1//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implement a loop-aware load elimination pass.
10//
11// It uses LoopAccessAnalysis to identify loop-carried dependences with a
12// distance of one between stores and loads.  These form the candidates for the
13// transformation.  The source value of each store then propagated to the user
14// of the corresponding load.  This makes the load dead.
15//
16// The pass can also version the loop and add memchecks in order to prove that
17// may-aliasing stores can't change the value in memory before it's read by the
18// load.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/DepthFirstIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/Analysis/AssumptionCache.h"
32#include "llvm/Analysis/BlockFrequencyInfo.h"
33#include "llvm/Analysis/GlobalsModRef.h"
34#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
35#include "llvm/Analysis/LoopAccessAnalysis.h"
36#include "llvm/Analysis/LoopAnalysisManager.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/MemorySSA.h"
39#include "llvm/Analysis/ProfileSummaryInfo.h"
40#include "llvm/Analysis/ScalarEvolution.h"
41#include "llvm/Analysis/ScalarEvolutionExpressions.h"
42#include "llvm/Analysis/TargetLibraryInfo.h"
43#include "llvm/Analysis/TargetTransformInfo.h"
44#include "llvm/IR/DataLayout.h"
45#include "llvm/IR/Dominators.h"
46#include "llvm/IR/Instructions.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/PassManager.h"
49#include "llvm/IR/Type.h"
50#include "llvm/IR/Value.h"
51#include "llvm/InitializePasses.h"
52#include "llvm/Pass.h"
53#include "llvm/Support/Casting.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/raw_ostream.h"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Transforms/Utils.h"
59#include "llvm/Transforms/Utils/LoopVersioning.h"
60#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
61#include "llvm/Transforms/Utils/SizeOpts.h"
62#include <algorithm>
63#include <cassert>
64#include <forward_list>
65#include <set>
66#include <tuple>
67#include <utility>
68
69using namespace llvm;
70
71#define LLE_OPTION "loop-load-elim"
72#define DEBUG_TYPE LLE_OPTION
73
74static cl::opt<unsigned> CheckPerElim(
75    "runtime-check-per-loop-load-elim", cl::Hidden,
76    cl::desc("Max number of memchecks allowed per eliminated load on average"),
77    cl::init(1));
78
79static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
80    "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
81    cl::desc("The maximum number of SCEV checks allowed for Loop "
82             "Load Elimination"));
83
84STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
85
86namespace {
87
88/// Represent a store-to-forwarding candidate.
89struct StoreToLoadForwardingCandidate {
90  LoadInst *Load;
91  StoreInst *Store;
92
93  StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
94      : Load(Load), Store(Store) {}
95
96  /// Return true if the dependence from the store to the load has a
97  /// distance of one.  E.g. A[i+1] = A[i]
98  bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
99                                 Loop *L) const {
100    Value *LoadPtr = Load->getPointerOperand();
101    Value *StorePtr = Store->getPointerOperand();
102    Type *LoadPtrType = LoadPtr->getType();
103    Type *LoadType = LoadPtrType->getPointerElementType();
104
105    assert(LoadPtrType->getPointerAddressSpace() ==
106               StorePtr->getType()->getPointerAddressSpace() &&
107           LoadType == StorePtr->getType()->getPointerElementType() &&
108           "Should be a known dependence");
109
110    // Currently we only support accesses with unit stride.  FIXME: we should be
111    // able to handle non unit stirde as well as long as the stride is equal to
112    // the dependence distance.
113    if (getPtrStride(PSE, LoadPtr, L) != 1 ||
114        getPtrStride(PSE, StorePtr, L) != 1)
115      return false;
116
117    auto &DL = Load->getParent()->getModule()->getDataLayout();
118    unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
119
120    auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
121    auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
122
123    // We don't need to check non-wrapping here because forward/backward
124    // dependence wouldn't be valid if these weren't monotonic accesses.
125    auto *Dist = cast<SCEVConstant>(
126        PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
127    const APInt &Val = Dist->getAPInt();
128    return Val == TypeByteSize;
129  }
130
131  Value *getLoadPtr() const { return Load->getPointerOperand(); }
132
133#ifndef NDEBUG
134  friend raw_ostream &operator<<(raw_ostream &OS,
135                                 const StoreToLoadForwardingCandidate &Cand) {
136    OS << *Cand.Store << " -->\n";
137    OS.indent(2) << *Cand.Load << "\n";
138    return OS;
139  }
140#endif
141};
142
143} // end anonymous namespace
144
145/// Check if the store dominates all latches, so as long as there is no
146/// intervening store this value will be loaded in the next iteration.
147static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
148                                         DominatorTree *DT) {
149  SmallVector<BasicBlock *, 8> Latches;
150  L->getLoopLatches(Latches);
151  return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
152    return DT->dominates(StoreBlock, Latch);
153  });
154}
155
156/// Return true if the load is not executed on all paths in the loop.
157static bool isLoadConditional(LoadInst *Load, Loop *L) {
158  return Load->getParent() != L->getHeader();
159}
160
161namespace {
162
163/// The per-loop class that does most of the work.
164class LoadEliminationForLoop {
165public:
166  LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
167                         DominatorTree *DT, BlockFrequencyInfo *BFI,
168                         ProfileSummaryInfo* PSI)
169      : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
170
171  /// Look through the loop-carried and loop-independent dependences in
172  /// this loop and find store->load dependences.
173  ///
174  /// Note that no candidate is returned if LAA has failed to analyze the loop
175  /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
176  std::forward_list<StoreToLoadForwardingCandidate>
177  findStoreToLoadDependences(const LoopAccessInfo &LAI) {
178    std::forward_list<StoreToLoadForwardingCandidate> Candidates;
179
180    const auto *Deps = LAI.getDepChecker().getDependences();
181    if (!Deps)
182      return Candidates;
183
184    // Find store->load dependences (consequently true dep).  Both lexically
185    // forward and backward dependences qualify.  Disqualify loads that have
186    // other unknown dependences.
187
188    SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
189
190    for (const auto &Dep : *Deps) {
191      Instruction *Source = Dep.getSource(LAI);
192      Instruction *Destination = Dep.getDestination(LAI);
193
194      if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
195        if (isa<LoadInst>(Source))
196          LoadsWithUnknownDepedence.insert(Source);
197        if (isa<LoadInst>(Destination))
198          LoadsWithUnknownDepedence.insert(Destination);
199        continue;
200      }
201
202      if (Dep.isBackward())
203        // Note that the designations source and destination follow the program
204        // order, i.e. source is always first.  (The direction is given by the
205        // DepType.)
206        std::swap(Source, Destination);
207      else
208        assert(Dep.isForward() && "Needs to be a forward dependence");
209
210      auto *Store = dyn_cast<StoreInst>(Source);
211      if (!Store)
212        continue;
213      auto *Load = dyn_cast<LoadInst>(Destination);
214      if (!Load)
215        continue;
216
217      // Only progagate the value if they are of the same type.
218      if (Store->getPointerOperandType() != Load->getPointerOperandType())
219        continue;
220
221      Candidates.emplace_front(Load, Store);
222    }
223
224    if (!LoadsWithUnknownDepedence.empty())
225      Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
226        return LoadsWithUnknownDepedence.count(C.Load);
227      });
228
229    return Candidates;
230  }
231
232  /// Return the index of the instruction according to program order.
233  unsigned getInstrIndex(Instruction *Inst) {
234    auto I = InstOrder.find(Inst);
235    assert(I != InstOrder.end() && "No index for instruction");
236    return I->second;
237  }
238
239  /// If a load has multiple candidates associated (i.e. different
240  /// stores), it means that it could be forwarding from multiple stores
241  /// depending on control flow.  Remove these candidates.
242  ///
243  /// Here, we rely on LAA to include the relevant loop-independent dependences.
244  /// LAA is known to omit these in the very simple case when the read and the
245  /// write within an alias set always takes place using the *same* pointer.
246  ///
247  /// However, we know that this is not the case here, i.e. we can rely on LAA
248  /// to provide us with loop-independent dependences for the cases we're
249  /// interested.  Consider the case for example where a loop-independent
250  /// dependece S1->S2 invalidates the forwarding S3->S2.
251  ///
252  ///         A[i]   = ...   (S1)
253  ///         ...    = A[i]  (S2)
254  ///         A[i+1] = ...   (S3)
255  ///
256  /// LAA will perform dependence analysis here because there are two
257  /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
258  void removeDependencesFromMultipleStores(
259      std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
260    // If Store is nullptr it means that we have multiple stores forwarding to
261    // this store.
262    using LoadToSingleCandT =
263        DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
264    LoadToSingleCandT LoadToSingleCand;
265
266    for (const auto &Cand : Candidates) {
267      bool NewElt;
268      LoadToSingleCandT::iterator Iter;
269
270      std::tie(Iter, NewElt) =
271          LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
272      if (!NewElt) {
273        const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
274        // Already multiple stores forward to this load.
275        if (OtherCand == nullptr)
276          continue;
277
278        // Handle the very basic case when the two stores are in the same block
279        // so deciding which one forwards is easy.  The later one forwards as
280        // long as they both have a dependence distance of one to the load.
281        if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
282            Cand.isDependenceDistanceOfOne(PSE, L) &&
283            OtherCand->isDependenceDistanceOfOne(PSE, L)) {
284          // They are in the same block, the later one will forward to the load.
285          if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
286            OtherCand = &Cand;
287        } else
288          OtherCand = nullptr;
289      }
290    }
291
292    Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
293      if (LoadToSingleCand[Cand.Load] != &Cand) {
294        LLVM_DEBUG(
295            dbgs() << "Removing from candidates: \n"
296                   << Cand
297                   << "  The load may have multiple stores forwarding to "
298                   << "it\n");
299        return true;
300      }
301      return false;
302    });
303  }
304
305  /// Given two pointers operations by their RuntimePointerChecking
306  /// indices, return true if they require an alias check.
307  ///
308  /// We need a check if one is a pointer for a candidate load and the other is
309  /// a pointer for a possibly intervening store.
310  bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
311                     const SmallPtrSet<Value *, 4> &PtrsWrittenOnFwdingPath,
312                     const std::set<Value *> &CandLoadPtrs) {
313    Value *Ptr1 =
314        LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
315    Value *Ptr2 =
316        LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
317    return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
318            (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
319  }
320
321  /// Return pointers that are possibly written to on the path from a
322  /// forwarding store to a load.
323  ///
324  /// These pointers need to be alias-checked against the forwarding candidates.
325  SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
326      const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
327    // From FirstStore to LastLoad neither of the elimination candidate loads
328    // should overlap with any of the stores.
329    //
330    // E.g.:
331    //
332    // st1 C[i]
333    // ld1 B[i] <-------,
334    // ld0 A[i] <----,  |              * LastLoad
335    // ...           |  |
336    // st2 E[i]      |  |
337    // st3 B[i+1] -- | -'              * FirstStore
338    // st0 A[i+1] ---'
339    // st4 D[i]
340    //
341    // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
342    // ld0.
343
344    LoadInst *LastLoad =
345        std::max_element(Candidates.begin(), Candidates.end(),
346                         [&](const StoreToLoadForwardingCandidate &A,
347                             const StoreToLoadForwardingCandidate &B) {
348                           return getInstrIndex(A.Load) < getInstrIndex(B.Load);
349                         })
350            ->Load;
351    StoreInst *FirstStore =
352        std::min_element(Candidates.begin(), Candidates.end(),
353                         [&](const StoreToLoadForwardingCandidate &A,
354                             const StoreToLoadForwardingCandidate &B) {
355                           return getInstrIndex(A.Store) <
356                                  getInstrIndex(B.Store);
357                         })
358            ->Store;
359
360    // We're looking for stores after the first forwarding store until the end
361    // of the loop, then from the beginning of the loop until the last
362    // forwarded-to load.  Collect the pointer for the stores.
363    SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
364
365    auto InsertStorePtr = [&](Instruction *I) {
366      if (auto *S = dyn_cast<StoreInst>(I))
367        PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
368    };
369    const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
370    std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
371                  MemInstrs.end(), InsertStorePtr);
372    std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
373                  InsertStorePtr);
374
375    return PtrsWrittenOnFwdingPath;
376  }
377
378  /// Determine the pointer alias checks to prove that there are no
379  /// intervening stores.
380  SmallVector<RuntimePointerCheck, 4> collectMemchecks(
381      const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
382
383    SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
384        findPointersWrittenOnForwardingPath(Candidates);
385
386    // Collect the pointers of the candidate loads.
387    // FIXME: SmallPtrSet does not work with std::inserter.
388    std::set<Value *> CandLoadPtrs;
389    transform(Candidates,
390                   std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
391                   std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
392
393    const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
394    SmallVector<RuntimePointerCheck, 4> Checks;
395
396    copy_if(AllChecks, std::back_inserter(Checks),
397            [&](const RuntimePointerCheck &Check) {
398              for (auto PtrIdx1 : Check.first->Members)
399                for (auto PtrIdx2 : Check.second->Members)
400                  if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
401                                    CandLoadPtrs))
402                    return true;
403              return false;
404            });
405
406    LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
407                      << "):\n");
408    LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
409
410    return Checks;
411  }
412
413  /// Perform the transformation for a candidate.
414  void
415  propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
416                                  SCEVExpander &SEE) {
417    // loop:
418    //      %x = load %gep_i
419    //         = ... %x
420    //      store %y, %gep_i_plus_1
421    //
422    // =>
423    //
424    // ph:
425    //      %x.initial = load %gep_0
426    // loop:
427    //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
428    //      %x = load %gep_i            <---- now dead
429    //         = ... %x.storeforward
430    //      store %y, %gep_i_plus_1
431
432    Value *Ptr = Cand.Load->getPointerOperand();
433    auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
434    auto *PH = L->getLoopPreheader();
435    assert(PH && "Preheader should exist!");
436    Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
437                                          PH->getTerminator());
438    Value *Initial = new LoadInst(
439        Cand.Load->getType(), InitialPtr, "load_initial",
440        /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator());
441
442    PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
443                                   &L->getHeader()->front());
444    PHI->addIncoming(Initial, PH);
445    PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
446
447    Cand.Load->replaceAllUsesWith(PHI);
448  }
449
450  /// Top-level driver for each loop: find store->load forwarding
451  /// candidates, add run-time checks and perform transformation.
452  bool processLoop() {
453    LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
454                      << "\" checking " << *L << "\n");
455
456    // Look for store-to-load forwarding cases across the
457    // backedge. E.g.:
458    //
459    // loop:
460    //      %x = load %gep_i
461    //         = ... %x
462    //      store %y, %gep_i_plus_1
463    //
464    // =>
465    //
466    // ph:
467    //      %x.initial = load %gep_0
468    // loop:
469    //      %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
470    //      %x = load %gep_i            <---- now dead
471    //         = ... %x.storeforward
472    //      store %y, %gep_i_plus_1
473
474    // First start with store->load dependences.
475    auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
476    if (StoreToLoadDependences.empty())
477      return false;
478
479    // Generate an index for each load and store according to the original
480    // program order.  This will be used later.
481    InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
482
483    // To keep things simple for now, remove those where the load is potentially
484    // fed by multiple stores.
485    removeDependencesFromMultipleStores(StoreToLoadDependences);
486    if (StoreToLoadDependences.empty())
487      return false;
488
489    // Filter the candidates further.
490    SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
491    unsigned NumForwarding = 0;
492    for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
493      LLVM_DEBUG(dbgs() << "Candidate " << Cand);
494
495      // Make sure that the stored values is available everywhere in the loop in
496      // the next iteration.
497      if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
498        continue;
499
500      // If the load is conditional we can't hoist its 0-iteration instance to
501      // the preheader because that would make it unconditional.  Thus we would
502      // access a memory location that the original loop did not access.
503      if (isLoadConditional(Cand.Load, L))
504        continue;
505
506      // Check whether the SCEV difference is the same as the induction step,
507      // thus we load the value in the next iteration.
508      if (!Cand.isDependenceDistanceOfOne(PSE, L))
509        continue;
510
511      ++NumForwarding;
512      LLVM_DEBUG(
513          dbgs()
514          << NumForwarding
515          << ". Valid store-to-load forwarding across the loop backedge\n");
516      Candidates.push_back(Cand);
517    }
518    if (Candidates.empty())
519      return false;
520
521    // Check intervening may-alias stores.  These need runtime checks for alias
522    // disambiguation.
523    SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
524
525    // Too many checks are likely to outweigh the benefits of forwarding.
526    if (Checks.size() > Candidates.size() * CheckPerElim) {
527      LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
528      return false;
529    }
530
531    if (LAI.getPSE().getUnionPredicate().getComplexity() >
532        LoadElimSCEVCheckThreshold) {
533      LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
534      return false;
535    }
536
537    if (!L->isLoopSimplifyForm()) {
538      LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
539      return false;
540    }
541
542    if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
543      if (LAI.hasConvergentOp()) {
544        LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
545                             "convergent calls\n");
546        return false;
547      }
548
549      auto *HeaderBB = L->getHeader();
550      auto *F = HeaderBB->getParent();
551      bool OptForSize = F->hasOptSize() ||
552                        llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
553                                                    PGSOQueryType::IRPass);
554      if (OptForSize) {
555        LLVM_DEBUG(
556            dbgs() << "Versioning is needed but not allowed when optimizing "
557                      "for size.\n");
558        return false;
559      }
560
561      // Point of no-return, start the transformation.  First, version the loop
562      // if necessary.
563
564      LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
565      LV.setAliasChecks(std::move(Checks));
566      LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
567      LV.versionLoop();
568    }
569
570    // Next, propagate the value stored by the store to the users of the load.
571    // Also for the first iteration, generate the initial value of the load.
572    SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
573                     "storeforward");
574    for (const auto &Cand : Candidates)
575      propagateStoredValueToLoadUsers(Cand, SEE);
576    NumLoopLoadEliminted += NumForwarding;
577
578    return true;
579  }
580
581private:
582  Loop *L;
583
584  /// Maps the load/store instructions to their index according to
585  /// program order.
586  DenseMap<Instruction *, unsigned> InstOrder;
587
588  // Analyses used.
589  LoopInfo *LI;
590  const LoopAccessInfo &LAI;
591  DominatorTree *DT;
592  BlockFrequencyInfo *BFI;
593  ProfileSummaryInfo *PSI;
594  PredicatedScalarEvolution PSE;
595};
596
597} // end anonymous namespace
598
599static bool
600eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
601                          BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
602                          function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
603  // Build up a worklist of inner-loops to transform to avoid iterator
604  // invalidation.
605  // FIXME: This logic comes from other passes that actually change the loop
606  // nest structure. It isn't clear this is necessary (or useful) for a pass
607  // which merely optimizes the use of loads in a loop.
608  SmallVector<Loop *, 8> Worklist;
609
610  for (Loop *TopLevelLoop : LI)
611    for (Loop *L : depth_first(TopLevelLoop))
612      // We only handle inner-most loops.
613      if (L->empty())
614        Worklist.push_back(L);
615
616  // Now walk the identified inner loops.
617  bool Changed = false;
618  for (Loop *L : Worklist) {
619    // The actual work is performed by LoadEliminationForLoop.
620    LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT, BFI, PSI);
621    Changed |= LEL.processLoop();
622  }
623  return Changed;
624}
625
626namespace {
627
628/// The pass.  Most of the work is delegated to the per-loop
629/// LoadEliminationForLoop class.
630class LoopLoadElimination : public FunctionPass {
631public:
632  static char ID;
633
634  LoopLoadElimination() : FunctionPass(ID) {
635    initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
636  }
637
638  bool runOnFunction(Function &F) override {
639    if (skipFunction(F))
640      return false;
641
642    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
643    auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
644    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
645    auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
646    auto *BFI = (PSI && PSI->hasProfileSummary()) ?
647                &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
648                nullptr;
649
650    // Process each loop nest in the function.
651    return eliminateLoadsAcrossLoops(
652        F, LI, DT, BFI, PSI,
653        [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
654  }
655
656  void getAnalysisUsage(AnalysisUsage &AU) const override {
657    AU.addRequiredID(LoopSimplifyID);
658    AU.addRequired<LoopInfoWrapperPass>();
659    AU.addPreserved<LoopInfoWrapperPass>();
660    AU.addRequired<LoopAccessLegacyAnalysis>();
661    AU.addRequired<ScalarEvolutionWrapperPass>();
662    AU.addRequired<DominatorTreeWrapperPass>();
663    AU.addPreserved<DominatorTreeWrapperPass>();
664    AU.addPreserved<GlobalsAAWrapperPass>();
665    AU.addRequired<ProfileSummaryInfoWrapperPass>();
666    LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
667  }
668};
669
670} // end anonymous namespace
671
672char LoopLoadElimination::ID;
673
674static const char LLE_name[] = "Loop Load Elimination";
675
676INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
677INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
678INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
679INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
680INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
681INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
682INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
683INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
684INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
685
686FunctionPass *llvm::createLoopLoadEliminationPass() {
687  return new LoopLoadElimination();
688}
689
690PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
691                                               FunctionAnalysisManager &AM) {
692  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
693  auto &LI = AM.getResult<LoopAnalysis>(F);
694  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
695  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
696  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
697  auto &AA = AM.getResult<AAManager>(F);
698  auto &AC = AM.getResult<AssumptionAnalysis>(F);
699  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
700  auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
701  auto *BFI = (PSI && PSI->hasProfileSummary()) ?
702      &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
703  MemorySSA *MSSA = EnableMSSALoopDependency
704                        ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
705                        : nullptr;
706
707  auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
708  bool Changed = eliminateLoadsAcrossLoops(
709      F, LI, DT, BFI, PSI, [&](Loop &L) -> const LoopAccessInfo & {
710        LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
711        return LAM.getResult<LoopAccessAnalysis>(L, AR);
712      });
713
714  if (!Changed)
715    return PreservedAnalyses::all();
716
717  PreservedAnalyses PA;
718  return PA;
719}
720