1//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10// srem, urem, frem.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/IR/BasicBlock.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/IR/Intrinsics.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/IR/PatternMatch.h"
29#include "llvm/IR/Type.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Support/Casting.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/KnownBits.h"
34#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35#include "llvm/Transforms/Utils/BuildLibCalls.h"
36#include <cassert>
37#include <cstddef>
38#include <cstdint>
39#include <utility>
40
41using namespace llvm;
42using namespace PatternMatch;
43
44#define DEBUG_TYPE "instcombine"
45
46/// The specific integer value is used in a context where it is known to be
47/// non-zero.  If this allows us to simplify the computation, do so and return
48/// the new operand, otherwise return null.
49static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
50                                        Instruction &CxtI) {
51  // If V has multiple uses, then we would have to do more analysis to determine
52  // if this is safe.  For example, the use could be in dynamically unreached
53  // code.
54  if (!V->hasOneUse()) return nullptr;
55
56  bool MadeChange = false;
57
58  // ((1 << A) >>u B) --> (1 << (A-B))
59  // Because V cannot be zero, we know that B is less than A.
60  Value *A = nullptr, *B = nullptr, *One = nullptr;
61  if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
62      match(One, m_One())) {
63    A = IC.Builder.CreateSub(A, B);
64    return IC.Builder.CreateShl(One, A);
65  }
66
67  // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
68  // inexact.  Similarly for <<.
69  BinaryOperator *I = dyn_cast<BinaryOperator>(V);
70  if (I && I->isLogicalShift() &&
71      IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
72    // We know that this is an exact/nuw shift and that the input is a
73    // non-zero context as well.
74    if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
75      IC.replaceOperand(*I, 0, V2);
76      MadeChange = true;
77    }
78
79    if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
80      I->setIsExact();
81      MadeChange = true;
82    }
83
84    if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
85      I->setHasNoUnsignedWrap();
86      MadeChange = true;
87    }
88  }
89
90  // TODO: Lots more we could do here:
91  //    If V is a phi node, we can call this on each of its operands.
92  //    "select cond, X, 0" can simplify to "X".
93
94  return MadeChange ? V : nullptr;
95}
96
97/// A helper routine of InstCombiner::visitMul().
98///
99/// If C is a scalar/fixed width vector of known powers of 2, then this
100/// function returns a new scalar/fixed width vector obtained from logBase2
101/// of C.
102/// Return a null pointer otherwise.
103static Constant *getLogBase2(Type *Ty, Constant *C) {
104  const APInt *IVal;
105  if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
106    return ConstantInt::get(Ty, IVal->logBase2());
107
108  // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
109  if (!isa<FixedVectorType>(Ty))
110    return nullptr;
111
112  SmallVector<Constant *, 4> Elts;
113  for (unsigned I = 0, E = cast<FixedVectorType>(Ty)->getNumElements(); I != E;
114       ++I) {
115    Constant *Elt = C->getAggregateElement(I);
116    if (!Elt)
117      return nullptr;
118    if (isa<UndefValue>(Elt)) {
119      Elts.push_back(UndefValue::get(Ty->getScalarType()));
120      continue;
121    }
122    if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
123      return nullptr;
124    Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
125  }
126
127  return ConstantVector::get(Elts);
128}
129
130// TODO: This is a specific form of a much more general pattern.
131//       We could detect a select with any binop identity constant, or we
132//       could use SimplifyBinOp to see if either arm of the select reduces.
133//       But that needs to be done carefully and/or while removing potential
134//       reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
135static Value *foldMulSelectToNegate(BinaryOperator &I,
136                                    InstCombiner::BuilderTy &Builder) {
137  Value *Cond, *OtherOp;
138
139  // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
140  // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
141  if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
142                        m_Value(OtherOp))))
143    return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
144
145  // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
146  // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
147  if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
148                        m_Value(OtherOp))))
149    return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
150
151  // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
152  // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
153  if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
154                                           m_SpecificFP(-1.0))),
155                         m_Value(OtherOp)))) {
156    IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
157    Builder.setFastMathFlags(I.getFastMathFlags());
158    return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
159  }
160
161  // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
162  // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
163  if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
164                                           m_SpecificFP(1.0))),
165                         m_Value(OtherOp)))) {
166    IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
167    Builder.setFastMathFlags(I.getFastMathFlags());
168    return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
169  }
170
171  return nullptr;
172}
173
174Instruction *InstCombiner::visitMul(BinaryOperator &I) {
175  if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
176                                 SQ.getWithInstruction(&I)))
177    return replaceInstUsesWith(I, V);
178
179  if (SimplifyAssociativeOrCommutative(I))
180    return &I;
181
182  if (Instruction *X = foldVectorBinop(I))
183    return X;
184
185  if (Value *V = SimplifyUsingDistributiveLaws(I))
186    return replaceInstUsesWith(I, V);
187
188  // X * -1 == 0 - X
189  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
190  if (match(Op1, m_AllOnes())) {
191    BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
192    if (I.hasNoSignedWrap())
193      BO->setHasNoSignedWrap();
194    return BO;
195  }
196
197  // Also allow combining multiply instructions on vectors.
198  {
199    Value *NewOp;
200    Constant *C1, *C2;
201    const APInt *IVal;
202    if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
203                        m_Constant(C1))) &&
204        match(C1, m_APInt(IVal))) {
205      // ((X << C2)*C1) == (X * (C1 << C2))
206      Constant *Shl = ConstantExpr::getShl(C1, C2);
207      BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
208      BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
209      if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
210        BO->setHasNoUnsignedWrap();
211      if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
212          Shl->isNotMinSignedValue())
213        BO->setHasNoSignedWrap();
214      return BO;
215    }
216
217    if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
218      // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
219      // Note that we need to sanitize undef multipliers to 1,
220      // to avoid introducing poison.
221      Constant *SafeC1 = Constant::replaceUndefsWith(
222          C1, ConstantInt::get(C1->getType()->getScalarType(), 1));
223      if (Constant *NewCst = getLogBase2(NewOp->getType(), SafeC1)) {
224        BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
225
226        if (I.hasNoUnsignedWrap())
227          Shl->setHasNoUnsignedWrap();
228        if (I.hasNoSignedWrap()) {
229          const APInt *V;
230          if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
231            Shl->setHasNoSignedWrap();
232        }
233
234        return Shl;
235      }
236    }
237  }
238
239  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
240    // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
241    // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
242    // The "* (2**n)" thus becomes a potential shifting opportunity.
243    {
244      const APInt &   Val = CI->getValue();
245      const APInt &PosVal = Val.abs();
246      if (Val.isNegative() && PosVal.isPowerOf2()) {
247        Value *X = nullptr, *Y = nullptr;
248        if (Op0->hasOneUse()) {
249          ConstantInt *C1;
250          Value *Sub = nullptr;
251          if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
252            Sub = Builder.CreateSub(X, Y, "suba");
253          else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
254            Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
255          if (Sub)
256            return
257              BinaryOperator::CreateMul(Sub,
258                                        ConstantInt::get(Y->getType(), PosVal));
259        }
260      }
261    }
262  }
263
264  if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
265    return FoldedMul;
266
267  if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
268    return replaceInstUsesWith(I, FoldedMul);
269
270  // Simplify mul instructions with a constant RHS.
271  if (isa<Constant>(Op1)) {
272    // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
273    Value *X;
274    Constant *C1;
275    if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
276      Value *Mul = Builder.CreateMul(C1, Op1);
277      // Only go forward with the transform if C1*CI simplifies to a tidier
278      // constant.
279      if (!match(Mul, m_Mul(m_Value(), m_Value())))
280        return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
281    }
282  }
283
284  // abs(X) * abs(X) -> X * X
285  // nabs(X) * nabs(X) -> X * X
286  if (Op0 == Op1) {
287    Value *X, *Y;
288    SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
289    if (SPF == SPF_ABS || SPF == SPF_NABS)
290      return BinaryOperator::CreateMul(X, X);
291  }
292
293  // -X * C --> X * -C
294  Value *X, *Y;
295  Constant *Op1C;
296  if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
297    return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
298
299  // -X * -Y --> X * Y
300  if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
301    auto *NewMul = BinaryOperator::CreateMul(X, Y);
302    if (I.hasNoSignedWrap() &&
303        cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
304        cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
305      NewMul->setHasNoSignedWrap();
306    return NewMul;
307  }
308
309  // -X * Y --> -(X * Y)
310  // X * -Y --> -(X * Y)
311  if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
312    return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
313
314  // (X / Y) *  Y = X - (X % Y)
315  // (X / Y) * -Y = (X % Y) - X
316  {
317    Value *Y = Op1;
318    BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
319    if (!Div || (Div->getOpcode() != Instruction::UDiv &&
320                 Div->getOpcode() != Instruction::SDiv)) {
321      Y = Op0;
322      Div = dyn_cast<BinaryOperator>(Op1);
323    }
324    Value *Neg = dyn_castNegVal(Y);
325    if (Div && Div->hasOneUse() &&
326        (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
327        (Div->getOpcode() == Instruction::UDiv ||
328         Div->getOpcode() == Instruction::SDiv)) {
329      Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
330
331      // If the division is exact, X % Y is zero, so we end up with X or -X.
332      if (Div->isExact()) {
333        if (DivOp1 == Y)
334          return replaceInstUsesWith(I, X);
335        return BinaryOperator::CreateNeg(X);
336      }
337
338      auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
339                                                          : Instruction::SRem;
340      Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
341      if (DivOp1 == Y)
342        return BinaryOperator::CreateSub(X, Rem);
343      return BinaryOperator::CreateSub(Rem, X);
344    }
345  }
346
347  /// i1 mul -> i1 and.
348  if (I.getType()->isIntOrIntVectorTy(1))
349    return BinaryOperator::CreateAnd(Op0, Op1);
350
351  // X*(1 << Y) --> X << Y
352  // (1 << Y)*X --> X << Y
353  {
354    Value *Y;
355    BinaryOperator *BO = nullptr;
356    bool ShlNSW = false;
357    if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
358      BO = BinaryOperator::CreateShl(Op1, Y);
359      ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
360    } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
361      BO = BinaryOperator::CreateShl(Op0, Y);
362      ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
363    }
364    if (BO) {
365      if (I.hasNoUnsignedWrap())
366        BO->setHasNoUnsignedWrap();
367      if (I.hasNoSignedWrap() && ShlNSW)
368        BO->setHasNoSignedWrap();
369      return BO;
370    }
371  }
372
373  // (zext bool X) * (zext bool Y) --> zext (and X, Y)
374  // (sext bool X) * (sext bool Y) --> zext (and X, Y)
375  // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
376  if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
377       (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
378      X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
379      (Op0->hasOneUse() || Op1->hasOneUse())) {
380    Value *And = Builder.CreateAnd(X, Y, "mulbool");
381    return CastInst::Create(Instruction::ZExt, And, I.getType());
382  }
383  // (sext bool X) * (zext bool Y) --> sext (and X, Y)
384  // (zext bool X) * (sext bool Y) --> sext (and X, Y)
385  // Note: -1 * 1 == 1 * -1  == -1
386  if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
387       (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
388      X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
389      (Op0->hasOneUse() || Op1->hasOneUse())) {
390    Value *And = Builder.CreateAnd(X, Y, "mulbool");
391    return CastInst::Create(Instruction::SExt, And, I.getType());
392  }
393
394  // (bool X) * Y --> X ? Y : 0
395  // Y * (bool X) --> X ? Y : 0
396  if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
397    return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
398  if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
399    return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
400
401  // (lshr X, 31) * Y --> (ashr X, 31) & Y
402  // Y * (lshr X, 31) --> (ashr X, 31) & Y
403  // TODO: We are not checking one-use because the elimination of the multiply
404  //       is better for analysis?
405  // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
406  //       more similar to what we're doing above.
407  const APInt *C;
408  if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
409    return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
410  if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
411    return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
412
413  if (Instruction *Ext = narrowMathIfNoOverflow(I))
414    return Ext;
415
416  bool Changed = false;
417  if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
418    Changed = true;
419    I.setHasNoSignedWrap(true);
420  }
421
422  if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
423    Changed = true;
424    I.setHasNoUnsignedWrap(true);
425  }
426
427  return Changed ? &I : nullptr;
428}
429
430Instruction *InstCombiner::foldFPSignBitOps(BinaryOperator &I) {
431  BinaryOperator::BinaryOps Opcode = I.getOpcode();
432  assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
433         "Expected fmul or fdiv");
434
435  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
436  Value *X, *Y;
437
438  // -X * -Y --> X * Y
439  // -X / -Y --> X / Y
440  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
441    return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
442
443  // fabs(X) * fabs(X) -> X * X
444  // fabs(X) / fabs(X) -> X / X
445  if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
446    return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
447
448  // fabs(X) * fabs(Y) --> fabs(X * Y)
449  // fabs(X) / fabs(Y) --> fabs(X / Y)
450  if (match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))) &&
451      match(Op1, m_Intrinsic<Intrinsic::fabs>(m_Value(Y))) &&
452      (Op0->hasOneUse() || Op1->hasOneUse())) {
453    IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
454    Builder.setFastMathFlags(I.getFastMathFlags());
455    Value *XY = Builder.CreateBinOp(Opcode, X, Y);
456    Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
457    Fabs->takeName(&I);
458    return replaceInstUsesWith(I, Fabs);
459  }
460
461  return nullptr;
462}
463
464Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
465  if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
466                                  I.getFastMathFlags(),
467                                  SQ.getWithInstruction(&I)))
468    return replaceInstUsesWith(I, V);
469
470  if (SimplifyAssociativeOrCommutative(I))
471    return &I;
472
473  if (Instruction *X = foldVectorBinop(I))
474    return X;
475
476  if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
477    return FoldedMul;
478
479  if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
480    return replaceInstUsesWith(I, FoldedMul);
481
482  if (Instruction *R = foldFPSignBitOps(I))
483    return R;
484
485  // X * -1.0 --> -X
486  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
487  if (match(Op1, m_SpecificFP(-1.0)))
488    return UnaryOperator::CreateFNegFMF(Op0, &I);
489
490  // -X * C --> X * -C
491  Value *X, *Y;
492  Constant *C;
493  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
494    return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
495
496  // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
497  if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
498    return replaceInstUsesWith(I, V);
499
500  if (I.hasAllowReassoc()) {
501    // Reassociate constant RHS with another constant to form constant
502    // expression.
503    if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
504      Constant *C1;
505      if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
506        // (C1 / X) * C --> (C * C1) / X
507        Constant *CC1 = ConstantExpr::getFMul(C, C1);
508        if (CC1->isNormalFP())
509          return BinaryOperator::CreateFDivFMF(CC1, X, &I);
510      }
511      if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
512        // (X / C1) * C --> X * (C / C1)
513        Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
514        if (CDivC1->isNormalFP())
515          return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
516
517        // If the constant was a denormal, try reassociating differently.
518        // (X / C1) * C --> X / (C1 / C)
519        Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
520        if (Op0->hasOneUse() && C1DivC->isNormalFP())
521          return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
522      }
523
524      // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
525      // canonicalized to 'fadd X, C'. Distributing the multiply may allow
526      // further folds and (X * C) + C2 is 'fma'.
527      if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
528        // (X + C1) * C --> (X * C) + (C * C1)
529        Constant *CC1 = ConstantExpr::getFMul(C, C1);
530        Value *XC = Builder.CreateFMulFMF(X, C, &I);
531        return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
532      }
533      if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
534        // (C1 - X) * C --> (C * C1) - (X * C)
535        Constant *CC1 = ConstantExpr::getFMul(C, C1);
536        Value *XC = Builder.CreateFMulFMF(X, C, &I);
537        return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
538      }
539    }
540
541    Value *Z;
542    if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
543                           m_Value(Z)))) {
544      // Sink division: (X / Y) * Z --> (X * Z) / Y
545      Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
546      return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
547    }
548
549    // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
550    // nnan disallows the possibility of returning a number if both operands are
551    // negative (in that case, we should return NaN).
552    if (I.hasNoNaNs() &&
553        match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
554        match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
555      Value *XY = Builder.CreateFMulFMF(X, Y, &I);
556      Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
557      return replaceInstUsesWith(I, Sqrt);
558    }
559
560    // Like the similar transform in instsimplify, this requires 'nsz' because
561    // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
562    if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
563        Op0->hasNUses(2)) {
564      // Peek through fdiv to find squaring of square root:
565      // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
566      if (match(Op0, m_FDiv(m_Value(X),
567                            m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
568        Value *XX = Builder.CreateFMulFMF(X, X, &I);
569        return BinaryOperator::CreateFDivFMF(XX, Y, &I);
570      }
571      // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
572      if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
573                            m_Value(X)))) {
574        Value *XX = Builder.CreateFMulFMF(X, X, &I);
575        return BinaryOperator::CreateFDivFMF(Y, XX, &I);
576      }
577    }
578
579    // exp(X) * exp(Y) -> exp(X + Y)
580    // Match as long as at least one of exp has only one use.
581    if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
582        match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
583        (Op0->hasOneUse() || Op1->hasOneUse())) {
584      Value *XY = Builder.CreateFAddFMF(X, Y, &I);
585      Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
586      return replaceInstUsesWith(I, Exp);
587    }
588
589    // exp2(X) * exp2(Y) -> exp2(X + Y)
590    // Match as long as at least one of exp2 has only one use.
591    if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
592        match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
593        (Op0->hasOneUse() || Op1->hasOneUse())) {
594      Value *XY = Builder.CreateFAddFMF(X, Y, &I);
595      Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
596      return replaceInstUsesWith(I, Exp2);
597    }
598
599    // (X*Y) * X => (X*X) * Y where Y != X
600    //  The purpose is two-fold:
601    //   1) to form a power expression (of X).
602    //   2) potentially shorten the critical path: After transformation, the
603    //  latency of the instruction Y is amortized by the expression of X*X,
604    //  and therefore Y is in a "less critical" position compared to what it
605    //  was before the transformation.
606    if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
607        Op1 != Y) {
608      Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
609      return BinaryOperator::CreateFMulFMF(XX, Y, &I);
610    }
611    if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
612        Op0 != Y) {
613      Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
614      return BinaryOperator::CreateFMulFMF(XX, Y, &I);
615    }
616  }
617
618  // log2(X * 0.5) * Y = log2(X) * Y - Y
619  if (I.isFast()) {
620    IntrinsicInst *Log2 = nullptr;
621    if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
622            m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
623      Log2 = cast<IntrinsicInst>(Op0);
624      Y = Op1;
625    }
626    if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
627            m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
628      Log2 = cast<IntrinsicInst>(Op1);
629      Y = Op0;
630    }
631    if (Log2) {
632      Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
633      Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
634      return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
635    }
636  }
637
638  return nullptr;
639}
640
641/// Fold a divide or remainder with a select instruction divisor when one of the
642/// select operands is zero. In that case, we can use the other select operand
643/// because div/rem by zero is undefined.
644bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
645  SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
646  if (!SI)
647    return false;
648
649  int NonNullOperand;
650  if (match(SI->getTrueValue(), m_Zero()))
651    // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
652    NonNullOperand = 2;
653  else if (match(SI->getFalseValue(), m_Zero()))
654    // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
655    NonNullOperand = 1;
656  else
657    return false;
658
659  // Change the div/rem to use 'Y' instead of the select.
660  replaceOperand(I, 1, SI->getOperand(NonNullOperand));
661
662  // Okay, we know we replace the operand of the div/rem with 'Y' with no
663  // problem.  However, the select, or the condition of the select may have
664  // multiple uses.  Based on our knowledge that the operand must be non-zero,
665  // propagate the known value for the select into other uses of it, and
666  // propagate a known value of the condition into its other users.
667
668  // If the select and condition only have a single use, don't bother with this,
669  // early exit.
670  Value *SelectCond = SI->getCondition();
671  if (SI->use_empty() && SelectCond->hasOneUse())
672    return true;
673
674  // Scan the current block backward, looking for other uses of SI.
675  BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
676  Type *CondTy = SelectCond->getType();
677  while (BBI != BBFront) {
678    --BBI;
679    // If we found an instruction that we can't assume will return, so
680    // information from below it cannot be propagated above it.
681    if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
682      break;
683
684    // Replace uses of the select or its condition with the known values.
685    for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
686         I != E; ++I) {
687      if (*I == SI) {
688        replaceUse(*I, SI->getOperand(NonNullOperand));
689        Worklist.push(&*BBI);
690      } else if (*I == SelectCond) {
691        replaceUse(*I, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
692                                           : ConstantInt::getFalse(CondTy));
693        Worklist.push(&*BBI);
694      }
695    }
696
697    // If we past the instruction, quit looking for it.
698    if (&*BBI == SI)
699      SI = nullptr;
700    if (&*BBI == SelectCond)
701      SelectCond = nullptr;
702
703    // If we ran out of things to eliminate, break out of the loop.
704    if (!SelectCond && !SI)
705      break;
706
707  }
708  return true;
709}
710
711/// True if the multiply can not be expressed in an int this size.
712static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
713                              bool IsSigned) {
714  bool Overflow;
715  Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
716  return Overflow;
717}
718
719/// True if C1 is a multiple of C2. Quotient contains C1/C2.
720static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
721                       bool IsSigned) {
722  assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
723
724  // Bail if we will divide by zero.
725  if (C2.isNullValue())
726    return false;
727
728  // Bail if we would divide INT_MIN by -1.
729  if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
730    return false;
731
732  APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
733  if (IsSigned)
734    APInt::sdivrem(C1, C2, Quotient, Remainder);
735  else
736    APInt::udivrem(C1, C2, Quotient, Remainder);
737
738  return Remainder.isMinValue();
739}
740
741/// This function implements the transforms common to both integer division
742/// instructions (udiv and sdiv). It is called by the visitors to those integer
743/// division instructions.
744/// Common integer divide transforms
745Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
746  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
747  bool IsSigned = I.getOpcode() == Instruction::SDiv;
748  Type *Ty = I.getType();
749
750  // The RHS is known non-zero.
751  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
752    return replaceOperand(I, 1, V);
753
754  // Handle cases involving: [su]div X, (select Cond, Y, Z)
755  // This does not apply for fdiv.
756  if (simplifyDivRemOfSelectWithZeroOp(I))
757    return &I;
758
759  const APInt *C2;
760  if (match(Op1, m_APInt(C2))) {
761    Value *X;
762    const APInt *C1;
763
764    // (X / C1) / C2  -> X / (C1*C2)
765    if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
766        (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
767      APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
768      if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
769        return BinaryOperator::Create(I.getOpcode(), X,
770                                      ConstantInt::get(Ty, Product));
771    }
772
773    if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
774        (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
775      APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
776
777      // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
778      if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
779        auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
780                                              ConstantInt::get(Ty, Quotient));
781        NewDiv->setIsExact(I.isExact());
782        return NewDiv;
783      }
784
785      // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
786      if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
787        auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
788                                           ConstantInt::get(Ty, Quotient));
789        auto *OBO = cast<OverflowingBinaryOperator>(Op0);
790        Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
791        Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
792        return Mul;
793      }
794    }
795
796    if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
797         *C1 != C1->getBitWidth() - 1) ||
798        (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
799      APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
800      APInt C1Shifted = APInt::getOneBitSet(
801          C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
802
803      // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
804      if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
805        auto *BO = BinaryOperator::Create(I.getOpcode(), X,
806                                          ConstantInt::get(Ty, Quotient));
807        BO->setIsExact(I.isExact());
808        return BO;
809      }
810
811      // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
812      if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
813        auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
814                                           ConstantInt::get(Ty, Quotient));
815        auto *OBO = cast<OverflowingBinaryOperator>(Op0);
816        Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
817        Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
818        return Mul;
819      }
820    }
821
822    if (!C2->isNullValue()) // avoid X udiv 0
823      if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
824        return FoldedDiv;
825  }
826
827  if (match(Op0, m_One())) {
828    assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
829    if (IsSigned) {
830      // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
831      // result is one, if Op1 is -1 then the result is minus one, otherwise
832      // it's zero.
833      Value *Inc = Builder.CreateAdd(Op1, Op0);
834      Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
835      return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
836    } else {
837      // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
838      // result is one, otherwise it's zero.
839      return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
840    }
841  }
842
843  // See if we can fold away this div instruction.
844  if (SimplifyDemandedInstructionBits(I))
845    return &I;
846
847  // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
848  Value *X, *Z;
849  if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
850    if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
851        (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
852      return BinaryOperator::Create(I.getOpcode(), X, Op1);
853
854  // (X << Y) / X -> 1 << Y
855  Value *Y;
856  if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
857    return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
858  if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
859    return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
860
861  // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
862  if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
863    bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
864    bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
865    if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
866      replaceOperand(I, 0, ConstantInt::get(Ty, 1));
867      replaceOperand(I, 1, Y);
868      return &I;
869    }
870  }
871
872  return nullptr;
873}
874
875static const unsigned MaxDepth = 6;
876
877namespace {
878
879using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
880                                           const BinaryOperator &I,
881                                           InstCombiner &IC);
882
883/// Used to maintain state for visitUDivOperand().
884struct UDivFoldAction {
885  /// Informs visitUDiv() how to fold this operand.  This can be zero if this
886  /// action joins two actions together.
887  FoldUDivOperandCb FoldAction;
888
889  /// Which operand to fold.
890  Value *OperandToFold;
891
892  union {
893    /// The instruction returned when FoldAction is invoked.
894    Instruction *FoldResult;
895
896    /// Stores the LHS action index if this action joins two actions together.
897    size_t SelectLHSIdx;
898  };
899
900  UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
901      : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
902  UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
903      : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
904};
905
906} // end anonymous namespace
907
908// X udiv 2^C -> X >> C
909static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
910                                    const BinaryOperator &I, InstCombiner &IC) {
911  Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
912  if (!C1)
913    llvm_unreachable("Failed to constant fold udiv -> logbase2");
914  BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
915  if (I.isExact())
916    LShr->setIsExact();
917  return LShr;
918}
919
920// X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
921// X udiv (zext (C1 << N)), where C1 is "1<<C2"  -->  X >> (N+C2)
922static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
923                                InstCombiner &IC) {
924  Value *ShiftLeft;
925  if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
926    ShiftLeft = Op1;
927
928  Constant *CI;
929  Value *N;
930  if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
931    llvm_unreachable("match should never fail here!");
932  Constant *Log2Base = getLogBase2(N->getType(), CI);
933  if (!Log2Base)
934    llvm_unreachable("getLogBase2 should never fail here!");
935  N = IC.Builder.CreateAdd(N, Log2Base);
936  if (Op1 != ShiftLeft)
937    N = IC.Builder.CreateZExt(N, Op1->getType());
938  BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
939  if (I.isExact())
940    LShr->setIsExact();
941  return LShr;
942}
943
944// Recursively visits the possible right hand operands of a udiv
945// instruction, seeing through select instructions, to determine if we can
946// replace the udiv with something simpler.  If we find that an operand is not
947// able to simplify the udiv, we abort the entire transformation.
948static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
949                               SmallVectorImpl<UDivFoldAction> &Actions,
950                               unsigned Depth = 0) {
951  // Check to see if this is an unsigned division with an exact power of 2,
952  // if so, convert to a right shift.
953  if (match(Op1, m_Power2())) {
954    Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
955    return Actions.size();
956  }
957
958  // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
959  if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
960      match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
961    Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
962    return Actions.size();
963  }
964
965  // The remaining tests are all recursive, so bail out if we hit the limit.
966  if (Depth++ == MaxDepth)
967    return 0;
968
969  if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
970    if (size_t LHSIdx =
971            visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
972      if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
973        Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
974        return Actions.size();
975      }
976
977  return 0;
978}
979
980/// If we have zero-extended operands of an unsigned div or rem, we may be able
981/// to narrow the operation (sink the zext below the math).
982static Instruction *narrowUDivURem(BinaryOperator &I,
983                                   InstCombiner::BuilderTy &Builder) {
984  Instruction::BinaryOps Opcode = I.getOpcode();
985  Value *N = I.getOperand(0);
986  Value *D = I.getOperand(1);
987  Type *Ty = I.getType();
988  Value *X, *Y;
989  if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
990      X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
991    // udiv (zext X), (zext Y) --> zext (udiv X, Y)
992    // urem (zext X), (zext Y) --> zext (urem X, Y)
993    Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
994    return new ZExtInst(NarrowOp, Ty);
995  }
996
997  Constant *C;
998  if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
999      (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
1000    // If the constant is the same in the smaller type, use the narrow version.
1001    Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
1002    if (ConstantExpr::getZExt(TruncC, Ty) != C)
1003      return nullptr;
1004
1005    // udiv (zext X), C --> zext (udiv X, C')
1006    // urem (zext X), C --> zext (urem X, C')
1007    // udiv C, (zext X) --> zext (udiv C', X)
1008    // urem C, (zext X) --> zext (urem C', X)
1009    Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
1010                                       : Builder.CreateBinOp(Opcode, TruncC, X);
1011    return new ZExtInst(NarrowOp, Ty);
1012  }
1013
1014  return nullptr;
1015}
1016
1017Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
1018  if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1019                                  SQ.getWithInstruction(&I)))
1020    return replaceInstUsesWith(I, V);
1021
1022  if (Instruction *X = foldVectorBinop(I))
1023    return X;
1024
1025  // Handle the integer div common cases
1026  if (Instruction *Common = commonIDivTransforms(I))
1027    return Common;
1028
1029  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1030  Value *X;
1031  const APInt *C1, *C2;
1032  if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1033    // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1034    bool Overflow;
1035    APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1036    if (!Overflow) {
1037      bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1038      BinaryOperator *BO = BinaryOperator::CreateUDiv(
1039          X, ConstantInt::get(X->getType(), C2ShlC1));
1040      if (IsExact)
1041        BO->setIsExact();
1042      return BO;
1043    }
1044  }
1045
1046  // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1047  // TODO: Could use isKnownNegative() to handle non-constant values.
1048  Type *Ty = I.getType();
1049  if (match(Op1, m_Negative())) {
1050    Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1051    return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1052  }
1053  // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1054  if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1055    Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1056    return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1057  }
1058
1059  if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1060    return NarrowDiv;
1061
1062  // If the udiv operands are non-overflowing multiplies with a common operand,
1063  // then eliminate the common factor:
1064  // (A * B) / (A * X) --> B / X (and commuted variants)
1065  // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1066  // TODO: If -reassociation handled this generally, we could remove this.
1067  Value *A, *B;
1068  if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1069    if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1070        match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1071      return BinaryOperator::CreateUDiv(B, X);
1072    if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1073        match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1074      return BinaryOperator::CreateUDiv(A, X);
1075  }
1076
1077  // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1078  SmallVector<UDivFoldAction, 6> UDivActions;
1079  if (visitUDivOperand(Op0, Op1, I, UDivActions))
1080    for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1081      FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1082      Value *ActionOp1 = UDivActions[i].OperandToFold;
1083      Instruction *Inst;
1084      if (Action)
1085        Inst = Action(Op0, ActionOp1, I, *this);
1086      else {
1087        // This action joins two actions together.  The RHS of this action is
1088        // simply the last action we processed, we saved the LHS action index in
1089        // the joining action.
1090        size_t SelectRHSIdx = i - 1;
1091        Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1092        size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1093        Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1094        Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1095                                  SelectLHS, SelectRHS);
1096      }
1097
1098      // If this is the last action to process, return it to the InstCombiner.
1099      // Otherwise, we insert it before the UDiv and record it so that we may
1100      // use it as part of a joining action (i.e., a SelectInst).
1101      if (e - i != 1) {
1102        Inst->insertBefore(&I);
1103        UDivActions[i].FoldResult = Inst;
1104      } else
1105        return Inst;
1106    }
1107
1108  return nullptr;
1109}
1110
1111Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
1112  if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1113                                  SQ.getWithInstruction(&I)))
1114    return replaceInstUsesWith(I, V);
1115
1116  if (Instruction *X = foldVectorBinop(I))
1117    return X;
1118
1119  // Handle the integer div common cases
1120  if (Instruction *Common = commonIDivTransforms(I))
1121    return Common;
1122
1123  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1124  Value *X;
1125  // sdiv Op0, -1 --> -Op0
1126  // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1127  if (match(Op1, m_AllOnes()) ||
1128      (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1129    return BinaryOperator::CreateNeg(Op0);
1130
1131  // X / INT_MIN --> X == INT_MIN
1132  if (match(Op1, m_SignMask()))
1133    return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
1134
1135  const APInt *Op1C;
1136  if (match(Op1, m_APInt(Op1C))) {
1137    // sdiv exact X, C  -->  ashr exact X, log2(C)
1138    if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
1139      Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
1140      return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
1141    }
1142
1143    // If the dividend is sign-extended and the constant divisor is small enough
1144    // to fit in the source type, shrink the division to the narrower type:
1145    // (sext X) sdiv C --> sext (X sdiv C)
1146    Value *Op0Src;
1147    if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1148        Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1149
1150      // In the general case, we need to make sure that the dividend is not the
1151      // minimum signed value because dividing that by -1 is UB. But here, we
1152      // know that the -1 divisor case is already handled above.
1153
1154      Constant *NarrowDivisor =
1155          ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1156      Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1157      return new SExtInst(NarrowOp, Op0->getType());
1158    }
1159
1160    // -X / C --> X / -C (if the negation doesn't overflow).
1161    // TODO: This could be enhanced to handle arbitrary vector constants by
1162    //       checking if all elements are not the min-signed-val.
1163    if (!Op1C->isMinSignedValue() &&
1164        match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1165      Constant *NegC = ConstantInt::get(I.getType(), -(*Op1C));
1166      Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1167      BO->setIsExact(I.isExact());
1168      return BO;
1169    }
1170  }
1171
1172  // -X / Y --> -(X / Y)
1173  Value *Y;
1174  if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1175    return BinaryOperator::CreateNSWNeg(
1176        Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1177
1178  // If the sign bits of both operands are zero (i.e. we can prove they are
1179  // unsigned inputs), turn this into a udiv.
1180  APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1181  if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1182    if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1183      // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1184      auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1185      BO->setIsExact(I.isExact());
1186      return BO;
1187    }
1188
1189    if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1190      // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1191      // Safe because the only negative value (1 << Y) can take on is
1192      // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1193      // the sign bit set.
1194      auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1195      BO->setIsExact(I.isExact());
1196      return BO;
1197    }
1198  }
1199
1200  return nullptr;
1201}
1202
1203/// Remove negation and try to convert division into multiplication.
1204static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1205  Constant *C;
1206  if (!match(I.getOperand(1), m_Constant(C)))
1207    return nullptr;
1208
1209  // -X / C --> X / -C
1210  Value *X;
1211  if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1212    return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1213
1214  // If the constant divisor has an exact inverse, this is always safe. If not,
1215  // then we can still create a reciprocal if fast-math-flags allow it and the
1216  // constant is a regular number (not zero, infinite, or denormal).
1217  if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1218    return nullptr;
1219
1220  // Disallow denormal constants because we don't know what would happen
1221  // on all targets.
1222  // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1223  // denorms are flushed?
1224  auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1225  if (!RecipC->isNormalFP())
1226    return nullptr;
1227
1228  // X / C --> X * (1 / C)
1229  return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1230}
1231
1232/// Remove negation and try to reassociate constant math.
1233static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1234  Constant *C;
1235  if (!match(I.getOperand(0), m_Constant(C)))
1236    return nullptr;
1237
1238  // C / -X --> -C / X
1239  Value *X;
1240  if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1241    return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1242
1243  if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1244    return nullptr;
1245
1246  // Try to reassociate C / X expressions where X includes another constant.
1247  Constant *C2, *NewC = nullptr;
1248  if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1249    // C / (X * C2) --> (C / C2) / X
1250    NewC = ConstantExpr::getFDiv(C, C2);
1251  } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1252    // C / (X / C2) --> (C * C2) / X
1253    NewC = ConstantExpr::getFMul(C, C2);
1254  }
1255  // Disallow denormal constants because we don't know what would happen
1256  // on all targets.
1257  // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1258  // denorms are flushed?
1259  if (!NewC || !NewC->isNormalFP())
1260    return nullptr;
1261
1262  return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1263}
1264
1265Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
1266  if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1267                                  I.getFastMathFlags(),
1268                                  SQ.getWithInstruction(&I)))
1269    return replaceInstUsesWith(I, V);
1270
1271  if (Instruction *X = foldVectorBinop(I))
1272    return X;
1273
1274  if (Instruction *R = foldFDivConstantDivisor(I))
1275    return R;
1276
1277  if (Instruction *R = foldFDivConstantDividend(I))
1278    return R;
1279
1280  if (Instruction *R = foldFPSignBitOps(I))
1281    return R;
1282
1283  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1284  if (isa<Constant>(Op0))
1285    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1286      if (Instruction *R = FoldOpIntoSelect(I, SI))
1287        return R;
1288
1289  if (isa<Constant>(Op1))
1290    if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1291      if (Instruction *R = FoldOpIntoSelect(I, SI))
1292        return R;
1293
1294  if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1295    Value *X, *Y;
1296    if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1297        (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1298      // (X / Y) / Z => X / (Y * Z)
1299      Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1300      return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1301    }
1302    if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1303        (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1304      // Z / (X / Y) => (Y * Z) / X
1305      Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1306      return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1307    }
1308    // Z / (1.0 / Y) => (Y * Z)
1309    //
1310    // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1311    // m_OneUse check is avoided because even in the case of the multiple uses
1312    // for 1.0/Y, the number of instructions remain the same and a division is
1313    // replaced by a multiplication.
1314    if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1315      return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1316  }
1317
1318  if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1319    // sin(X) / cos(X) -> tan(X)
1320    // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1321    Value *X;
1322    bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1323                 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1324    bool IsCot =
1325        !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1326                  match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1327
1328    if ((IsTan || IsCot) &&
1329        hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1330      IRBuilder<> B(&I);
1331      IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1332      B.setFastMathFlags(I.getFastMathFlags());
1333      AttributeList Attrs =
1334          cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1335      Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1336                                        LibFunc_tanl, B, Attrs);
1337      if (IsCot)
1338        Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1339      return replaceInstUsesWith(I, Res);
1340    }
1341  }
1342
1343  // X / (X * Y) --> 1.0 / Y
1344  // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1345  // We can ignore the possibility that X is infinity because INF/INF is NaN.
1346  Value *X, *Y;
1347  if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1348      match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1349    replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1350    replaceOperand(I, 1, Y);
1351    return &I;
1352  }
1353
1354  // X / fabs(X) -> copysign(1.0, X)
1355  // fabs(X) / X -> copysign(1.0, X)
1356  if (I.hasNoNaNs() && I.hasNoInfs() &&
1357      (match(&I,
1358             m_FDiv(m_Value(X), m_Intrinsic<Intrinsic::fabs>(m_Deferred(X)))) ||
1359       match(&I, m_FDiv(m_Intrinsic<Intrinsic::fabs>(m_Value(X)),
1360                        m_Deferred(X))))) {
1361    Value *V = Builder.CreateBinaryIntrinsic(
1362        Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1363    return replaceInstUsesWith(I, V);
1364  }
1365  return nullptr;
1366}
1367
1368/// This function implements the transforms common to both integer remainder
1369/// instructions (urem and srem). It is called by the visitors to those integer
1370/// remainder instructions.
1371/// Common integer remainder transforms
1372Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
1373  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1374
1375  // The RHS is known non-zero.
1376  if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1377    return replaceOperand(I, 1, V);
1378
1379  // Handle cases involving: rem X, (select Cond, Y, Z)
1380  if (simplifyDivRemOfSelectWithZeroOp(I))
1381    return &I;
1382
1383  if (isa<Constant>(Op1)) {
1384    if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1385      if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1386        if (Instruction *R = FoldOpIntoSelect(I, SI))
1387          return R;
1388      } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1389        const APInt *Op1Int;
1390        if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1391            (I.getOpcode() == Instruction::URem ||
1392             !Op1Int->isMinSignedValue())) {
1393          // foldOpIntoPhi will speculate instructions to the end of the PHI's
1394          // predecessor blocks, so do this only if we know the srem or urem
1395          // will not fault.
1396          if (Instruction *NV = foldOpIntoPhi(I, PN))
1397            return NV;
1398        }
1399      }
1400
1401      // See if we can fold away this rem instruction.
1402      if (SimplifyDemandedInstructionBits(I))
1403        return &I;
1404    }
1405  }
1406
1407  return nullptr;
1408}
1409
1410Instruction *InstCombiner::visitURem(BinaryOperator &I) {
1411  if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1412                                  SQ.getWithInstruction(&I)))
1413    return replaceInstUsesWith(I, V);
1414
1415  if (Instruction *X = foldVectorBinop(I))
1416    return X;
1417
1418  if (Instruction *common = commonIRemTransforms(I))
1419    return common;
1420
1421  if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1422    return NarrowRem;
1423
1424  // X urem Y -> X and Y-1, where Y is a power of 2,
1425  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1426  Type *Ty = I.getType();
1427  if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1428    // This may increase instruction count, we don't enforce that Y is a
1429    // constant.
1430    Constant *N1 = Constant::getAllOnesValue(Ty);
1431    Value *Add = Builder.CreateAdd(Op1, N1);
1432    return BinaryOperator::CreateAnd(Op0, Add);
1433  }
1434
1435  // 1 urem X -> zext(X != 1)
1436  if (match(Op0, m_One())) {
1437    Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1438    return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1439  }
1440
1441  // X urem C -> X < C ? X : X - C, where C >= signbit.
1442  if (match(Op1, m_Negative())) {
1443    Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1444    Value *Sub = Builder.CreateSub(Op0, Op1);
1445    return SelectInst::Create(Cmp, Op0, Sub);
1446  }
1447
1448  // If the divisor is a sext of a boolean, then the divisor must be max
1449  // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1450  // max unsigned value. In that case, the remainder is 0:
1451  // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1452  Value *X;
1453  if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1454    Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1455    return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1456  }
1457
1458  return nullptr;
1459}
1460
1461Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
1462  if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1463                                  SQ.getWithInstruction(&I)))
1464    return replaceInstUsesWith(I, V);
1465
1466  if (Instruction *X = foldVectorBinop(I))
1467    return X;
1468
1469  // Handle the integer rem common cases
1470  if (Instruction *Common = commonIRemTransforms(I))
1471    return Common;
1472
1473  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1474  {
1475    const APInt *Y;
1476    // X % -Y -> X % Y
1477    if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1478      return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1479  }
1480
1481  // -X srem Y --> -(X srem Y)
1482  Value *X, *Y;
1483  if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1484    return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1485
1486  // If the sign bits of both operands are zero (i.e. we can prove they are
1487  // unsigned inputs), turn this into a urem.
1488  APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1489  if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1490      MaskedValueIsZero(Op0, Mask, 0, &I)) {
1491    // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1492    return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1493  }
1494
1495  // If it's a constant vector, flip any negative values positive.
1496  if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1497    Constant *C = cast<Constant>(Op1);
1498    unsigned VWidth = cast<VectorType>(C->getType())->getNumElements();
1499
1500    bool hasNegative = false;
1501    bool hasMissing = false;
1502    for (unsigned i = 0; i != VWidth; ++i) {
1503      Constant *Elt = C->getAggregateElement(i);
1504      if (!Elt) {
1505        hasMissing = true;
1506        break;
1507      }
1508
1509      if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1510        if (RHS->isNegative())
1511          hasNegative = true;
1512    }
1513
1514    if (hasNegative && !hasMissing) {
1515      SmallVector<Constant *, 16> Elts(VWidth);
1516      for (unsigned i = 0; i != VWidth; ++i) {
1517        Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
1518        if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1519          if (RHS->isNegative())
1520            Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1521        }
1522      }
1523
1524      Constant *NewRHSV = ConstantVector::get(Elts);
1525      if (NewRHSV != C)  // Don't loop on -MININT
1526        return replaceOperand(I, 1, NewRHSV);
1527    }
1528  }
1529
1530  return nullptr;
1531}
1532
1533Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
1534  if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1535                                  I.getFastMathFlags(),
1536                                  SQ.getWithInstruction(&I)))
1537    return replaceInstUsesWith(I, V);
1538
1539  if (Instruction *X = foldVectorBinop(I))
1540    return X;
1541
1542  return nullptr;
1543}
1544