1//===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass does the inverse transformation of what LICM does.
10// It traverses all of the instructions in the loop's preheader and sinks
11// them to the loop body where frequency is lower than the loop's preheader.
12// This pass is a reverse-transformation of LICM. It differs from the Sink
13// pass in the following ways:
14//
15// * It only handles sinking of instructions from the loop's preheader to the
16//   loop's body
17// * It uses alias set tracker to get more accurate alias info
18// * It uses block frequency info to find the optimal sinking locations
19//
20// Overall algorithm:
21//
22// For I in Preheader:
23//   InsertBBs = BBs that uses I
24//   For BB in sorted(LoopBBs):
25//     DomBBs = BBs in InsertBBs that are dominated by BB
26//     if freq(DomBBs) > freq(BB)
27//       InsertBBs = UseBBs - DomBBs + BB
28//   For BB in InsertBBs:
29//     Insert I at BB's beginning
30//
31//===----------------------------------------------------------------------===//
32
33#include "llvm/Transforms/Scalar/LoopSink.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/BasicAliasAnalysis.h"
38#include "llvm/Analysis/BlockFrequencyInfo.h"
39#include "llvm/Analysis/Loads.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/ScalarEvolution.h"
43#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Metadata.h"
48#include "llvm/InitializePasses.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Transforms/Scalar.h"
51#include "llvm/Transforms/Scalar/LoopPassManager.h"
52#include "llvm/Transforms/Utils/Local.h"
53#include "llvm/Transforms/Utils/LoopUtils.h"
54using namespace llvm;
55
56#define DEBUG_TYPE "loopsink"
57
58STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
59STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
60
61static cl::opt<unsigned> SinkFrequencyPercentThreshold(
62    "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
63    cl::desc("Do not sink instructions that require cloning unless they "
64             "execute less than this percent of the time."));
65
66static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
67    "max-uses-for-sinking", cl::Hidden, cl::init(30),
68    cl::desc("Do not sink instructions that have too many uses."));
69
70/// Return adjusted total frequency of \p BBs.
71///
72/// * If there is only one BB, sinking instruction will not introduce code
73///   size increase. Thus there is no need to adjust the frequency.
74/// * If there are more than one BB, sinking would lead to code size increase.
75///   In this case, we add some "tax" to the total frequency to make it harder
76///   to sink. E.g.
77///     Freq(Preheader) = 100
78///     Freq(BBs) = sum(50, 49) = 99
79///   Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
80///   BBs as the difference is too small to justify the code size increase.
81///   To model this, The adjusted Freq(BBs) will be:
82///     AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
83static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
84                                      BlockFrequencyInfo &BFI) {
85  BlockFrequency T = 0;
86  for (BasicBlock *B : BBs)
87    T += BFI.getBlockFreq(B);
88  if (BBs.size() > 1)
89    T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
90  return T;
91}
92
93/// Return a set of basic blocks to insert sinked instructions.
94///
95/// The returned set of basic blocks (BBsToSinkInto) should satisfy:
96///
97/// * Inside the loop \p L
98/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
99///   that domintates the UseBB
100/// * Has minimum total frequency that is no greater than preheader frequency
101///
102/// The purpose of the function is to find the optimal sinking points to
103/// minimize execution cost, which is defined as "sum of frequency of
104/// BBsToSinkInto".
105/// As a result, the returned BBsToSinkInto needs to have minimum total
106/// frequency.
107/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
108/// frequency, the optimal solution is not sinking (return empty set).
109///
110/// \p ColdLoopBBs is used to help find the optimal sinking locations.
111/// It stores a list of BBs that is:
112///
113/// * Inside the loop \p L
114/// * Has a frequency no larger than the loop's preheader
115/// * Sorted by BB frequency
116///
117/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
118/// To avoid expensive computation, we cap the maximum UseBBs.size() in its
119/// caller.
120static SmallPtrSet<BasicBlock *, 2>
121findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
122                  const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
123                  DominatorTree &DT, BlockFrequencyInfo &BFI) {
124  SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
125  if (UseBBs.size() == 0)
126    return BBsToSinkInto;
127
128  BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
129  SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
130
131  // For every iteration:
132  //   * Pick the ColdestBB from ColdLoopBBs
133  //   * Find the set BBsDominatedByColdestBB that satisfy:
134  //     - BBsDominatedByColdestBB is a subset of BBsToSinkInto
135  //     - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
136  //   * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
137  //     BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
138  //     BBsToSinkInto
139  for (BasicBlock *ColdestBB : ColdLoopBBs) {
140    BBsDominatedByColdestBB.clear();
141    for (BasicBlock *SinkedBB : BBsToSinkInto)
142      if (DT.dominates(ColdestBB, SinkedBB))
143        BBsDominatedByColdestBB.insert(SinkedBB);
144    if (BBsDominatedByColdestBB.size() == 0)
145      continue;
146    if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
147        BFI.getBlockFreq(ColdestBB)) {
148      for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
149        BBsToSinkInto.erase(DominatedBB);
150      }
151      BBsToSinkInto.insert(ColdestBB);
152    }
153  }
154
155  // Can't sink into blocks that have no valid insertion point.
156  for (BasicBlock *BB : BBsToSinkInto) {
157    if (BB->getFirstInsertionPt() == BB->end()) {
158      BBsToSinkInto.clear();
159      break;
160    }
161  }
162
163  // If the total frequency of BBsToSinkInto is larger than preheader frequency,
164  // do not sink.
165  if (adjustedSumFreq(BBsToSinkInto, BFI) >
166      BFI.getBlockFreq(L.getLoopPreheader()))
167    BBsToSinkInto.clear();
168  return BBsToSinkInto;
169}
170
171// Sinks \p I from the loop \p L's preheader to its uses. Returns true if
172// sinking is successful.
173// \p LoopBlockNumber is used to sort the insertion blocks to ensure
174// determinism.
175static bool sinkInstruction(Loop &L, Instruction &I,
176                            const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
177                            const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber,
178                            LoopInfo &LI, DominatorTree &DT,
179                            BlockFrequencyInfo &BFI) {
180  // Compute the set of blocks in loop L which contain a use of I.
181  SmallPtrSet<BasicBlock *, 2> BBs;
182  for (auto &U : I.uses()) {
183    Instruction *UI = cast<Instruction>(U.getUser());
184    // We cannot sink I to PHI-uses.
185    if (dyn_cast<PHINode>(UI))
186      return false;
187    // We cannot sink I if it has uses outside of the loop.
188    if (!L.contains(LI.getLoopFor(UI->getParent())))
189      return false;
190    BBs.insert(UI->getParent());
191  }
192
193  // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
194  // BBs.size() to avoid expensive computation.
195  // FIXME: Handle code size growth for min_size and opt_size.
196  if (BBs.size() > MaxNumberOfUseBBsForSinking)
197    return false;
198
199  // Find the set of BBs that we should insert a copy of I.
200  SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
201      findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
202  if (BBsToSinkInto.empty())
203    return false;
204
205  // Return if any of the candidate blocks to sink into is non-cold.
206  if (BBsToSinkInto.size() > 1) {
207    for (auto *BB : BBsToSinkInto)
208      if (!LoopBlockNumber.count(BB))
209        return false;
210  }
211
212  // Copy the final BBs into a vector and sort them using the total ordering
213  // of the loop block numbers as iterating the set doesn't give a useful
214  // order. No need to stable sort as the block numbers are a total ordering.
215  SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
216  SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(),
217                             BBsToSinkInto.end());
218  llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
219    return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
220  });
221
222  BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
223  // FIXME: Optimize the efficiency for cloned value replacement. The current
224  //        implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
225  for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) {
226    assert(LoopBlockNumber.find(N)->second >
227               LoopBlockNumber.find(MoveBB)->second &&
228           "BBs not sorted!");
229    // Clone I and replace its uses.
230    Instruction *IC = I.clone();
231    IC->setName(I.getName());
232    IC->insertBefore(&*N->getFirstInsertionPt());
233    // Replaces uses of I with IC in N
234    I.replaceUsesWithIf(IC, [N](Use &U) {
235      return cast<Instruction>(U.getUser())->getParent() == N;
236    });
237    // Replaces uses of I with IC in blocks dominated by N
238    replaceDominatedUsesWith(&I, IC, DT, N);
239    LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
240                      << '\n');
241    NumLoopSunkCloned++;
242  }
243  LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
244  NumLoopSunk++;
245  I.moveBefore(&*MoveBB->getFirstInsertionPt());
246
247  return true;
248}
249
250/// Sinks instructions from loop's preheader to the loop body if the
251/// sum frequency of inserted copy is smaller than preheader's frequency.
252static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
253                                          DominatorTree &DT,
254                                          BlockFrequencyInfo &BFI,
255                                          ScalarEvolution *SE) {
256  BasicBlock *Preheader = L.getLoopPreheader();
257  if (!Preheader)
258    return false;
259
260  // Enable LoopSink only when runtime profile is available.
261  // With static profile, the sinking decision may be sub-optimal.
262  if (!Preheader->getParent()->hasProfileData())
263    return false;
264
265  const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
266  // If there are no basic blocks with lower frequency than the preheader then
267  // we can avoid the detailed analysis as we will never find profitable sinking
268  // opportunities.
269  if (all_of(L.blocks(), [&](const BasicBlock *BB) {
270        return BFI.getBlockFreq(BB) > PreheaderFreq;
271      }))
272    return false;
273
274  bool Changed = false;
275  AliasSetTracker CurAST(AA);
276
277  // Compute alias set.
278  for (BasicBlock *BB : L.blocks())
279    CurAST.add(*BB);
280  CurAST.add(*Preheader);
281
282  // Sort loop's basic blocks by frequency
283  SmallVector<BasicBlock *, 10> ColdLoopBBs;
284  SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
285  int i = 0;
286  for (BasicBlock *B : L.blocks())
287    if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
288      ColdLoopBBs.push_back(B);
289      LoopBlockNumber[B] = ++i;
290    }
291  llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
292    return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
293  });
294
295  // Traverse preheader's instructions in reverse order becaue if A depends
296  // on B (A appears after B), A needs to be sinked first before B can be
297  // sinked.
298  for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
299    Instruction *I = &*II++;
300    // No need to check for instruction's operands are loop invariant.
301    assert(L.hasLoopInvariantOperands(I) &&
302           "Insts in a loop's preheader should have loop invariant operands!");
303    if (!canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr, false))
304      continue;
305    if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI))
306      Changed = true;
307  }
308
309  if (Changed && SE)
310    SE->forgetLoopDispositions(&L);
311  return Changed;
312}
313
314PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
315  LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
316  // Nothing to do if there are no loops.
317  if (LI.empty())
318    return PreservedAnalyses::all();
319
320  AAResults &AA = FAM.getResult<AAManager>(F);
321  DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
322  BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
323
324  // We want to do a postorder walk over the loops. Since loops are a tree this
325  // is equivalent to a reversed preorder walk and preorder is easy to compute
326  // without recursion. Since we reverse the preorder, we will visit siblings
327  // in reverse program order. This isn't expected to matter at all but is more
328  // consistent with sinking algorithms which generally work bottom-up.
329  SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
330
331  bool Changed = false;
332  do {
333    Loop &L = *PreorderLoops.pop_back_val();
334
335    // Note that we don't pass SCEV here because it is only used to invalidate
336    // loops in SCEV and we don't preserve (or request) SCEV at all making that
337    // unnecessary.
338    Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
339                                             /*ScalarEvolution*/ nullptr);
340  } while (!PreorderLoops.empty());
341
342  if (!Changed)
343    return PreservedAnalyses::all();
344
345  PreservedAnalyses PA;
346  PA.preserveSet<CFGAnalyses>();
347  return PA;
348}
349
350namespace {
351struct LegacyLoopSinkPass : public LoopPass {
352  static char ID;
353  LegacyLoopSinkPass() : LoopPass(ID) {
354    initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
355  }
356
357  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
358    if (skipLoop(L))
359      return false;
360
361    auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
362    return sinkLoopInvariantInstructions(
363        *L, getAnalysis<AAResultsWrapperPass>().getAAResults(),
364        getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
365        getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
366        getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
367        SE ? &SE->getSE() : nullptr);
368  }
369
370  void getAnalysisUsage(AnalysisUsage &AU) const override {
371    AU.setPreservesCFG();
372    AU.addRequired<BlockFrequencyInfoWrapperPass>();
373    getLoopAnalysisUsage(AU);
374  }
375};
376}
377
378char LegacyLoopSinkPass::ID = 0;
379INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
380                      false)
381INITIALIZE_PASS_DEPENDENCY(LoopPass)
382INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
383INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
384
385Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }
386