1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// InstructionCombining - Combine instructions to form fewer, simple
10// instructions.  This pass does not modify the CFG.  This pass is where
11// algebraic simplification happens.
12//
13// This pass combines things like:
14//    %Y = add i32 %X, 1
15//    %Z = add i32 %Y, 1
16// into:
17//    %Z = add i32 %X, 2
18//
19// This is a simple worklist driven algorithm.
20//
21// This pass guarantees that the following canonicalizations are performed on
22// the program:
23//    1. If a binary operator has a constant operand, it is moved to the RHS
24//    2. Bitwise operators with constant operands are always grouped so that
25//       shifts are performed first, then or's, then and's, then xor's.
26//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27//    4. All cmp instructions on boolean values are replaced with logical ops
28//    5. add X, X is represented as (X*2) => (X << 1)
29//    6. Multiplies with a power-of-two constant argument are transformed into
30//       shifts.
31//   ... etc.
32//
33//===----------------------------------------------------------------------===//
34
35#include "InstCombineInternal.h"
36#include "llvm-c/Initialization.h"
37#include "llvm-c/Transforms/InstCombine.h"
38#include "llvm/ADT/APInt.h"
39#include "llvm/ADT/ArrayRef.h"
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/None.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/TinyPtrVector.h"
46#include "llvm/Analysis/AliasAnalysis.h"
47#include "llvm/Analysis/AssumptionCache.h"
48#include "llvm/Analysis/BasicAliasAnalysis.h"
49#include "llvm/Analysis/BlockFrequencyInfo.h"
50#include "llvm/Analysis/CFG.h"
51#include "llvm/Analysis/ConstantFolding.h"
52#include "llvm/Analysis/EHPersonalities.h"
53#include "llvm/Analysis/GlobalsModRef.h"
54#include "llvm/Analysis/InstructionSimplify.h"
55#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56#include "llvm/Analysis/LoopInfo.h"
57#include "llvm/Analysis/MemoryBuiltins.h"
58#include "llvm/Analysis/OptimizationRemarkEmitter.h"
59#include "llvm/Analysis/ProfileSummaryInfo.h"
60#include "llvm/Analysis/TargetFolder.h"
61#include "llvm/Analysis/TargetLibraryInfo.h"
62#include "llvm/Analysis/ValueTracking.h"
63#include "llvm/Analysis/VectorUtils.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/CFG.h"
66#include "llvm/IR/Constant.h"
67#include "llvm/IR/Constants.h"
68#include "llvm/IR/DIBuilder.h"
69#include "llvm/IR/DataLayout.h"
70#include "llvm/IR/DerivedTypes.h"
71#include "llvm/IR/Dominators.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/GetElementPtrTypeIterator.h"
74#include "llvm/IR/IRBuilder.h"
75#include "llvm/IR/InstrTypes.h"
76#include "llvm/IR/Instruction.h"
77#include "llvm/IR/Instructions.h"
78#include "llvm/IR/IntrinsicInst.h"
79#include "llvm/IR/Intrinsics.h"
80#include "llvm/IR/LegacyPassManager.h"
81#include "llvm/IR/Metadata.h"
82#include "llvm/IR/Operator.h"
83#include "llvm/IR/PassManager.h"
84#include "llvm/IR/PatternMatch.h"
85#include "llvm/IR/Type.h"
86#include "llvm/IR/Use.h"
87#include "llvm/IR/User.h"
88#include "llvm/IR/Value.h"
89#include "llvm/IR/ValueHandle.h"
90#include "llvm/InitializePasses.h"
91#include "llvm/Pass.h"
92#include "llvm/Support/CBindingWrapping.h"
93#include "llvm/Support/Casting.h"
94#include "llvm/Support/CommandLine.h"
95#include "llvm/Support/Compiler.h"
96#include "llvm/Support/Debug.h"
97#include "llvm/Support/DebugCounter.h"
98#include "llvm/Support/ErrorHandling.h"
99#include "llvm/Support/KnownBits.h"
100#include "llvm/Support/raw_ostream.h"
101#include "llvm/Transforms/InstCombine/InstCombine.h"
102#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
103#include "llvm/Transforms/Utils/Local.h"
104#include <algorithm>
105#include <cassert>
106#include <cstdint>
107#include <memory>
108#include <string>
109#include <utility>
110
111using namespace llvm;
112using namespace llvm::PatternMatch;
113
114#define DEBUG_TYPE "instcombine"
115
116STATISTIC(NumCombined , "Number of insts combined");
117STATISTIC(NumConstProp, "Number of constant folds");
118STATISTIC(NumDeadInst , "Number of dead inst eliminated");
119STATISTIC(NumSunkInst , "Number of instructions sunk");
120STATISTIC(NumExpand,    "Number of expansions");
121STATISTIC(NumFactor   , "Number of factorizations");
122STATISTIC(NumReassoc  , "Number of reassociations");
123DEBUG_COUNTER(VisitCounter, "instcombine-visit",
124              "Controls which instructions are visited");
125
126static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
127static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
128
129static cl::opt<bool>
130EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
131                                              cl::init(true));
132
133static cl::opt<unsigned> LimitMaxIterations(
134    "instcombine-max-iterations",
135    cl::desc("Limit the maximum number of instruction combining iterations"),
136    cl::init(InstCombineDefaultMaxIterations));
137
138static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
139    "instcombine-infinite-loop-threshold",
140    cl::desc("Number of instruction combining iterations considered an "
141             "infinite loop"),
142    cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
143
144static cl::opt<unsigned>
145MaxArraySize("instcombine-maxarray-size", cl::init(1024),
146             cl::desc("Maximum array size considered when doing a combine"));
147
148// FIXME: Remove this flag when it is no longer necessary to convert
149// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
150// increases variable availability at the cost of accuracy. Variables that
151// cannot be promoted by mem2reg or SROA will be described as living in memory
152// for their entire lifetime. However, passes like DSE and instcombine can
153// delete stores to the alloca, leading to misleading and inaccurate debug
154// information. This flag can be removed when those passes are fixed.
155static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
156                                               cl::Hidden, cl::init(true));
157
158Value *InstCombiner::EmitGEPOffset(User *GEP) {
159  return llvm::EmitGEPOffset(&Builder, DL, GEP);
160}
161
162/// Return true if it is desirable to convert an integer computation from a
163/// given bit width to a new bit width.
164/// We don't want to convert from a legal to an illegal type or from a smaller
165/// to a larger illegal type. A width of '1' is always treated as a legal type
166/// because i1 is a fundamental type in IR, and there are many specialized
167/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
168/// legal to convert to, in order to open up more combining opportunities.
169/// NOTE: this treats i8, i16 and i32 specially, due to them being so common
170/// from frontend languages.
171bool InstCombiner::shouldChangeType(unsigned FromWidth,
172                                    unsigned ToWidth) const {
173  bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
174  bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
175
176  // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
177  // shrink types, to prevent infinite loops.
178  if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
179    return true;
180
181  // If this is a legal integer from type, and the result would be an illegal
182  // type, don't do the transformation.
183  if (FromLegal && !ToLegal)
184    return false;
185
186  // Otherwise, if both are illegal, do not increase the size of the result. We
187  // do allow things like i160 -> i64, but not i64 -> i160.
188  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
189    return false;
190
191  return true;
192}
193
194/// Return true if it is desirable to convert a computation from 'From' to 'To'.
195/// We don't want to convert from a legal to an illegal type or from a smaller
196/// to a larger illegal type. i1 is always treated as a legal type because it is
197/// a fundamental type in IR, and there are many specialized optimizations for
198/// i1 types.
199bool InstCombiner::shouldChangeType(Type *From, Type *To) const {
200  // TODO: This could be extended to allow vectors. Datalayout changes might be
201  // needed to properly support that.
202  if (!From->isIntegerTy() || !To->isIntegerTy())
203    return false;
204
205  unsigned FromWidth = From->getPrimitiveSizeInBits();
206  unsigned ToWidth = To->getPrimitiveSizeInBits();
207  return shouldChangeType(FromWidth, ToWidth);
208}
209
210// Return true, if No Signed Wrap should be maintained for I.
211// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
212// where both B and C should be ConstantInts, results in a constant that does
213// not overflow. This function only handles the Add and Sub opcodes. For
214// all other opcodes, the function conservatively returns false.
215static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
216  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
217  if (!OBO || !OBO->hasNoSignedWrap())
218    return false;
219
220  // We reason about Add and Sub Only.
221  Instruction::BinaryOps Opcode = I.getOpcode();
222  if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
223    return false;
224
225  const APInt *BVal, *CVal;
226  if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
227    return false;
228
229  bool Overflow = false;
230  if (Opcode == Instruction::Add)
231    (void)BVal->sadd_ov(*CVal, Overflow);
232  else
233    (void)BVal->ssub_ov(*CVal, Overflow);
234
235  return !Overflow;
236}
237
238static bool hasNoUnsignedWrap(BinaryOperator &I) {
239  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
240  return OBO && OBO->hasNoUnsignedWrap();
241}
242
243static bool hasNoSignedWrap(BinaryOperator &I) {
244  auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
245  return OBO && OBO->hasNoSignedWrap();
246}
247
248/// Conservatively clears subclassOptionalData after a reassociation or
249/// commutation. We preserve fast-math flags when applicable as they can be
250/// preserved.
251static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
252  FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
253  if (!FPMO) {
254    I.clearSubclassOptionalData();
255    return;
256  }
257
258  FastMathFlags FMF = I.getFastMathFlags();
259  I.clearSubclassOptionalData();
260  I.setFastMathFlags(FMF);
261}
262
263/// Combine constant operands of associative operations either before or after a
264/// cast to eliminate one of the associative operations:
265/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
266/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
267static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombiner &IC) {
268  auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
269  if (!Cast || !Cast->hasOneUse())
270    return false;
271
272  // TODO: Enhance logic for other casts and remove this check.
273  auto CastOpcode = Cast->getOpcode();
274  if (CastOpcode != Instruction::ZExt)
275    return false;
276
277  // TODO: Enhance logic for other BinOps and remove this check.
278  if (!BinOp1->isBitwiseLogicOp())
279    return false;
280
281  auto AssocOpcode = BinOp1->getOpcode();
282  auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
283  if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
284    return false;
285
286  Constant *C1, *C2;
287  if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
288      !match(BinOp2->getOperand(1), m_Constant(C2)))
289    return false;
290
291  // TODO: This assumes a zext cast.
292  // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
293  // to the destination type might lose bits.
294
295  // Fold the constants together in the destination type:
296  // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
297  Type *DestTy = C1->getType();
298  Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
299  Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
300  IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
301  IC.replaceOperand(*BinOp1, 1, FoldedC);
302  return true;
303}
304
305/// This performs a few simplifications for operators that are associative or
306/// commutative:
307///
308///  Commutative operators:
309///
310///  1. Order operands such that they are listed from right (least complex) to
311///     left (most complex).  This puts constants before unary operators before
312///     binary operators.
313///
314///  Associative operators:
315///
316///  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
317///  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
318///
319///  Associative and commutative operators:
320///
321///  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
322///  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
323///  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
324///     if C1 and C2 are constants.
325bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
326  Instruction::BinaryOps Opcode = I.getOpcode();
327  bool Changed = false;
328
329  do {
330    // Order operands such that they are listed from right (least complex) to
331    // left (most complex).  This puts constants before unary operators before
332    // binary operators.
333    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
334        getComplexity(I.getOperand(1)))
335      Changed = !I.swapOperands();
336
337    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
338    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
339
340    if (I.isAssociative()) {
341      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
342      if (Op0 && Op0->getOpcode() == Opcode) {
343        Value *A = Op0->getOperand(0);
344        Value *B = Op0->getOperand(1);
345        Value *C = I.getOperand(1);
346
347        // Does "B op C" simplify?
348        if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
349          // It simplifies to V.  Form "A op V".
350          replaceOperand(I, 0, A);
351          replaceOperand(I, 1, V);
352          bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
353          bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
354
355          // Conservatively clear all optional flags since they may not be
356          // preserved by the reassociation. Reset nsw/nuw based on the above
357          // analysis.
358          ClearSubclassDataAfterReassociation(I);
359
360          // Note: this is only valid because SimplifyBinOp doesn't look at
361          // the operands to Op0.
362          if (IsNUW)
363            I.setHasNoUnsignedWrap(true);
364
365          if (IsNSW)
366            I.setHasNoSignedWrap(true);
367
368          Changed = true;
369          ++NumReassoc;
370          continue;
371        }
372      }
373
374      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
375      if (Op1 && Op1->getOpcode() == Opcode) {
376        Value *A = I.getOperand(0);
377        Value *B = Op1->getOperand(0);
378        Value *C = Op1->getOperand(1);
379
380        // Does "A op B" simplify?
381        if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
382          // It simplifies to V.  Form "V op C".
383          replaceOperand(I, 0, V);
384          replaceOperand(I, 1, C);
385          // Conservatively clear the optional flags, since they may not be
386          // preserved by the reassociation.
387          ClearSubclassDataAfterReassociation(I);
388          Changed = true;
389          ++NumReassoc;
390          continue;
391        }
392      }
393    }
394
395    if (I.isAssociative() && I.isCommutative()) {
396      if (simplifyAssocCastAssoc(&I, *this)) {
397        Changed = true;
398        ++NumReassoc;
399        continue;
400      }
401
402      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
403      if (Op0 && Op0->getOpcode() == Opcode) {
404        Value *A = Op0->getOperand(0);
405        Value *B = Op0->getOperand(1);
406        Value *C = I.getOperand(1);
407
408        // Does "C op A" simplify?
409        if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
410          // It simplifies to V.  Form "V op B".
411          replaceOperand(I, 0, V);
412          replaceOperand(I, 1, B);
413          // Conservatively clear the optional flags, since they may not be
414          // preserved by the reassociation.
415          ClearSubclassDataAfterReassociation(I);
416          Changed = true;
417          ++NumReassoc;
418          continue;
419        }
420      }
421
422      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
423      if (Op1 && Op1->getOpcode() == Opcode) {
424        Value *A = I.getOperand(0);
425        Value *B = Op1->getOperand(0);
426        Value *C = Op1->getOperand(1);
427
428        // Does "C op A" simplify?
429        if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
430          // It simplifies to V.  Form "B op V".
431          replaceOperand(I, 0, B);
432          replaceOperand(I, 1, V);
433          // Conservatively clear the optional flags, since they may not be
434          // preserved by the reassociation.
435          ClearSubclassDataAfterReassociation(I);
436          Changed = true;
437          ++NumReassoc;
438          continue;
439        }
440      }
441
442      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
443      // if C1 and C2 are constants.
444      Value *A, *B;
445      Constant *C1, *C2;
446      if (Op0 && Op1 &&
447          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
448          match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
449          match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
450        bool IsNUW = hasNoUnsignedWrap(I) &&
451           hasNoUnsignedWrap(*Op0) &&
452           hasNoUnsignedWrap(*Op1);
453         BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
454           BinaryOperator::CreateNUW(Opcode, A, B) :
455           BinaryOperator::Create(Opcode, A, B);
456
457         if (isa<FPMathOperator>(NewBO)) {
458          FastMathFlags Flags = I.getFastMathFlags();
459          Flags &= Op0->getFastMathFlags();
460          Flags &= Op1->getFastMathFlags();
461          NewBO->setFastMathFlags(Flags);
462        }
463        InsertNewInstWith(NewBO, I);
464        NewBO->takeName(Op1);
465        replaceOperand(I, 0, NewBO);
466        replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
467        // Conservatively clear the optional flags, since they may not be
468        // preserved by the reassociation.
469        ClearSubclassDataAfterReassociation(I);
470        if (IsNUW)
471          I.setHasNoUnsignedWrap(true);
472
473        Changed = true;
474        continue;
475      }
476    }
477
478    // No further simplifications.
479    return Changed;
480  } while (true);
481}
482
483/// Return whether "X LOp (Y ROp Z)" is always equal to
484/// "(X LOp Y) ROp (X LOp Z)".
485static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
486                                     Instruction::BinaryOps ROp) {
487  // X & (Y | Z) <--> (X & Y) | (X & Z)
488  // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
489  if (LOp == Instruction::And)
490    return ROp == Instruction::Or || ROp == Instruction::Xor;
491
492  // X | (Y & Z) <--> (X | Y) & (X | Z)
493  if (LOp == Instruction::Or)
494    return ROp == Instruction::And;
495
496  // X * (Y + Z) <--> (X * Y) + (X * Z)
497  // X * (Y - Z) <--> (X * Y) - (X * Z)
498  if (LOp == Instruction::Mul)
499    return ROp == Instruction::Add || ROp == Instruction::Sub;
500
501  return false;
502}
503
504/// Return whether "(X LOp Y) ROp Z" is always equal to
505/// "(X ROp Z) LOp (Y ROp Z)".
506static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
507                                     Instruction::BinaryOps ROp) {
508  if (Instruction::isCommutative(ROp))
509    return leftDistributesOverRight(ROp, LOp);
510
511  // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
512  return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
513
514  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
515  // but this requires knowing that the addition does not overflow and other
516  // such subtleties.
517}
518
519/// This function returns identity value for given opcode, which can be used to
520/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
521static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
522  if (isa<Constant>(V))
523    return nullptr;
524
525  return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
526}
527
528/// This function predicates factorization using distributive laws. By default,
529/// it just returns the 'Op' inputs. But for special-cases like
530/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
531/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
532/// allow more factorization opportunities.
533static Instruction::BinaryOps
534getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
535                          Value *&LHS, Value *&RHS) {
536  assert(Op && "Expected a binary operator");
537  LHS = Op->getOperand(0);
538  RHS = Op->getOperand(1);
539  if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
540    Constant *C;
541    if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
542      // X << C --> X * (1 << C)
543      RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
544      return Instruction::Mul;
545    }
546    // TODO: We can add other conversions e.g. shr => div etc.
547  }
548  return Op->getOpcode();
549}
550
551/// This tries to simplify binary operations by factorizing out common terms
552/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
553Value *InstCombiner::tryFactorization(BinaryOperator &I,
554                                      Instruction::BinaryOps InnerOpcode,
555                                      Value *A, Value *B, Value *C, Value *D) {
556  assert(A && B && C && D && "All values must be provided");
557
558  Value *V = nullptr;
559  Value *SimplifiedInst = nullptr;
560  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
561  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
562
563  // Does "X op' Y" always equal "Y op' X"?
564  bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
565
566  // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
567  if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
568    // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
569    // commutative case, "(A op' B) op (C op' A)"?
570    if (A == C || (InnerCommutative && A == D)) {
571      if (A != C)
572        std::swap(C, D);
573      // Consider forming "A op' (B op D)".
574      // If "B op D" simplifies then it can be formed with no cost.
575      V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
576      // If "B op D" doesn't simplify then only go on if both of the existing
577      // operations "A op' B" and "C op' D" will be zapped as no longer used.
578      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
579        V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
580      if (V) {
581        SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
582      }
583    }
584
585  // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
586  if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
587    // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
588    // commutative case, "(A op' B) op (B op' D)"?
589    if (B == D || (InnerCommutative && B == C)) {
590      if (B != D)
591        std::swap(C, D);
592      // Consider forming "(A op C) op' B".
593      // If "A op C" simplifies then it can be formed with no cost.
594      V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
595
596      // If "A op C" doesn't simplify then only go on if both of the existing
597      // operations "A op' B" and "C op' D" will be zapped as no longer used.
598      if (!V && LHS->hasOneUse() && RHS->hasOneUse())
599        V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
600      if (V) {
601        SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
602      }
603    }
604
605  if (SimplifiedInst) {
606    ++NumFactor;
607    SimplifiedInst->takeName(&I);
608
609    // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
610    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
611      if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
612        bool HasNSW = false;
613        bool HasNUW = false;
614        if (isa<OverflowingBinaryOperator>(&I)) {
615          HasNSW = I.hasNoSignedWrap();
616          HasNUW = I.hasNoUnsignedWrap();
617        }
618
619        if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
620          HasNSW &= LOBO->hasNoSignedWrap();
621          HasNUW &= LOBO->hasNoUnsignedWrap();
622        }
623
624        if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
625          HasNSW &= ROBO->hasNoSignedWrap();
626          HasNUW &= ROBO->hasNoUnsignedWrap();
627        }
628
629        if (TopLevelOpcode == Instruction::Add &&
630            InnerOpcode == Instruction::Mul) {
631          // We can propagate 'nsw' if we know that
632          //  %Y = mul nsw i16 %X, C
633          //  %Z = add nsw i16 %Y, %X
634          // =>
635          //  %Z = mul nsw i16 %X, C+1
636          //
637          // iff C+1 isn't INT_MIN
638          const APInt *CInt;
639          if (match(V, m_APInt(CInt))) {
640            if (!CInt->isMinSignedValue())
641              BO->setHasNoSignedWrap(HasNSW);
642          }
643
644          // nuw can be propagated with any constant or nuw value.
645          BO->setHasNoUnsignedWrap(HasNUW);
646        }
647      }
648    }
649  }
650  return SimplifiedInst;
651}
652
653/// This tries to simplify binary operations which some other binary operation
654/// distributes over either by factorizing out common terms
655/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
656/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
657/// Returns the simplified value, or null if it didn't simplify.
658Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
659  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
660  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
661  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
662  Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
663
664  {
665    // Factorization.
666    Value *A, *B, *C, *D;
667    Instruction::BinaryOps LHSOpcode, RHSOpcode;
668    if (Op0)
669      LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
670    if (Op1)
671      RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
672
673    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
674    // a common term.
675    if (Op0 && Op1 && LHSOpcode == RHSOpcode)
676      if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
677        return V;
678
679    // The instruction has the form "(A op' B) op (C)".  Try to factorize common
680    // term.
681    if (Op0)
682      if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
683        if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
684          return V;
685
686    // The instruction has the form "(B) op (C op' D)".  Try to factorize common
687    // term.
688    if (Op1)
689      if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
690        if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
691          return V;
692  }
693
694  // Expansion.
695  if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
696    // The instruction has the form "(A op' B) op C".  See if expanding it out
697    // to "(A op C) op' (B op C)" results in simplifications.
698    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
699    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
700
701    Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
702    Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I));
703
704    // Do "A op C" and "B op C" both simplify?
705    if (L && R) {
706      // They do! Return "L op' R".
707      ++NumExpand;
708      C = Builder.CreateBinOp(InnerOpcode, L, R);
709      C->takeName(&I);
710      return C;
711    }
712
713    // Does "A op C" simplify to the identity value for the inner opcode?
714    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
715      // They do! Return "B op C".
716      ++NumExpand;
717      C = Builder.CreateBinOp(TopLevelOpcode, B, C);
718      C->takeName(&I);
719      return C;
720    }
721
722    // Does "B op C" simplify to the identity value for the inner opcode?
723    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
724      // They do! Return "A op C".
725      ++NumExpand;
726      C = Builder.CreateBinOp(TopLevelOpcode, A, C);
727      C->takeName(&I);
728      return C;
729    }
730  }
731
732  if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
733    // The instruction has the form "A op (B op' C)".  See if expanding it out
734    // to "(A op B) op' (A op C)" results in simplifications.
735    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
736    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
737
738    Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I));
739    Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
740
741    // Do "A op B" and "A op C" both simplify?
742    if (L && R) {
743      // They do! Return "L op' R".
744      ++NumExpand;
745      A = Builder.CreateBinOp(InnerOpcode, L, R);
746      A->takeName(&I);
747      return A;
748    }
749
750    // Does "A op B" simplify to the identity value for the inner opcode?
751    if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
752      // They do! Return "A op C".
753      ++NumExpand;
754      A = Builder.CreateBinOp(TopLevelOpcode, A, C);
755      A->takeName(&I);
756      return A;
757    }
758
759    // Does "A op C" simplify to the identity value for the inner opcode?
760    if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
761      // They do! Return "A op B".
762      ++NumExpand;
763      A = Builder.CreateBinOp(TopLevelOpcode, A, B);
764      A->takeName(&I);
765      return A;
766    }
767  }
768
769  return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
770}
771
772Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
773                                                    Value *LHS, Value *RHS) {
774  Value *A, *B, *C, *D, *E, *F;
775  bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
776  bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
777  if (!LHSIsSelect && !RHSIsSelect)
778    return nullptr;
779
780  FastMathFlags FMF;
781  BuilderTy::FastMathFlagGuard Guard(Builder);
782  if (isa<FPMathOperator>(&I)) {
783    FMF = I.getFastMathFlags();
784    Builder.setFastMathFlags(FMF);
785  }
786
787  Instruction::BinaryOps Opcode = I.getOpcode();
788  SimplifyQuery Q = SQ.getWithInstruction(&I);
789
790  Value *Cond, *True = nullptr, *False = nullptr;
791  if (LHSIsSelect && RHSIsSelect && A == D) {
792    // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
793    Cond = A;
794    True = SimplifyBinOp(Opcode, B, E, FMF, Q);
795    False = SimplifyBinOp(Opcode, C, F, FMF, Q);
796
797    if (LHS->hasOneUse() && RHS->hasOneUse()) {
798      if (False && !True)
799        True = Builder.CreateBinOp(Opcode, B, E);
800      else if (True && !False)
801        False = Builder.CreateBinOp(Opcode, C, F);
802    }
803  } else if (LHSIsSelect && LHS->hasOneUse()) {
804    // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
805    Cond = A;
806    True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
807    False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
808  } else if (RHSIsSelect && RHS->hasOneUse()) {
809    // X op (D ? E : F) -> D ? (X op E) : (X op F)
810    Cond = D;
811    True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
812    False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
813  }
814
815  if (!True || !False)
816    return nullptr;
817
818  Value *SI = Builder.CreateSelect(Cond, True, False);
819  SI->takeName(&I);
820  return SI;
821}
822
823/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
824/// constant zero (which is the 'negate' form).
825Value *InstCombiner::dyn_castNegVal(Value *V) const {
826  Value *NegV;
827  if (match(V, m_Neg(m_Value(NegV))))
828    return NegV;
829
830  // Constants can be considered to be negated values if they can be folded.
831  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
832    return ConstantExpr::getNeg(C);
833
834  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
835    if (C->getType()->getElementType()->isIntegerTy())
836      return ConstantExpr::getNeg(C);
837
838  if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
839    for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
840      Constant *Elt = CV->getAggregateElement(i);
841      if (!Elt)
842        return nullptr;
843
844      if (isa<UndefValue>(Elt))
845        continue;
846
847      if (!isa<ConstantInt>(Elt))
848        return nullptr;
849    }
850    return ConstantExpr::getNeg(CV);
851  }
852
853  return nullptr;
854}
855
856static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
857                                             InstCombiner::BuilderTy &Builder) {
858  if (auto *Cast = dyn_cast<CastInst>(&I))
859    return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
860
861  assert(I.isBinaryOp() && "Unexpected opcode for select folding");
862
863  // Figure out if the constant is the left or the right argument.
864  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
865  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
866
867  if (auto *SOC = dyn_cast<Constant>(SO)) {
868    if (ConstIsRHS)
869      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
870    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
871  }
872
873  Value *Op0 = SO, *Op1 = ConstOperand;
874  if (!ConstIsRHS)
875    std::swap(Op0, Op1);
876
877  auto *BO = cast<BinaryOperator>(&I);
878  Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
879                                  SO->getName() + ".op");
880  auto *FPInst = dyn_cast<Instruction>(RI);
881  if (FPInst && isa<FPMathOperator>(FPInst))
882    FPInst->copyFastMathFlags(BO);
883  return RI;
884}
885
886Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
887  // Don't modify shared select instructions.
888  if (!SI->hasOneUse())
889    return nullptr;
890
891  Value *TV = SI->getTrueValue();
892  Value *FV = SI->getFalseValue();
893  if (!(isa<Constant>(TV) || isa<Constant>(FV)))
894    return nullptr;
895
896  // Bool selects with constant operands can be folded to logical ops.
897  if (SI->getType()->isIntOrIntVectorTy(1))
898    return nullptr;
899
900  // If it's a bitcast involving vectors, make sure it has the same number of
901  // elements on both sides.
902  if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
903    VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
904    VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
905
906    // Verify that either both or neither are vectors.
907    if ((SrcTy == nullptr) != (DestTy == nullptr))
908      return nullptr;
909
910    // If vectors, verify that they have the same number of elements.
911    if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
912      return nullptr;
913  }
914
915  // Test if a CmpInst instruction is used exclusively by a select as
916  // part of a minimum or maximum operation. If so, refrain from doing
917  // any other folding. This helps out other analyses which understand
918  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
919  // and CodeGen. And in this case, at least one of the comparison
920  // operands has at least one user besides the compare (the select),
921  // which would often largely negate the benefit of folding anyway.
922  if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
923    if (CI->hasOneUse()) {
924      Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
925
926      // FIXME: This is a hack to avoid infinite looping with min/max patterns.
927      //        We have to ensure that vector constants that only differ with
928      //        undef elements are treated as equivalent.
929      auto areLooselyEqual = [](Value *A, Value *B) {
930        if (A == B)
931          return true;
932
933        // Test for vector constants.
934        Constant *ConstA, *ConstB;
935        if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
936          return false;
937
938        // TODO: Deal with FP constants?
939        if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
940          return false;
941
942        // Compare for equality including undefs as equal.
943        auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
944        const APInt *C;
945        return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
946      };
947
948      if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
949          (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
950        return nullptr;
951    }
952  }
953
954  Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
955  Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
956  return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
957}
958
959static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
960                                        InstCombiner::BuilderTy &Builder) {
961  bool ConstIsRHS = isa<Constant>(I->getOperand(1));
962  Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
963
964  if (auto *InC = dyn_cast<Constant>(InV)) {
965    if (ConstIsRHS)
966      return ConstantExpr::get(I->getOpcode(), InC, C);
967    return ConstantExpr::get(I->getOpcode(), C, InC);
968  }
969
970  Value *Op0 = InV, *Op1 = C;
971  if (!ConstIsRHS)
972    std::swap(Op0, Op1);
973
974  Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
975  auto *FPInst = dyn_cast<Instruction>(RI);
976  if (FPInst && isa<FPMathOperator>(FPInst))
977    FPInst->copyFastMathFlags(I);
978  return RI;
979}
980
981Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) {
982  unsigned NumPHIValues = PN->getNumIncomingValues();
983  if (NumPHIValues == 0)
984    return nullptr;
985
986  // We normally only transform phis with a single use.  However, if a PHI has
987  // multiple uses and they are all the same operation, we can fold *all* of the
988  // uses into the PHI.
989  if (!PN->hasOneUse()) {
990    // Walk the use list for the instruction, comparing them to I.
991    for (User *U : PN->users()) {
992      Instruction *UI = cast<Instruction>(U);
993      if (UI != &I && !I.isIdenticalTo(UI))
994        return nullptr;
995    }
996    // Otherwise, we can replace *all* users with the new PHI we form.
997  }
998
999  // Check to see if all of the operands of the PHI are simple constants
1000  // (constantint/constantfp/undef).  If there is one non-constant value,
1001  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
1002  // bail out.  We don't do arbitrary constant expressions here because moving
1003  // their computation can be expensive without a cost model.
1004  BasicBlock *NonConstBB = nullptr;
1005  for (unsigned i = 0; i != NumPHIValues; ++i) {
1006    Value *InVal = PN->getIncomingValue(i);
1007    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
1008      continue;
1009
1010    if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
1011    if (NonConstBB) return nullptr;  // More than one non-const value.
1012
1013    NonConstBB = PN->getIncomingBlock(i);
1014
1015    // If the InVal is an invoke at the end of the pred block, then we can't
1016    // insert a computation after it without breaking the edge.
1017    if (isa<InvokeInst>(InVal))
1018      if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1019        return nullptr;
1020
1021    // If the incoming non-constant value is in I's block, we will remove one
1022    // instruction, but insert another equivalent one, leading to infinite
1023    // instcombine.
1024    if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
1025      return nullptr;
1026  }
1027
1028  // If there is exactly one non-constant value, we can insert a copy of the
1029  // operation in that block.  However, if this is a critical edge, we would be
1030  // inserting the computation on some other paths (e.g. inside a loop).  Only
1031  // do this if the pred block is unconditionally branching into the phi block.
1032  if (NonConstBB != nullptr) {
1033    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1034    if (!BI || !BI->isUnconditional()) return nullptr;
1035  }
1036
1037  // Okay, we can do the transformation: create the new PHI node.
1038  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1039  InsertNewInstBefore(NewPN, *PN);
1040  NewPN->takeName(PN);
1041
1042  // If we are going to have to insert a new computation, do so right before the
1043  // predecessor's terminator.
1044  if (NonConstBB)
1045    Builder.SetInsertPoint(NonConstBB->getTerminator());
1046
1047  // Next, add all of the operands to the PHI.
1048  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1049    // We only currently try to fold the condition of a select when it is a phi,
1050    // not the true/false values.
1051    Value *TrueV = SI->getTrueValue();
1052    Value *FalseV = SI->getFalseValue();
1053    BasicBlock *PhiTransBB = PN->getParent();
1054    for (unsigned i = 0; i != NumPHIValues; ++i) {
1055      BasicBlock *ThisBB = PN->getIncomingBlock(i);
1056      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1057      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1058      Value *InV = nullptr;
1059      // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
1060      // even if currently isNullValue gives false.
1061      Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1062      // For vector constants, we cannot use isNullValue to fold into
1063      // FalseVInPred versus TrueVInPred. When we have individual nonzero
1064      // elements in the vector, we will incorrectly fold InC to
1065      // `TrueVInPred`.
1066      if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
1067        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1068      else {
1069        // Generate the select in the same block as PN's current incoming block.
1070        // Note: ThisBB need not be the NonConstBB because vector constants
1071        // which are constants by definition are handled here.
1072        // FIXME: This can lead to an increase in IR generation because we might
1073        // generate selects for vector constant phi operand, that could not be
1074        // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1075        // non-vector phis, this transformation was always profitable because
1076        // the select would be generated exactly once in the NonConstBB.
1077        Builder.SetInsertPoint(ThisBB->getTerminator());
1078        InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1079                                   FalseVInPred, "phi.sel");
1080      }
1081      NewPN->addIncoming(InV, ThisBB);
1082    }
1083  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1084    Constant *C = cast<Constant>(I.getOperand(1));
1085    for (unsigned i = 0; i != NumPHIValues; ++i) {
1086      Value *InV = nullptr;
1087      if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1088        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1089      else
1090        InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1091                                C, "phi.cmp");
1092      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1093    }
1094  } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1095    for (unsigned i = 0; i != NumPHIValues; ++i) {
1096      Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1097                                             Builder);
1098      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1099    }
1100  } else {
1101    CastInst *CI = cast<CastInst>(&I);
1102    Type *RetTy = CI->getType();
1103    for (unsigned i = 0; i != NumPHIValues; ++i) {
1104      Value *InV;
1105      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1106        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1107      else
1108        InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1109                                 I.getType(), "phi.cast");
1110      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1111    }
1112  }
1113
1114  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1115    Instruction *User = cast<Instruction>(*UI++);
1116    if (User == &I) continue;
1117    replaceInstUsesWith(*User, NewPN);
1118    eraseInstFromFunction(*User);
1119  }
1120  return replaceInstUsesWith(I, NewPN);
1121}
1122
1123Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1124  if (!isa<Constant>(I.getOperand(1)))
1125    return nullptr;
1126
1127  if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1128    if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1129      return NewSel;
1130  } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1131    if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1132      return NewPhi;
1133  }
1134  return nullptr;
1135}
1136
1137/// Given a pointer type and a constant offset, determine whether or not there
1138/// is a sequence of GEP indices into the pointed type that will land us at the
1139/// specified offset. If so, fill them into NewIndices and return the resultant
1140/// element type, otherwise return null.
1141Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1142                                        SmallVectorImpl<Value *> &NewIndices) {
1143  Type *Ty = PtrTy->getElementType();
1144  if (!Ty->isSized())
1145    return nullptr;
1146
1147  // Start with the index over the outer type.  Note that the type size
1148  // might be zero (even if the offset isn't zero) if the indexed type
1149  // is something like [0 x {int, int}]
1150  Type *IndexTy = DL.getIndexType(PtrTy);
1151  int64_t FirstIdx = 0;
1152  if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1153    FirstIdx = Offset/TySize;
1154    Offset -= FirstIdx*TySize;
1155
1156    // Handle hosts where % returns negative instead of values [0..TySize).
1157    if (Offset < 0) {
1158      --FirstIdx;
1159      Offset += TySize;
1160      assert(Offset >= 0);
1161    }
1162    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1163  }
1164
1165  NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1166
1167  // Index into the types.  If we fail, set OrigBase to null.
1168  while (Offset) {
1169    // Indexing into tail padding between struct/array elements.
1170    if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1171      return nullptr;
1172
1173    if (StructType *STy = dyn_cast<StructType>(Ty)) {
1174      const StructLayout *SL = DL.getStructLayout(STy);
1175      assert(Offset < (int64_t)SL->getSizeInBytes() &&
1176             "Offset must stay within the indexed type");
1177
1178      unsigned Elt = SL->getElementContainingOffset(Offset);
1179      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1180                                            Elt));
1181
1182      Offset -= SL->getElementOffset(Elt);
1183      Ty = STy->getElementType(Elt);
1184    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1185      uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1186      assert(EltSize && "Cannot index into a zero-sized array");
1187      NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1188      Offset %= EltSize;
1189      Ty = AT->getElementType();
1190    } else {
1191      // Otherwise, we can't index into the middle of this atomic type, bail.
1192      return nullptr;
1193    }
1194  }
1195
1196  return Ty;
1197}
1198
1199static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1200  // If this GEP has only 0 indices, it is the same pointer as
1201  // Src. If Src is not a trivial GEP too, don't combine
1202  // the indices.
1203  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1204      !Src.hasOneUse())
1205    return false;
1206  return true;
1207}
1208
1209/// Return a value X such that Val = X * Scale, or null if none.
1210/// If the multiplication is known not to overflow, then NoSignedWrap is set.
1211Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1212  assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1213  assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1214         Scale.getBitWidth() && "Scale not compatible with value!");
1215
1216  // If Val is zero or Scale is one then Val = Val * Scale.
1217  if (match(Val, m_Zero()) || Scale == 1) {
1218    NoSignedWrap = true;
1219    return Val;
1220  }
1221
1222  // If Scale is zero then it does not divide Val.
1223  if (Scale.isMinValue())
1224    return nullptr;
1225
1226  // Look through chains of multiplications, searching for a constant that is
1227  // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
1228  // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
1229  // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
1230  // down from Val:
1231  //
1232  //     Val = M1 * X          ||   Analysis starts here and works down
1233  //      M1 = M2 * Y          ||   Doesn't descend into terms with more
1234  //      M2 =  Z * 4          \/   than one use
1235  //
1236  // Then to modify a term at the bottom:
1237  //
1238  //     Val = M1 * X
1239  //      M1 =  Z * Y          ||   Replaced M2 with Z
1240  //
1241  // Then to work back up correcting nsw flags.
1242
1243  // Op - the term we are currently analyzing.  Starts at Val then drills down.
1244  // Replaced with its descaled value before exiting from the drill down loop.
1245  Value *Op = Val;
1246
1247  // Parent - initially null, but after drilling down notes where Op came from.
1248  // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1249  // 0'th operand of Val.
1250  std::pair<Instruction *, unsigned> Parent;
1251
1252  // Set if the transform requires a descaling at deeper levels that doesn't
1253  // overflow.
1254  bool RequireNoSignedWrap = false;
1255
1256  // Log base 2 of the scale. Negative if not a power of 2.
1257  int32_t logScale = Scale.exactLogBase2();
1258
1259  for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1260    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1261      // If Op is a constant divisible by Scale then descale to the quotient.
1262      APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1263      APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1264      if (!Remainder.isMinValue())
1265        // Not divisible by Scale.
1266        return nullptr;
1267      // Replace with the quotient in the parent.
1268      Op = ConstantInt::get(CI->getType(), Quotient);
1269      NoSignedWrap = true;
1270      break;
1271    }
1272
1273    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1274      if (BO->getOpcode() == Instruction::Mul) {
1275        // Multiplication.
1276        NoSignedWrap = BO->hasNoSignedWrap();
1277        if (RequireNoSignedWrap && !NoSignedWrap)
1278          return nullptr;
1279
1280        // There are three cases for multiplication: multiplication by exactly
1281        // the scale, multiplication by a constant different to the scale, and
1282        // multiplication by something else.
1283        Value *LHS = BO->getOperand(0);
1284        Value *RHS = BO->getOperand(1);
1285
1286        if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1287          // Multiplication by a constant.
1288          if (CI->getValue() == Scale) {
1289            // Multiplication by exactly the scale, replace the multiplication
1290            // by its left-hand side in the parent.
1291            Op = LHS;
1292            break;
1293          }
1294
1295          // Otherwise drill down into the constant.
1296          if (!Op->hasOneUse())
1297            return nullptr;
1298
1299          Parent = std::make_pair(BO, 1);
1300          continue;
1301        }
1302
1303        // Multiplication by something else. Drill down into the left-hand side
1304        // since that's where the reassociate pass puts the good stuff.
1305        if (!Op->hasOneUse())
1306          return nullptr;
1307
1308        Parent = std::make_pair(BO, 0);
1309        continue;
1310      }
1311
1312      if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1313          isa<ConstantInt>(BO->getOperand(1))) {
1314        // Multiplication by a power of 2.
1315        NoSignedWrap = BO->hasNoSignedWrap();
1316        if (RequireNoSignedWrap && !NoSignedWrap)
1317          return nullptr;
1318
1319        Value *LHS = BO->getOperand(0);
1320        int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1321          getLimitedValue(Scale.getBitWidth());
1322        // Op = LHS << Amt.
1323
1324        if (Amt == logScale) {
1325          // Multiplication by exactly the scale, replace the multiplication
1326          // by its left-hand side in the parent.
1327          Op = LHS;
1328          break;
1329        }
1330        if (Amt < logScale || !Op->hasOneUse())
1331          return nullptr;
1332
1333        // Multiplication by more than the scale.  Reduce the multiplying amount
1334        // by the scale in the parent.
1335        Parent = std::make_pair(BO, 1);
1336        Op = ConstantInt::get(BO->getType(), Amt - logScale);
1337        break;
1338      }
1339    }
1340
1341    if (!Op->hasOneUse())
1342      return nullptr;
1343
1344    if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1345      if (Cast->getOpcode() == Instruction::SExt) {
1346        // Op is sign-extended from a smaller type, descale in the smaller type.
1347        unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1348        APInt SmallScale = Scale.trunc(SmallSize);
1349        // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
1350        // descale Op as (sext Y) * Scale.  In order to have
1351        //   sext (Y * SmallScale) = (sext Y) * Scale
1352        // some conditions need to hold however: SmallScale must sign-extend to
1353        // Scale and the multiplication Y * SmallScale should not overflow.
1354        if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1355          // SmallScale does not sign-extend to Scale.
1356          return nullptr;
1357        assert(SmallScale.exactLogBase2() == logScale);
1358        // Require that Y * SmallScale must not overflow.
1359        RequireNoSignedWrap = true;
1360
1361        // Drill down through the cast.
1362        Parent = std::make_pair(Cast, 0);
1363        Scale = SmallScale;
1364        continue;
1365      }
1366
1367      if (Cast->getOpcode() == Instruction::Trunc) {
1368        // Op is truncated from a larger type, descale in the larger type.
1369        // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
1370        //   trunc (Y * sext Scale) = (trunc Y) * Scale
1371        // always holds.  However (trunc Y) * Scale may overflow even if
1372        // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1373        // from this point up in the expression (see later).
1374        if (RequireNoSignedWrap)
1375          return nullptr;
1376
1377        // Drill down through the cast.
1378        unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1379        Parent = std::make_pair(Cast, 0);
1380        Scale = Scale.sext(LargeSize);
1381        if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1382          logScale = -1;
1383        assert(Scale.exactLogBase2() == logScale);
1384        continue;
1385      }
1386    }
1387
1388    // Unsupported expression, bail out.
1389    return nullptr;
1390  }
1391
1392  // If Op is zero then Val = Op * Scale.
1393  if (match(Op, m_Zero())) {
1394    NoSignedWrap = true;
1395    return Op;
1396  }
1397
1398  // We know that we can successfully descale, so from here on we can safely
1399  // modify the IR.  Op holds the descaled version of the deepest term in the
1400  // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
1401  // not to overflow.
1402
1403  if (!Parent.first)
1404    // The expression only had one term.
1405    return Op;
1406
1407  // Rewrite the parent using the descaled version of its operand.
1408  assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1409  assert(Op != Parent.first->getOperand(Parent.second) &&
1410         "Descaling was a no-op?");
1411  replaceOperand(*Parent.first, Parent.second, Op);
1412  Worklist.push(Parent.first);
1413
1414  // Now work back up the expression correcting nsw flags.  The logic is based
1415  // on the following observation: if X * Y is known not to overflow as a signed
1416  // multiplication, and Y is replaced by a value Z with smaller absolute value,
1417  // then X * Z will not overflow as a signed multiplication either.  As we work
1418  // our way up, having NoSignedWrap 'true' means that the descaled value at the
1419  // current level has strictly smaller absolute value than the original.
1420  Instruction *Ancestor = Parent.first;
1421  do {
1422    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1423      // If the multiplication wasn't nsw then we can't say anything about the
1424      // value of the descaled multiplication, and we have to clear nsw flags
1425      // from this point on up.
1426      bool OpNoSignedWrap = BO->hasNoSignedWrap();
1427      NoSignedWrap &= OpNoSignedWrap;
1428      if (NoSignedWrap != OpNoSignedWrap) {
1429        BO->setHasNoSignedWrap(NoSignedWrap);
1430        Worklist.push(Ancestor);
1431      }
1432    } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1433      // The fact that the descaled input to the trunc has smaller absolute
1434      // value than the original input doesn't tell us anything useful about
1435      // the absolute values of the truncations.
1436      NoSignedWrap = false;
1437    }
1438    assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1439           "Failed to keep proper track of nsw flags while drilling down?");
1440
1441    if (Ancestor == Val)
1442      // Got to the top, all done!
1443      return Val;
1444
1445    // Move up one level in the expression.
1446    assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1447    Ancestor = Ancestor->user_back();
1448  } while (true);
1449}
1450
1451Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) {
1452  // FIXME: some of this is likely fine for scalable vectors
1453  if (!isa<FixedVectorType>(Inst.getType()))
1454    return nullptr;
1455
1456  BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1457  Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1458  assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1459         cast<VectorType>(Inst.getType())->getElementCount());
1460  assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1461         cast<VectorType>(Inst.getType())->getElementCount());
1462
1463  // If both operands of the binop are vector concatenations, then perform the
1464  // narrow binop on each pair of the source operands followed by concatenation
1465  // of the results.
1466  Value *L0, *L1, *R0, *R1;
1467  ArrayRef<int> Mask;
1468  if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1469      match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1470      LHS->hasOneUse() && RHS->hasOneUse() &&
1471      cast<ShuffleVectorInst>(LHS)->isConcat() &&
1472      cast<ShuffleVectorInst>(RHS)->isConcat()) {
1473    // This transform does not have the speculative execution constraint as
1474    // below because the shuffle is a concatenation. The new binops are
1475    // operating on exactly the same elements as the existing binop.
1476    // TODO: We could ease the mask requirement to allow different undef lanes,
1477    //       but that requires an analysis of the binop-with-undef output value.
1478    Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1479    if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1480      BO->copyIRFlags(&Inst);
1481    Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1482    if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1483      BO->copyIRFlags(&Inst);
1484    return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1485  }
1486
1487  // It may not be safe to reorder shuffles and things like div, urem, etc.
1488  // because we may trap when executing those ops on unknown vector elements.
1489  // See PR20059.
1490  if (!isSafeToSpeculativelyExecute(&Inst))
1491    return nullptr;
1492
1493  auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1494    Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1495    if (auto *BO = dyn_cast<BinaryOperator>(XY))
1496      BO->copyIRFlags(&Inst);
1497    return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1498  };
1499
1500  // If both arguments of the binary operation are shuffles that use the same
1501  // mask and shuffle within a single vector, move the shuffle after the binop.
1502  Value *V1, *V2;
1503  if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1504      match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1505      V1->getType() == V2->getType() &&
1506      (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1507    // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1508    return createBinOpShuffle(V1, V2, Mask);
1509  }
1510
1511  // If both arguments of a commutative binop are select-shuffles that use the
1512  // same mask with commuted operands, the shuffles are unnecessary.
1513  if (Inst.isCommutative() &&
1514      match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1515      match(RHS,
1516            m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1517    auto *LShuf = cast<ShuffleVectorInst>(LHS);
1518    auto *RShuf = cast<ShuffleVectorInst>(RHS);
1519    // TODO: Allow shuffles that contain undefs in the mask?
1520    //       That is legal, but it reduces undef knowledge.
1521    // TODO: Allow arbitrary shuffles by shuffling after binop?
1522    //       That might be legal, but we have to deal with poison.
1523    if (LShuf->isSelect() &&
1524        !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1525        RShuf->isSelect() &&
1526        !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1527      // Example:
1528      // LHS = shuffle V1, V2, <0, 5, 6, 3>
1529      // RHS = shuffle V2, V1, <0, 5, 6, 3>
1530      // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1531      Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1532      NewBO->copyIRFlags(&Inst);
1533      return NewBO;
1534    }
1535  }
1536
1537  // If one argument is a shuffle within one vector and the other is a constant,
1538  // try moving the shuffle after the binary operation. This canonicalization
1539  // intends to move shuffles closer to other shuffles and binops closer to
1540  // other binops, so they can be folded. It may also enable demanded elements
1541  // transforms.
1542  unsigned NumElts = cast<FixedVectorType>(Inst.getType())->getNumElements();
1543  Constant *C;
1544  if (match(&Inst,
1545            m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1546                      m_Constant(C))) && !isa<ConstantExpr>(C) &&
1547      cast<FixedVectorType>(V1->getType())->getNumElements() <= NumElts) {
1548    assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
1549           "Shuffle should not change scalar type");
1550
1551    // Find constant NewC that has property:
1552    //   shuffle(NewC, ShMask) = C
1553    // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1554    // reorder is not possible. A 1-to-1 mapping is not required. Example:
1555    // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1556    bool ConstOp1 = isa<Constant>(RHS);
1557    ArrayRef<int> ShMask = Mask;
1558    unsigned SrcVecNumElts =
1559        cast<FixedVectorType>(V1->getType())->getNumElements();
1560    UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1561    SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1562    bool MayChange = true;
1563    for (unsigned I = 0; I < NumElts; ++I) {
1564      Constant *CElt = C->getAggregateElement(I);
1565      if (ShMask[I] >= 0) {
1566        assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1567        Constant *NewCElt = NewVecC[ShMask[I]];
1568        // Bail out if:
1569        // 1. The constant vector contains a constant expression.
1570        // 2. The shuffle needs an element of the constant vector that can't
1571        //    be mapped to a new constant vector.
1572        // 3. This is a widening shuffle that copies elements of V1 into the
1573        //    extended elements (extending with undef is allowed).
1574        if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1575            I >= SrcVecNumElts) {
1576          MayChange = false;
1577          break;
1578        }
1579        NewVecC[ShMask[I]] = CElt;
1580      }
1581      // If this is a widening shuffle, we must be able to extend with undef
1582      // elements. If the original binop does not produce an undef in the high
1583      // lanes, then this transform is not safe.
1584      // Similarly for undef lanes due to the shuffle mask, we can only
1585      // transform binops that preserve undef.
1586      // TODO: We could shuffle those non-undef constant values into the
1587      //       result by using a constant vector (rather than an undef vector)
1588      //       as operand 1 of the new binop, but that might be too aggressive
1589      //       for target-independent shuffle creation.
1590      if (I >= SrcVecNumElts || ShMask[I] < 0) {
1591        Constant *MaybeUndef =
1592            ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1593                     : ConstantExpr::get(Opcode, CElt, UndefScalar);
1594        if (!isa<UndefValue>(MaybeUndef)) {
1595          MayChange = false;
1596          break;
1597        }
1598      }
1599    }
1600    if (MayChange) {
1601      Constant *NewC = ConstantVector::get(NewVecC);
1602      // It may not be safe to execute a binop on a vector with undef elements
1603      // because the entire instruction can be folded to undef or create poison
1604      // that did not exist in the original code.
1605      if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1606        NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1607
1608      // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1609      // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1610      Value *NewLHS = ConstOp1 ? V1 : NewC;
1611      Value *NewRHS = ConstOp1 ? NewC : V1;
1612      return createBinOpShuffle(NewLHS, NewRHS, Mask);
1613    }
1614  }
1615
1616  // Try to reassociate to sink a splat shuffle after a binary operation.
1617  if (Inst.isAssociative() && Inst.isCommutative()) {
1618    // Canonicalize shuffle operand as LHS.
1619    if (isa<ShuffleVectorInst>(RHS))
1620      std::swap(LHS, RHS);
1621
1622    Value *X;
1623    ArrayRef<int> MaskC;
1624    int SplatIndex;
1625    BinaryOperator *BO;
1626    if (!match(LHS,
1627               m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1628        !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1629        X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1630        BO->getOpcode() != Opcode)
1631      return nullptr;
1632
1633    // FIXME: This may not be safe if the analysis allows undef elements. By
1634    //        moving 'Y' before the splat shuffle, we are implicitly assuming
1635    //        that it is not undef/poison at the splat index.
1636    Value *Y, *OtherOp;
1637    if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1638      Y = BO->getOperand(0);
1639      OtherOp = BO->getOperand(1);
1640    } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1641      Y = BO->getOperand(1);
1642      OtherOp = BO->getOperand(0);
1643    } else {
1644      return nullptr;
1645    }
1646
1647    // X and Y are splatted values, so perform the binary operation on those
1648    // values followed by a splat followed by the 2nd binary operation:
1649    // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1650    Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1651    UndefValue *Undef = UndefValue::get(Inst.getType());
1652    SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1653    Value *NewSplat = Builder.CreateShuffleVector(NewBO, Undef, NewMask);
1654    Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1655
1656    // Intersect FMF on both new binops. Other (poison-generating) flags are
1657    // dropped to be safe.
1658    if (isa<FPMathOperator>(R)) {
1659      R->copyFastMathFlags(&Inst);
1660      R->andIRFlags(BO);
1661    }
1662    if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1663      NewInstBO->copyIRFlags(R);
1664    return R;
1665  }
1666
1667  return nullptr;
1668}
1669
1670/// Try to narrow the width of a binop if at least 1 operand is an extend of
1671/// of a value. This requires a potentially expensive known bits check to make
1672/// sure the narrow op does not overflow.
1673Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) {
1674  // We need at least one extended operand.
1675  Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1676
1677  // If this is a sub, we swap the operands since we always want an extension
1678  // on the RHS. The LHS can be an extension or a constant.
1679  if (BO.getOpcode() == Instruction::Sub)
1680    std::swap(Op0, Op1);
1681
1682  Value *X;
1683  bool IsSext = match(Op0, m_SExt(m_Value(X)));
1684  if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1685    return nullptr;
1686
1687  // If both operands are the same extension from the same source type and we
1688  // can eliminate at least one (hasOneUse), this might work.
1689  CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1690  Value *Y;
1691  if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1692        cast<Operator>(Op1)->getOpcode() == CastOpc &&
1693        (Op0->hasOneUse() || Op1->hasOneUse()))) {
1694    // If that did not match, see if we have a suitable constant operand.
1695    // Truncating and extending must produce the same constant.
1696    Constant *WideC;
1697    if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1698      return nullptr;
1699    Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1700    if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1701      return nullptr;
1702    Y = NarrowC;
1703  }
1704
1705  // Swap back now that we found our operands.
1706  if (BO.getOpcode() == Instruction::Sub)
1707    std::swap(X, Y);
1708
1709  // Both operands have narrow versions. Last step: the math must not overflow
1710  // in the narrow width.
1711  if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1712    return nullptr;
1713
1714  // bo (ext X), (ext Y) --> ext (bo X, Y)
1715  // bo (ext X), C       --> ext (bo X, C')
1716  Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1717  if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1718    if (IsSext)
1719      NewBinOp->setHasNoSignedWrap();
1720    else
1721      NewBinOp->setHasNoUnsignedWrap();
1722  }
1723  return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1724}
1725
1726static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1727  // At least one GEP must be inbounds.
1728  if (!GEP1.isInBounds() && !GEP2.isInBounds())
1729    return false;
1730
1731  return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1732         (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1733}
1734
1735/// Thread a GEP operation with constant indices through the constant true/false
1736/// arms of a select.
1737static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1738                                  InstCombiner::BuilderTy &Builder) {
1739  if (!GEP.hasAllConstantIndices())
1740    return nullptr;
1741
1742  Instruction *Sel;
1743  Value *Cond;
1744  Constant *TrueC, *FalseC;
1745  if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1746      !match(Sel,
1747             m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1748    return nullptr;
1749
1750  // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1751  // Propagate 'inbounds' and metadata from existing instructions.
1752  // Note: using IRBuilder to create the constants for efficiency.
1753  SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end());
1754  bool IsInBounds = GEP.isInBounds();
1755  Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
1756                               : Builder.CreateGEP(TrueC, IndexC);
1757  Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
1758                                : Builder.CreateGEP(FalseC, IndexC);
1759  return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1760}
1761
1762Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1763  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1764  Type *GEPType = GEP.getType();
1765  Type *GEPEltType = GEP.getSourceElementType();
1766  bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1767  if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1768    return replaceInstUsesWith(GEP, V);
1769
1770  // For vector geps, use the generic demanded vector support.
1771  // Skip if GEP return type is scalable. The number of elements is unknown at
1772  // compile-time.
1773  if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1774    auto VWidth = GEPFVTy->getNumElements();
1775    APInt UndefElts(VWidth, 0);
1776    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1777    if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1778                                              UndefElts)) {
1779      if (V != &GEP)
1780        return replaceInstUsesWith(GEP, V);
1781      return &GEP;
1782    }
1783
1784    // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1785    // possible (decide on canonical form for pointer broadcast), 3) exploit
1786    // undef elements to decrease demanded bits
1787  }
1788
1789  Value *PtrOp = GEP.getOperand(0);
1790
1791  // Eliminate unneeded casts for indices, and replace indices which displace
1792  // by multiples of a zero size type with zero.
1793  bool MadeChange = false;
1794
1795  // Index width may not be the same width as pointer width.
1796  // Data layout chooses the right type based on supported integer types.
1797  Type *NewScalarIndexTy =
1798      DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1799
1800  gep_type_iterator GTI = gep_type_begin(GEP);
1801  for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1802       ++I, ++GTI) {
1803    // Skip indices into struct types.
1804    if (GTI.isStruct())
1805      continue;
1806
1807    Type *IndexTy = (*I)->getType();
1808    Type *NewIndexType =
1809        IndexTy->isVectorTy()
1810            ? VectorType::get(NewScalarIndexTy,
1811                              cast<VectorType>(IndexTy)->getElementCount())
1812            : NewScalarIndexTy;
1813
1814    // If the element type has zero size then any index over it is equivalent
1815    // to an index of zero, so replace it with zero if it is not zero already.
1816    Type *EltTy = GTI.getIndexedType();
1817    if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1818      if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1819        *I = Constant::getNullValue(NewIndexType);
1820        MadeChange = true;
1821      }
1822
1823    if (IndexTy != NewIndexType) {
1824      // If we are using a wider index than needed for this platform, shrink
1825      // it to what we need.  If narrower, sign-extend it to what we need.
1826      // This explicit cast can make subsequent optimizations more obvious.
1827      *I = Builder.CreateIntCast(*I, NewIndexType, true);
1828      MadeChange = true;
1829    }
1830  }
1831  if (MadeChange)
1832    return &GEP;
1833
1834  // Check to see if the inputs to the PHI node are getelementptr instructions.
1835  if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1836    auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1837    if (!Op1)
1838      return nullptr;
1839
1840    // Don't fold a GEP into itself through a PHI node. This can only happen
1841    // through the back-edge of a loop. Folding a GEP into itself means that
1842    // the value of the previous iteration needs to be stored in the meantime,
1843    // thus requiring an additional register variable to be live, but not
1844    // actually achieving anything (the GEP still needs to be executed once per
1845    // loop iteration).
1846    if (Op1 == &GEP)
1847      return nullptr;
1848
1849    int DI = -1;
1850
1851    for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1852      auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1853      if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1854        return nullptr;
1855
1856      // As for Op1 above, don't try to fold a GEP into itself.
1857      if (Op2 == &GEP)
1858        return nullptr;
1859
1860      // Keep track of the type as we walk the GEP.
1861      Type *CurTy = nullptr;
1862
1863      for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1864        if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1865          return nullptr;
1866
1867        if (Op1->getOperand(J) != Op2->getOperand(J)) {
1868          if (DI == -1) {
1869            // We have not seen any differences yet in the GEPs feeding the
1870            // PHI yet, so we record this one if it is allowed to be a
1871            // variable.
1872
1873            // The first two arguments can vary for any GEP, the rest have to be
1874            // static for struct slots
1875            if (J > 1) {
1876              assert(CurTy && "No current type?");
1877              if (CurTy->isStructTy())
1878                return nullptr;
1879            }
1880
1881            DI = J;
1882          } else {
1883            // The GEP is different by more than one input. While this could be
1884            // extended to support GEPs that vary by more than one variable it
1885            // doesn't make sense since it greatly increases the complexity and
1886            // would result in an R+R+R addressing mode which no backend
1887            // directly supports and would need to be broken into several
1888            // simpler instructions anyway.
1889            return nullptr;
1890          }
1891        }
1892
1893        // Sink down a layer of the type for the next iteration.
1894        if (J > 0) {
1895          if (J == 1) {
1896            CurTy = Op1->getSourceElementType();
1897          } else {
1898            CurTy =
1899                GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1900          }
1901        }
1902      }
1903    }
1904
1905    // If not all GEPs are identical we'll have to create a new PHI node.
1906    // Check that the old PHI node has only one use so that it will get
1907    // removed.
1908    if (DI != -1 && !PN->hasOneUse())
1909      return nullptr;
1910
1911    auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1912    if (DI == -1) {
1913      // All the GEPs feeding the PHI are identical. Clone one down into our
1914      // BB so that it can be merged with the current GEP.
1915    } else {
1916      // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1917      // into the current block so it can be merged, and create a new PHI to
1918      // set that index.
1919      PHINode *NewPN;
1920      {
1921        IRBuilderBase::InsertPointGuard Guard(Builder);
1922        Builder.SetInsertPoint(PN);
1923        NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
1924                                  PN->getNumOperands());
1925      }
1926
1927      for (auto &I : PN->operands())
1928        NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1929                           PN->getIncomingBlock(I));
1930
1931      NewGEP->setOperand(DI, NewPN);
1932    }
1933
1934    GEP.getParent()->getInstList().insert(
1935        GEP.getParent()->getFirstInsertionPt(), NewGEP);
1936    replaceOperand(GEP, 0, NewGEP);
1937    PtrOp = NewGEP;
1938  }
1939
1940  // Combine Indices - If the source pointer to this getelementptr instruction
1941  // is a getelementptr instruction, combine the indices of the two
1942  // getelementptr instructions into a single instruction.
1943  if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
1944    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1945      return nullptr;
1946
1947    // Try to reassociate loop invariant GEP chains to enable LICM.
1948    if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
1949        Src->hasOneUse()) {
1950      if (Loop *L = LI->getLoopFor(GEP.getParent())) {
1951        Value *GO1 = GEP.getOperand(1);
1952        Value *SO1 = Src->getOperand(1);
1953        // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
1954        // invariant: this breaks the dependence between GEPs and allows LICM
1955        // to hoist the invariant part out of the loop.
1956        if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
1957          // We have to be careful here.
1958          // We have something like:
1959          //  %src = getelementptr <ty>, <ty>* %base, <ty> %idx
1960          //  %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
1961          // If we just swap idx & idx2 then we could inadvertantly
1962          // change %src from a vector to a scalar, or vice versa.
1963          // Cases:
1964          //  1) %base a scalar & idx a scalar & idx2 a vector
1965          //      => Swapping idx & idx2 turns %src into a vector type.
1966          //  2) %base a scalar & idx a vector & idx2 a scalar
1967          //      => Swapping idx & idx2 turns %src in a scalar type
1968          //  3) %base, %idx, and %idx2 are scalars
1969          //      => %src & %gep are scalars
1970          //      => swapping idx & idx2 is safe
1971          //  4) %base a vector
1972          //      => %src is a vector
1973          //      => swapping idx & idx2 is safe.
1974          auto *SO0 = Src->getOperand(0);
1975          auto *SO0Ty = SO0->getType();
1976          if (!isa<VectorType>(GEPType) || // case 3
1977              isa<VectorType>(SO0Ty)) {    // case 4
1978            Src->setOperand(1, GO1);
1979            GEP.setOperand(1, SO1);
1980            return &GEP;
1981          } else {
1982            // Case 1 or 2
1983            // -- have to recreate %src & %gep
1984            // put NewSrc at same location as %src
1985            Builder.SetInsertPoint(cast<Instruction>(PtrOp));
1986            auto *NewSrc = cast<GetElementPtrInst>(
1987                Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
1988            NewSrc->setIsInBounds(Src->isInBounds());
1989            auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
1990            NewGEP->setIsInBounds(GEP.isInBounds());
1991            return NewGEP;
1992          }
1993        }
1994      }
1995    }
1996
1997    // Note that if our source is a gep chain itself then we wait for that
1998    // chain to be resolved before we perform this transformation.  This
1999    // avoids us creating a TON of code in some cases.
2000    if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2001      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2002        return nullptr;   // Wait until our source is folded to completion.
2003
2004    SmallVector<Value*, 8> Indices;
2005
2006    // Find out whether the last index in the source GEP is a sequential idx.
2007    bool EndsWithSequential = false;
2008    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2009         I != E; ++I)
2010      EndsWithSequential = I.isSequential();
2011
2012    // Can we combine the two pointer arithmetics offsets?
2013    if (EndsWithSequential) {
2014      // Replace: gep (gep %P, long B), long A, ...
2015      // With:    T = long A+B; gep %P, T, ...
2016      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2017      Value *GO1 = GEP.getOperand(1);
2018
2019      // If they aren't the same type, then the input hasn't been processed
2020      // by the loop above yet (which canonicalizes sequential index types to
2021      // intptr_t).  Just avoid transforming this until the input has been
2022      // normalized.
2023      if (SO1->getType() != GO1->getType())
2024        return nullptr;
2025
2026      Value *Sum =
2027          SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2028      // Only do the combine when we are sure the cost after the
2029      // merge is never more than that before the merge.
2030      if (Sum == nullptr)
2031        return nullptr;
2032
2033      // Update the GEP in place if possible.
2034      if (Src->getNumOperands() == 2) {
2035        GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2036        replaceOperand(GEP, 0, Src->getOperand(0));
2037        replaceOperand(GEP, 1, Sum);
2038        return &GEP;
2039      }
2040      Indices.append(Src->op_begin()+1, Src->op_end()-1);
2041      Indices.push_back(Sum);
2042      Indices.append(GEP.op_begin()+2, GEP.op_end());
2043    } else if (isa<Constant>(*GEP.idx_begin()) &&
2044               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2045               Src->getNumOperands() != 1) {
2046      // Otherwise we can do the fold if the first index of the GEP is a zero
2047      Indices.append(Src->op_begin()+1, Src->op_end());
2048      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2049    }
2050
2051    if (!Indices.empty())
2052      return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2053                 ? GetElementPtrInst::CreateInBounds(
2054                       Src->getSourceElementType(), Src->getOperand(0), Indices,
2055                       GEP.getName())
2056                 : GetElementPtrInst::Create(Src->getSourceElementType(),
2057                                             Src->getOperand(0), Indices,
2058                                             GEP.getName());
2059  }
2060
2061  // Skip if GEP source element type is scalable. The type alloc size is unknown
2062  // at compile-time.
2063  if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2064    unsigned AS = GEP.getPointerAddressSpace();
2065    if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2066        DL.getIndexSizeInBits(AS)) {
2067      uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2068
2069      bool Matched = false;
2070      uint64_t C;
2071      Value *V = nullptr;
2072      if (TyAllocSize == 1) {
2073        V = GEP.getOperand(1);
2074        Matched = true;
2075      } else if (match(GEP.getOperand(1),
2076                       m_AShr(m_Value(V), m_ConstantInt(C)))) {
2077        if (TyAllocSize == 1ULL << C)
2078          Matched = true;
2079      } else if (match(GEP.getOperand(1),
2080                       m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2081        if (TyAllocSize == C)
2082          Matched = true;
2083      }
2084
2085      if (Matched) {
2086        // Canonicalize (gep i8* X, -(ptrtoint Y))
2087        // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
2088        // The GEP pattern is emitted by the SCEV expander for certain kinds of
2089        // pointer arithmetic.
2090        if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
2091          Operator *Index = cast<Operator>(V);
2092          Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
2093          Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
2094          return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
2095        }
2096        // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
2097        // to (bitcast Y)
2098        Value *Y;
2099        if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
2100                           m_PtrToInt(m_Specific(GEP.getOperand(0))))))
2101          return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2102      }
2103    }
2104  }
2105
2106  // We do not handle pointer-vector geps here.
2107  if (GEPType->isVectorTy())
2108    return nullptr;
2109
2110  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2111  Value *StrippedPtr = PtrOp->stripPointerCasts();
2112  PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2113
2114  if (StrippedPtr != PtrOp) {
2115    bool HasZeroPointerIndex = false;
2116    Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2117
2118    if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2119      HasZeroPointerIndex = C->isZero();
2120
2121    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2122    // into     : GEP [10 x i8]* X, i32 0, ...
2123    //
2124    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2125    //           into     : GEP i8* X, ...
2126    //
2127    // This occurs when the program declares an array extern like "int X[];"
2128    if (HasZeroPointerIndex) {
2129      if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2130        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2131        if (CATy->getElementType() == StrippedPtrEltTy) {
2132          // -> GEP i8* X, ...
2133          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
2134          GetElementPtrInst *Res = GetElementPtrInst::Create(
2135              StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2136          Res->setIsInBounds(GEP.isInBounds());
2137          if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2138            return Res;
2139          // Insert Res, and create an addrspacecast.
2140          // e.g.,
2141          // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2142          // ->
2143          // %0 = GEP i8 addrspace(1)* X, ...
2144          // addrspacecast i8 addrspace(1)* %0 to i8*
2145          return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2146        }
2147
2148        if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2149          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2150          if (CATy->getElementType() == XATy->getElementType()) {
2151            // -> GEP [10 x i8]* X, i32 0, ...
2152            // At this point, we know that the cast source type is a pointer
2153            // to an array of the same type as the destination pointer
2154            // array.  Because the array type is never stepped over (there
2155            // is a leading zero) we can fold the cast into this GEP.
2156            if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2157              GEP.setSourceElementType(XATy);
2158              return replaceOperand(GEP, 0, StrippedPtr);
2159            }
2160            // Cannot replace the base pointer directly because StrippedPtr's
2161            // address space is different. Instead, create a new GEP followed by
2162            // an addrspacecast.
2163            // e.g.,
2164            // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2165            //   i32 0, ...
2166            // ->
2167            // %0 = GEP [10 x i8] addrspace(1)* X, ...
2168            // addrspacecast i8 addrspace(1)* %0 to i8*
2169            SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
2170            Value *NewGEP =
2171                GEP.isInBounds()
2172                    ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2173                                                Idx, GEP.getName())
2174                    : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2175                                        GEP.getName());
2176            return new AddrSpaceCastInst(NewGEP, GEPType);
2177          }
2178        }
2179      }
2180    } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2181      // Skip if GEP source element type is scalable. The type alloc size is
2182      // unknown at compile-time.
2183      // Transform things like: %t = getelementptr i32*
2184      // bitcast ([2 x i32]* %str to i32*), i32 %V into:  %t1 = getelementptr [2
2185      // x i32]* %str, i32 0, i32 %V; bitcast
2186      if (StrippedPtrEltTy->isArrayTy() &&
2187          DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2188              DL.getTypeAllocSize(GEPEltType)) {
2189        Type *IdxType = DL.getIndexType(GEPType);
2190        Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2191        Value *NewGEP =
2192            GEP.isInBounds()
2193                ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2194                                            GEP.getName())
2195                : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2196                                    GEP.getName());
2197
2198        // V and GEP are both pointer types --> BitCast
2199        return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2200      }
2201
2202      // Transform things like:
2203      // %V = mul i64 %N, 4
2204      // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2205      // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
2206      if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2207        // Check that changing the type amounts to dividing the index by a scale
2208        // factor.
2209        uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2210        uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2211        if (ResSize && SrcSize % ResSize == 0) {
2212          Value *Idx = GEP.getOperand(1);
2213          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2214          uint64_t Scale = SrcSize / ResSize;
2215
2216          // Earlier transforms ensure that the index has the right type
2217          // according to Data Layout, which considerably simplifies the
2218          // logic by eliminating implicit casts.
2219          assert(Idx->getType() == DL.getIndexType(GEPType) &&
2220                 "Index type does not match the Data Layout preferences");
2221
2222          bool NSW;
2223          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2224            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2225            // If the multiplication NewIdx * Scale may overflow then the new
2226            // GEP may not be "inbounds".
2227            Value *NewGEP =
2228                GEP.isInBounds() && NSW
2229                    ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2230                                                NewIdx, GEP.getName())
2231                    : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2232                                        GEP.getName());
2233
2234            // The NewGEP must be pointer typed, so must the old one -> BitCast
2235            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2236                                                                 GEPType);
2237          }
2238        }
2239      }
2240
2241      // Similarly, transform things like:
2242      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2243      //   (where tmp = 8*tmp2) into:
2244      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2245      if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2246          StrippedPtrEltTy->isArrayTy()) {
2247        // Check that changing to the array element type amounts to dividing the
2248        // index by a scale factor.
2249        uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2250        uint64_t ArrayEltSize =
2251            DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2252                .getFixedSize();
2253        if (ResSize && ArrayEltSize % ResSize == 0) {
2254          Value *Idx = GEP.getOperand(1);
2255          unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2256          uint64_t Scale = ArrayEltSize / ResSize;
2257
2258          // Earlier transforms ensure that the index has the right type
2259          // according to the Data Layout, which considerably simplifies
2260          // the logic by eliminating implicit casts.
2261          assert(Idx->getType() == DL.getIndexType(GEPType) &&
2262                 "Index type does not match the Data Layout preferences");
2263
2264          bool NSW;
2265          if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2266            // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2267            // If the multiplication NewIdx * Scale may overflow then the new
2268            // GEP may not be "inbounds".
2269            Type *IndTy = DL.getIndexType(GEPType);
2270            Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2271
2272            Value *NewGEP =
2273                GEP.isInBounds() && NSW
2274                    ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2275                                                Off, GEP.getName())
2276                    : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2277                                        GEP.getName());
2278            // The NewGEP must be pointer typed, so must the old one -> BitCast
2279            return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2280                                                                 GEPType);
2281          }
2282        }
2283      }
2284    }
2285  }
2286
2287  // addrspacecast between types is canonicalized as a bitcast, then an
2288  // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2289  // through the addrspacecast.
2290  Value *ASCStrippedPtrOp = PtrOp;
2291  if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2292    //   X = bitcast A addrspace(1)* to B addrspace(1)*
2293    //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2294    //   Z = gep Y, <...constant indices...>
2295    // Into an addrspacecasted GEP of the struct.
2296    if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2297      ASCStrippedPtrOp = BC;
2298  }
2299
2300  if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2301    Value *SrcOp = BCI->getOperand(0);
2302    PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2303    Type *SrcEltType = SrcType->getElementType();
2304
2305    // GEP directly using the source operand if this GEP is accessing an element
2306    // of a bitcasted pointer to vector or array of the same dimensions:
2307    // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2308    // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2309    auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2310                                          const DataLayout &DL) {
2311      auto *VecVTy = cast<VectorType>(VecTy);
2312      return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2313             ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2314             DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2315    };
2316    if (GEP.getNumOperands() == 3 &&
2317        ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() &&
2318          areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2319         (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() &&
2320          areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2321
2322      // Create a new GEP here, as using `setOperand()` followed by
2323      // `setSourceElementType()` won't actually update the type of the
2324      // existing GEP Value. Causing issues if this Value is accessed when
2325      // constructing an AddrSpaceCastInst
2326      Value *NGEP =
2327          GEP.isInBounds()
2328              ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2329              : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2330      NGEP->takeName(&GEP);
2331
2332      // Preserve GEP address space to satisfy users
2333      if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2334        return new AddrSpaceCastInst(NGEP, GEPType);
2335
2336      return replaceInstUsesWith(GEP, NGEP);
2337    }
2338
2339    // See if we can simplify:
2340    //   X = bitcast A* to B*
2341    //   Y = gep X, <...constant indices...>
2342    // into a gep of the original struct. This is important for SROA and alias
2343    // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2344    unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2345    APInt Offset(OffsetBits, 0);
2346    if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
2347      // If this GEP instruction doesn't move the pointer, just replace the GEP
2348      // with a bitcast of the real input to the dest type.
2349      if (!Offset) {
2350        // If the bitcast is of an allocation, and the allocation will be
2351        // converted to match the type of the cast, don't touch this.
2352        if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
2353          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2354          if (Instruction *I = visitBitCast(*BCI)) {
2355            if (I != BCI) {
2356              I->takeName(BCI);
2357              BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2358              replaceInstUsesWith(*BCI, I);
2359            }
2360            return &GEP;
2361          }
2362        }
2363
2364        if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2365          return new AddrSpaceCastInst(SrcOp, GEPType);
2366        return new BitCastInst(SrcOp, GEPType);
2367      }
2368
2369      // Otherwise, if the offset is non-zero, we need to find out if there is a
2370      // field at Offset in 'A's type.  If so, we can pull the cast through the
2371      // GEP.
2372      SmallVector<Value*, 8> NewIndices;
2373      if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2374        Value *NGEP =
2375            GEP.isInBounds()
2376                ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2377                : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2378
2379        if (NGEP->getType() == GEPType)
2380          return replaceInstUsesWith(GEP, NGEP);
2381        NGEP->takeName(&GEP);
2382
2383        if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2384          return new AddrSpaceCastInst(NGEP, GEPType);
2385        return new BitCastInst(NGEP, GEPType);
2386      }
2387    }
2388  }
2389
2390  if (!GEP.isInBounds()) {
2391    unsigned IdxWidth =
2392        DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2393    APInt BasePtrOffset(IdxWidth, 0);
2394    Value *UnderlyingPtrOp =
2395            PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2396                                                             BasePtrOffset);
2397    if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2398      if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2399          BasePtrOffset.isNonNegative()) {
2400        APInt AllocSize(
2401            IdxWidth,
2402            DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2403        if (BasePtrOffset.ule(AllocSize)) {
2404          return GetElementPtrInst::CreateInBounds(
2405              GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2406              GEP.getName());
2407        }
2408      }
2409    }
2410  }
2411
2412  if (Instruction *R = foldSelectGEP(GEP, Builder))
2413    return R;
2414
2415  return nullptr;
2416}
2417
2418static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2419                                         Instruction *AI) {
2420  if (isa<ConstantPointerNull>(V))
2421    return true;
2422  if (auto *LI = dyn_cast<LoadInst>(V))
2423    return isa<GlobalVariable>(LI->getPointerOperand());
2424  // Two distinct allocations will never be equal.
2425  // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2426  // through bitcasts of V can cause
2427  // the result statement below to be true, even when AI and V (ex:
2428  // i8* ->i32* ->i8* of AI) are the same allocations.
2429  return isAllocLikeFn(V, TLI) && V != AI;
2430}
2431
2432static bool isAllocSiteRemovable(Instruction *AI,
2433                                 SmallVectorImpl<WeakTrackingVH> &Users,
2434                                 const TargetLibraryInfo *TLI) {
2435  SmallVector<Instruction*, 4> Worklist;
2436  Worklist.push_back(AI);
2437
2438  do {
2439    Instruction *PI = Worklist.pop_back_val();
2440    for (User *U : PI->users()) {
2441      Instruction *I = cast<Instruction>(U);
2442      switch (I->getOpcode()) {
2443      default:
2444        // Give up the moment we see something we can't handle.
2445        return false;
2446
2447      case Instruction::AddrSpaceCast:
2448      case Instruction::BitCast:
2449      case Instruction::GetElementPtr:
2450        Users.emplace_back(I);
2451        Worklist.push_back(I);
2452        continue;
2453
2454      case Instruction::ICmp: {
2455        ICmpInst *ICI = cast<ICmpInst>(I);
2456        // We can fold eq/ne comparisons with null to false/true, respectively.
2457        // We also fold comparisons in some conditions provided the alloc has
2458        // not escaped (see isNeverEqualToUnescapedAlloc).
2459        if (!ICI->isEquality())
2460          return false;
2461        unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2462        if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2463          return false;
2464        Users.emplace_back(I);
2465        continue;
2466      }
2467
2468      case Instruction::Call:
2469        // Ignore no-op and store intrinsics.
2470        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2471          switch (II->getIntrinsicID()) {
2472          default:
2473            return false;
2474
2475          case Intrinsic::memmove:
2476          case Intrinsic::memcpy:
2477          case Intrinsic::memset: {
2478            MemIntrinsic *MI = cast<MemIntrinsic>(II);
2479            if (MI->isVolatile() || MI->getRawDest() != PI)
2480              return false;
2481            LLVM_FALLTHROUGH;
2482          }
2483          case Intrinsic::assume:
2484          case Intrinsic::invariant_start:
2485          case Intrinsic::invariant_end:
2486          case Intrinsic::lifetime_start:
2487          case Intrinsic::lifetime_end:
2488          case Intrinsic::objectsize:
2489            Users.emplace_back(I);
2490            continue;
2491          }
2492        }
2493
2494        if (isFreeCall(I, TLI)) {
2495          Users.emplace_back(I);
2496          continue;
2497        }
2498        return false;
2499
2500      case Instruction::Store: {
2501        StoreInst *SI = cast<StoreInst>(I);
2502        if (SI->isVolatile() || SI->getPointerOperand() != PI)
2503          return false;
2504        Users.emplace_back(I);
2505        continue;
2506      }
2507      }
2508      llvm_unreachable("missing a return?");
2509    }
2510  } while (!Worklist.empty());
2511  return true;
2512}
2513
2514Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
2515  // If we have a malloc call which is only used in any amount of comparisons to
2516  // null and free calls, delete the calls and replace the comparisons with true
2517  // or false as appropriate.
2518
2519  // This is based on the principle that we can substitute our own allocation
2520  // function (which will never return null) rather than knowledge of the
2521  // specific function being called. In some sense this can change the permitted
2522  // outputs of a program (when we convert a malloc to an alloca, the fact that
2523  // the allocation is now on the stack is potentially visible, for example),
2524  // but we believe in a permissible manner.
2525  SmallVector<WeakTrackingVH, 64> Users;
2526
2527  // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2528  // before each store.
2529  TinyPtrVector<DbgVariableIntrinsic *> DIIs;
2530  std::unique_ptr<DIBuilder> DIB;
2531  if (isa<AllocaInst>(MI)) {
2532    DIIs = FindDbgAddrUses(&MI);
2533    DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2534  }
2535
2536  if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2537    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2538      // Lowering all @llvm.objectsize calls first because they may
2539      // use a bitcast/GEP of the alloca we are removing.
2540      if (!Users[i])
2541       continue;
2542
2543      Instruction *I = cast<Instruction>(&*Users[i]);
2544
2545      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2546        if (II->getIntrinsicID() == Intrinsic::objectsize) {
2547          Value *Result =
2548              lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2549          replaceInstUsesWith(*I, Result);
2550          eraseInstFromFunction(*I);
2551          Users[i] = nullptr; // Skip examining in the next loop.
2552        }
2553      }
2554    }
2555    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2556      if (!Users[i])
2557        continue;
2558
2559      Instruction *I = cast<Instruction>(&*Users[i]);
2560
2561      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2562        replaceInstUsesWith(*C,
2563                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
2564                                             C->isFalseWhenEqual()));
2565      } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2566        for (auto *DII : DIIs)
2567          ConvertDebugDeclareToDebugValue(DII, SI, *DIB);
2568      } else {
2569        // Casts, GEP, or anything else: we're about to delete this instruction,
2570        // so it can not have any valid uses.
2571        replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2572      }
2573      eraseInstFromFunction(*I);
2574    }
2575
2576    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2577      // Replace invoke with a NOP intrinsic to maintain the original CFG
2578      Module *M = II->getModule();
2579      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2580      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2581                         None, "", II->getParent());
2582    }
2583
2584    for (auto *DII : DIIs)
2585      eraseInstFromFunction(*DII);
2586
2587    return eraseInstFromFunction(MI);
2588  }
2589  return nullptr;
2590}
2591
2592/// Move the call to free before a NULL test.
2593///
2594/// Check if this free is accessed after its argument has been test
2595/// against NULL (property 0).
2596/// If yes, it is legal to move this call in its predecessor block.
2597///
2598/// The move is performed only if the block containing the call to free
2599/// will be removed, i.e.:
2600/// 1. it has only one predecessor P, and P has two successors
2601/// 2. it contains the call, noops, and an unconditional branch
2602/// 3. its successor is the same as its predecessor's successor
2603///
2604/// The profitability is out-of concern here and this function should
2605/// be called only if the caller knows this transformation would be
2606/// profitable (e.g., for code size).
2607static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2608                                                const DataLayout &DL) {
2609  Value *Op = FI.getArgOperand(0);
2610  BasicBlock *FreeInstrBB = FI.getParent();
2611  BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2612
2613  // Validate part of constraint #1: Only one predecessor
2614  // FIXME: We can extend the number of predecessor, but in that case, we
2615  //        would duplicate the call to free in each predecessor and it may
2616  //        not be profitable even for code size.
2617  if (!PredBB)
2618    return nullptr;
2619
2620  // Validate constraint #2: Does this block contains only the call to
2621  //                         free, noops, and an unconditional branch?
2622  BasicBlock *SuccBB;
2623  Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2624  if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2625    return nullptr;
2626
2627  // If there are only 2 instructions in the block, at this point,
2628  // this is the call to free and unconditional.
2629  // If there are more than 2 instructions, check that they are noops
2630  // i.e., they won't hurt the performance of the generated code.
2631  if (FreeInstrBB->size() != 2) {
2632    for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2633      if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2634        continue;
2635      auto *Cast = dyn_cast<CastInst>(&Inst);
2636      if (!Cast || !Cast->isNoopCast(DL))
2637        return nullptr;
2638    }
2639  }
2640  // Validate the rest of constraint #1 by matching on the pred branch.
2641  Instruction *TI = PredBB->getTerminator();
2642  BasicBlock *TrueBB, *FalseBB;
2643  ICmpInst::Predicate Pred;
2644  if (!match(TI, m_Br(m_ICmp(Pred,
2645                             m_CombineOr(m_Specific(Op),
2646                                         m_Specific(Op->stripPointerCasts())),
2647                             m_Zero()),
2648                      TrueBB, FalseBB)))
2649    return nullptr;
2650  if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2651    return nullptr;
2652
2653  // Validate constraint #3: Ensure the null case just falls through.
2654  if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2655    return nullptr;
2656  assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2657         "Broken CFG: missing edge from predecessor to successor");
2658
2659  // At this point, we know that everything in FreeInstrBB can be moved
2660  // before TI.
2661  for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2662       It != End;) {
2663    Instruction &Instr = *It++;
2664    if (&Instr == FreeInstrBBTerminator)
2665      break;
2666    Instr.moveBefore(TI);
2667  }
2668  assert(FreeInstrBB->size() == 1 &&
2669         "Only the branch instruction should remain");
2670  return &FI;
2671}
2672
2673Instruction *InstCombiner::visitFree(CallInst &FI) {
2674  Value *Op = FI.getArgOperand(0);
2675
2676  // free undef -> unreachable.
2677  if (isa<UndefValue>(Op)) {
2678    // Leave a marker since we can't modify the CFG here.
2679    CreateNonTerminatorUnreachable(&FI);
2680    return eraseInstFromFunction(FI);
2681  }
2682
2683  // If we have 'free null' delete the instruction.  This can happen in stl code
2684  // when lots of inlining happens.
2685  if (isa<ConstantPointerNull>(Op))
2686    return eraseInstFromFunction(FI);
2687
2688  // If we optimize for code size, try to move the call to free before the null
2689  // test so that simplify cfg can remove the empty block and dead code
2690  // elimination the branch. I.e., helps to turn something like:
2691  // if (foo) free(foo);
2692  // into
2693  // free(foo);
2694  //
2695  // Note that we can only do this for 'free' and not for any flavor of
2696  // 'operator delete'; there is no 'operator delete' symbol for which we are
2697  // permitted to invent a call, even if we're passing in a null pointer.
2698  if (MinimizeSize) {
2699    LibFunc Func;
2700    if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2701      if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2702        return I;
2703  }
2704
2705  return nullptr;
2706}
2707
2708static bool isMustTailCall(Value *V) {
2709  if (auto *CI = dyn_cast<CallInst>(V))
2710    return CI->isMustTailCall();
2711  return false;
2712}
2713
2714Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
2715  if (RI.getNumOperands() == 0) // ret void
2716    return nullptr;
2717
2718  Value *ResultOp = RI.getOperand(0);
2719  Type *VTy = ResultOp->getType();
2720  if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2721    return nullptr;
2722
2723  // Don't replace result of musttail calls.
2724  if (isMustTailCall(ResultOp))
2725    return nullptr;
2726
2727  // There might be assume intrinsics dominating this return that completely
2728  // determine the value. If so, constant fold it.
2729  KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2730  if (Known.isConstant())
2731    return replaceOperand(RI, 0,
2732        Constant::getIntegerValue(VTy, Known.getConstant()));
2733
2734  return nullptr;
2735}
2736
2737Instruction *InstCombiner::visitUnconditionalBranchInst(BranchInst &BI) {
2738  assert(BI.isUnconditional() && "Only for unconditional branches.");
2739
2740  // If this store is the second-to-last instruction in the basic block
2741  // (excluding debug info and bitcasts of pointers) and if the block ends with
2742  // an unconditional branch, try to move the store to the successor block.
2743
2744  auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2745    auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2746      return isa<DbgInfoIntrinsic>(BBI) ||
2747             (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2748    };
2749
2750    BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2751    do {
2752      if (BBI != FirstInstr)
2753        --BBI;
2754    } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2755
2756    return dyn_cast<StoreInst>(BBI);
2757  };
2758
2759  if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2760    if (mergeStoreIntoSuccessor(*SI))
2761      return &BI;
2762
2763  return nullptr;
2764}
2765
2766Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2767  if (BI.isUnconditional())
2768    return visitUnconditionalBranchInst(BI);
2769
2770  // Change br (not X), label True, label False to: br X, label False, True
2771  Value *X = nullptr;
2772  if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2773      !isa<Constant>(X)) {
2774    // Swap Destinations and condition...
2775    BI.swapSuccessors();
2776    return replaceOperand(BI, 0, X);
2777  }
2778
2779  // If the condition is irrelevant, remove the use so that other
2780  // transforms on the condition become more effective.
2781  if (!isa<ConstantInt>(BI.getCondition()) &&
2782      BI.getSuccessor(0) == BI.getSuccessor(1))
2783    return replaceOperand(
2784        BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2785
2786  // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2787  CmpInst::Predicate Pred;
2788  if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2789                      m_BasicBlock(), m_BasicBlock())) &&
2790      !isCanonicalPredicate(Pred)) {
2791    // Swap destinations and condition.
2792    CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2793    Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2794    BI.swapSuccessors();
2795    Worklist.push(Cond);
2796    return &BI;
2797  }
2798
2799  return nullptr;
2800}
2801
2802Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2803  Value *Cond = SI.getCondition();
2804  Value *Op0;
2805  ConstantInt *AddRHS;
2806  if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2807    // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2808    for (auto Case : SI.cases()) {
2809      Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2810      assert(isa<ConstantInt>(NewCase) &&
2811             "Result of expression should be constant");
2812      Case.setValue(cast<ConstantInt>(NewCase));
2813    }
2814    return replaceOperand(SI, 0, Op0);
2815  }
2816
2817  KnownBits Known = computeKnownBits(Cond, 0, &SI);
2818  unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2819  unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2820
2821  // Compute the number of leading bits we can ignore.
2822  // TODO: A better way to determine this would use ComputeNumSignBits().
2823  for (auto &C : SI.cases()) {
2824    LeadingKnownZeros = std::min(
2825        LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2826    LeadingKnownOnes = std::min(
2827        LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2828  }
2829
2830  unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2831
2832  // Shrink the condition operand if the new type is smaller than the old type.
2833  // But do not shrink to a non-standard type, because backend can't generate
2834  // good code for that yet.
2835  // TODO: We can make it aggressive again after fixing PR39569.
2836  if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2837      shouldChangeType(Known.getBitWidth(), NewWidth)) {
2838    IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2839    Builder.SetInsertPoint(&SI);
2840    Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2841
2842    for (auto Case : SI.cases()) {
2843      APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2844      Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2845    }
2846    return replaceOperand(SI, 0, NewCond);
2847  }
2848
2849  return nullptr;
2850}
2851
2852Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2853  Value *Agg = EV.getAggregateOperand();
2854
2855  if (!EV.hasIndices())
2856    return replaceInstUsesWith(EV, Agg);
2857
2858  if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2859                                          SQ.getWithInstruction(&EV)))
2860    return replaceInstUsesWith(EV, V);
2861
2862  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2863    // We're extracting from an insertvalue instruction, compare the indices
2864    const unsigned *exti, *exte, *insi, *inse;
2865    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2866         exte = EV.idx_end(), inse = IV->idx_end();
2867         exti != exte && insi != inse;
2868         ++exti, ++insi) {
2869      if (*insi != *exti)
2870        // The insert and extract both reference distinctly different elements.
2871        // This means the extract is not influenced by the insert, and we can
2872        // replace the aggregate operand of the extract with the aggregate
2873        // operand of the insert. i.e., replace
2874        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2875        // %E = extractvalue { i32, { i32 } } %I, 0
2876        // with
2877        // %E = extractvalue { i32, { i32 } } %A, 0
2878        return ExtractValueInst::Create(IV->getAggregateOperand(),
2879                                        EV.getIndices());
2880    }
2881    if (exti == exte && insi == inse)
2882      // Both iterators are at the end: Index lists are identical. Replace
2883      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2884      // %C = extractvalue { i32, { i32 } } %B, 1, 0
2885      // with "i32 42"
2886      return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
2887    if (exti == exte) {
2888      // The extract list is a prefix of the insert list. i.e. replace
2889      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2890      // %E = extractvalue { i32, { i32 } } %I, 1
2891      // with
2892      // %X = extractvalue { i32, { i32 } } %A, 1
2893      // %E = insertvalue { i32 } %X, i32 42, 0
2894      // by switching the order of the insert and extract (though the
2895      // insertvalue should be left in, since it may have other uses).
2896      Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
2897                                                EV.getIndices());
2898      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2899                                     makeArrayRef(insi, inse));
2900    }
2901    if (insi == inse)
2902      // The insert list is a prefix of the extract list
2903      // We can simply remove the common indices from the extract and make it
2904      // operate on the inserted value instead of the insertvalue result.
2905      // i.e., replace
2906      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2907      // %E = extractvalue { i32, { i32 } } %I, 1, 0
2908      // with
2909      // %E extractvalue { i32 } { i32 42 }, 0
2910      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2911                                      makeArrayRef(exti, exte));
2912  }
2913  if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
2914    // We're extracting from an overflow intrinsic, see if we're the only user,
2915    // which allows us to simplify multiple result intrinsics to simpler
2916    // things that just get one value.
2917    if (WO->hasOneUse()) {
2918      // Check if we're grabbing only the result of a 'with overflow' intrinsic
2919      // and replace it with a traditional binary instruction.
2920      if (*EV.idx_begin() == 0) {
2921        Instruction::BinaryOps BinOp = WO->getBinaryOp();
2922        Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
2923        replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
2924        eraseInstFromFunction(*WO);
2925        return BinaryOperator::Create(BinOp, LHS, RHS);
2926      }
2927
2928      // If the normal result of the add is dead, and the RHS is a constant,
2929      // we can transform this into a range comparison.
2930      // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
2931      if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2932        if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
2933          return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
2934                              ConstantExpr::getNot(CI));
2935    }
2936  }
2937  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2938    // If the (non-volatile) load only has one use, we can rewrite this to a
2939    // load from a GEP. This reduces the size of the load. If a load is used
2940    // only by extractvalue instructions then this either must have been
2941    // optimized before, or it is a struct with padding, in which case we
2942    // don't want to do the transformation as it loses padding knowledge.
2943    if (L->isSimple() && L->hasOneUse()) {
2944      // extractvalue has integer indices, getelementptr has Value*s. Convert.
2945      SmallVector<Value*, 4> Indices;
2946      // Prefix an i32 0 since we need the first element.
2947      Indices.push_back(Builder.getInt32(0));
2948      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2949            I != E; ++I)
2950        Indices.push_back(Builder.getInt32(*I));
2951
2952      // We need to insert these at the location of the old load, not at that of
2953      // the extractvalue.
2954      Builder.SetInsertPoint(L);
2955      Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
2956                                             L->getPointerOperand(), Indices);
2957      Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
2958      // Whatever aliasing information we had for the orignal load must also
2959      // hold for the smaller load, so propagate the annotations.
2960      AAMDNodes Nodes;
2961      L->getAAMetadata(Nodes);
2962      NL->setAAMetadata(Nodes);
2963      // Returning the load directly will cause the main loop to insert it in
2964      // the wrong spot, so use replaceInstUsesWith().
2965      return replaceInstUsesWith(EV, NL);
2966    }
2967  // We could simplify extracts from other values. Note that nested extracts may
2968  // already be simplified implicitly by the above: extract (extract (insert) )
2969  // will be translated into extract ( insert ( extract ) ) first and then just
2970  // the value inserted, if appropriate. Similarly for extracts from single-use
2971  // loads: extract (extract (load)) will be translated to extract (load (gep))
2972  // and if again single-use then via load (gep (gep)) to load (gep).
2973  // However, double extracts from e.g. function arguments or return values
2974  // aren't handled yet.
2975  return nullptr;
2976}
2977
2978/// Return 'true' if the given typeinfo will match anything.
2979static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2980  switch (Personality) {
2981  case EHPersonality::GNU_C:
2982  case EHPersonality::GNU_C_SjLj:
2983  case EHPersonality::Rust:
2984    // The GCC C EH and Rust personality only exists to support cleanups, so
2985    // it's not clear what the semantics of catch clauses are.
2986    return false;
2987  case EHPersonality::Unknown:
2988    return false;
2989  case EHPersonality::GNU_Ada:
2990    // While __gnat_all_others_value will match any Ada exception, it doesn't
2991    // match foreign exceptions (or didn't, before gcc-4.7).
2992    return false;
2993  case EHPersonality::GNU_CXX:
2994  case EHPersonality::GNU_CXX_SjLj:
2995  case EHPersonality::GNU_ObjC:
2996  case EHPersonality::MSVC_X86SEH:
2997  case EHPersonality::MSVC_Win64SEH:
2998  case EHPersonality::MSVC_CXX:
2999  case EHPersonality::CoreCLR:
3000  case EHPersonality::Wasm_CXX:
3001    return TypeInfo->isNullValue();
3002  }
3003  llvm_unreachable("invalid enum");
3004}
3005
3006static bool shorter_filter(const Value *LHS, const Value *RHS) {
3007  return
3008    cast<ArrayType>(LHS->getType())->getNumElements()
3009  <
3010    cast<ArrayType>(RHS->getType())->getNumElements();
3011}
3012
3013Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
3014  // The logic here should be correct for any real-world personality function.
3015  // However if that turns out not to be true, the offending logic can always
3016  // be conditioned on the personality function, like the catch-all logic is.
3017  EHPersonality Personality =
3018      classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3019
3020  // Simplify the list of clauses, eg by removing repeated catch clauses
3021  // (these are often created by inlining).
3022  bool MakeNewInstruction = false; // If true, recreate using the following:
3023  SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3024  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
3025
3026  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3027  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3028    bool isLastClause = i + 1 == e;
3029    if (LI.isCatch(i)) {
3030      // A catch clause.
3031      Constant *CatchClause = LI.getClause(i);
3032      Constant *TypeInfo = CatchClause->stripPointerCasts();
3033
3034      // If we already saw this clause, there is no point in having a second
3035      // copy of it.
3036      if (AlreadyCaught.insert(TypeInfo).second) {
3037        // This catch clause was not already seen.
3038        NewClauses.push_back(CatchClause);
3039      } else {
3040        // Repeated catch clause - drop the redundant copy.
3041        MakeNewInstruction = true;
3042      }
3043
3044      // If this is a catch-all then there is no point in keeping any following
3045      // clauses or marking the landingpad as having a cleanup.
3046      if (isCatchAll(Personality, TypeInfo)) {
3047        if (!isLastClause)
3048          MakeNewInstruction = true;
3049        CleanupFlag = false;
3050        break;
3051      }
3052    } else {
3053      // A filter clause.  If any of the filter elements were already caught
3054      // then they can be dropped from the filter.  It is tempting to try to
3055      // exploit the filter further by saying that any typeinfo that does not
3056      // occur in the filter can't be caught later (and thus can be dropped).
3057      // However this would be wrong, since typeinfos can match without being
3058      // equal (for example if one represents a C++ class, and the other some
3059      // class derived from it).
3060      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3061      Constant *FilterClause = LI.getClause(i);
3062      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3063      unsigned NumTypeInfos = FilterType->getNumElements();
3064
3065      // An empty filter catches everything, so there is no point in keeping any
3066      // following clauses or marking the landingpad as having a cleanup.  By
3067      // dealing with this case here the following code is made a bit simpler.
3068      if (!NumTypeInfos) {
3069        NewClauses.push_back(FilterClause);
3070        if (!isLastClause)
3071          MakeNewInstruction = true;
3072        CleanupFlag = false;
3073        break;
3074      }
3075
3076      bool MakeNewFilter = false; // If true, make a new filter.
3077      SmallVector<Constant *, 16> NewFilterElts; // New elements.
3078      if (isa<ConstantAggregateZero>(FilterClause)) {
3079        // Not an empty filter - it contains at least one null typeinfo.
3080        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3081        Constant *TypeInfo =
3082          Constant::getNullValue(FilterType->getElementType());
3083        // If this typeinfo is a catch-all then the filter can never match.
3084        if (isCatchAll(Personality, TypeInfo)) {
3085          // Throw the filter away.
3086          MakeNewInstruction = true;
3087          continue;
3088        }
3089
3090        // There is no point in having multiple copies of this typeinfo, so
3091        // discard all but the first copy if there is more than one.
3092        NewFilterElts.push_back(TypeInfo);
3093        if (NumTypeInfos > 1)
3094          MakeNewFilter = true;
3095      } else {
3096        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3097        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3098        NewFilterElts.reserve(NumTypeInfos);
3099
3100        // Remove any filter elements that were already caught or that already
3101        // occurred in the filter.  While there, see if any of the elements are
3102        // catch-alls.  If so, the filter can be discarded.
3103        bool SawCatchAll = false;
3104        for (unsigned j = 0; j != NumTypeInfos; ++j) {
3105          Constant *Elt = Filter->getOperand(j);
3106          Constant *TypeInfo = Elt->stripPointerCasts();
3107          if (isCatchAll(Personality, TypeInfo)) {
3108            // This element is a catch-all.  Bail out, noting this fact.
3109            SawCatchAll = true;
3110            break;
3111          }
3112
3113          // Even if we've seen a type in a catch clause, we don't want to
3114          // remove it from the filter.  An unexpected type handler may be
3115          // set up for a call site which throws an exception of the same
3116          // type caught.  In order for the exception thrown by the unexpected
3117          // handler to propagate correctly, the filter must be correctly
3118          // described for the call site.
3119          //
3120          // Example:
3121          //
3122          // void unexpected() { throw 1;}
3123          // void foo() throw (int) {
3124          //   std::set_unexpected(unexpected);
3125          //   try {
3126          //     throw 2.0;
3127          //   } catch (int i) {}
3128          // }
3129
3130          // There is no point in having multiple copies of the same typeinfo in
3131          // a filter, so only add it if we didn't already.
3132          if (SeenInFilter.insert(TypeInfo).second)
3133            NewFilterElts.push_back(cast<Constant>(Elt));
3134        }
3135        // A filter containing a catch-all cannot match anything by definition.
3136        if (SawCatchAll) {
3137          // Throw the filter away.
3138          MakeNewInstruction = true;
3139          continue;
3140        }
3141
3142        // If we dropped something from the filter, make a new one.
3143        if (NewFilterElts.size() < NumTypeInfos)
3144          MakeNewFilter = true;
3145      }
3146      if (MakeNewFilter) {
3147        FilterType = ArrayType::get(FilterType->getElementType(),
3148                                    NewFilterElts.size());
3149        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3150        MakeNewInstruction = true;
3151      }
3152
3153      NewClauses.push_back(FilterClause);
3154
3155      // If the new filter is empty then it will catch everything so there is
3156      // no point in keeping any following clauses or marking the landingpad
3157      // as having a cleanup.  The case of the original filter being empty was
3158      // already handled above.
3159      if (MakeNewFilter && !NewFilterElts.size()) {
3160        assert(MakeNewInstruction && "New filter but not a new instruction!");
3161        CleanupFlag = false;
3162        break;
3163      }
3164    }
3165  }
3166
3167  // If several filters occur in a row then reorder them so that the shortest
3168  // filters come first (those with the smallest number of elements).  This is
3169  // advantageous because shorter filters are more likely to match, speeding up
3170  // unwinding, but mostly because it increases the effectiveness of the other
3171  // filter optimizations below.
3172  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3173    unsigned j;
3174    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3175    for (j = i; j != e; ++j)
3176      if (!isa<ArrayType>(NewClauses[j]->getType()))
3177        break;
3178
3179    // Check whether the filters are already sorted by length.  We need to know
3180    // if sorting them is actually going to do anything so that we only make a
3181    // new landingpad instruction if it does.
3182    for (unsigned k = i; k + 1 < j; ++k)
3183      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3184        // Not sorted, so sort the filters now.  Doing an unstable sort would be
3185        // correct too but reordering filters pointlessly might confuse users.
3186        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3187                         shorter_filter);
3188        MakeNewInstruction = true;
3189        break;
3190      }
3191
3192    // Look for the next batch of filters.
3193    i = j + 1;
3194  }
3195
3196  // If typeinfos matched if and only if equal, then the elements of a filter L
3197  // that occurs later than a filter F could be replaced by the intersection of
3198  // the elements of F and L.  In reality two typeinfos can match without being
3199  // equal (for example if one represents a C++ class, and the other some class
3200  // derived from it) so it would be wrong to perform this transform in general.
3201  // However the transform is correct and useful if F is a subset of L.  In that
3202  // case L can be replaced by F, and thus removed altogether since repeating a
3203  // filter is pointless.  So here we look at all pairs of filters F and L where
3204  // L follows F in the list of clauses, and remove L if every element of F is
3205  // an element of L.  This can occur when inlining C++ functions with exception
3206  // specifications.
3207  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3208    // Examine each filter in turn.
3209    Value *Filter = NewClauses[i];
3210    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3211    if (!FTy)
3212      // Not a filter - skip it.
3213      continue;
3214    unsigned FElts = FTy->getNumElements();
3215    // Examine each filter following this one.  Doing this backwards means that
3216    // we don't have to worry about filters disappearing under us when removed.
3217    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3218      Value *LFilter = NewClauses[j];
3219      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3220      if (!LTy)
3221        // Not a filter - skip it.
3222        continue;
3223      // If Filter is a subset of LFilter, i.e. every element of Filter is also
3224      // an element of LFilter, then discard LFilter.
3225      SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3226      // If Filter is empty then it is a subset of LFilter.
3227      if (!FElts) {
3228        // Discard LFilter.
3229        NewClauses.erase(J);
3230        MakeNewInstruction = true;
3231        // Move on to the next filter.
3232        continue;
3233      }
3234      unsigned LElts = LTy->getNumElements();
3235      // If Filter is longer than LFilter then it cannot be a subset of it.
3236      if (FElts > LElts)
3237        // Move on to the next filter.
3238        continue;
3239      // At this point we know that LFilter has at least one element.
3240      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3241        // Filter is a subset of LFilter iff Filter contains only zeros (as we
3242        // already know that Filter is not longer than LFilter).
3243        if (isa<ConstantAggregateZero>(Filter)) {
3244          assert(FElts <= LElts && "Should have handled this case earlier!");
3245          // Discard LFilter.
3246          NewClauses.erase(J);
3247          MakeNewInstruction = true;
3248        }
3249        // Move on to the next filter.
3250        continue;
3251      }
3252      ConstantArray *LArray = cast<ConstantArray>(LFilter);
3253      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3254        // Since Filter is non-empty and contains only zeros, it is a subset of
3255        // LFilter iff LFilter contains a zero.
3256        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3257        for (unsigned l = 0; l != LElts; ++l)
3258          if (LArray->getOperand(l)->isNullValue()) {
3259            // LFilter contains a zero - discard it.
3260            NewClauses.erase(J);
3261            MakeNewInstruction = true;
3262            break;
3263          }
3264        // Move on to the next filter.
3265        continue;
3266      }
3267      // At this point we know that both filters are ConstantArrays.  Loop over
3268      // operands to see whether every element of Filter is also an element of
3269      // LFilter.  Since filters tend to be short this is probably faster than
3270      // using a method that scales nicely.
3271      ConstantArray *FArray = cast<ConstantArray>(Filter);
3272      bool AllFound = true;
3273      for (unsigned f = 0; f != FElts; ++f) {
3274        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3275        AllFound = false;
3276        for (unsigned l = 0; l != LElts; ++l) {
3277          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3278          if (LTypeInfo == FTypeInfo) {
3279            AllFound = true;
3280            break;
3281          }
3282        }
3283        if (!AllFound)
3284          break;
3285      }
3286      if (AllFound) {
3287        // Discard LFilter.
3288        NewClauses.erase(J);
3289        MakeNewInstruction = true;
3290      }
3291      // Move on to the next filter.
3292    }
3293  }
3294
3295  // If we changed any of the clauses, replace the old landingpad instruction
3296  // with a new one.
3297  if (MakeNewInstruction) {
3298    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3299                                                 NewClauses.size());
3300    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3301      NLI->addClause(NewClauses[i]);
3302    // A landing pad with no clauses must have the cleanup flag set.  It is
3303    // theoretically possible, though highly unlikely, that we eliminated all
3304    // clauses.  If so, force the cleanup flag to true.
3305    if (NewClauses.empty())
3306      CleanupFlag = true;
3307    NLI->setCleanup(CleanupFlag);
3308    return NLI;
3309  }
3310
3311  // Even if none of the clauses changed, we may nonetheless have understood
3312  // that the cleanup flag is pointless.  Clear it if so.
3313  if (LI.isCleanup() != CleanupFlag) {
3314    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3315    LI.setCleanup(CleanupFlag);
3316    return &LI;
3317  }
3318
3319  return nullptr;
3320}
3321
3322Instruction *InstCombiner::visitFreeze(FreezeInst &I) {
3323  Value *Op0 = I.getOperand(0);
3324
3325  if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3326    return replaceInstUsesWith(I, V);
3327
3328  return nullptr;
3329}
3330
3331/// Try to move the specified instruction from its current block into the
3332/// beginning of DestBlock, which can only happen if it's safe to move the
3333/// instruction past all of the instructions between it and the end of its
3334/// block.
3335static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3336  assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3337  BasicBlock *SrcBlock = I->getParent();
3338
3339  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3340  if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3341      I->isTerminator())
3342    return false;
3343
3344  // Do not sink static or dynamic alloca instructions. Static allocas must
3345  // remain in the entry block, and dynamic allocas must not be sunk in between
3346  // a stacksave / stackrestore pair, which would incorrectly shorten its
3347  // lifetime.
3348  if (isa<AllocaInst>(I))
3349    return false;
3350
3351  // Do not sink into catchswitch blocks.
3352  if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3353    return false;
3354
3355  // Do not sink convergent call instructions.
3356  if (auto *CI = dyn_cast<CallInst>(I)) {
3357    if (CI->isConvergent())
3358      return false;
3359  }
3360  // We can only sink load instructions if there is nothing between the load and
3361  // the end of block that could change the value.
3362  if (I->mayReadFromMemory()) {
3363    // We don't want to do any sophisticated alias analysis, so we only check
3364    // the instructions after I in I's parent block if we try to sink to its
3365    // successor block.
3366    if (DestBlock->getUniquePredecessor() != I->getParent())
3367      return false;
3368    for (BasicBlock::iterator Scan = I->getIterator(),
3369                              E = I->getParent()->end();
3370         Scan != E; ++Scan)
3371      if (Scan->mayWriteToMemory())
3372        return false;
3373  }
3374
3375  I->dropDroppableUses([DestBlock](const Use *U) {
3376    if (auto *I = dyn_cast<Instruction>(U->getUser()))
3377      return I->getParent() != DestBlock;
3378    return true;
3379  });
3380  /// FIXME: We could remove droppable uses that are not dominated by
3381  /// the new position.
3382
3383  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3384  I->moveBefore(&*InsertPos);
3385  ++NumSunkInst;
3386
3387  // Also sink all related debug uses from the source basic block. Otherwise we
3388  // get debug use before the def. Attempt to salvage debug uses first, to
3389  // maximise the range variables have location for. If we cannot salvage, then
3390  // mark the location undef: we know it was supposed to receive a new location
3391  // here, but that computation has been sunk.
3392  SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3393  findDbgUsers(DbgUsers, I);
3394
3395  // Update the arguments of a dbg.declare instruction, so that it
3396  // does not point into a sunk instruction.
3397  auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) {
3398    if (!isa<DbgDeclareInst>(DII))
3399      return false;
3400
3401    if (isa<CastInst>(I))
3402      DII->setOperand(
3403          0, MetadataAsValue::get(I->getContext(),
3404                                  ValueAsMetadata::get(I->getOperand(0))));
3405    return true;
3406  };
3407
3408  SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3409  for (auto User : DbgUsers) {
3410    // A dbg.declare instruction should not be cloned, since there can only be
3411    // one per variable fragment. It should be left in the original place
3412    // because the sunk instruction is not an alloca (otherwise we could not be
3413    // here).
3414    if (User->getParent() != SrcBlock || updateDbgDeclare(User))
3415      continue;
3416
3417    DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3418    LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3419  }
3420
3421  // Perform salvaging without the clones, then sink the clones.
3422  if (!DIIClones.empty()) {
3423    salvageDebugInfoForDbgValues(*I, DbgUsers);
3424    for (auto &DIIClone : DIIClones) {
3425      DIIClone->insertBefore(&*InsertPos);
3426      LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3427    }
3428  }
3429
3430  return true;
3431}
3432
3433bool InstCombiner::run() {
3434  while (!Worklist.isEmpty()) {
3435    // Walk deferred instructions in reverse order, and push them to the
3436    // worklist, which means they'll end up popped from the worklist in-order.
3437    while (Instruction *I = Worklist.popDeferred()) {
3438      // Check to see if we can DCE the instruction. We do this already here to
3439      // reduce the number of uses and thus allow other folds to trigger.
3440      // Note that eraseInstFromFunction() may push additional instructions on
3441      // the deferred worklist, so this will DCE whole instruction chains.
3442      if (isInstructionTriviallyDead(I, &TLI)) {
3443        eraseInstFromFunction(*I);
3444        ++NumDeadInst;
3445        continue;
3446      }
3447
3448      Worklist.push(I);
3449    }
3450
3451    Instruction *I = Worklist.removeOne();
3452    if (I == nullptr) continue;  // skip null values.
3453
3454    // Check to see if we can DCE the instruction.
3455    if (isInstructionTriviallyDead(I, &TLI)) {
3456      eraseInstFromFunction(*I);
3457      ++NumDeadInst;
3458      continue;
3459    }
3460
3461    if (!DebugCounter::shouldExecute(VisitCounter))
3462      continue;
3463
3464    // Instruction isn't dead, see if we can constant propagate it.
3465    if (!I->use_empty() &&
3466        (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3467      if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3468        LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3469                          << '\n');
3470
3471        // Add operands to the worklist.
3472        replaceInstUsesWith(*I, C);
3473        ++NumConstProp;
3474        if (isInstructionTriviallyDead(I, &TLI))
3475          eraseInstFromFunction(*I);
3476        MadeIRChange = true;
3477        continue;
3478      }
3479    }
3480
3481    // See if we can trivially sink this instruction to its user if we can
3482    // prove that the successor is not executed more frequently than our block.
3483    if (EnableCodeSinking)
3484      if (Use *SingleUse = I->getSingleUndroppableUse()) {
3485        BasicBlock *BB = I->getParent();
3486        Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3487        BasicBlock *UserParent;
3488
3489        // Get the block the use occurs in.
3490        if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3491          UserParent = PN->getIncomingBlock(*SingleUse);
3492        else
3493          UserParent = UserInst->getParent();
3494
3495        if (UserParent != BB) {
3496          // See if the user is one of our successors that has only one
3497          // predecessor, so that we don't have to split the critical edge.
3498          bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3499          // Another option where we can sink is a block that ends with a
3500          // terminator that does not pass control to other block (such as
3501          // return or unreachable). In this case:
3502          //   - I dominates the User (by SSA form);
3503          //   - the User will be executed at most once.
3504          // So sinking I down to User is always profitable or neutral.
3505          if (!ShouldSink) {
3506            auto *Term = UserParent->getTerminator();
3507            ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3508          }
3509          if (ShouldSink) {
3510            assert(DT.dominates(BB, UserParent) &&
3511                   "Dominance relation broken?");
3512            // Okay, the CFG is simple enough, try to sink this instruction.
3513            if (TryToSinkInstruction(I, UserParent)) {
3514              LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3515              MadeIRChange = true;
3516              // We'll add uses of the sunk instruction below, but since sinking
3517              // can expose opportunities for it's *operands* add them to the
3518              // worklist
3519              for (Use &U : I->operands())
3520                if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3521                  Worklist.push(OpI);
3522            }
3523          }
3524        }
3525      }
3526
3527    // Now that we have an instruction, try combining it to simplify it.
3528    Builder.SetInsertPoint(I);
3529    Builder.SetCurrentDebugLocation(I->getDebugLoc());
3530
3531#ifndef NDEBUG
3532    std::string OrigI;
3533#endif
3534    LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3535    LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3536
3537    if (Instruction *Result = visit(*I)) {
3538      ++NumCombined;
3539      // Should we replace the old instruction with a new one?
3540      if (Result != I) {
3541        LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3542                          << "    New = " << *Result << '\n');
3543
3544        if (I->getDebugLoc())
3545          Result->setDebugLoc(I->getDebugLoc());
3546        // Everything uses the new instruction now.
3547        I->replaceAllUsesWith(Result);
3548
3549        // Move the name to the new instruction first.
3550        Result->takeName(I);
3551
3552        // Insert the new instruction into the basic block...
3553        BasicBlock *InstParent = I->getParent();
3554        BasicBlock::iterator InsertPos = I->getIterator();
3555
3556        // If we replace a PHI with something that isn't a PHI, fix up the
3557        // insertion point.
3558        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
3559          InsertPos = InstParent->getFirstInsertionPt();
3560
3561        InstParent->getInstList().insert(InsertPos, Result);
3562
3563        // Push the new instruction and any users onto the worklist.
3564        Worklist.pushUsersToWorkList(*Result);
3565        Worklist.push(Result);
3566
3567        eraseInstFromFunction(*I);
3568      } else {
3569        LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3570                          << "    New = " << *I << '\n');
3571
3572        // If the instruction was modified, it's possible that it is now dead.
3573        // if so, remove it.
3574        if (isInstructionTriviallyDead(I, &TLI)) {
3575          eraseInstFromFunction(*I);
3576        } else {
3577          Worklist.pushUsersToWorkList(*I);
3578          Worklist.push(I);
3579        }
3580      }
3581      MadeIRChange = true;
3582    }
3583  }
3584
3585  Worklist.zap();
3586  return MadeIRChange;
3587}
3588
3589/// Populate the IC worklist from a function, by walking it in depth-first
3590/// order and adding all reachable code to the worklist.
3591///
3592/// This has a couple of tricks to make the code faster and more powerful.  In
3593/// particular, we constant fold and DCE instructions as we go, to avoid adding
3594/// them to the worklist (this significantly speeds up instcombine on code where
3595/// many instructions are dead or constant).  Additionally, if we find a branch
3596/// whose condition is a known constant, we only visit the reachable successors.
3597static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3598                                          const TargetLibraryInfo *TLI,
3599                                          InstCombineWorklist &ICWorklist) {
3600  bool MadeIRChange = false;
3601  SmallPtrSet<BasicBlock *, 32> Visited;
3602  SmallVector<BasicBlock*, 256> Worklist;
3603  Worklist.push_back(&F.front());
3604
3605  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3606  DenseMap<Constant *, Constant *> FoldedConstants;
3607
3608  do {
3609    BasicBlock *BB = Worklist.pop_back_val();
3610
3611    // We have now visited this block!  If we've already been here, ignore it.
3612    if (!Visited.insert(BB).second)
3613      continue;
3614
3615    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3616      Instruction *Inst = &*BBI++;
3617
3618      // ConstantProp instruction if trivially constant.
3619      if (!Inst->use_empty() &&
3620          (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3621        if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3622          LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3623                            << '\n');
3624          Inst->replaceAllUsesWith(C);
3625          ++NumConstProp;
3626          if (isInstructionTriviallyDead(Inst, TLI))
3627            Inst->eraseFromParent();
3628          MadeIRChange = true;
3629          continue;
3630        }
3631
3632      // See if we can constant fold its operands.
3633      for (Use &U : Inst->operands()) {
3634        if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3635          continue;
3636
3637        auto *C = cast<Constant>(U);
3638        Constant *&FoldRes = FoldedConstants[C];
3639        if (!FoldRes)
3640          FoldRes = ConstantFoldConstant(C, DL, TLI);
3641
3642        if (FoldRes != C) {
3643          LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3644                            << "\n    Old = " << *C
3645                            << "\n    New = " << *FoldRes << '\n');
3646          U = FoldRes;
3647          MadeIRChange = true;
3648        }
3649      }
3650
3651      // Skip processing debug intrinsics in InstCombine. Processing these call instructions
3652      // consumes non-trivial amount of time and provides no value for the optimization.
3653      if (!isa<DbgInfoIntrinsic>(Inst))
3654        InstrsForInstCombineWorklist.push_back(Inst);
3655    }
3656
3657    // Recursively visit successors.  If this is a branch or switch on a
3658    // constant, only visit the reachable successor.
3659    Instruction *TI = BB->getTerminator();
3660    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3661      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3662        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3663        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3664        Worklist.push_back(ReachableBB);
3665        continue;
3666      }
3667    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3668      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3669        Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3670        continue;
3671      }
3672    }
3673
3674    for (BasicBlock *SuccBB : successors(TI))
3675      Worklist.push_back(SuccBB);
3676  } while (!Worklist.empty());
3677
3678  // Remove instructions inside unreachable blocks. This prevents the
3679  // instcombine code from having to deal with some bad special cases, and
3680  // reduces use counts of instructions.
3681  for (BasicBlock &BB : F) {
3682    if (Visited.count(&BB))
3683      continue;
3684
3685    unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB);
3686    MadeIRChange |= NumDeadInstInBB > 0;
3687    NumDeadInst += NumDeadInstInBB;
3688  }
3689
3690  // Once we've found all of the instructions to add to instcombine's worklist,
3691  // add them in reverse order.  This way instcombine will visit from the top
3692  // of the function down.  This jives well with the way that it adds all uses
3693  // of instructions to the worklist after doing a transformation, thus avoiding
3694  // some N^2 behavior in pathological cases.
3695  ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3696  for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3697    // DCE instruction if trivially dead. As we iterate in reverse program
3698    // order here, we will clean up whole chains of dead instructions.
3699    if (isInstructionTriviallyDead(Inst, TLI)) {
3700      ++NumDeadInst;
3701      LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3702      salvageDebugInfo(*Inst);
3703      Inst->eraseFromParent();
3704      MadeIRChange = true;
3705      continue;
3706    }
3707
3708    ICWorklist.push(Inst);
3709  }
3710
3711  return MadeIRChange;
3712}
3713
3714static bool combineInstructionsOverFunction(
3715    Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3716    AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
3717    OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3718    ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3719  auto &DL = F.getParent()->getDataLayout();
3720  MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3721
3722  /// Builder - This is an IRBuilder that automatically inserts new
3723  /// instructions into the worklist when they are created.
3724  IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3725      F.getContext(), TargetFolder(DL),
3726      IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3727        Worklist.add(I);
3728        if (match(I, m_Intrinsic<Intrinsic::assume>()))
3729          AC.registerAssumption(cast<CallInst>(I));
3730      }));
3731
3732  // Lower dbg.declare intrinsics otherwise their value may be clobbered
3733  // by instcombiner.
3734  bool MadeIRChange = false;
3735  if (ShouldLowerDbgDeclare)
3736    MadeIRChange = LowerDbgDeclare(F);
3737
3738  // Iterate while there is work to do.
3739  unsigned Iteration = 0;
3740  while (true) {
3741    ++Iteration;
3742
3743    if (Iteration > InfiniteLoopDetectionThreshold) {
3744      report_fatal_error(
3745          "Instruction Combining seems stuck in an infinite loop after " +
3746          Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3747    }
3748
3749    if (Iteration > MaxIterations) {
3750      LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3751                        << " on " << F.getName()
3752                        << " reached; stopping before reaching a fixpoint\n");
3753      break;
3754    }
3755
3756    LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
3757                      << F.getName() << "\n");
3758
3759    MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
3760
3761    InstCombiner IC(Worklist, Builder, F.hasMinSize(), AA,
3762                    AC, TLI, DT, ORE, BFI, PSI, DL, LI);
3763    IC.MaxArraySizeForCombine = MaxArraySize;
3764
3765    if (!IC.run())
3766      break;
3767
3768    MadeIRChange = true;
3769  }
3770
3771  return MadeIRChange;
3772}
3773
3774InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
3775
3776InstCombinePass::InstCombinePass(unsigned MaxIterations)
3777    : MaxIterations(MaxIterations) {}
3778
3779PreservedAnalyses InstCombinePass::run(Function &F,
3780                                       FunctionAnalysisManager &AM) {
3781  auto &AC = AM.getResult<AssumptionAnalysis>(F);
3782  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3783  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3784  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3785
3786  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
3787
3788  auto *AA = &AM.getResult<AAManager>(F);
3789  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
3790  ProfileSummaryInfo *PSI =
3791      MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
3792  auto *BFI = (PSI && PSI->hasProfileSummary()) ?
3793      &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
3794
3795  if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3796                                       PSI, MaxIterations, LI))
3797    // No changes, all analyses are preserved.
3798    return PreservedAnalyses::all();
3799
3800  // Mark all the analyses that instcombine updates as preserved.
3801  PreservedAnalyses PA;
3802  PA.preserveSet<CFGAnalyses>();
3803  PA.preserve<AAManager>();
3804  PA.preserve<BasicAA>();
3805  PA.preserve<GlobalsAA>();
3806  return PA;
3807}
3808
3809void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3810  AU.setPreservesCFG();
3811  AU.addRequired<AAResultsWrapperPass>();
3812  AU.addRequired<AssumptionCacheTracker>();
3813  AU.addRequired<TargetLibraryInfoWrapperPass>();
3814  AU.addRequired<DominatorTreeWrapperPass>();
3815  AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3816  AU.addPreserved<DominatorTreeWrapperPass>();
3817  AU.addPreserved<AAResultsWrapperPass>();
3818  AU.addPreserved<BasicAAWrapperPass>();
3819  AU.addPreserved<GlobalsAAWrapperPass>();
3820  AU.addRequired<ProfileSummaryInfoWrapperPass>();
3821  LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
3822}
3823
3824bool InstructionCombiningPass::runOnFunction(Function &F) {
3825  if (skipFunction(F))
3826    return false;
3827
3828  // Required analyses.
3829  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3830  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3831  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3832  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3833  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3834
3835  // Optional analyses.
3836  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3837  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3838  ProfileSummaryInfo *PSI =
3839      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3840  BlockFrequencyInfo *BFI =
3841      (PSI && PSI->hasProfileSummary()) ?
3842      &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
3843      nullptr;
3844
3845  return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, BFI,
3846                                         PSI, MaxIterations, LI);
3847}
3848
3849char InstructionCombiningPass::ID = 0;
3850
3851InstructionCombiningPass::InstructionCombiningPass()
3852    : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
3853  initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3854}
3855
3856InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
3857    : FunctionPass(ID), MaxIterations(MaxIterations) {
3858  initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3859}
3860
3861INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3862                      "Combine redundant instructions", false, false)
3863INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3864INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3865INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3866INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3867INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3868INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3869INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
3870INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
3871INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3872                    "Combine redundant instructions", false, false)
3873
3874// Initialization Routines
3875void llvm::initializeInstCombine(PassRegistry &Registry) {
3876  initializeInstructionCombiningPassPass(Registry);
3877}
3878
3879void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3880  initializeInstructionCombiningPassPass(*unwrap(R));
3881}
3882
3883FunctionPass *llvm::createInstructionCombiningPass() {
3884  return new InstructionCombiningPass();
3885}
3886
3887FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
3888  return new InstructionCombiningPass(MaxIterations);
3889}
3890
3891void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
3892  unwrap(PM)->add(createInstructionCombiningPass());
3893}
3894