1//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements an idiom recognizer that transforms simple loops into a
10// non-loop form.  In cases that this kicks in, it can be a significant
11// performance win.
12//
13// If compiling for code size we avoid idiom recognition if the resulting
14// code could be larger than the code for the original loop. One way this could
15// happen is if the loop is not removable after idiom recognition due to the
16// presence of non-idiom instructions. The initial implementation of the
17// heuristics applies to idioms in multi-block loops.
18//
19//===----------------------------------------------------------------------===//
20//
21// TODO List:
22//
23// Future loop memory idioms to recognize:
24//   memcmp, memmove, strlen, etc.
25// Future floating point idioms to recognize in -ffast-math mode:
26//   fpowi
27// Future integer operation idioms to recognize:
28//   ctpop
29//
30// Beware that isel's default lowering for ctpop is highly inefficient for
31// i64 and larger types when i64 is legal and the value has few bits set.  It
32// would be good to enhance isel to emit a loop for ctpop in this case.
33//
34// This could recognize common matrix multiplies and dot product idioms and
35// replace them with calls to BLAS (if linked in??).
36//
37//===----------------------------------------------------------------------===//
38
39#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40#include "llvm/ADT/APInt.h"
41#include "llvm/ADT/ArrayRef.h"
42#include "llvm/ADT/DenseMap.h"
43#include "llvm/ADT/MapVector.h"
44#include "llvm/ADT/SetVector.h"
45#include "llvm/ADT/SmallPtrSet.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/ADT/StringRef.h"
49#include "llvm/Analysis/AliasAnalysis.h"
50#include "llvm/Analysis/LoopAccessAnalysis.h"
51#include "llvm/Analysis/LoopInfo.h"
52#include "llvm/Analysis/LoopPass.h"
53#include "llvm/Analysis/MemoryLocation.h"
54#include "llvm/Analysis/MemorySSA.h"
55#include "llvm/Analysis/MemorySSAUpdater.h"
56#include "llvm/Analysis/MustExecute.h"
57#include "llvm/Analysis/OptimizationRemarkEmitter.h"
58#include "llvm/Analysis/ScalarEvolution.h"
59#include "llvm/Analysis/ScalarEvolutionExpressions.h"
60#include "llvm/Analysis/TargetLibraryInfo.h"
61#include "llvm/Analysis/TargetTransformInfo.h"
62#include "llvm/Analysis/ValueTracking.h"
63#include "llvm/IR/Attributes.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/Constant.h"
66#include "llvm/IR/Constants.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DebugLoc.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/Dominators.h"
71#include "llvm/IR/GlobalValue.h"
72#include "llvm/IR/GlobalVariable.h"
73#include "llvm/IR/IRBuilder.h"
74#include "llvm/IR/InstrTypes.h"
75#include "llvm/IR/Instruction.h"
76#include "llvm/IR/Instructions.h"
77#include "llvm/IR/IntrinsicInst.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Module.h"
81#include "llvm/IR/PassManager.h"
82#include "llvm/IR/Type.h"
83#include "llvm/IR/User.h"
84#include "llvm/IR/Value.h"
85#include "llvm/IR/ValueHandle.h"
86#include "llvm/InitializePasses.h"
87#include "llvm/Pass.h"
88#include "llvm/Support/Casting.h"
89#include "llvm/Support/CommandLine.h"
90#include "llvm/Support/Debug.h"
91#include "llvm/Support/raw_ostream.h"
92#include "llvm/Transforms/Scalar.h"
93#include "llvm/Transforms/Utils/BuildLibCalls.h"
94#include "llvm/Transforms/Utils/Local.h"
95#include "llvm/Transforms/Utils/LoopUtils.h"
96#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
97#include <algorithm>
98#include <cassert>
99#include <cstdint>
100#include <utility>
101#include <vector>
102
103using namespace llvm;
104
105#define DEBUG_TYPE "loop-idiom"
106
107STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
108STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
109
110static cl::opt<bool> UseLIRCodeSizeHeurs(
111    "use-lir-code-size-heurs",
112    cl::desc("Use loop idiom recognition code size heuristics when compiling"
113             "with -Os/-Oz"),
114    cl::init(true), cl::Hidden);
115
116namespace {
117
118class LoopIdiomRecognize {
119  Loop *CurLoop = nullptr;
120  AliasAnalysis *AA;
121  DominatorTree *DT;
122  LoopInfo *LI;
123  ScalarEvolution *SE;
124  TargetLibraryInfo *TLI;
125  const TargetTransformInfo *TTI;
126  const DataLayout *DL;
127  OptimizationRemarkEmitter &ORE;
128  bool ApplyCodeSizeHeuristics;
129  std::unique_ptr<MemorySSAUpdater> MSSAU;
130
131public:
132  explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
133                              LoopInfo *LI, ScalarEvolution *SE,
134                              TargetLibraryInfo *TLI,
135                              const TargetTransformInfo *TTI, MemorySSA *MSSA,
136                              const DataLayout *DL,
137                              OptimizationRemarkEmitter &ORE)
138      : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
139    if (MSSA)
140      MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
141  }
142
143  bool runOnLoop(Loop *L);
144
145private:
146  using StoreList = SmallVector<StoreInst *, 8>;
147  using StoreListMap = MapVector<Value *, StoreList>;
148
149  StoreListMap StoreRefsForMemset;
150  StoreListMap StoreRefsForMemsetPattern;
151  StoreList StoreRefsForMemcpy;
152  bool HasMemset;
153  bool HasMemsetPattern;
154  bool HasMemcpy;
155
156  /// Return code for isLegalStore()
157  enum LegalStoreKind {
158    None = 0,
159    Memset,
160    MemsetPattern,
161    Memcpy,
162    UnorderedAtomicMemcpy,
163    DontUse // Dummy retval never to be used. Allows catching errors in retval
164            // handling.
165  };
166
167  /// \name Countable Loop Idiom Handling
168  /// @{
169
170  bool runOnCountableLoop();
171  bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
172                      SmallVectorImpl<BasicBlock *> &ExitBlocks);
173
174  void collectStores(BasicBlock *BB);
175  LegalStoreKind isLegalStore(StoreInst *SI);
176  enum class ForMemset { No, Yes };
177  bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
178                         ForMemset For);
179  bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
180
181  bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
182                               MaybeAlign StoreAlignment, Value *StoredVal,
183                               Instruction *TheStore,
184                               SmallPtrSetImpl<Instruction *> &Stores,
185                               const SCEVAddRecExpr *Ev, const SCEV *BECount,
186                               bool NegStride, bool IsLoopMemset = false);
187  bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
188  bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
189                                 bool IsLoopMemset = false);
190
191  /// @}
192  /// \name Noncountable Loop Idiom Handling
193  /// @{
194
195  bool runOnNoncountableLoop();
196
197  bool recognizePopcount();
198  void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
199                               PHINode *CntPhi, Value *Var);
200  bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
201  void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
202                                Instruction *CntInst, PHINode *CntPhi,
203                                Value *Var, Instruction *DefX,
204                                const DebugLoc &DL, bool ZeroCheck,
205                                bool IsCntPhiUsedOutsideLoop);
206
207  /// @}
208};
209
210class LoopIdiomRecognizeLegacyPass : public LoopPass {
211public:
212  static char ID;
213
214  explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
215    initializeLoopIdiomRecognizeLegacyPassPass(
216        *PassRegistry::getPassRegistry());
217  }
218
219  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
220    if (skipLoop(L))
221      return false;
222
223    AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
224    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
225    LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
226    ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
227    TargetLibraryInfo *TLI =
228        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
229            *L->getHeader()->getParent());
230    const TargetTransformInfo *TTI =
231        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
232            *L->getHeader()->getParent());
233    const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
234    auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
235    MemorySSA *MSSA = nullptr;
236    if (MSSAAnalysis)
237      MSSA = &MSSAAnalysis->getMSSA();
238
239    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
240    // pass.  Function analyses need to be preserved across loop transformations
241    // but ORE cannot be preserved (see comment before the pass definition).
242    OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
243
244    LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
245    return LIR.runOnLoop(L);
246  }
247
248  /// This transformation requires natural loop information & requires that
249  /// loop preheaders be inserted into the CFG.
250  void getAnalysisUsage(AnalysisUsage &AU) const override {
251    AU.addRequired<TargetLibraryInfoWrapperPass>();
252    AU.addRequired<TargetTransformInfoWrapperPass>();
253    AU.addPreserved<MemorySSAWrapperPass>();
254    getLoopAnalysisUsage(AU);
255  }
256};
257
258} // end anonymous namespace
259
260char LoopIdiomRecognizeLegacyPass::ID = 0;
261
262PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
263                                              LoopStandardAnalysisResults &AR,
264                                              LPMUpdater &) {
265  const auto *DL = &L.getHeader()->getModule()->getDataLayout();
266
267  // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
268  // pass.  Function analyses need to be preserved across loop transformations
269  // but ORE cannot be preserved (see comment before the pass definition).
270  OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
271
272  LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
273                         AR.MSSA, DL, ORE);
274  if (!LIR.runOnLoop(&L))
275    return PreservedAnalyses::all();
276
277  auto PA = getLoopPassPreservedAnalyses();
278  if (AR.MSSA)
279    PA.preserve<MemorySSAAnalysis>();
280  return PA;
281}
282
283INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
284                      "Recognize loop idioms", false, false)
285INITIALIZE_PASS_DEPENDENCY(LoopPass)
286INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
287INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
288INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
289                    "Recognize loop idioms", false, false)
290
291Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
292
293static void deleteDeadInstruction(Instruction *I) {
294  I->replaceAllUsesWith(UndefValue::get(I->getType()));
295  I->eraseFromParent();
296}
297
298//===----------------------------------------------------------------------===//
299//
300//          Implementation of LoopIdiomRecognize
301//
302//===----------------------------------------------------------------------===//
303
304bool LoopIdiomRecognize::runOnLoop(Loop *L) {
305  CurLoop = L;
306  // If the loop could not be converted to canonical form, it must have an
307  // indirectbr in it, just give up.
308  if (!L->getLoopPreheader())
309    return false;
310
311  // Disable loop idiom recognition if the function's name is a common idiom.
312  StringRef Name = L->getHeader()->getParent()->getName();
313  if (Name == "memset" || Name == "memcpy")
314    return false;
315
316  // Determine if code size heuristics need to be applied.
317  ApplyCodeSizeHeuristics =
318      L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
319
320  HasMemset = TLI->has(LibFunc_memset);
321  HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
322  HasMemcpy = TLI->has(LibFunc_memcpy);
323
324  if (HasMemset || HasMemsetPattern || HasMemcpy)
325    if (SE->hasLoopInvariantBackedgeTakenCount(L))
326      return runOnCountableLoop();
327
328  return runOnNoncountableLoop();
329}
330
331bool LoopIdiomRecognize::runOnCountableLoop() {
332  const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
333  assert(!isa<SCEVCouldNotCompute>(BECount) &&
334         "runOnCountableLoop() called on a loop without a predictable"
335         "backedge-taken count");
336
337  // If this loop executes exactly one time, then it should be peeled, not
338  // optimized by this pass.
339  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
340    if (BECst->getAPInt() == 0)
341      return false;
342
343  SmallVector<BasicBlock *, 8> ExitBlocks;
344  CurLoop->getUniqueExitBlocks(ExitBlocks);
345
346  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
347                    << CurLoop->getHeader()->getParent()->getName()
348                    << "] Countable Loop %" << CurLoop->getHeader()->getName()
349                    << "\n");
350
351  // The following transforms hoist stores/memsets into the loop pre-header.
352  // Give up if the loop has instructions that may throw.
353  SimpleLoopSafetyInfo SafetyInfo;
354  SafetyInfo.computeLoopSafetyInfo(CurLoop);
355  if (SafetyInfo.anyBlockMayThrow())
356    return false;
357
358  bool MadeChange = false;
359
360  // Scan all the blocks in the loop that are not in subloops.
361  for (auto *BB : CurLoop->getBlocks()) {
362    // Ignore blocks in subloops.
363    if (LI->getLoopFor(BB) != CurLoop)
364      continue;
365
366    MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
367  }
368  return MadeChange;
369}
370
371static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
372  const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
373  return ConstStride->getAPInt();
374}
375
376/// getMemSetPatternValue - If a strided store of the specified value is safe to
377/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
378/// be passed in.  Otherwise, return null.
379///
380/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
381/// just replicate their input array and then pass on to memset_pattern16.
382static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
383  // FIXME: This could check for UndefValue because it can be merged into any
384  // other valid pattern.
385
386  // If the value isn't a constant, we can't promote it to being in a constant
387  // array.  We could theoretically do a store to an alloca or something, but
388  // that doesn't seem worthwhile.
389  Constant *C = dyn_cast<Constant>(V);
390  if (!C)
391    return nullptr;
392
393  // Only handle simple values that are a power of two bytes in size.
394  uint64_t Size = DL->getTypeSizeInBits(V->getType());
395  if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
396    return nullptr;
397
398  // Don't care enough about darwin/ppc to implement this.
399  if (DL->isBigEndian())
400    return nullptr;
401
402  // Convert to size in bytes.
403  Size /= 8;
404
405  // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
406  // if the top and bottom are the same (e.g. for vectors and large integers).
407  if (Size > 16)
408    return nullptr;
409
410  // If the constant is exactly 16 bytes, just use it.
411  if (Size == 16)
412    return C;
413
414  // Otherwise, we'll use an array of the constants.
415  unsigned ArraySize = 16 / Size;
416  ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
417  return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
418}
419
420LoopIdiomRecognize::LegalStoreKind
421LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
422  // Don't touch volatile stores.
423  if (SI->isVolatile())
424    return LegalStoreKind::None;
425  // We only want simple or unordered-atomic stores.
426  if (!SI->isUnordered())
427    return LegalStoreKind::None;
428
429  // Don't convert stores of non-integral pointer types to memsets (which stores
430  // integers).
431  if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
432    return LegalStoreKind::None;
433
434  // Avoid merging nontemporal stores.
435  if (SI->getMetadata(LLVMContext::MD_nontemporal))
436    return LegalStoreKind::None;
437
438  Value *StoredVal = SI->getValueOperand();
439  Value *StorePtr = SI->getPointerOperand();
440
441  // Reject stores that are so large that they overflow an unsigned.
442  uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
443  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
444    return LegalStoreKind::None;
445
446  // See if the pointer expression is an AddRec like {base,+,1} on the current
447  // loop, which indicates a strided store.  If we have something else, it's a
448  // random store we can't handle.
449  const SCEVAddRecExpr *StoreEv =
450      dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
451  if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
452    return LegalStoreKind::None;
453
454  // Check to see if we have a constant stride.
455  if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
456    return LegalStoreKind::None;
457
458  // See if the store can be turned into a memset.
459
460  // If the stored value is a byte-wise value (like i32 -1), then it may be
461  // turned into a memset of i8 -1, assuming that all the consecutive bytes
462  // are stored.  A store of i32 0x01020304 can never be turned into a memset,
463  // but it can be turned into memset_pattern if the target supports it.
464  Value *SplatValue = isBytewiseValue(StoredVal, *DL);
465  Constant *PatternValue = nullptr;
466
467  // Note: memset and memset_pattern on unordered-atomic is yet not supported
468  bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
469
470  // If we're allowed to form a memset, and the stored value would be
471  // acceptable for memset, use it.
472  if (!UnorderedAtomic && HasMemset && SplatValue &&
473      // Verify that the stored value is loop invariant.  If not, we can't
474      // promote the memset.
475      CurLoop->isLoopInvariant(SplatValue)) {
476    // It looks like we can use SplatValue.
477    return LegalStoreKind::Memset;
478  } else if (!UnorderedAtomic && HasMemsetPattern &&
479             // Don't create memset_pattern16s with address spaces.
480             StorePtr->getType()->getPointerAddressSpace() == 0 &&
481             (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
482    // It looks like we can use PatternValue!
483    return LegalStoreKind::MemsetPattern;
484  }
485
486  // Otherwise, see if the store can be turned into a memcpy.
487  if (HasMemcpy) {
488    // Check to see if the stride matches the size of the store.  If so, then we
489    // know that every byte is touched in the loop.
490    APInt Stride = getStoreStride(StoreEv);
491    unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
492    if (StoreSize != Stride && StoreSize != -Stride)
493      return LegalStoreKind::None;
494
495    // The store must be feeding a non-volatile load.
496    LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
497
498    // Only allow non-volatile loads
499    if (!LI || LI->isVolatile())
500      return LegalStoreKind::None;
501    // Only allow simple or unordered-atomic loads
502    if (!LI->isUnordered())
503      return LegalStoreKind::None;
504
505    // See if the pointer expression is an AddRec like {base,+,1} on the current
506    // loop, which indicates a strided load.  If we have something else, it's a
507    // random load we can't handle.
508    const SCEVAddRecExpr *LoadEv =
509        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
510    if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
511      return LegalStoreKind::None;
512
513    // The store and load must share the same stride.
514    if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
515      return LegalStoreKind::None;
516
517    // Success.  This store can be converted into a memcpy.
518    UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
519    return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
520                           : LegalStoreKind::Memcpy;
521  }
522  // This store can't be transformed into a memset/memcpy.
523  return LegalStoreKind::None;
524}
525
526void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
527  StoreRefsForMemset.clear();
528  StoreRefsForMemsetPattern.clear();
529  StoreRefsForMemcpy.clear();
530  for (Instruction &I : *BB) {
531    StoreInst *SI = dyn_cast<StoreInst>(&I);
532    if (!SI)
533      continue;
534
535    // Make sure this is a strided store with a constant stride.
536    switch (isLegalStore(SI)) {
537    case LegalStoreKind::None:
538      // Nothing to do
539      break;
540    case LegalStoreKind::Memset: {
541      // Find the base pointer.
542      Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
543      StoreRefsForMemset[Ptr].push_back(SI);
544    } break;
545    case LegalStoreKind::MemsetPattern: {
546      // Find the base pointer.
547      Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
548      StoreRefsForMemsetPattern[Ptr].push_back(SI);
549    } break;
550    case LegalStoreKind::Memcpy:
551    case LegalStoreKind::UnorderedAtomicMemcpy:
552      StoreRefsForMemcpy.push_back(SI);
553      break;
554    default:
555      assert(false && "unhandled return value");
556      break;
557    }
558  }
559}
560
561/// runOnLoopBlock - Process the specified block, which lives in a counted loop
562/// with the specified backedge count.  This block is known to be in the current
563/// loop and not in any subloops.
564bool LoopIdiomRecognize::runOnLoopBlock(
565    BasicBlock *BB, const SCEV *BECount,
566    SmallVectorImpl<BasicBlock *> &ExitBlocks) {
567  // We can only promote stores in this block if they are unconditionally
568  // executed in the loop.  For a block to be unconditionally executed, it has
569  // to dominate all the exit blocks of the loop.  Verify this now.
570  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
571    if (!DT->dominates(BB, ExitBlocks[i]))
572      return false;
573
574  bool MadeChange = false;
575  // Look for store instructions, which may be optimized to memset/memcpy.
576  collectStores(BB);
577
578  // Look for a single store or sets of stores with a common base, which can be
579  // optimized into a memset (memset_pattern).  The latter most commonly happens
580  // with structs and handunrolled loops.
581  for (auto &SL : StoreRefsForMemset)
582    MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
583
584  for (auto &SL : StoreRefsForMemsetPattern)
585    MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
586
587  // Optimize the store into a memcpy, if it feeds an similarly strided load.
588  for (auto &SI : StoreRefsForMemcpy)
589    MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
590
591  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
592    Instruction *Inst = &*I++;
593    // Look for memset instructions, which may be optimized to a larger memset.
594    if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
595      WeakTrackingVH InstPtr(&*I);
596      if (!processLoopMemSet(MSI, BECount))
597        continue;
598      MadeChange = true;
599
600      // If processing the memset invalidated our iterator, start over from the
601      // top of the block.
602      if (!InstPtr)
603        I = BB->begin();
604      continue;
605    }
606  }
607
608  return MadeChange;
609}
610
611/// See if this store(s) can be promoted to a memset.
612bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
613                                           const SCEV *BECount, ForMemset For) {
614  // Try to find consecutive stores that can be transformed into memsets.
615  SetVector<StoreInst *> Heads, Tails;
616  SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
617
618  // Do a quadratic search on all of the given stores and find
619  // all of the pairs of stores that follow each other.
620  SmallVector<unsigned, 16> IndexQueue;
621  for (unsigned i = 0, e = SL.size(); i < e; ++i) {
622    assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
623
624    Value *FirstStoredVal = SL[i]->getValueOperand();
625    Value *FirstStorePtr = SL[i]->getPointerOperand();
626    const SCEVAddRecExpr *FirstStoreEv =
627        cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
628    APInt FirstStride = getStoreStride(FirstStoreEv);
629    unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
630
631    // See if we can optimize just this store in isolation.
632    if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
633      Heads.insert(SL[i]);
634      continue;
635    }
636
637    Value *FirstSplatValue = nullptr;
638    Constant *FirstPatternValue = nullptr;
639
640    if (For == ForMemset::Yes)
641      FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
642    else
643      FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
644
645    assert((FirstSplatValue || FirstPatternValue) &&
646           "Expected either splat value or pattern value.");
647
648    IndexQueue.clear();
649    // If a store has multiple consecutive store candidates, search Stores
650    // array according to the sequence: from i+1 to e, then from i-1 to 0.
651    // This is because usually pairing with immediate succeeding or preceding
652    // candidate create the best chance to find memset opportunity.
653    unsigned j = 0;
654    for (j = i + 1; j < e; ++j)
655      IndexQueue.push_back(j);
656    for (j = i; j > 0; --j)
657      IndexQueue.push_back(j - 1);
658
659    for (auto &k : IndexQueue) {
660      assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
661      Value *SecondStorePtr = SL[k]->getPointerOperand();
662      const SCEVAddRecExpr *SecondStoreEv =
663          cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
664      APInt SecondStride = getStoreStride(SecondStoreEv);
665
666      if (FirstStride != SecondStride)
667        continue;
668
669      Value *SecondStoredVal = SL[k]->getValueOperand();
670      Value *SecondSplatValue = nullptr;
671      Constant *SecondPatternValue = nullptr;
672
673      if (For == ForMemset::Yes)
674        SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
675      else
676        SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
677
678      assert((SecondSplatValue || SecondPatternValue) &&
679             "Expected either splat value or pattern value.");
680
681      if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
682        if (For == ForMemset::Yes) {
683          if (isa<UndefValue>(FirstSplatValue))
684            FirstSplatValue = SecondSplatValue;
685          if (FirstSplatValue != SecondSplatValue)
686            continue;
687        } else {
688          if (isa<UndefValue>(FirstPatternValue))
689            FirstPatternValue = SecondPatternValue;
690          if (FirstPatternValue != SecondPatternValue)
691            continue;
692        }
693        Tails.insert(SL[k]);
694        Heads.insert(SL[i]);
695        ConsecutiveChain[SL[i]] = SL[k];
696        break;
697      }
698    }
699  }
700
701  // We may run into multiple chains that merge into a single chain. We mark the
702  // stores that we transformed so that we don't visit the same store twice.
703  SmallPtrSet<Value *, 16> TransformedStores;
704  bool Changed = false;
705
706  // For stores that start but don't end a link in the chain:
707  for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
708       it != e; ++it) {
709    if (Tails.count(*it))
710      continue;
711
712    // We found a store instr that starts a chain. Now follow the chain and try
713    // to transform it.
714    SmallPtrSet<Instruction *, 8> AdjacentStores;
715    StoreInst *I = *it;
716
717    StoreInst *HeadStore = I;
718    unsigned StoreSize = 0;
719
720    // Collect the chain into a list.
721    while (Tails.count(I) || Heads.count(I)) {
722      if (TransformedStores.count(I))
723        break;
724      AdjacentStores.insert(I);
725
726      StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
727      // Move to the next value in the chain.
728      I = ConsecutiveChain[I];
729    }
730
731    Value *StoredVal = HeadStore->getValueOperand();
732    Value *StorePtr = HeadStore->getPointerOperand();
733    const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
734    APInt Stride = getStoreStride(StoreEv);
735
736    // Check to see if the stride matches the size of the stores.  If so, then
737    // we know that every byte is touched in the loop.
738    if (StoreSize != Stride && StoreSize != -Stride)
739      continue;
740
741    bool NegStride = StoreSize == -Stride;
742
743    if (processLoopStridedStore(StorePtr, StoreSize,
744                                MaybeAlign(HeadStore->getAlignment()),
745                                StoredVal, HeadStore, AdjacentStores, StoreEv,
746                                BECount, NegStride)) {
747      TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
748      Changed = true;
749    }
750  }
751
752  return Changed;
753}
754
755/// processLoopMemSet - See if this memset can be promoted to a large memset.
756bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
757                                           const SCEV *BECount) {
758  // We can only handle non-volatile memsets with a constant size.
759  if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
760    return false;
761
762  // If we're not allowed to hack on memset, we fail.
763  if (!HasMemset)
764    return false;
765
766  Value *Pointer = MSI->getDest();
767
768  // See if the pointer expression is an AddRec like {base,+,1} on the current
769  // loop, which indicates a strided store.  If we have something else, it's a
770  // random store we can't handle.
771  const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
772  if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
773    return false;
774
775  // Reject memsets that are so large that they overflow an unsigned.
776  uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
777  if ((SizeInBytes >> 32) != 0)
778    return false;
779
780  // Check to see if the stride matches the size of the memset.  If so, then we
781  // know that every byte is touched in the loop.
782  const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
783  if (!ConstStride)
784    return false;
785
786  APInt Stride = ConstStride->getAPInt();
787  if (SizeInBytes != Stride && SizeInBytes != -Stride)
788    return false;
789
790  // Verify that the memset value is loop invariant.  If not, we can't promote
791  // the memset.
792  Value *SplatValue = MSI->getValue();
793  if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
794    return false;
795
796  SmallPtrSet<Instruction *, 1> MSIs;
797  MSIs.insert(MSI);
798  bool NegStride = SizeInBytes == -Stride;
799  return processLoopStridedStore(
800      Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
801      SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
802}
803
804/// mayLoopAccessLocation - Return true if the specified loop might access the
805/// specified pointer location, which is a loop-strided access.  The 'Access'
806/// argument specifies what the verboten forms of access are (read or write).
807static bool
808mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
809                      const SCEV *BECount, unsigned StoreSize,
810                      AliasAnalysis &AA,
811                      SmallPtrSetImpl<Instruction *> &IgnoredStores) {
812  // Get the location that may be stored across the loop.  Since the access is
813  // strided positively through memory, we say that the modified location starts
814  // at the pointer and has infinite size.
815  LocationSize AccessSize = LocationSize::unknown();
816
817  // If the loop iterates a fixed number of times, we can refine the access size
818  // to be exactly the size of the memset, which is (BECount+1)*StoreSize
819  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
820    AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
821                                       StoreSize);
822
823  // TODO: For this to be really effective, we have to dive into the pointer
824  // operand in the store.  Store to &A[i] of 100 will always return may alias
825  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
826  // which will then no-alias a store to &A[100].
827  MemoryLocation StoreLoc(Ptr, AccessSize);
828
829  for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
830       ++BI)
831    for (Instruction &I : **BI)
832      if (IgnoredStores.count(&I) == 0 &&
833          isModOrRefSet(
834              intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
835        return true;
836
837  return false;
838}
839
840// If we have a negative stride, Start refers to the end of the memory location
841// we're trying to memset.  Therefore, we need to recompute the base pointer,
842// which is just Start - BECount*Size.
843static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
844                                        Type *IntPtr, unsigned StoreSize,
845                                        ScalarEvolution *SE) {
846  const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
847  if (StoreSize != 1)
848    Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
849                           SCEV::FlagNUW);
850  return SE->getMinusSCEV(Start, Index);
851}
852
853/// Compute the number of bytes as a SCEV from the backedge taken count.
854///
855/// This also maps the SCEV into the provided type and tries to handle the
856/// computation in a way that will fold cleanly.
857static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
858                               unsigned StoreSize, Loop *CurLoop,
859                               const DataLayout *DL, ScalarEvolution *SE) {
860  const SCEV *NumBytesS;
861  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
862  // pointer size if it isn't already.
863  //
864  // If we're going to need to zero extend the BE count, check if we can add
865  // one to it prior to zero extending without overflow. Provided this is safe,
866  // it allows better simplification of the +1.
867  if (DL->getTypeSizeInBits(BECount->getType()) <
868          DL->getTypeSizeInBits(IntPtr) &&
869      SE->isLoopEntryGuardedByCond(
870          CurLoop, ICmpInst::ICMP_NE, BECount,
871          SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
872    NumBytesS = SE->getZeroExtendExpr(
873        SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
874        IntPtr);
875  } else {
876    NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
877                               SE->getOne(IntPtr), SCEV::FlagNUW);
878  }
879
880  // And scale it based on the store size.
881  if (StoreSize != 1) {
882    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
883                               SCEV::FlagNUW);
884  }
885  return NumBytesS;
886}
887
888/// processLoopStridedStore - We see a strided store of some value.  If we can
889/// transform this into a memset or memset_pattern in the loop preheader, do so.
890bool LoopIdiomRecognize::processLoopStridedStore(
891    Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
892    Value *StoredVal, Instruction *TheStore,
893    SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
894    const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
895  Value *SplatValue = isBytewiseValue(StoredVal, *DL);
896  Constant *PatternValue = nullptr;
897
898  if (!SplatValue)
899    PatternValue = getMemSetPatternValue(StoredVal, DL);
900
901  assert((SplatValue || PatternValue) &&
902         "Expected either splat value or pattern value.");
903
904  // The trip count of the loop and the base pointer of the addrec SCEV is
905  // guaranteed to be loop invariant, which means that it should dominate the
906  // header.  This allows us to insert code for it in the preheader.
907  unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
908  BasicBlock *Preheader = CurLoop->getLoopPreheader();
909  IRBuilder<> Builder(Preheader->getTerminator());
910  SCEVExpander Expander(*SE, *DL, "loop-idiom");
911
912  Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
913  Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
914
915  const SCEV *Start = Ev->getStart();
916  // Handle negative strided loops.
917  if (NegStride)
918    Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
919
920  // TODO: ideally we should still be able to generate memset if SCEV expander
921  // is taught to generate the dependencies at the latest point.
922  if (!isSafeToExpand(Start, *SE))
923    return false;
924
925  // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
926  // this into a memset in the loop preheader now if we want.  However, this
927  // would be unsafe to do if there is anything else in the loop that may read
928  // or write to the aliased location.  Check for any overlap by generating the
929  // base pointer and checking the region.
930  Value *BasePtr =
931      Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
932  if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
933                            StoreSize, *AA, Stores)) {
934    Expander.clear();
935    // If we generated new code for the base pointer, clean up.
936    RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
937    return false;
938  }
939
940  if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
941    return false;
942
943  // Okay, everything looks good, insert the memset.
944
945  const SCEV *NumBytesS =
946      getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
947
948  // TODO: ideally we should still be able to generate memset if SCEV expander
949  // is taught to generate the dependencies at the latest point.
950  if (!isSafeToExpand(NumBytesS, *SE))
951    return false;
952
953  Value *NumBytes =
954      Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
955
956  CallInst *NewCall;
957  if (SplatValue) {
958    NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
959                                   MaybeAlign(StoreAlignment));
960  } else {
961    // Everything is emitted in default address space
962    Type *Int8PtrTy = DestInt8PtrTy;
963
964    Module *M = TheStore->getModule();
965    StringRef FuncName = "memset_pattern16";
966    FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
967                                                Int8PtrTy, Int8PtrTy, IntIdxTy);
968    inferLibFuncAttributes(M, FuncName, *TLI);
969
970    // Otherwise we should form a memset_pattern16.  PatternValue is known to be
971    // an constant array of 16-bytes.  Plop the value into a mergable global.
972    GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
973                                            GlobalValue::PrivateLinkage,
974                                            PatternValue, ".memset_pattern");
975    GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
976    GV->setAlignment(Align(16));
977    Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
978    NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
979  }
980  NewCall->setDebugLoc(TheStore->getDebugLoc());
981
982  if (MSSAU) {
983    MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
984        NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
985    MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
986  }
987
988  LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
989                    << "    from store to: " << *Ev << " at: " << *TheStore
990                    << "\n");
991
992  ORE.emit([&]() {
993    return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
994                              NewCall->getDebugLoc(), Preheader)
995           << "Transformed loop-strided store into a call to "
996           << ore::NV("NewFunction", NewCall->getCalledFunction())
997           << "() function";
998  });
999
1000  // Okay, the memset has been formed.  Zap the original store and anything that
1001  // feeds into it.
1002  for (auto *I : Stores) {
1003    if (MSSAU)
1004      MSSAU->removeMemoryAccess(I, true);
1005    deleteDeadInstruction(I);
1006  }
1007  if (MSSAU && VerifyMemorySSA)
1008    MSSAU->getMemorySSA()->verifyMemorySSA();
1009  ++NumMemSet;
1010  return true;
1011}
1012
1013class ExpandedValuesCleaner {
1014  SCEVExpander &Expander;
1015  TargetLibraryInfo *TLI;
1016  SmallVector<Value *, 4> ExpandedValues;
1017  bool Commit = false;
1018
1019public:
1020  ExpandedValuesCleaner(SCEVExpander &Expander, TargetLibraryInfo *TLI)
1021      : Expander(Expander), TLI(TLI) {}
1022
1023  void add(Value *V) { ExpandedValues.push_back(V); }
1024
1025  void commit() { Commit = true; }
1026
1027  ~ExpandedValuesCleaner() {
1028    if (!Commit) {
1029      Expander.clear();
1030      for (auto *V : ExpandedValues)
1031        RecursivelyDeleteTriviallyDeadInstructions(V, TLI);
1032    }
1033  }
1034};
1035
1036/// If the stored value is a strided load in the same loop with the same stride
1037/// this may be transformable into a memcpy.  This kicks in for stuff like
1038/// for (i) A[i] = B[i];
1039bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1040                                                    const SCEV *BECount) {
1041  assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1042
1043  Value *StorePtr = SI->getPointerOperand();
1044  const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1045  APInt Stride = getStoreStride(StoreEv);
1046  unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1047  bool NegStride = StoreSize == -Stride;
1048
1049  // The store must be feeding a non-volatile load.
1050  LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1051  assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1052
1053  // See if the pointer expression is an AddRec like {base,+,1} on the current
1054  // loop, which indicates a strided load.  If we have something else, it's a
1055  // random load we can't handle.
1056  const SCEVAddRecExpr *LoadEv =
1057      cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1058
1059  // The trip count of the loop and the base pointer of the addrec SCEV is
1060  // guaranteed to be loop invariant, which means that it should dominate the
1061  // header.  This allows us to insert code for it in the preheader.
1062  BasicBlock *Preheader = CurLoop->getLoopPreheader();
1063  IRBuilder<> Builder(Preheader->getTerminator());
1064  SCEVExpander Expander(*SE, *DL, "loop-idiom");
1065
1066  ExpandedValuesCleaner EVC(Expander, TLI);
1067
1068  const SCEV *StrStart = StoreEv->getStart();
1069  unsigned StrAS = SI->getPointerAddressSpace();
1070  Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1071
1072  // Handle negative strided loops.
1073  if (NegStride)
1074    StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
1075
1076  // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1077  // this into a memcpy in the loop preheader now if we want.  However, this
1078  // would be unsafe to do if there is anything else in the loop that may read
1079  // or write the memory region we're storing to.  This includes the load that
1080  // feeds the stores.  Check for an alias by generating the base address and
1081  // checking everything.
1082  Value *StoreBasePtr = Expander.expandCodeFor(
1083      StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1084  EVC.add(StoreBasePtr);
1085
1086  SmallPtrSet<Instruction *, 1> Stores;
1087  Stores.insert(SI);
1088  if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1089                            StoreSize, *AA, Stores))
1090    return false;
1091
1092  const SCEV *LdStart = LoadEv->getStart();
1093  unsigned LdAS = LI->getPointerAddressSpace();
1094
1095  // Handle negative strided loops.
1096  if (NegStride)
1097    LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
1098
1099  // For a memcpy, we have to make sure that the input array is not being
1100  // mutated by the loop.
1101  Value *LoadBasePtr = Expander.expandCodeFor(
1102      LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1103  EVC.add(LoadBasePtr);
1104
1105  if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1106                            StoreSize, *AA, Stores))
1107    return false;
1108
1109  if (avoidLIRForMultiBlockLoop())
1110    return false;
1111
1112  // Okay, everything is safe, we can transform this!
1113
1114  const SCEV *NumBytesS =
1115      getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1116
1117  Value *NumBytes =
1118      Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1119  EVC.add(NumBytes);
1120
1121  CallInst *NewCall = nullptr;
1122  // Check whether to generate an unordered atomic memcpy:
1123  //  If the load or store are atomic, then they must necessarily be unordered
1124  //  by previous checks.
1125  if (!SI->isAtomic() && !LI->isAtomic())
1126    NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
1127                                   LI->getAlign(), NumBytes);
1128  else {
1129    // We cannot allow unaligned ops for unordered load/store, so reject
1130    // anything where the alignment isn't at least the element size.
1131    const Align StoreAlign = SI->getAlign();
1132    const Align LoadAlign = LI->getAlign();
1133    if (StoreAlign < StoreSize || LoadAlign < StoreSize)
1134      return false;
1135
1136    // If the element.atomic memcpy is not lowered into explicit
1137    // loads/stores later, then it will be lowered into an element-size
1138    // specific lib call. If the lib call doesn't exist for our store size, then
1139    // we shouldn't generate the memcpy.
1140    if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1141      return false;
1142
1143    // Create the call.
1144    // Note that unordered atomic loads/stores are *required* by the spec to
1145    // have an alignment but non-atomic loads/stores may not.
1146    NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1147        StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1148        StoreSize);
1149  }
1150  NewCall->setDebugLoc(SI->getDebugLoc());
1151
1152  if (MSSAU) {
1153    MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1154        NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1155    MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1156  }
1157
1158  LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1159                    << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1160                    << "    from store ptr=" << *StoreEv << " at: " << *SI
1161                    << "\n");
1162
1163  ORE.emit([&]() {
1164    return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1165                              NewCall->getDebugLoc(), Preheader)
1166           << "Formed a call to "
1167           << ore::NV("NewFunction", NewCall->getCalledFunction())
1168           << "() function";
1169  });
1170
1171  // Okay, the memcpy has been formed.  Zap the original store and anything that
1172  // feeds into it.
1173  if (MSSAU)
1174    MSSAU->removeMemoryAccess(SI, true);
1175  deleteDeadInstruction(SI);
1176  if (MSSAU && VerifyMemorySSA)
1177    MSSAU->getMemorySSA()->verifyMemorySSA();
1178  ++NumMemCpy;
1179  EVC.commit();
1180  return true;
1181}
1182
1183// When compiling for codesize we avoid idiom recognition for a multi-block loop
1184// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1185//
1186bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1187                                                   bool IsLoopMemset) {
1188  if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1189    if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1190      LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1191                        << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1192                        << " avoided: multi-block top-level loop\n");
1193      return true;
1194    }
1195  }
1196
1197  return false;
1198}
1199
1200bool LoopIdiomRecognize::runOnNoncountableLoop() {
1201  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1202                    << CurLoop->getHeader()->getParent()->getName()
1203                    << "] Noncountable Loop %"
1204                    << CurLoop->getHeader()->getName() << "\n");
1205
1206  return recognizePopcount() || recognizeAndInsertFFS();
1207}
1208
1209/// Check if the given conditional branch is based on the comparison between
1210/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1211/// true), the control yields to the loop entry. If the branch matches the
1212/// behavior, the variable involved in the comparison is returned. This function
1213/// will be called to see if the precondition and postcondition of the loop are
1214/// in desirable form.
1215static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1216                             bool JmpOnZero = false) {
1217  if (!BI || !BI->isConditional())
1218    return nullptr;
1219
1220  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1221  if (!Cond)
1222    return nullptr;
1223
1224  ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1225  if (!CmpZero || !CmpZero->isZero())
1226    return nullptr;
1227
1228  BasicBlock *TrueSucc = BI->getSuccessor(0);
1229  BasicBlock *FalseSucc = BI->getSuccessor(1);
1230  if (JmpOnZero)
1231    std::swap(TrueSucc, FalseSucc);
1232
1233  ICmpInst::Predicate Pred = Cond->getPredicate();
1234  if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1235      (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1236    return Cond->getOperand(0);
1237
1238  return nullptr;
1239}
1240
1241// Check if the recurrence variable `VarX` is in the right form to create
1242// the idiom. Returns the value coerced to a PHINode if so.
1243static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1244                                 BasicBlock *LoopEntry) {
1245  auto *PhiX = dyn_cast<PHINode>(VarX);
1246  if (PhiX && PhiX->getParent() == LoopEntry &&
1247      (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1248    return PhiX;
1249  return nullptr;
1250}
1251
1252/// Return true iff the idiom is detected in the loop.
1253///
1254/// Additionally:
1255/// 1) \p CntInst is set to the instruction counting the population bit.
1256/// 2) \p CntPhi is set to the corresponding phi node.
1257/// 3) \p Var is set to the value whose population bits are being counted.
1258///
1259/// The core idiom we are trying to detect is:
1260/// \code
1261///    if (x0 != 0)
1262///      goto loop-exit // the precondition of the loop
1263///    cnt0 = init-val;
1264///    do {
1265///       x1 = phi (x0, x2);
1266///       cnt1 = phi(cnt0, cnt2);
1267///
1268///       cnt2 = cnt1 + 1;
1269///        ...
1270///       x2 = x1 & (x1 - 1);
1271///        ...
1272///    } while(x != 0);
1273///
1274/// loop-exit:
1275/// \endcode
1276static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1277                                Instruction *&CntInst, PHINode *&CntPhi,
1278                                Value *&Var) {
1279  // step 1: Check to see if the look-back branch match this pattern:
1280  //    "if (a!=0) goto loop-entry".
1281  BasicBlock *LoopEntry;
1282  Instruction *DefX2, *CountInst;
1283  Value *VarX1, *VarX0;
1284  PHINode *PhiX, *CountPhi;
1285
1286  DefX2 = CountInst = nullptr;
1287  VarX1 = VarX0 = nullptr;
1288  PhiX = CountPhi = nullptr;
1289  LoopEntry = *(CurLoop->block_begin());
1290
1291  // step 1: Check if the loop-back branch is in desirable form.
1292  {
1293    if (Value *T = matchCondition(
1294            dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1295      DefX2 = dyn_cast<Instruction>(T);
1296    else
1297      return false;
1298  }
1299
1300  // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1301  {
1302    if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1303      return false;
1304
1305    BinaryOperator *SubOneOp;
1306
1307    if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1308      VarX1 = DefX2->getOperand(1);
1309    else {
1310      VarX1 = DefX2->getOperand(0);
1311      SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1312    }
1313    if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1314      return false;
1315
1316    ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1317    if (!Dec ||
1318        !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1319          (SubOneOp->getOpcode() == Instruction::Add &&
1320           Dec->isMinusOne()))) {
1321      return false;
1322    }
1323  }
1324
1325  // step 3: Check the recurrence of variable X
1326  PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1327  if (!PhiX)
1328    return false;
1329
1330  // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1331  {
1332    CountInst = nullptr;
1333    for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1334                              IterE = LoopEntry->end();
1335         Iter != IterE; Iter++) {
1336      Instruction *Inst = &*Iter;
1337      if (Inst->getOpcode() != Instruction::Add)
1338        continue;
1339
1340      ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1341      if (!Inc || !Inc->isOne())
1342        continue;
1343
1344      PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1345      if (!Phi)
1346        continue;
1347
1348      // Check if the result of the instruction is live of the loop.
1349      bool LiveOutLoop = false;
1350      for (User *U : Inst->users()) {
1351        if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1352          LiveOutLoop = true;
1353          break;
1354        }
1355      }
1356
1357      if (LiveOutLoop) {
1358        CountInst = Inst;
1359        CountPhi = Phi;
1360        break;
1361      }
1362    }
1363
1364    if (!CountInst)
1365      return false;
1366  }
1367
1368  // step 5: check if the precondition is in this form:
1369  //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1370  {
1371    auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1372    Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1373    if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1374      return false;
1375
1376    CntInst = CountInst;
1377    CntPhi = CountPhi;
1378    Var = T;
1379  }
1380
1381  return true;
1382}
1383
1384/// Return true if the idiom is detected in the loop.
1385///
1386/// Additionally:
1387/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1388///       or nullptr if there is no such.
1389/// 2) \p CntPhi is set to the corresponding phi node
1390///       or nullptr if there is no such.
1391/// 3) \p Var is set to the value whose CTLZ could be used.
1392/// 4) \p DefX is set to the instruction calculating Loop exit condition.
1393///
1394/// The core idiom we are trying to detect is:
1395/// \code
1396///    if (x0 == 0)
1397///      goto loop-exit // the precondition of the loop
1398///    cnt0 = init-val;
1399///    do {
1400///       x = phi (x0, x.next);   //PhiX
1401///       cnt = phi(cnt0, cnt.next);
1402///
1403///       cnt.next = cnt + 1;
1404///        ...
1405///       x.next = x >> 1;   // DefX
1406///        ...
1407///    } while(x.next != 0);
1408///
1409/// loop-exit:
1410/// \endcode
1411static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1412                                      Intrinsic::ID &IntrinID, Value *&InitX,
1413                                      Instruction *&CntInst, PHINode *&CntPhi,
1414                                      Instruction *&DefX) {
1415  BasicBlock *LoopEntry;
1416  Value *VarX = nullptr;
1417
1418  DefX = nullptr;
1419  CntInst = nullptr;
1420  CntPhi = nullptr;
1421  LoopEntry = *(CurLoop->block_begin());
1422
1423  // step 1: Check if the loop-back branch is in desirable form.
1424  if (Value *T = matchCondition(
1425          dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1426    DefX = dyn_cast<Instruction>(T);
1427  else
1428    return false;
1429
1430  // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1431  if (!DefX || !DefX->isShift())
1432    return false;
1433  IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1434                                                     Intrinsic::ctlz;
1435  ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1436  if (!Shft || !Shft->isOne())
1437    return false;
1438  VarX = DefX->getOperand(0);
1439
1440  // step 3: Check the recurrence of variable X
1441  PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1442  if (!PhiX)
1443    return false;
1444
1445  InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1446
1447  // Make sure the initial value can't be negative otherwise the ashr in the
1448  // loop might never reach zero which would make the loop infinite.
1449  if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1450    return false;
1451
1452  // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1453  // TODO: We can skip the step. If loop trip count is known (CTLZ),
1454  //       then all uses of "cnt.next" could be optimized to the trip count
1455  //       plus "cnt0". Currently it is not optimized.
1456  //       This step could be used to detect POPCNT instruction:
1457  //       cnt.next = cnt + (x.next & 1)
1458  for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1459                            IterE = LoopEntry->end();
1460       Iter != IterE; Iter++) {
1461    Instruction *Inst = &*Iter;
1462    if (Inst->getOpcode() != Instruction::Add)
1463      continue;
1464
1465    ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1466    if (!Inc || !Inc->isOne())
1467      continue;
1468
1469    PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1470    if (!Phi)
1471      continue;
1472
1473    CntInst = Inst;
1474    CntPhi = Phi;
1475    break;
1476  }
1477  if (!CntInst)
1478    return false;
1479
1480  return true;
1481}
1482
1483/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1484/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1485/// trip count returns true; otherwise, returns false.
1486bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1487  // Give up if the loop has multiple blocks or multiple backedges.
1488  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1489    return false;
1490
1491  Intrinsic::ID IntrinID;
1492  Value *InitX;
1493  Instruction *DefX = nullptr;
1494  PHINode *CntPhi = nullptr;
1495  Instruction *CntInst = nullptr;
1496  // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1497  // this is always 6.
1498  size_t IdiomCanonicalSize = 6;
1499
1500  if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1501                                 CntInst, CntPhi, DefX))
1502    return false;
1503
1504  bool IsCntPhiUsedOutsideLoop = false;
1505  for (User *U : CntPhi->users())
1506    if (!CurLoop->contains(cast<Instruction>(U))) {
1507      IsCntPhiUsedOutsideLoop = true;
1508      break;
1509    }
1510  bool IsCntInstUsedOutsideLoop = false;
1511  for (User *U : CntInst->users())
1512    if (!CurLoop->contains(cast<Instruction>(U))) {
1513      IsCntInstUsedOutsideLoop = true;
1514      break;
1515    }
1516  // If both CntInst and CntPhi are used outside the loop the profitability
1517  // is questionable.
1518  if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1519    return false;
1520
1521  // For some CPUs result of CTLZ(X) intrinsic is undefined
1522  // when X is 0. If we can not guarantee X != 0, we need to check this
1523  // when expand.
1524  bool ZeroCheck = false;
1525  // It is safe to assume Preheader exist as it was checked in
1526  // parent function RunOnLoop.
1527  BasicBlock *PH = CurLoop->getLoopPreheader();
1528
1529  // If we are using the count instruction outside the loop, make sure we
1530  // have a zero check as a precondition. Without the check the loop would run
1531  // one iteration for before any check of the input value. This means 0 and 1
1532  // would have identical behavior in the original loop and thus
1533  if (!IsCntPhiUsedOutsideLoop) {
1534    auto *PreCondBB = PH->getSinglePredecessor();
1535    if (!PreCondBB)
1536      return false;
1537    auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1538    if (!PreCondBI)
1539      return false;
1540    if (matchCondition(PreCondBI, PH) != InitX)
1541      return false;
1542    ZeroCheck = true;
1543  }
1544
1545  // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1546  // profitable if we delete the loop.
1547
1548  // the loop has only 6 instructions:
1549  //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1550  //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1551  //  %shr = ashr %n.addr.0, 1
1552  //  %tobool = icmp eq %shr, 0
1553  //  %inc = add nsw %i.0, 1
1554  //  br i1 %tobool
1555
1556  const Value *Args[] = {
1557      InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1558                       : ConstantInt::getFalse(InitX->getContext())};
1559
1560  // @llvm.dbg doesn't count as they have no semantic effect.
1561  auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1562  uint32_t HeaderSize =
1563      std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1564
1565  IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1566  int Cost =
1567    TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1568  if (HeaderSize != IdiomCanonicalSize &&
1569      Cost > TargetTransformInfo::TCC_Basic)
1570    return false;
1571
1572  transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1573                           DefX->getDebugLoc(), ZeroCheck,
1574                           IsCntPhiUsedOutsideLoop);
1575  return true;
1576}
1577
1578/// Recognizes a population count idiom in a non-countable loop.
1579///
1580/// If detected, transforms the relevant code to issue the popcount intrinsic
1581/// function call, and returns true; otherwise, returns false.
1582bool LoopIdiomRecognize::recognizePopcount() {
1583  if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1584    return false;
1585
1586  // Counting population are usually conducted by few arithmetic instructions.
1587  // Such instructions can be easily "absorbed" by vacant slots in a
1588  // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1589  // in a compact loop.
1590
1591  // Give up if the loop has multiple blocks or multiple backedges.
1592  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1593    return false;
1594
1595  BasicBlock *LoopBody = *(CurLoop->block_begin());
1596  if (LoopBody->size() >= 20) {
1597    // The loop is too big, bail out.
1598    return false;
1599  }
1600
1601  // It should have a preheader containing nothing but an unconditional branch.
1602  BasicBlock *PH = CurLoop->getLoopPreheader();
1603  if (!PH || &PH->front() != PH->getTerminator())
1604    return false;
1605  auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1606  if (!EntryBI || EntryBI->isConditional())
1607    return false;
1608
1609  // It should have a precondition block where the generated popcount intrinsic
1610  // function can be inserted.
1611  auto *PreCondBB = PH->getSinglePredecessor();
1612  if (!PreCondBB)
1613    return false;
1614  auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1615  if (!PreCondBI || PreCondBI->isUnconditional())
1616    return false;
1617
1618  Instruction *CntInst;
1619  PHINode *CntPhi;
1620  Value *Val;
1621  if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1622    return false;
1623
1624  transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1625  return true;
1626}
1627
1628static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1629                                       const DebugLoc &DL) {
1630  Value *Ops[] = {Val};
1631  Type *Tys[] = {Val->getType()};
1632
1633  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1634  Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1635  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1636  CI->setDebugLoc(DL);
1637
1638  return CI;
1639}
1640
1641static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1642                                    const DebugLoc &DL, bool ZeroCheck,
1643                                    Intrinsic::ID IID) {
1644  Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1645  Type *Tys[] = {Val->getType()};
1646
1647  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1648  Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1649  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1650  CI->setDebugLoc(DL);
1651
1652  return CI;
1653}
1654
1655/// Transform the following loop (Using CTLZ, CTTZ is similar):
1656/// loop:
1657///   CntPhi = PHI [Cnt0, CntInst]
1658///   PhiX = PHI [InitX, DefX]
1659///   CntInst = CntPhi + 1
1660///   DefX = PhiX >> 1
1661///   LOOP_BODY
1662///   Br: loop if (DefX != 0)
1663/// Use(CntPhi) or Use(CntInst)
1664///
1665/// Into:
1666/// If CntPhi used outside the loop:
1667///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1668///   Count = CountPrev + 1
1669/// else
1670///   Count = BitWidth(InitX) - CTLZ(InitX)
1671/// loop:
1672///   CntPhi = PHI [Cnt0, CntInst]
1673///   PhiX = PHI [InitX, DefX]
1674///   PhiCount = PHI [Count, Dec]
1675///   CntInst = CntPhi + 1
1676///   DefX = PhiX >> 1
1677///   Dec = PhiCount - 1
1678///   LOOP_BODY
1679///   Br: loop if (Dec != 0)
1680/// Use(CountPrev + Cnt0) // Use(CntPhi)
1681/// or
1682/// Use(Count + Cnt0) // Use(CntInst)
1683///
1684/// If LOOP_BODY is empty the loop will be deleted.
1685/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1686void LoopIdiomRecognize::transformLoopToCountable(
1687    Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1688    PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1689    bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1690  BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1691
1692  // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1693  IRBuilder<> Builder(PreheaderBr);
1694  Builder.SetCurrentDebugLocation(DL);
1695  Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
1696
1697  //   Count = BitWidth - CTLZ(InitX);
1698  // If there are uses of CntPhi create:
1699  //   CountPrev = BitWidth - CTLZ(InitX >> 1);
1700  if (IsCntPhiUsedOutsideLoop) {
1701    if (DefX->getOpcode() == Instruction::AShr)
1702      InitXNext =
1703          Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1704    else if (DefX->getOpcode() == Instruction::LShr)
1705      InitXNext =
1706          Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1707    else if (DefX->getOpcode() == Instruction::Shl) // cttz
1708      InitXNext =
1709          Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1710    else
1711      llvm_unreachable("Unexpected opcode!");
1712  } else
1713    InitXNext = InitX;
1714  FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1715  Count = Builder.CreateSub(
1716      ConstantInt::get(FFS->getType(),
1717                       FFS->getType()->getIntegerBitWidth()),
1718      FFS);
1719  if (IsCntPhiUsedOutsideLoop) {
1720    CountPrev = Count;
1721    Count = Builder.CreateAdd(
1722        CountPrev,
1723        ConstantInt::get(CountPrev->getType(), 1));
1724  }
1725
1726  NewCount = Builder.CreateZExtOrTrunc(
1727                      IsCntPhiUsedOutsideLoop ? CountPrev : Count,
1728                      cast<IntegerType>(CntInst->getType()));
1729
1730  // If the counter's initial value is not zero, insert Add Inst.
1731  Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1732  ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1733  if (!InitConst || !InitConst->isZero())
1734    NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1735
1736  // Step 2: Insert new IV and loop condition:
1737  // loop:
1738  //   ...
1739  //   PhiCount = PHI [Count, Dec]
1740  //   ...
1741  //   Dec = PhiCount - 1
1742  //   ...
1743  //   Br: loop if (Dec != 0)
1744  BasicBlock *Body = *(CurLoop->block_begin());
1745  auto *LbBr = cast<BranchInst>(Body->getTerminator());
1746  ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1747  Type *Ty = Count->getType();
1748
1749  PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1750
1751  Builder.SetInsertPoint(LbCond);
1752  Instruction *TcDec = cast<Instruction>(
1753      Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1754                        "tcdec", false, true));
1755
1756  TcPhi->addIncoming(Count, Preheader);
1757  TcPhi->addIncoming(TcDec, Body);
1758
1759  CmpInst::Predicate Pred =
1760      (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1761  LbCond->setPredicate(Pred);
1762  LbCond->setOperand(0, TcDec);
1763  LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1764
1765  // Step 3: All the references to the original counter outside
1766  //  the loop are replaced with the NewCount
1767  if (IsCntPhiUsedOutsideLoop)
1768    CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1769  else
1770    CntInst->replaceUsesOutsideBlock(NewCount, Body);
1771
1772  // step 4: Forget the "non-computable" trip-count SCEV associated with the
1773  //   loop. The loop would otherwise not be deleted even if it becomes empty.
1774  SE->forgetLoop(CurLoop);
1775}
1776
1777void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1778                                                 Instruction *CntInst,
1779                                                 PHINode *CntPhi, Value *Var) {
1780  BasicBlock *PreHead = CurLoop->getLoopPreheader();
1781  auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1782  const DebugLoc &DL = CntInst->getDebugLoc();
1783
1784  // Assuming before transformation, the loop is following:
1785  //  if (x) // the precondition
1786  //     do { cnt++; x &= x - 1; } while(x);
1787
1788  // Step 1: Insert the ctpop instruction at the end of the precondition block
1789  IRBuilder<> Builder(PreCondBr);
1790  Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1791  {
1792    PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1793    NewCount = PopCntZext =
1794        Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1795
1796    if (NewCount != PopCnt)
1797      (cast<Instruction>(NewCount))->setDebugLoc(DL);
1798
1799    // TripCnt is exactly the number of iterations the loop has
1800    TripCnt = NewCount;
1801
1802    // If the population counter's initial value is not zero, insert Add Inst.
1803    Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1804    ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1805    if (!InitConst || !InitConst->isZero()) {
1806      NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1807      (cast<Instruction>(NewCount))->setDebugLoc(DL);
1808    }
1809  }
1810
1811  // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1812  //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1813  //   function would be partial dead code, and downstream passes will drag
1814  //   it back from the precondition block to the preheader.
1815  {
1816    ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1817
1818    Value *Opnd0 = PopCntZext;
1819    Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1820    if (PreCond->getOperand(0) != Var)
1821      std::swap(Opnd0, Opnd1);
1822
1823    ICmpInst *NewPreCond = cast<ICmpInst>(
1824        Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1825    PreCondBr->setCondition(NewPreCond);
1826
1827    RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1828  }
1829
1830  // Step 3: Note that the population count is exactly the trip count of the
1831  // loop in question, which enable us to convert the loop from noncountable
1832  // loop into a countable one. The benefit is twofold:
1833  //
1834  //  - If the loop only counts population, the entire loop becomes dead after
1835  //    the transformation. It is a lot easier to prove a countable loop dead
1836  //    than to prove a noncountable one. (In some C dialects, an infinite loop
1837  //    isn't dead even if it computes nothing useful. In general, DCE needs
1838  //    to prove a noncountable loop finite before safely delete it.)
1839  //
1840  //  - If the loop also performs something else, it remains alive.
1841  //    Since it is transformed to countable form, it can be aggressively
1842  //    optimized by some optimizations which are in general not applicable
1843  //    to a noncountable loop.
1844  //
1845  // After this step, this loop (conceptually) would look like following:
1846  //   newcnt = __builtin_ctpop(x);
1847  //   t = newcnt;
1848  //   if (x)
1849  //     do { cnt++; x &= x-1; t--) } while (t > 0);
1850  BasicBlock *Body = *(CurLoop->block_begin());
1851  {
1852    auto *LbBr = cast<BranchInst>(Body->getTerminator());
1853    ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1854    Type *Ty = TripCnt->getType();
1855
1856    PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1857
1858    Builder.SetInsertPoint(LbCond);
1859    Instruction *TcDec = cast<Instruction>(
1860        Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1861                          "tcdec", false, true));
1862
1863    TcPhi->addIncoming(TripCnt, PreHead);
1864    TcPhi->addIncoming(TcDec, Body);
1865
1866    CmpInst::Predicate Pred =
1867        (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1868    LbCond->setPredicate(Pred);
1869    LbCond->setOperand(0, TcDec);
1870    LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1871  }
1872
1873  // Step 4: All the references to the original population counter outside
1874  //  the loop are replaced with the NewCount -- the value returned from
1875  //  __builtin_ctpop().
1876  CntInst->replaceUsesOutsideBlock(NewCount, Body);
1877
1878  // step 5: Forget the "non-computable" trip-count SCEV associated with the
1879  //   loop. The loop would otherwise not be deleted even if it becomes empty.
1880  SE->forgetLoop(CurLoop);
1881}
1882