale != 1)
5257        ScaledS =
5258            SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5259      Ops.push_back(ScaledS);
5260    }
5261  }
5262
5263  // Expand the GV portion.
5264  if (F.BaseGV) {
5265    // Flush the operand list to suppress SCEVExpander hoisting.
5266    if (!Ops.empty()) {
5267      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5268      Ops.clear();
5269      Ops.push_back(SE.getUnknown(FullV));
5270    }
5271    Ops.push_back(SE.getUnknown(F.BaseGV));
5272  }
5273
5274  // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5275  // unfolded offsets. LSR assumes they both live next to their uses.
5276  if (!Ops.empty()) {
5277    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5278    Ops.clear();
5279    Ops.push_back(SE.getUnknown(FullV));
5280  }
5281
5282  // Expand the immediate portion.
5283  int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5284  if (Offset != 0) {
5285    if (LU.Kind == LSRUse::ICmpZero) {
5286      // The other interesting way of "folding" with an ICmpZero is to use a
5287      // negated immediate.
5288      if (!ICmpScaledV)
5289        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5290      else {
5291        Ops.push_back(SE.getUnknown(ICmpScaledV));
5292        ICmpScaledV = ConstantInt::get(IntTy, Offset);
5293      }
5294    } else {
5295      // Just add the immediate values. These again are expected to be matched
5296      // as part of the address.
5297      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5298    }
5299  }
5300
5301  // Expand the unfolded offset portion.
5302  int64_t UnfoldedOffset = F.UnfoldedOffset;
5303  if (UnfoldedOffset != 0) {
5304    // Just add the immediate values.
5305    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5306                                                       UnfoldedOffset)));
5307  }
5308
5309  // Emit instructions summing all the operands.
5310  const SCEV *FullS = Ops.empty() ?
5311                      SE.getConstant(IntTy, 0) :
5312                      SE.getAddExpr(Ops);
5313  Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5314
5315  // We're done expanding now, so reset the rewriter.
5316  Rewriter.clearPostInc();
5317
5318  // An ICmpZero Formula represents an ICmp which we're handling as a
5319  // comparison against zero. Now that we've expanded an expression for that
5320  // form, update the ICmp's other operand.
5321  if (LU.Kind == LSRUse::ICmpZero) {
5322    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5323    if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5324      DeadInsts.emplace_back(OperandIsInstr);
5325    assert(!F.BaseGV && "ICmp does not support folding a global value and "
5326                           "a scale at the same time!");
5327    if (F.Scale == -1) {
5328      if (ICmpScaledV->getType() != OpTy) {
5329        Instruction *Cast =
5330          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5331                                                   OpTy, false),
5332                           ICmpScaledV, OpTy, "tmp", CI);
5333        ICmpScaledV = Cast;
5334      }
5335      CI->setOperand(1, ICmpScaledV);
5336    } else {
5337      // A scale of 1 means that the scale has been expanded as part of the
5338      // base regs.
5339      assert((F.Scale == 0 || F.Scale == 1) &&
5340             "ICmp does not support folding a global value and "
5341             "a scale at the same time!");
5342      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5343                                           -(uint64_t)Offset);
5344      if (C->getType() != OpTy)
5345        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5346                                                          OpTy, false),
5347                                  C, OpTy);
5348
5349      CI->setOperand(1, C);
5350    }
5351  }
5352
5353  return FullV;
5354}
5355
5356/// Helper for Rewrite. PHI nodes are special because the use of their operands
5357/// effectively happens in their predecessor blocks, so the expression may need
5358/// to be expanded in multiple places.
5359void LSRInstance::RewriteForPHI(
5360    PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5361    SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5362  DenseMap<BasicBlock *, Value *> Inserted;
5363  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5364    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5365      bool needUpdateFixups = false;
5366      BasicBlock *BB = PN->getIncomingBlock(i);
5367
5368      // If this is a critical edge, split the edge so that we do not insert
5369      // the code on all predecessor/successor paths.  We do this unless this
5370      // is the canonical backedge for this loop, which complicates post-inc
5371      // users.
5372      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5373          !isa<IndirectBrInst>(BB->getTerminator()) &&
5374          !isa<CatchSwitchInst>(BB->getTerminator())) {
5375        BasicBlock *Parent = PN->getParent();
5376        Loop *PNLoop = LI.getLoopFor(Parent);
5377        if (!PNLoop || Parent != PNLoop->getHeader()) {
5378          // Split the critical edge.
5379          BasicBlock *NewBB = nullptr;
5380          if (!Parent->isLandingPad()) {
5381            NewBB = SplitCriticalEdge(BB, Parent,
5382                                      CriticalEdgeSplittingOptions(&DT, &LI)
5383                                          .setMergeIdenticalEdges()
5384                                          .setKeepOneInputPHIs());
5385          } else {
5386            SmallVector<BasicBlock*, 2> NewBBs;
5387            SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5388            NewBB = NewBBs[0];
5389          }
5390          // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5391          // phi predecessors are identical. The simple thing to do is skip
5392          // splitting in this case rather than complicate the API.
5393          if (NewBB) {
5394            // If PN is outside of the loop and BB is in the loop, we want to
5395            // move the block to be immediately before the PHI block, not
5396            // immediately after BB.
5397            if (L->contains(BB) && !L->contains(PN))
5398              NewBB->moveBefore(PN->getParent());
5399
5400            // Splitting the edge can reduce the number of PHI entries we have.
5401            e = PN->getNumIncomingValues();
5402            BB = NewBB;
5403            i = PN->getBasicBlockIndex(BB);
5404
5405            needUpdateFixups = true;
5406          }
5407        }
5408      }
5409
5410      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5411        Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5412      if (!Pair.second)
5413        PN->setIncomingValue(i, Pair.first->second);
5414      else {
5415        Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5416                              Rewriter, DeadInsts);
5417
5418        // If this is reuse-by-noop-cast, insert the noop cast.
5419        Type *OpTy = LF.OperandValToReplace->getType();
5420        if (FullV->getType() != OpTy)
5421          FullV =
5422            CastInst::Create(CastInst::getCastOpcode(FullV, false,
5423                                                     OpTy, false),
5424                             FullV, LF.OperandValToReplace->getType(),
5425                             "tmp", BB->getTerminator());
5426
5427        PN->setIncomingValue(i, FullV);
5428        Pair.first->second = FullV;
5429      }
5430
5431      // If LSR splits critical edge and phi node has other pending
5432      // fixup operands, we need to update those pending fixups. Otherwise
5433      // formulae will not be implemented completely and some instructions
5434      // will not be eliminated.
5435      if (needUpdateFixups) {
5436        for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5437          for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5438            // If fixup is supposed to rewrite some operand in the phi
5439            // that was just updated, it may be already moved to
5440            // another phi node. Such fixup requires update.
5441            if (Fixup.UserInst == PN) {
5442              // Check if the operand we try to replace still exists in the
5443              // original phi.
5444              bool foundInOriginalPHI = false;
5445              for (const auto &val : PN->incoming_values())
5446                if (val == Fixup.OperandValToReplace) {
5447                  foundInOriginalPHI = true;
5448                  break;
5449                }
5450
5451              // If fixup operand found in original PHI - nothing to do.
5452              if (foundInOriginalPHI)
5453                continue;
5454
5455              // Otherwise it might be moved to another PHI and requires update.
5456              // If fixup operand not found in any of the incoming blocks that
5457              // means we have already rewritten it - nothing to do.
5458              for (const auto &Block : PN->blocks())
5459                for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5460                     ++I) {
5461                  PHINode *NewPN = cast<PHINode>(I);
5462                  for (const auto &val : NewPN->incoming_values())
5463                    if (val == Fixup.OperandValToReplace)
5464                      Fixup.UserInst = NewPN;
5465                }
5466            }
5467      }
5468    }
5469}
5470
5471/// Emit instructions for the leading candidate expression for this LSRUse (this
5472/// is called "expanding"), and update the UserInst to reference the newly
5473/// expanded value.
5474void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5475                          const Formula &F, SCEVExpander &Rewriter,
5476                          SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5477  // First, find an insertion point that dominates UserInst. For PHI nodes,
5478  // find the nearest block which dominates all the relevant uses.
5479  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5480    RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5481  } else {
5482    Value *FullV =
5483      Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5484
5485    // If this is reuse-by-noop-cast, insert the noop cast.
5486    Type *OpTy = LF.OperandValToReplace->getType();
5487    if (FullV->getType() != OpTy) {
5488      Instruction *Cast =
5489        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5490                         FullV, OpTy, "tmp", LF.UserInst);
5491      FullV = Cast;
5492    }
5493
5494    // Update the user. ICmpZero is handled specially here (for now) because
5495    // Expand may have updated one of the operands of the icmp already, and
5496    // its new value may happen to be equal to LF.OperandValToReplace, in
5497    // which case doing replaceUsesOfWith leads to replacing both operands
5498    // with the same value. TODO: Reorganize this.
5499    if (LU.Kind == LSRUse::ICmpZero)
5500      LF.UserInst->setOperand(0, FullV);
5501    else
5502      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5503  }
5504
5505  if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5506    DeadInsts.emplace_back(OperandIsInstr);
5507}
5508
5509/// Rewrite all the fixup locations with new values, following the chosen
5510/// solution.
5511void LSRInstance::ImplementSolution(
5512    const SmallVectorImpl<const Formula *> &Solution) {
5513  // Keep track of instructions we may have made dead, so that
5514  // we can remove them after we are done working.
5515  SmallVector<WeakTrackingVH, 16> DeadInsts;
5516
5517  SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5518                        "lsr");
5519#ifndef NDEBUG
5520  Rewriter.setDebugType(DEBUG_TYPE);
5521#endif
5522  Rewriter.disableCanonicalMode();
5523  Rewriter.enableLSRMode();
5524  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5525
5526  // Mark phi nodes that terminate chains so the expander tries to reuse them.
5527  for (const IVChain &Chain : IVChainVec) {
5528    if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5529      Rewriter.setChainedPhi(PN);
5530  }
5531
5532  // Expand the new value definitions and update the users.
5533  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5534    for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5535      Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5536      Changed = true;
5537    }
5538
5539  for (const IVChain &Chain : IVChainVec) {
5540    GenerateIVChain(Chain, Rewriter, DeadInsts);
5541    Changed = true;
5542  }
5543  // Clean up after ourselves. This must be done before deleting any
5544  // instructions.
5545  Rewriter.clear();
5546
5547  Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5548                                                                  &TLI, MSSAU);
5549}
5550
5551LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5552                         DominatorTree &DT, LoopInfo &LI,
5553                         const TargetTransformInfo &TTI, AssumptionCache &AC,
5554                         TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5555    : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5556      MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing &&
5557                                       TTI.shouldFavorBackedgeIndex(L)) {
5558  // If LoopSimplify form is not available, stay out of trouble.
5559  if (!L->isLoopSimplifyForm())
5560    return;
5561
5562  // If there's no interesting work to be done, bail early.
5563  if (IU.empty()) return;
5564
5565  // If there's too much analysis to be done, bail early. We won't be able to
5566  // model the problem anyway.
5567  unsigned NumUsers = 0;
5568  for (const IVStrideUse &U : IU) {
5569    if (++NumUsers > MaxIVUsers) {
5570      (void)U;
5571      LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5572                        << "\n");
5573      return;
5574    }
5575    // Bail out if we have a PHI on an EHPad that gets a value from a
5576    // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5577    // no good place to stick any instructions.
5578    if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5579       auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5580       if (isa<FuncletPadInst>(FirstNonPHI) ||
5581           isa<CatchSwitchInst>(FirstNonPHI))
5582         for (BasicBlock *PredBB : PN->blocks())
5583           if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5584             return;
5585    }
5586  }
5587
5588#ifndef NDEBUG
5589  // All dominating loops must have preheaders, or SCEVExpander may not be able
5590  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5591  //
5592  // IVUsers analysis should only create users that are dominated by simple loop
5593  // headers. Since this loop should dominate all of its users, its user list
5594  // should be empty if this loop itself is not within a simple loop nest.
5595  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5596       Rung; Rung = Rung->getIDom()) {
5597    BasicBlock *BB = Rung->getBlock();
5598    const Loop *DomLoop = LI.getLoopFor(BB);
5599    if (DomLoop && DomLoop->getHeader() == BB) {
5600      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5601    }
5602  }
5603#endif // DEBUG
5604
5605  LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5606             L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5607             dbgs() << ":\n");
5608
5609  // First, perform some low-level loop optimizations.
5610  OptimizeShadowIV();
5611  OptimizeLoopTermCond();
5612
5613  // If loop preparation eliminates all interesting IV users, bail.
5614  if (IU.empty()) return;
5615
5616  // Skip nested loops until we can model them better with formulae.
5617  if (!L->empty()) {
5618    LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5619    return;
5620  }
5621
5622  // Start collecting data and preparing for the solver.
5623  CollectChains();
5624  CollectInterestingTypesAndFactors();
5625  CollectFixupsAndInitialFormulae();
5626  CollectLoopInvariantFixupsAndFormulae();
5627
5628  if (Uses.empty())
5629    return;
5630
5631  LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5632             print_uses(dbgs()));
5633
5634  // Now use the reuse data to generate a bunch of interesting ways
5635  // to formulate the values needed for the uses.
5636  GenerateAllReuseFormulae();
5637
5638  FilterOutUndesirableDedicatedRegisters();
5639  NarrowSearchSpaceUsingHeuristics();
5640
5641  SmallVector<const Formula *, 8> Solution;
5642  Solve(Solution);
5643
5644  // Release memory that is no longer needed.
5645  Factors.clear();
5646  Types.clear();
5647  RegUses.clear();
5648
5649  if (Solution.empty())
5650    return;
5651
5652#ifndef NDEBUG
5653  // Formulae should be legal.
5654  for (const LSRUse &LU : Uses) {
5655    for (const Formula &F : LU.Formulae)
5656      assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5657                        F) && "Illegal formula generated!");
5658  };
5659#endif
5660
5661  // Now that we've decided what we want, make it so.
5662  ImplementSolution(Solution);
5663}
5664
5665#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5666void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5667  if (Factors.empty() && Types.empty()) return;
5668
5669  OS << "LSR has identified the following interesting factors and types: ";
5670  bool First = true;
5671
5672  for (int64_t Factor : Factors) {
5673    if (!First) OS << ", ";
5674    First = false;
5675    OS << '*' << Factor;
5676  }
5677
5678  for (Type *Ty : Types) {
5679    if (!First) OS << ", ";
5680    First = false;
5681    OS << '(' << *Ty << ')';
5682  }
5683  OS << '\n';
5684}
5685
5686void LSRInstance::print_fixups(raw_ostream &OS) const {
5687  OS << "LSR is examining the following fixup sites:\n";
5688  for (const LSRUse &LU : Uses)
5689    for (const LSRFixup &LF : LU.Fixups) {
5690      dbgs() << "  ";
5691      LF.print(OS);
5692      OS << '\n';
5693    }
5694}
5695
5696void LSRInstance::print_uses(raw_ostream &OS) const {
5697  OS << "LSR is examining the following uses:\n";
5698  for (const LSRUse &LU : Uses) {
5699    dbgs() << "  ";
5700    LU.print(OS);
5701    OS << '\n';
5702    for (const Formula &F : LU.Formulae) {
5703      OS << "    ";
5704      F.print(OS);
5705      OS << '\n';
5706    }
5707  }
5708}
5709
5710void LSRInstance::print(raw_ostream &OS) const {
5711  print_factors_and_types(OS);
5712  print_fixups(OS);
5713  print_uses(OS);
5714}
5715
5716LLVM_DUMP_METHOD void LSRInstance::dump() const {
5717  print(errs()); errs() << '\n';
5718}
5719#endif
5720
5721namespace {
5722
5723class LoopStrengthReduce : public LoopPass {
5724public:
5725  static char ID; // Pass ID, replacement for typeid
5726
5727  LoopStrengthReduce();
5728
5729private:
5730  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5731  void getAnalysisUsage(AnalysisUsage &AU) const override;
5732};
5733
5734} // end anonymous namespace
5735
5736LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5737  initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5738}
5739
5740void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5741  // We split critical edges, so we change the CFG.  However, we do update
5742  // many analyses if they are around.
5743  AU.addPreservedID(LoopSimplifyID);
5744
5745  AU.addRequired<LoopInfoWrapperPass>();
5746  AU.addPreserved<LoopInfoWrapperPass>();
5747  AU.addRequiredID(LoopSimplifyID);
5748  AU.addRequired<DominatorTreeWrapperPass>();
5749  AU.addPreserved<DominatorTreeWrapperPass>();
5750  AU.addRequired<ScalarEvolutionWrapperPass>();
5751  AU.addPreserved<ScalarEvolutionWrapperPass>();
5752  AU.addRequired<AssumptionCacheTracker>();
5753  AU.addRequired<TargetLibraryInfoWrapperPass>();
5754  // Requiring LoopSimplify a second time here prevents IVUsers from running
5755  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5756  AU.addRequiredID(LoopSimplifyID);
5757  AU.addRequired<IVUsersWrapperPass>();
5758  AU.addPreserved<IVUsersWrapperPass>();
5759  AU.addRequired<TargetTransformInfoWrapperPass>();
5760  AU.addPreserved<MemorySSAWrapperPass>();
5761}
5762
5763static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5764                               DominatorTree &DT, LoopInfo &LI,
5765                               const TargetTransformInfo &TTI,
5766                               AssumptionCache &AC, TargetLibraryInfo &TLI,
5767                               MemorySSA *MSSA) {
5768
5769  bool Changed = false;
5770  std::unique_ptr<MemorySSAUpdater> MSSAU;
5771  if (MSSA)
5772    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5773
5774  // Run the main LSR transformation.
5775  Changed |=
5776      LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5777
5778  // Remove any extra phis created by processing inner loops.
5779  Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5780  if (EnablePhiElim && L->isLoopSimplifyForm()) {
5781    SmallVector<WeakTrackingVH, 16> DeadInsts;
5782    const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5783    SCEVExpander Rewriter(SE, DL, "lsr");
5784#ifndef NDEBUG
5785    Rewriter.setDebugType(DEBUG_TYPE);
5786#endif
5787    unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5788    if (numFolded) {
5789      Changed = true;
5790      RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5791                                                           MSSAU.get());
5792      DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5793    }
5794  }
5795  return Changed;
5796}
5797
5798bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5799  if (skipLoop(L))
5800    return false;
5801
5802  auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5803  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5804  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5805  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5806  const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5807      *L->getHeader()->getParent());
5808  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5809      *L->getHeader()->getParent());
5810  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5811      *L->getHeader()->getParent());
5812  auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5813  MemorySSA *MSSA = nullptr;
5814  if (MSSAAnalysis)
5815    MSSA = &MSSAAnalysis->getMSSA();
5816  return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5817}
5818
5819PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5820                                              LoopStandardAnalysisResults &AR,
5821                                              LPMUpdater &) {
5822  if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5823                          AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5824    return PreservedAnalyses::all();
5825
5826  auto PA = getLoopPassPreservedAnalyses();
5827  if (AR.MSSA)
5828    PA.preserve<MemorySSAAnalysis>();
5829  return PA;
5830}
5831
5832char LoopStrengthReduce::ID = 0;
5833
5834INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5835                      "Loop Strength Reduction", false, false)
5836INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5837INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5838INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5839INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5840INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5841INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5842INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5843                    "Loop Strength Reduction", false, false)
5844
5845Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5846