1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitICmp and visitFCmp functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APSInt.h"
15#include "llvm/ADT/SetVector.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/ConstantFolding.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/TargetLibraryInfo.h"
20#include "llvm/IR/ConstantRange.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/GetElementPtrTypeIterator.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/PatternMatch.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/KnownBits.h"
27
28using namespace llvm;
29using namespace PatternMatch;
30
31#define DEBUG_TYPE "instcombine"
32
33// How many times is a select replaced by one of its operands?
34STATISTIC(NumSel, "Number of select opts");
35
36
37/// Compute Result = In1+In2, returning true if the result overflowed for this
38/// type.
39static bool addWithOverflow(APInt &Result, const APInt &In1,
40                            const APInt &In2, bool IsSigned = false) {
41  bool Overflow;
42  if (IsSigned)
43    Result = In1.sadd_ov(In2, Overflow);
44  else
45    Result = In1.uadd_ov(In2, Overflow);
46
47  return Overflow;
48}
49
50/// Compute Result = In1-In2, returning true if the result overflowed for this
51/// type.
52static bool subWithOverflow(APInt &Result, const APInt &In1,
53                            const APInt &In2, bool IsSigned = false) {
54  bool Overflow;
55  if (IsSigned)
56    Result = In1.ssub_ov(In2, Overflow);
57  else
58    Result = In1.usub_ov(In2, Overflow);
59
60  return Overflow;
61}
62
63/// Given an icmp instruction, return true if any use of this comparison is a
64/// branch on sign bit comparison.
65static bool hasBranchUse(ICmpInst &I) {
66  for (auto *U : I.users())
67    if (isa<BranchInst>(U))
68      return true;
69  return false;
70}
71
72/// Returns true if the exploded icmp can be expressed as a signed comparison
73/// to zero and updates the predicate accordingly.
74/// The signedness of the comparison is preserved.
75/// TODO: Refactor with decomposeBitTestICmp()?
76static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
77  if (!ICmpInst::isSigned(Pred))
78    return false;
79
80  if (C.isNullValue())
81    return ICmpInst::isRelational(Pred);
82
83  if (C.isOneValue()) {
84    if (Pred == ICmpInst::ICMP_SLT) {
85      Pred = ICmpInst::ICMP_SLE;
86      return true;
87    }
88  } else if (C.isAllOnesValue()) {
89    if (Pred == ICmpInst::ICMP_SGT) {
90      Pred = ICmpInst::ICMP_SGE;
91      return true;
92    }
93  }
94
95  return false;
96}
97
98/// Given a signed integer type and a set of known zero and one bits, compute
99/// the maximum and minimum values that could have the specified known zero and
100/// known one bits, returning them in Min/Max.
101/// TODO: Move to method on KnownBits struct?
102static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
103                                                   APInt &Min, APInt &Max) {
104  assert(Known.getBitWidth() == Min.getBitWidth() &&
105         Known.getBitWidth() == Max.getBitWidth() &&
106         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
107  APInt UnknownBits = ~(Known.Zero|Known.One);
108
109  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
110  // bit if it is unknown.
111  Min = Known.One;
112  Max = Known.One|UnknownBits;
113
114  if (UnknownBits.isNegative()) { // Sign bit is unknown
115    Min.setSignBit();
116    Max.clearSignBit();
117  }
118}
119
120/// Given an unsigned integer type and a set of known zero and one bits, compute
121/// the maximum and minimum values that could have the specified known zero and
122/// known one bits, returning them in Min/Max.
123/// TODO: Move to method on KnownBits struct?
124static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
125                                                     APInt &Min, APInt &Max) {
126  assert(Known.getBitWidth() == Min.getBitWidth() &&
127         Known.getBitWidth() == Max.getBitWidth() &&
128         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
129  APInt UnknownBits = ~(Known.Zero|Known.One);
130
131  // The minimum value is when the unknown bits are all zeros.
132  Min = Known.One;
133  // The maximum value is when the unknown bits are all ones.
134  Max = Known.One|UnknownBits;
135}
136
137/// This is called when we see this pattern:
138///   cmp pred (load (gep GV, ...)), cmpcst
139/// where GV is a global variable with a constant initializer. Try to simplify
140/// this into some simple computation that does not need the load. For example
141/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
142///
143/// If AndCst is non-null, then the loaded value is masked with that constant
144/// before doing the comparison. This handles cases like "A[i]&4 == 0".
145Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
146                                                        GlobalVariable *GV,
147                                                        CmpInst &ICI,
148                                                        ConstantInt *AndCst) {
149  Constant *Init = GV->getInitializer();
150  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
151    return nullptr;
152
153  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
154  // Don't blow up on huge arrays.
155  if (ArrayElementCount > MaxArraySizeForCombine)
156    return nullptr;
157
158  // There are many forms of this optimization we can handle, for now, just do
159  // the simple index into a single-dimensional array.
160  //
161  // Require: GEP GV, 0, i {{, constant indices}}
162  if (GEP->getNumOperands() < 3 ||
163      !isa<ConstantInt>(GEP->getOperand(1)) ||
164      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
165      isa<Constant>(GEP->getOperand(2)))
166    return nullptr;
167
168  // Check that indices after the variable are constants and in-range for the
169  // type they index.  Collect the indices.  This is typically for arrays of
170  // structs.
171  SmallVector<unsigned, 4> LaterIndices;
172
173  Type *EltTy = Init->getType()->getArrayElementType();
174  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
175    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
176    if (!Idx) return nullptr;  // Variable index.
177
178    uint64_t IdxVal = Idx->getZExtValue();
179    if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
180
181    if (StructType *STy = dyn_cast<StructType>(EltTy))
182      EltTy = STy->getElementType(IdxVal);
183    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
184      if (IdxVal >= ATy->getNumElements()) return nullptr;
185      EltTy = ATy->getElementType();
186    } else {
187      return nullptr; // Unknown type.
188    }
189
190    LaterIndices.push_back(IdxVal);
191  }
192
193  enum { Overdefined = -3, Undefined = -2 };
194
195  // Variables for our state machines.
196
197  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
198  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
199  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
200  // undefined, otherwise set to the first true element.  SecondTrueElement is
201  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
202  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
203
204  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
205  // form "i != 47 & i != 87".  Same state transitions as for true elements.
206  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
207
208  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
209  /// define a state machine that triggers for ranges of values that the index
210  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
211  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
212  /// index in the range (inclusive).  We use -2 for undefined here because we
213  /// use relative comparisons and don't want 0-1 to match -1.
214  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
215
216  // MagicBitvector - This is a magic bitvector where we set a bit if the
217  // comparison is true for element 'i'.  If there are 64 elements or less in
218  // the array, this will fully represent all the comparison results.
219  uint64_t MagicBitvector = 0;
220
221  // Scan the array and see if one of our patterns matches.
222  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
223  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
224    Constant *Elt = Init->getAggregateElement(i);
225    if (!Elt) return nullptr;
226
227    // If this is indexing an array of structures, get the structure element.
228    if (!LaterIndices.empty())
229      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
230
231    // If the element is masked, handle it.
232    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
233
234    // Find out if the comparison would be true or false for the i'th element.
235    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
236                                                  CompareRHS, DL, &TLI);
237    // If the result is undef for this element, ignore it.
238    if (isa<UndefValue>(C)) {
239      // Extend range state machines to cover this element in case there is an
240      // undef in the middle of the range.
241      if (TrueRangeEnd == (int)i-1)
242        TrueRangeEnd = i;
243      if (FalseRangeEnd == (int)i-1)
244        FalseRangeEnd = i;
245      continue;
246    }
247
248    // If we can't compute the result for any of the elements, we have to give
249    // up evaluating the entire conditional.
250    if (!isa<ConstantInt>(C)) return nullptr;
251
252    // Otherwise, we know if the comparison is true or false for this element,
253    // update our state machines.
254    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
255
256    // State machine for single/double/range index comparison.
257    if (IsTrueForElt) {
258      // Update the TrueElement state machine.
259      if (FirstTrueElement == Undefined)
260        FirstTrueElement = TrueRangeEnd = i;  // First true element.
261      else {
262        // Update double-compare state machine.
263        if (SecondTrueElement == Undefined)
264          SecondTrueElement = i;
265        else
266          SecondTrueElement = Overdefined;
267
268        // Update range state machine.
269        if (TrueRangeEnd == (int)i-1)
270          TrueRangeEnd = i;
271        else
272          TrueRangeEnd = Overdefined;
273      }
274    } else {
275      // Update the FalseElement state machine.
276      if (FirstFalseElement == Undefined)
277        FirstFalseElement = FalseRangeEnd = i; // First false element.
278      else {
279        // Update double-compare state machine.
280        if (SecondFalseElement == Undefined)
281          SecondFalseElement = i;
282        else
283          SecondFalseElement = Overdefined;
284
285        // Update range state machine.
286        if (FalseRangeEnd == (int)i-1)
287          FalseRangeEnd = i;
288        else
289          FalseRangeEnd = Overdefined;
290      }
291    }
292
293    // If this element is in range, update our magic bitvector.
294    if (i < 64 && IsTrueForElt)
295      MagicBitvector |= 1ULL << i;
296
297    // If all of our states become overdefined, bail out early.  Since the
298    // predicate is expensive, only check it every 8 elements.  This is only
299    // really useful for really huge arrays.
300    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
301        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
302        FalseRangeEnd == Overdefined)
303      return nullptr;
304  }
305
306  // Now that we've scanned the entire array, emit our new comparison(s).  We
307  // order the state machines in complexity of the generated code.
308  Value *Idx = GEP->getOperand(2);
309
310  // If the index is larger than the pointer size of the target, truncate the
311  // index down like the GEP would do implicitly.  We don't have to do this for
312  // an inbounds GEP because the index can't be out of range.
313  if (!GEP->isInBounds()) {
314    Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
315    unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
316    if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
317      Idx = Builder.CreateTrunc(Idx, IntPtrTy);
318  }
319
320  // If the comparison is only true for one or two elements, emit direct
321  // comparisons.
322  if (SecondTrueElement != Overdefined) {
323    // None true -> false.
324    if (FirstTrueElement == Undefined)
325      return replaceInstUsesWith(ICI, Builder.getFalse());
326
327    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
328
329    // True for one element -> 'i == 47'.
330    if (SecondTrueElement == Undefined)
331      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
332
333    // True for two elements -> 'i == 47 | i == 72'.
334    Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
335    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
336    Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
337    return BinaryOperator::CreateOr(C1, C2);
338  }
339
340  // If the comparison is only false for one or two elements, emit direct
341  // comparisons.
342  if (SecondFalseElement != Overdefined) {
343    // None false -> true.
344    if (FirstFalseElement == Undefined)
345      return replaceInstUsesWith(ICI, Builder.getTrue());
346
347    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
348
349    // False for one element -> 'i != 47'.
350    if (SecondFalseElement == Undefined)
351      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
352
353    // False for two elements -> 'i != 47 & i != 72'.
354    Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
355    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
356    Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
357    return BinaryOperator::CreateAnd(C1, C2);
358  }
359
360  // If the comparison can be replaced with a range comparison for the elements
361  // where it is true, emit the range check.
362  if (TrueRangeEnd != Overdefined) {
363    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
364
365    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
366    if (FirstTrueElement) {
367      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
368      Idx = Builder.CreateAdd(Idx, Offs);
369    }
370
371    Value *End = ConstantInt::get(Idx->getType(),
372                                  TrueRangeEnd-FirstTrueElement+1);
373    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
374  }
375
376  // False range check.
377  if (FalseRangeEnd != Overdefined) {
378    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
379    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
380    if (FirstFalseElement) {
381      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
382      Idx = Builder.CreateAdd(Idx, Offs);
383    }
384
385    Value *End = ConstantInt::get(Idx->getType(),
386                                  FalseRangeEnd-FirstFalseElement);
387    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
388  }
389
390  // If a magic bitvector captures the entire comparison state
391  // of this load, replace it with computation that does:
392  //   ((magic_cst >> i) & 1) != 0
393  {
394    Type *Ty = nullptr;
395
396    // Look for an appropriate type:
397    // - The type of Idx if the magic fits
398    // - The smallest fitting legal type
399    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
400      Ty = Idx->getType();
401    else
402      Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
403
404    if (Ty) {
405      Value *V = Builder.CreateIntCast(Idx, Ty, false);
406      V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
407      V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
408      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
409    }
410  }
411
412  return nullptr;
413}
414
415/// Return a value that can be used to compare the *offset* implied by a GEP to
416/// zero. For example, if we have &A[i], we want to return 'i' for
417/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
418/// are involved. The above expression would also be legal to codegen as
419/// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
420/// This latter form is less amenable to optimization though, and we are allowed
421/// to generate the first by knowing that pointer arithmetic doesn't overflow.
422///
423/// If we can't emit an optimized form for this expression, this returns null.
424///
425static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
426                                          const DataLayout &DL) {
427  gep_type_iterator GTI = gep_type_begin(GEP);
428
429  // Check to see if this gep only has a single variable index.  If so, and if
430  // any constant indices are a multiple of its scale, then we can compute this
431  // in terms of the scale of the variable index.  For example, if the GEP
432  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
433  // because the expression will cross zero at the same point.
434  unsigned i, e = GEP->getNumOperands();
435  int64_t Offset = 0;
436  for (i = 1; i != e; ++i, ++GTI) {
437    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
438      // Compute the aggregate offset of constant indices.
439      if (CI->isZero()) continue;
440
441      // Handle a struct index, which adds its field offset to the pointer.
442      if (StructType *STy = GTI.getStructTypeOrNull()) {
443        Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
444      } else {
445        uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
446        Offset += Size*CI->getSExtValue();
447      }
448    } else {
449      // Found our variable index.
450      break;
451    }
452  }
453
454  // If there are no variable indices, we must have a constant offset, just
455  // evaluate it the general way.
456  if (i == e) return nullptr;
457
458  Value *VariableIdx = GEP->getOperand(i);
459  // Determine the scale factor of the variable element.  For example, this is
460  // 4 if the variable index is into an array of i32.
461  uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
462
463  // Verify that there are no other variable indices.  If so, emit the hard way.
464  for (++i, ++GTI; i != e; ++i, ++GTI) {
465    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
466    if (!CI) return nullptr;
467
468    // Compute the aggregate offset of constant indices.
469    if (CI->isZero()) continue;
470
471    // Handle a struct index, which adds its field offset to the pointer.
472    if (StructType *STy = GTI.getStructTypeOrNull()) {
473      Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
474    } else {
475      uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
476      Offset += Size*CI->getSExtValue();
477    }
478  }
479
480  // Okay, we know we have a single variable index, which must be a
481  // pointer/array/vector index.  If there is no offset, life is simple, return
482  // the index.
483  Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
484  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
485  if (Offset == 0) {
486    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
487    // we don't need to bother extending: the extension won't affect where the
488    // computation crosses zero.
489    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
490      VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
491    }
492    return VariableIdx;
493  }
494
495  // Otherwise, there is an index.  The computation we will do will be modulo
496  // the pointer size.
497  Offset = SignExtend64(Offset, IntPtrWidth);
498  VariableScale = SignExtend64(VariableScale, IntPtrWidth);
499
500  // To do this transformation, any constant index must be a multiple of the
501  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
502  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
503  // multiple of the variable scale.
504  int64_t NewOffs = Offset / (int64_t)VariableScale;
505  if (Offset != NewOffs*(int64_t)VariableScale)
506    return nullptr;
507
508  // Okay, we can do this evaluation.  Start by converting the index to intptr.
509  if (VariableIdx->getType() != IntPtrTy)
510    VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
511                                            true /*Signed*/);
512  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
513  return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
514}
515
516/// Returns true if we can rewrite Start as a GEP with pointer Base
517/// and some integer offset. The nodes that need to be re-written
518/// for this transformation will be added to Explored.
519static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
520                                  const DataLayout &DL,
521                                  SetVector<Value *> &Explored) {
522  SmallVector<Value *, 16> WorkList(1, Start);
523  Explored.insert(Base);
524
525  // The following traversal gives us an order which can be used
526  // when doing the final transformation. Since in the final
527  // transformation we create the PHI replacement instructions first,
528  // we don't have to get them in any particular order.
529  //
530  // However, for other instructions we will have to traverse the
531  // operands of an instruction first, which means that we have to
532  // do a post-order traversal.
533  while (!WorkList.empty()) {
534    SetVector<PHINode *> PHIs;
535
536    while (!WorkList.empty()) {
537      if (Explored.size() >= 100)
538        return false;
539
540      Value *V = WorkList.back();
541
542      if (Explored.count(V) != 0) {
543        WorkList.pop_back();
544        continue;
545      }
546
547      if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
548          !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
549        // We've found some value that we can't explore which is different from
550        // the base. Therefore we can't do this transformation.
551        return false;
552
553      if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
554        auto *CI = dyn_cast<CastInst>(V);
555        if (!CI->isNoopCast(DL))
556          return false;
557
558        if (Explored.count(CI->getOperand(0)) == 0)
559          WorkList.push_back(CI->getOperand(0));
560      }
561
562      if (auto *GEP = dyn_cast<GEPOperator>(V)) {
563        // We're limiting the GEP to having one index. This will preserve
564        // the original pointer type. We could handle more cases in the
565        // future.
566        if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
567            GEP->getType() != Start->getType())
568          return false;
569
570        if (Explored.count(GEP->getOperand(0)) == 0)
571          WorkList.push_back(GEP->getOperand(0));
572      }
573
574      if (WorkList.back() == V) {
575        WorkList.pop_back();
576        // We've finished visiting this node, mark it as such.
577        Explored.insert(V);
578      }
579
580      if (auto *PN = dyn_cast<PHINode>(V)) {
581        // We cannot transform PHIs on unsplittable basic blocks.
582        if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
583          return false;
584        Explored.insert(PN);
585        PHIs.insert(PN);
586      }
587    }
588
589    // Explore the PHI nodes further.
590    for (auto *PN : PHIs)
591      for (Value *Op : PN->incoming_values())
592        if (Explored.count(Op) == 0)
593          WorkList.push_back(Op);
594  }
595
596  // Make sure that we can do this. Since we can't insert GEPs in a basic
597  // block before a PHI node, we can't easily do this transformation if
598  // we have PHI node users of transformed instructions.
599  for (Value *Val : Explored) {
600    for (Value *Use : Val->uses()) {
601
602      auto *PHI = dyn_cast<PHINode>(Use);
603      auto *Inst = dyn_cast<Instruction>(Val);
604
605      if (Inst == Base || Inst == PHI || !Inst || !PHI ||
606          Explored.count(PHI) == 0)
607        continue;
608
609      if (PHI->getParent() == Inst->getParent())
610        return false;
611    }
612  }
613  return true;
614}
615
616// Sets the appropriate insert point on Builder where we can add
617// a replacement Instruction for V (if that is possible).
618static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
619                              bool Before = true) {
620  if (auto *PHI = dyn_cast<PHINode>(V)) {
621    Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
622    return;
623  }
624  if (auto *I = dyn_cast<Instruction>(V)) {
625    if (!Before)
626      I = &*std::next(I->getIterator());
627    Builder.SetInsertPoint(I);
628    return;
629  }
630  if (auto *A = dyn_cast<Argument>(V)) {
631    // Set the insertion point in the entry block.
632    BasicBlock &Entry = A->getParent()->getEntryBlock();
633    Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
634    return;
635  }
636  // Otherwise, this is a constant and we don't need to set a new
637  // insertion point.
638  assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
639}
640
641/// Returns a re-written value of Start as an indexed GEP using Base as a
642/// pointer.
643static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
644                                 const DataLayout &DL,
645                                 SetVector<Value *> &Explored) {
646  // Perform all the substitutions. This is a bit tricky because we can
647  // have cycles in our use-def chains.
648  // 1. Create the PHI nodes without any incoming values.
649  // 2. Create all the other values.
650  // 3. Add the edges for the PHI nodes.
651  // 4. Emit GEPs to get the original pointers.
652  // 5. Remove the original instructions.
653  Type *IndexType = IntegerType::get(
654      Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
655
656  DenseMap<Value *, Value *> NewInsts;
657  NewInsts[Base] = ConstantInt::getNullValue(IndexType);
658
659  // Create the new PHI nodes, without adding any incoming values.
660  for (Value *Val : Explored) {
661    if (Val == Base)
662      continue;
663    // Create empty phi nodes. This avoids cyclic dependencies when creating
664    // the remaining instructions.
665    if (auto *PHI = dyn_cast<PHINode>(Val))
666      NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
667                                      PHI->getName() + ".idx", PHI);
668  }
669  IRBuilder<> Builder(Base->getContext());
670
671  // Create all the other instructions.
672  for (Value *Val : Explored) {
673
674    if (NewInsts.find(Val) != NewInsts.end())
675      continue;
676
677    if (auto *CI = dyn_cast<CastInst>(Val)) {
678      // Don't get rid of the intermediate variable here; the store can grow
679      // the map which will invalidate the reference to the input value.
680      Value *V = NewInsts[CI->getOperand(0)];
681      NewInsts[CI] = V;
682      continue;
683    }
684    if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
685      Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
686                                                  : GEP->getOperand(1);
687      setInsertionPoint(Builder, GEP);
688      // Indices might need to be sign extended. GEPs will magically do
689      // this, but we need to do it ourselves here.
690      if (Index->getType()->getScalarSizeInBits() !=
691          NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
692        Index = Builder.CreateSExtOrTrunc(
693            Index, NewInsts[GEP->getOperand(0)]->getType(),
694            GEP->getOperand(0)->getName() + ".sext");
695      }
696
697      auto *Op = NewInsts[GEP->getOperand(0)];
698      if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
699        NewInsts[GEP] = Index;
700      else
701        NewInsts[GEP] = Builder.CreateNSWAdd(
702            Op, Index, GEP->getOperand(0)->getName() + ".add");
703      continue;
704    }
705    if (isa<PHINode>(Val))
706      continue;
707
708    llvm_unreachable("Unexpected instruction type");
709  }
710
711  // Add the incoming values to the PHI nodes.
712  for (Value *Val : Explored) {
713    if (Val == Base)
714      continue;
715    // All the instructions have been created, we can now add edges to the
716    // phi nodes.
717    if (auto *PHI = dyn_cast<PHINode>(Val)) {
718      PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
719      for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
720        Value *NewIncoming = PHI->getIncomingValue(I);
721
722        if (NewInsts.find(NewIncoming) != NewInsts.end())
723          NewIncoming = NewInsts[NewIncoming];
724
725        NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
726      }
727    }
728  }
729
730  for (Value *Val : Explored) {
731    if (Val == Base)
732      continue;
733
734    // Depending on the type, for external users we have to emit
735    // a GEP or a GEP + ptrtoint.
736    setInsertionPoint(Builder, Val, false);
737
738    // If required, create an inttoptr instruction for Base.
739    Value *NewBase = Base;
740    if (!Base->getType()->isPointerTy())
741      NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
742                                               Start->getName() + "to.ptr");
743
744    Value *GEP = Builder.CreateInBoundsGEP(
745        Start->getType()->getPointerElementType(), NewBase,
746        makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
747
748    if (!Val->getType()->isPointerTy()) {
749      Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
750                                              Val->getName() + ".conv");
751      GEP = Cast;
752    }
753    Val->replaceAllUsesWith(GEP);
754  }
755
756  return NewInsts[Start];
757}
758
759/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
760/// the input Value as a constant indexed GEP. Returns a pair containing
761/// the GEPs Pointer and Index.
762static std::pair<Value *, Value *>
763getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
764  Type *IndexType = IntegerType::get(V->getContext(),
765                                     DL.getIndexTypeSizeInBits(V->getType()));
766
767  Constant *Index = ConstantInt::getNullValue(IndexType);
768  while (true) {
769    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
770      // We accept only inbouds GEPs here to exclude the possibility of
771      // overflow.
772      if (!GEP->isInBounds())
773        break;
774      if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
775          GEP->getType() == V->getType()) {
776        V = GEP->getOperand(0);
777        Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
778        Index = ConstantExpr::getAdd(
779            Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
780        continue;
781      }
782      break;
783    }
784    if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
785      if (!CI->isNoopCast(DL))
786        break;
787      V = CI->getOperand(0);
788      continue;
789    }
790    if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
791      if (!CI->isNoopCast(DL))
792        break;
793      V = CI->getOperand(0);
794      continue;
795    }
796    break;
797  }
798  return {V, Index};
799}
800
801/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
802/// We can look through PHIs, GEPs and casts in order to determine a common base
803/// between GEPLHS and RHS.
804static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
805                                              ICmpInst::Predicate Cond,
806                                              const DataLayout &DL) {
807  // FIXME: Support vector of pointers.
808  if (GEPLHS->getType()->isVectorTy())
809    return nullptr;
810
811  if (!GEPLHS->hasAllConstantIndices())
812    return nullptr;
813
814  // Make sure the pointers have the same type.
815  if (GEPLHS->getType() != RHS->getType())
816    return nullptr;
817
818  Value *PtrBase, *Index;
819  std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
820
821  // The set of nodes that will take part in this transformation.
822  SetVector<Value *> Nodes;
823
824  if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
825    return nullptr;
826
827  // We know we can re-write this as
828  //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
829  // Since we've only looked through inbouds GEPs we know that we
830  // can't have overflow on either side. We can therefore re-write
831  // this as:
832  //   OFFSET1 cmp OFFSET2
833  Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
834
835  // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
836  // GEP having PtrBase as the pointer base, and has returned in NewRHS the
837  // offset. Since Index is the offset of LHS to the base pointer, we will now
838  // compare the offsets instead of comparing the pointers.
839  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
840}
841
842/// Fold comparisons between a GEP instruction and something else. At this point
843/// we know that the GEP is on the LHS of the comparison.
844Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
845                                       ICmpInst::Predicate Cond,
846                                       Instruction &I) {
847  // Don't transform signed compares of GEPs into index compares. Even if the
848  // GEP is inbounds, the final add of the base pointer can have signed overflow
849  // and would change the result of the icmp.
850  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
851  // the maximum signed value for the pointer type.
852  if (ICmpInst::isSigned(Cond))
853    return nullptr;
854
855  // Look through bitcasts and addrspacecasts. We do not however want to remove
856  // 0 GEPs.
857  if (!isa<GetElementPtrInst>(RHS))
858    RHS = RHS->stripPointerCasts();
859
860  Value *PtrBase = GEPLHS->getOperand(0);
861  // FIXME: Support vector pointer GEPs.
862  if (PtrBase == RHS && GEPLHS->isInBounds() &&
863      !GEPLHS->getType()->isVectorTy()) {
864    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
865    // This transformation (ignoring the base and scales) is valid because we
866    // know pointers can't overflow since the gep is inbounds.  See if we can
867    // output an optimized form.
868    Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
869
870    // If not, synthesize the offset the hard way.
871    if (!Offset)
872      Offset = EmitGEPOffset(GEPLHS);
873    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
874                        Constant::getNullValue(Offset->getType()));
875  }
876
877  if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
878      isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
879      !NullPointerIsDefined(I.getFunction(),
880                            RHS->getType()->getPointerAddressSpace())) {
881    // For most address spaces, an allocation can't be placed at null, but null
882    // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
883    // the only valid inbounds address derived from null, is null itself.
884    // Thus, we have four cases to consider:
885    // 1) Base == nullptr, Offset == 0 -> inbounds, null
886    // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
887    // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
888    // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
889    //
890    // (Note if we're indexing a type of size 0, that simply collapses into one
891    //  of the buckets above.)
892    //
893    // In general, we're allowed to make values less poison (i.e. remove
894    //   sources of full UB), so in this case, we just select between the two
895    //   non-poison cases (1 and 4 above).
896    //
897    // For vectors, we apply the same reasoning on a per-lane basis.
898    auto *Base = GEPLHS->getPointerOperand();
899    if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
900      int NumElts = cast<VectorType>(GEPLHS->getType())->getNumElements();
901      Base = Builder.CreateVectorSplat(NumElts, Base);
902    }
903    return new ICmpInst(Cond, Base,
904                        ConstantExpr::getPointerBitCastOrAddrSpaceCast(
905                            cast<Constant>(RHS), Base->getType()));
906  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
907    // If the base pointers are different, but the indices are the same, just
908    // compare the base pointer.
909    if (PtrBase != GEPRHS->getOperand(0)) {
910      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
911      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
912                        GEPRHS->getOperand(0)->getType();
913      if (IndicesTheSame)
914        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
915          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
916            IndicesTheSame = false;
917            break;
918          }
919
920      // If all indices are the same, just compare the base pointers.
921      Type *BaseType = GEPLHS->getOperand(0)->getType();
922      if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
923        return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
924
925      // If we're comparing GEPs with two base pointers that only differ in type
926      // and both GEPs have only constant indices or just one use, then fold
927      // the compare with the adjusted indices.
928      // FIXME: Support vector of pointers.
929      if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
930          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
931          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
932          PtrBase->stripPointerCasts() ==
933              GEPRHS->getOperand(0)->stripPointerCasts() &&
934          !GEPLHS->getType()->isVectorTy()) {
935        Value *LOffset = EmitGEPOffset(GEPLHS);
936        Value *ROffset = EmitGEPOffset(GEPRHS);
937
938        // If we looked through an addrspacecast between different sized address
939        // spaces, the LHS and RHS pointers are different sized
940        // integers. Truncate to the smaller one.
941        Type *LHSIndexTy = LOffset->getType();
942        Type *RHSIndexTy = ROffset->getType();
943        if (LHSIndexTy != RHSIndexTy) {
944          if (LHSIndexTy->getPrimitiveSizeInBits() <
945              RHSIndexTy->getPrimitiveSizeInBits()) {
946            ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
947          } else
948            LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
949        }
950
951        Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
952                                        LOffset, ROffset);
953        return replaceInstUsesWith(I, Cmp);
954      }
955
956      // Otherwise, the base pointers are different and the indices are
957      // different. Try convert this to an indexed compare by looking through
958      // PHIs/casts.
959      return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
960    }
961
962    // If one of the GEPs has all zero indices, recurse.
963    // FIXME: Handle vector of pointers.
964    if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
965      return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
966                         ICmpInst::getSwappedPredicate(Cond), I);
967
968    // If the other GEP has all zero indices, recurse.
969    // FIXME: Handle vector of pointers.
970    if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
971      return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
972
973    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
974    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
975      // If the GEPs only differ by one index, compare it.
976      unsigned NumDifferences = 0;  // Keep track of # differences.
977      unsigned DiffOperand = 0;     // The operand that differs.
978      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
979        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
980          Type *LHSType = GEPLHS->getOperand(i)->getType();
981          Type *RHSType = GEPRHS->getOperand(i)->getType();
982          // FIXME: Better support for vector of pointers.
983          if (LHSType->getPrimitiveSizeInBits() !=
984                   RHSType->getPrimitiveSizeInBits() ||
985              (GEPLHS->getType()->isVectorTy() &&
986               (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
987            // Irreconcilable differences.
988            NumDifferences = 2;
989            break;
990          }
991
992          if (NumDifferences++) break;
993          DiffOperand = i;
994        }
995
996      if (NumDifferences == 0)   // SAME GEP?
997        return replaceInstUsesWith(I, // No comparison is needed here.
998          ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
999
1000      else if (NumDifferences == 1 && GEPsInBounds) {
1001        Value *LHSV = GEPLHS->getOperand(DiffOperand);
1002        Value *RHSV = GEPRHS->getOperand(DiffOperand);
1003        // Make sure we do a signed comparison here.
1004        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1005      }
1006    }
1007
1008    // Only lower this if the icmp is the only user of the GEP or if we expect
1009    // the result to fold to a constant!
1010    if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1011        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1012      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
1013      Value *L = EmitGEPOffset(GEPLHS);
1014      Value *R = EmitGEPOffset(GEPRHS);
1015      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1016    }
1017  }
1018
1019  // Try convert this to an indexed compare by looking through PHIs/casts as a
1020  // last resort.
1021  return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1022}
1023
1024Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
1025                                         const AllocaInst *Alloca,
1026                                         const Value *Other) {
1027  assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1028
1029  // It would be tempting to fold away comparisons between allocas and any
1030  // pointer not based on that alloca (e.g. an argument). However, even
1031  // though such pointers cannot alias, they can still compare equal.
1032  //
1033  // But LLVM doesn't specify where allocas get their memory, so if the alloca
1034  // doesn't escape we can argue that it's impossible to guess its value, and we
1035  // can therefore act as if any such guesses are wrong.
1036  //
1037  // The code below checks that the alloca doesn't escape, and that it's only
1038  // used in a comparison once (the current instruction). The
1039  // single-comparison-use condition ensures that we're trivially folding all
1040  // comparisons against the alloca consistently, and avoids the risk of
1041  // erroneously folding a comparison of the pointer with itself.
1042
1043  unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1044
1045  SmallVector<const Use *, 32> Worklist;
1046  for (const Use &U : Alloca->uses()) {
1047    if (Worklist.size() >= MaxIter)
1048      return nullptr;
1049    Worklist.push_back(&U);
1050  }
1051
1052  unsigned NumCmps = 0;
1053  while (!Worklist.empty()) {
1054    assert(Worklist.size() <= MaxIter);
1055    const Use *U = Worklist.pop_back_val();
1056    const Value *V = U->getUser();
1057    --MaxIter;
1058
1059    if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1060        isa<SelectInst>(V)) {
1061      // Track the uses.
1062    } else if (isa<LoadInst>(V)) {
1063      // Loading from the pointer doesn't escape it.
1064      continue;
1065    } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1066      // Storing *to* the pointer is fine, but storing the pointer escapes it.
1067      if (SI->getValueOperand() == U->get())
1068        return nullptr;
1069      continue;
1070    } else if (isa<ICmpInst>(V)) {
1071      if (NumCmps++)
1072        return nullptr; // Found more than one cmp.
1073      continue;
1074    } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1075      switch (Intrin->getIntrinsicID()) {
1076        // These intrinsics don't escape or compare the pointer. Memset is safe
1077        // because we don't allow ptrtoint. Memcpy and memmove are safe because
1078        // we don't allow stores, so src cannot point to V.
1079        case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1080        case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1081          continue;
1082        default:
1083          return nullptr;
1084      }
1085    } else {
1086      return nullptr;
1087    }
1088    for (const Use &U : V->uses()) {
1089      if (Worklist.size() >= MaxIter)
1090        return nullptr;
1091      Worklist.push_back(&U);
1092    }
1093  }
1094
1095  Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1096  return replaceInstUsesWith(
1097      ICI,
1098      ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1099}
1100
1101/// Fold "icmp pred (X+C), X".
1102Instruction *InstCombiner::foldICmpAddOpConst(Value *X, const APInt &C,
1103                                              ICmpInst::Predicate Pred) {
1104  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1105  // so the values can never be equal.  Similarly for all other "or equals"
1106  // operators.
1107  assert(!!C && "C should not be zero!");
1108
1109  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1110  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1111  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1112  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1113    Constant *R = ConstantInt::get(X->getType(),
1114                                   APInt::getMaxValue(C.getBitWidth()) - C);
1115    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1116  }
1117
1118  // (X+1) >u X        --> X <u (0-1)        --> X != 255
1119  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1120  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1121  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1122    return new ICmpInst(ICmpInst::ICMP_ULT, X,
1123                        ConstantInt::get(X->getType(), -C));
1124
1125  APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1126
1127  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1128  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1129  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1130  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1131  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1132  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1133  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1134    return new ICmpInst(ICmpInst::ICMP_SGT, X,
1135                        ConstantInt::get(X->getType(), SMax - C));
1136
1137  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1138  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1139  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1140  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1141  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1142  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1143
1144  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1145  return new ICmpInst(ICmpInst::ICMP_SLT, X,
1146                      ConstantInt::get(X->getType(), SMax - (C - 1)));
1147}
1148
1149/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1150/// (icmp eq/ne A, Log2(AP2/AP1)) ->
1151/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1152Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
1153                                                 const APInt &AP1,
1154                                                 const APInt &AP2) {
1155  assert(I.isEquality() && "Cannot fold icmp gt/lt");
1156
1157  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1158    if (I.getPredicate() == I.ICMP_NE)
1159      Pred = CmpInst::getInversePredicate(Pred);
1160    return new ICmpInst(Pred, LHS, RHS);
1161  };
1162
1163  // Don't bother doing any work for cases which InstSimplify handles.
1164  if (AP2.isNullValue())
1165    return nullptr;
1166
1167  bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1168  if (IsAShr) {
1169    if (AP2.isAllOnesValue())
1170      return nullptr;
1171    if (AP2.isNegative() != AP1.isNegative())
1172      return nullptr;
1173    if (AP2.sgt(AP1))
1174      return nullptr;
1175  }
1176
1177  if (!AP1)
1178    // 'A' must be large enough to shift out the highest set bit.
1179    return getICmp(I.ICMP_UGT, A,
1180                   ConstantInt::get(A->getType(), AP2.logBase2()));
1181
1182  if (AP1 == AP2)
1183    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1184
1185  int Shift;
1186  if (IsAShr && AP1.isNegative())
1187    Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1188  else
1189    Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1190
1191  if (Shift > 0) {
1192    if (IsAShr && AP1 == AP2.ashr(Shift)) {
1193      // There are multiple solutions if we are comparing against -1 and the LHS
1194      // of the ashr is not a power of two.
1195      if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1196        return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1197      return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1198    } else if (AP1 == AP2.lshr(Shift)) {
1199      return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1200    }
1201  }
1202
1203  // Shifting const2 will never be equal to const1.
1204  // FIXME: This should always be handled by InstSimplify?
1205  auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1206  return replaceInstUsesWith(I, TorF);
1207}
1208
1209/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1210/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1211Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
1212                                                 const APInt &AP1,
1213                                                 const APInt &AP2) {
1214  assert(I.isEquality() && "Cannot fold icmp gt/lt");
1215
1216  auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1217    if (I.getPredicate() == I.ICMP_NE)
1218      Pred = CmpInst::getInversePredicate(Pred);
1219    return new ICmpInst(Pred, LHS, RHS);
1220  };
1221
1222  // Don't bother doing any work for cases which InstSimplify handles.
1223  if (AP2.isNullValue())
1224    return nullptr;
1225
1226  unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1227
1228  if (!AP1 && AP2TrailingZeros != 0)
1229    return getICmp(
1230        I.ICMP_UGE, A,
1231        ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1232
1233  if (AP1 == AP2)
1234    return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1235
1236  // Get the distance between the lowest bits that are set.
1237  int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1238
1239  if (Shift > 0 && AP2.shl(Shift) == AP1)
1240    return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1241
1242  // Shifting const2 will never be equal to const1.
1243  // FIXME: This should always be handled by InstSimplify?
1244  auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1245  return replaceInstUsesWith(I, TorF);
1246}
1247
1248/// The caller has matched a pattern of the form:
1249///   I = icmp ugt (add (add A, B), CI2), CI1
1250/// If this is of the form:
1251///   sum = a + b
1252///   if (sum+128 >u 255)
1253/// Then replace it with llvm.sadd.with.overflow.i8.
1254///
1255static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1256                                          ConstantInt *CI2, ConstantInt *CI1,
1257                                          InstCombiner &IC) {
1258  // The transformation we're trying to do here is to transform this into an
1259  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1260  // with a narrower add, and discard the add-with-constant that is part of the
1261  // range check (if we can't eliminate it, this isn't profitable).
1262
1263  // In order to eliminate the add-with-constant, the compare can be its only
1264  // use.
1265  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1266  if (!AddWithCst->hasOneUse())
1267    return nullptr;
1268
1269  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1270  if (!CI2->getValue().isPowerOf2())
1271    return nullptr;
1272  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1273  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1274    return nullptr;
1275
1276  // The width of the new add formed is 1 more than the bias.
1277  ++NewWidth;
1278
1279  // Check to see that CI1 is an all-ones value with NewWidth bits.
1280  if (CI1->getBitWidth() == NewWidth ||
1281      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1282    return nullptr;
1283
1284  // This is only really a signed overflow check if the inputs have been
1285  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1286  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1287  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1288  if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1289      IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1290    return nullptr;
1291
1292  // In order to replace the original add with a narrower
1293  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1294  // and truncates that discard the high bits of the add.  Verify that this is
1295  // the case.
1296  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1297  for (User *U : OrigAdd->users()) {
1298    if (U == AddWithCst)
1299      continue;
1300
1301    // Only accept truncates for now.  We would really like a nice recursive
1302    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1303    // chain to see which bits of a value are actually demanded.  If the
1304    // original add had another add which was then immediately truncated, we
1305    // could still do the transformation.
1306    TruncInst *TI = dyn_cast<TruncInst>(U);
1307    if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1308      return nullptr;
1309  }
1310
1311  // If the pattern matches, truncate the inputs to the narrower type and
1312  // use the sadd_with_overflow intrinsic to efficiently compute both the
1313  // result and the overflow bit.
1314  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1315  Function *F = Intrinsic::getDeclaration(
1316      I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1317
1318  InstCombiner::BuilderTy &Builder = IC.Builder;
1319
1320  // Put the new code above the original add, in case there are any uses of the
1321  // add between the add and the compare.
1322  Builder.SetInsertPoint(OrigAdd);
1323
1324  Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1325  Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1326  CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1327  Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1328  Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1329
1330  // The inner add was the result of the narrow add, zero extended to the
1331  // wider type.  Replace it with the result computed by the intrinsic.
1332  IC.replaceInstUsesWith(*OrigAdd, ZExt);
1333  IC.eraseInstFromFunction(*OrigAdd);
1334
1335  // The original icmp gets replaced with the overflow value.
1336  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1337}
1338
1339/// If we have:
1340///   icmp eq/ne (urem/srem %x, %y), 0
1341/// iff %y is a power-of-two, we can replace this with a bit test:
1342///   icmp eq/ne (and %x, (add %y, -1)), 0
1343Instruction *InstCombiner::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1344  // This fold is only valid for equality predicates.
1345  if (!I.isEquality())
1346    return nullptr;
1347  ICmpInst::Predicate Pred;
1348  Value *X, *Y, *Zero;
1349  if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1350                        m_CombineAnd(m_Zero(), m_Value(Zero)))))
1351    return nullptr;
1352  if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1353    return nullptr;
1354  // This may increase instruction count, we don't enforce that Y is a constant.
1355  Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1356  Value *Masked = Builder.CreateAnd(X, Mask);
1357  return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1358}
1359
1360/// Fold equality-comparison between zero and any (maybe truncated) right-shift
1361/// by one-less-than-bitwidth into a sign test on the original value.
1362Instruction *InstCombiner::foldSignBitTest(ICmpInst &I) {
1363  Instruction *Val;
1364  ICmpInst::Predicate Pred;
1365  if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1366    return nullptr;
1367
1368  Value *X;
1369  Type *XTy;
1370
1371  Constant *C;
1372  if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1373    XTy = X->getType();
1374    unsigned XBitWidth = XTy->getScalarSizeInBits();
1375    if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1376                                     APInt(XBitWidth, XBitWidth - 1))))
1377      return nullptr;
1378  } else if (isa<BinaryOperator>(Val) &&
1379             (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1380                  cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1381                  /*AnalyzeForSignBitExtraction=*/true))) {
1382    XTy = X->getType();
1383  } else
1384    return nullptr;
1385
1386  return ICmpInst::Create(Instruction::ICmp,
1387                          Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1388                                                    : ICmpInst::ICMP_SLT,
1389                          X, ConstantInt::getNullValue(XTy));
1390}
1391
1392// Handle  icmp pred X, 0
1393Instruction *InstCombiner::foldICmpWithZero(ICmpInst &Cmp) {
1394  CmpInst::Predicate Pred = Cmp.getPredicate();
1395  if (!match(Cmp.getOperand(1), m_Zero()))
1396    return nullptr;
1397
1398  // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1399  if (Pred == ICmpInst::ICMP_SGT) {
1400    Value *A, *B;
1401    SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1402    if (SPR.Flavor == SPF_SMIN) {
1403      if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1404        return new ICmpInst(Pred, B, Cmp.getOperand(1));
1405      if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1406        return new ICmpInst(Pred, A, Cmp.getOperand(1));
1407    }
1408  }
1409
1410  if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1411    return New;
1412
1413  // Given:
1414  //   icmp eq/ne (urem %x, %y), 0
1415  // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1416  //   icmp eq/ne %x, 0
1417  Value *X, *Y;
1418  if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1419      ICmpInst::isEquality(Pred)) {
1420    KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1421    KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1422    if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1423      return new ICmpInst(Pred, X, Cmp.getOperand(1));
1424  }
1425
1426  return nullptr;
1427}
1428
1429/// Fold icmp Pred X, C.
1430/// TODO: This code structure does not make sense. The saturating add fold
1431/// should be moved to some other helper and extended as noted below (it is also
1432/// possible that code has been made unnecessary - do we canonicalize IR to
1433/// overflow/saturating intrinsics or not?).
1434Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
1435  // Match the following pattern, which is a common idiom when writing
1436  // overflow-safe integer arithmetic functions. The source performs an addition
1437  // in wider type and explicitly checks for overflow using comparisons against
1438  // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1439  //
1440  // TODO: This could probably be generalized to handle other overflow-safe
1441  // operations if we worked out the formulas to compute the appropriate magic
1442  // constants.
1443  //
1444  // sum = a + b
1445  // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1446  CmpInst::Predicate Pred = Cmp.getPredicate();
1447  Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1448  Value *A, *B;
1449  ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1450  if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1451      match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1452    if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1453      return Res;
1454
1455  // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1456  Constant *C = dyn_cast<Constant>(Op1);
1457  if (!C)
1458    return nullptr;
1459
1460  if (auto *Phi = dyn_cast<PHINode>(Op0))
1461    if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1462      Type *Ty = Cmp.getType();
1463      Builder.SetInsertPoint(Phi);
1464      PHINode *NewPhi =
1465          Builder.CreatePHI(Ty, Phi->getNumOperands());
1466      for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1467        auto *Input =
1468            cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1469        auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1470        NewPhi->addIncoming(BoolInput, Predecessor);
1471      }
1472      NewPhi->takeName(&Cmp);
1473      return replaceInstUsesWith(Cmp, NewPhi);
1474    }
1475
1476  return nullptr;
1477}
1478
1479/// Canonicalize icmp instructions based on dominating conditions.
1480Instruction *InstCombiner::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1481  // This is a cheap/incomplete check for dominance - just match a single
1482  // predecessor with a conditional branch.
1483  BasicBlock *CmpBB = Cmp.getParent();
1484  BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1485  if (!DomBB)
1486    return nullptr;
1487
1488  Value *DomCond;
1489  BasicBlock *TrueBB, *FalseBB;
1490  if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1491    return nullptr;
1492
1493  assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1494         "Predecessor block does not point to successor?");
1495
1496  // The branch should get simplified. Don't bother simplifying this condition.
1497  if (TrueBB == FalseBB)
1498    return nullptr;
1499
1500  // Try to simplify this compare to T/F based on the dominating condition.
1501  Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1502  if (Imp)
1503    return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1504
1505  CmpInst::Predicate Pred = Cmp.getPredicate();
1506  Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1507  ICmpInst::Predicate DomPred;
1508  const APInt *C, *DomC;
1509  if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1510      match(Y, m_APInt(C))) {
1511    // We have 2 compares of a variable with constants. Calculate the constant
1512    // ranges of those compares to see if we can transform the 2nd compare:
1513    // DomBB:
1514    //   DomCond = icmp DomPred X, DomC
1515    //   br DomCond, CmpBB, FalseBB
1516    // CmpBB:
1517    //   Cmp = icmp Pred X, C
1518    ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1519    ConstantRange DominatingCR =
1520        (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1521                          : ConstantRange::makeExactICmpRegion(
1522                                CmpInst::getInversePredicate(DomPred), *DomC);
1523    ConstantRange Intersection = DominatingCR.intersectWith(CR);
1524    ConstantRange Difference = DominatingCR.difference(CR);
1525    if (Intersection.isEmptySet())
1526      return replaceInstUsesWith(Cmp, Builder.getFalse());
1527    if (Difference.isEmptySet())
1528      return replaceInstUsesWith(Cmp, Builder.getTrue());
1529
1530    // Canonicalizing a sign bit comparison that gets used in a branch,
1531    // pessimizes codegen by generating branch on zero instruction instead
1532    // of a test and branch. So we avoid canonicalizing in such situations
1533    // because test and branch instruction has better branch displacement
1534    // than compare and branch instruction.
1535    bool UnusedBit;
1536    bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1537    if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1538      return nullptr;
1539
1540    if (const APInt *EqC = Intersection.getSingleElement())
1541      return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1542    if (const APInt *NeC = Difference.getSingleElement())
1543      return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1544  }
1545
1546  return nullptr;
1547}
1548
1549/// Fold icmp (trunc X, Y), C.
1550Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
1551                                                 TruncInst *Trunc,
1552                                                 const APInt &C) {
1553  ICmpInst::Predicate Pred = Cmp.getPredicate();
1554  Value *X = Trunc->getOperand(0);
1555  if (C.isOneValue() && C.getBitWidth() > 1) {
1556    // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1557    Value *V = nullptr;
1558    if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1559      return new ICmpInst(ICmpInst::ICMP_SLT, V,
1560                          ConstantInt::get(V->getType(), 1));
1561  }
1562
1563  if (Cmp.isEquality() && Trunc->hasOneUse()) {
1564    // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1565    // of the high bits truncated out of x are known.
1566    unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1567             SrcBits = X->getType()->getScalarSizeInBits();
1568    KnownBits Known = computeKnownBits(X, 0, &Cmp);
1569
1570    // If all the high bits are known, we can do this xform.
1571    if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1572      // Pull in the high bits from known-ones set.
1573      APInt NewRHS = C.zext(SrcBits);
1574      NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1575      return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1576    }
1577  }
1578
1579  return nullptr;
1580}
1581
1582/// Fold icmp (xor X, Y), C.
1583Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
1584                                               BinaryOperator *Xor,
1585                                               const APInt &C) {
1586  Value *X = Xor->getOperand(0);
1587  Value *Y = Xor->getOperand(1);
1588  const APInt *XorC;
1589  if (!match(Y, m_APInt(XorC)))
1590    return nullptr;
1591
1592  // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1593  // fold the xor.
1594  ICmpInst::Predicate Pred = Cmp.getPredicate();
1595  bool TrueIfSigned = false;
1596  if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1597
1598    // If the sign bit of the XorCst is not set, there is no change to
1599    // the operation, just stop using the Xor.
1600    if (!XorC->isNegative())
1601      return replaceOperand(Cmp, 0, X);
1602
1603    // Emit the opposite comparison.
1604    if (TrueIfSigned)
1605      return new ICmpInst(ICmpInst::ICMP_SGT, X,
1606                          ConstantInt::getAllOnesValue(X->getType()));
1607    else
1608      return new ICmpInst(ICmpInst::ICMP_SLT, X,
1609                          ConstantInt::getNullValue(X->getType()));
1610  }
1611
1612  if (Xor->hasOneUse()) {
1613    // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1614    if (!Cmp.isEquality() && XorC->isSignMask()) {
1615      Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1616                            : Cmp.getSignedPredicate();
1617      return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1618    }
1619
1620    // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1621    if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1622      Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1623                            : Cmp.getSignedPredicate();
1624      Pred = Cmp.getSwappedPredicate(Pred);
1625      return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1626    }
1627  }
1628
1629  // Mask constant magic can eliminate an 'xor' with unsigned compares.
1630  if (Pred == ICmpInst::ICMP_UGT) {
1631    // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1632    if (*XorC == ~C && (C + 1).isPowerOf2())
1633      return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1634    // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1635    if (*XorC == C && (C + 1).isPowerOf2())
1636      return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1637  }
1638  if (Pred == ICmpInst::ICMP_ULT) {
1639    // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1640    if (*XorC == -C && C.isPowerOf2())
1641      return new ICmpInst(ICmpInst::ICMP_UGT, X,
1642                          ConstantInt::get(X->getType(), ~C));
1643    // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1644    if (*XorC == C && (-C).isPowerOf2())
1645      return new ICmpInst(ICmpInst::ICMP_UGT, X,
1646                          ConstantInt::get(X->getType(), ~C));
1647  }
1648  return nullptr;
1649}
1650
1651/// Fold icmp (and (sh X, Y), C2), C1.
1652Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
1653                                            const APInt &C1, const APInt &C2) {
1654  BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1655  if (!Shift || !Shift->isShift())
1656    return nullptr;
1657
1658  // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1659  // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1660  // code produced by the clang front-end, for bitfield access.
1661  // This seemingly simple opportunity to fold away a shift turns out to be
1662  // rather complicated. See PR17827 for details.
1663  unsigned ShiftOpcode = Shift->getOpcode();
1664  bool IsShl = ShiftOpcode == Instruction::Shl;
1665  const APInt *C3;
1666  if (match(Shift->getOperand(1), m_APInt(C3))) {
1667    APInt NewAndCst, NewCmpCst;
1668    bool AnyCmpCstBitsShiftedOut;
1669    if (ShiftOpcode == Instruction::Shl) {
1670      // For a left shift, we can fold if the comparison is not signed. We can
1671      // also fold a signed comparison if the mask value and comparison value
1672      // are not negative. These constraints may not be obvious, but we can
1673      // prove that they are correct using an SMT solver.
1674      if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1675        return nullptr;
1676
1677      NewCmpCst = C1.lshr(*C3);
1678      NewAndCst = C2.lshr(*C3);
1679      AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1680    } else if (ShiftOpcode == Instruction::LShr) {
1681      // For a logical right shift, we can fold if the comparison is not signed.
1682      // We can also fold a signed comparison if the shifted mask value and the
1683      // shifted comparison value are not negative. These constraints may not be
1684      // obvious, but we can prove that they are correct using an SMT solver.
1685      NewCmpCst = C1.shl(*C3);
1686      NewAndCst = C2.shl(*C3);
1687      AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1688      if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1689        return nullptr;
1690    } else {
1691      // For an arithmetic shift, check that both constants don't use (in a
1692      // signed sense) the top bits being shifted out.
1693      assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1694      NewCmpCst = C1.shl(*C3);
1695      NewAndCst = C2.shl(*C3);
1696      AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1697      if (NewAndCst.ashr(*C3) != C2)
1698        return nullptr;
1699    }
1700
1701    if (AnyCmpCstBitsShiftedOut) {
1702      // If we shifted bits out, the fold is not going to work out. As a
1703      // special case, check to see if this means that the result is always
1704      // true or false now.
1705      if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1706        return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1707      if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1708        return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1709    } else {
1710      Value *NewAnd = Builder.CreateAnd(
1711          Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1712      return new ICmpInst(Cmp.getPredicate(),
1713          NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1714    }
1715  }
1716
1717  // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1718  // preferable because it allows the C2 << Y expression to be hoisted out of a
1719  // loop if Y is invariant and X is not.
1720  if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1721      !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1722    // Compute C2 << Y.
1723    Value *NewShift =
1724        IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1725              : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1726
1727    // Compute X & (C2 << Y).
1728    Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1729    return replaceOperand(Cmp, 0, NewAnd);
1730  }
1731
1732  return nullptr;
1733}
1734
1735/// Fold icmp (and X, C2), C1.
1736Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
1737                                                 BinaryOperator *And,
1738                                                 const APInt &C1) {
1739  bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1740
1741  // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1742  // TODO: We canonicalize to the longer form for scalars because we have
1743  // better analysis/folds for icmp, and codegen may be better with icmp.
1744  if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1745      match(And->getOperand(1), m_One()))
1746    return new TruncInst(And->getOperand(0), Cmp.getType());
1747
1748  const APInt *C2;
1749  Value *X;
1750  if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1751    return nullptr;
1752
1753  // Don't perform the following transforms if the AND has multiple uses
1754  if (!And->hasOneUse())
1755    return nullptr;
1756
1757  if (Cmp.isEquality() && C1.isNullValue()) {
1758    // Restrict this fold to single-use 'and' (PR10267).
1759    // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1760    if (C2->isSignMask()) {
1761      Constant *Zero = Constant::getNullValue(X->getType());
1762      auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1763      return new ICmpInst(NewPred, X, Zero);
1764    }
1765
1766    // Restrict this fold only for single-use 'and' (PR10267).
1767    // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1768    if ((~(*C2) + 1).isPowerOf2()) {
1769      Constant *NegBOC =
1770          ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1771      auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1772      return new ICmpInst(NewPred, X, NegBOC);
1773    }
1774  }
1775
1776  // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1777  // the input width without changing the value produced, eliminate the cast:
1778  //
1779  // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1780  //
1781  // We can do this transformation if the constants do not have their sign bits
1782  // set or if it is an equality comparison. Extending a relational comparison
1783  // when we're checking the sign bit would not work.
1784  Value *W;
1785  if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1786      (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1787    // TODO: Is this a good transform for vectors? Wider types may reduce
1788    // throughput. Should this transform be limited (even for scalars) by using
1789    // shouldChangeType()?
1790    if (!Cmp.getType()->isVectorTy()) {
1791      Type *WideType = W->getType();
1792      unsigned WideScalarBits = WideType->getScalarSizeInBits();
1793      Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1794      Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1795      Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1796      return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1797    }
1798  }
1799
1800  if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1801    return I;
1802
1803  // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1804  // (icmp pred (and A, (or (shl 1, B), 1), 0))
1805  //
1806  // iff pred isn't signed
1807  if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1808      match(And->getOperand(1), m_One())) {
1809    Constant *One = cast<Constant>(And->getOperand(1));
1810    Value *Or = And->getOperand(0);
1811    Value *A, *B, *LShr;
1812    if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1813        match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1814      unsigned UsesRemoved = 0;
1815      if (And->hasOneUse())
1816        ++UsesRemoved;
1817      if (Or->hasOneUse())
1818        ++UsesRemoved;
1819      if (LShr->hasOneUse())
1820        ++UsesRemoved;
1821
1822      // Compute A & ((1 << B) | 1)
1823      Value *NewOr = nullptr;
1824      if (auto *C = dyn_cast<Constant>(B)) {
1825        if (UsesRemoved >= 1)
1826          NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1827      } else {
1828        if (UsesRemoved >= 3)
1829          NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1830                                                     /*HasNUW=*/true),
1831                                   One, Or->getName());
1832      }
1833      if (NewOr) {
1834        Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1835        return replaceOperand(Cmp, 0, NewAnd);
1836      }
1837    }
1838  }
1839
1840  return nullptr;
1841}
1842
1843/// Fold icmp (and X, Y), C.
1844Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
1845                                               BinaryOperator *And,
1846                                               const APInt &C) {
1847  if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1848    return I;
1849
1850  // TODO: These all require that Y is constant too, so refactor with the above.
1851
1852  // Try to optimize things like "A[i] & 42 == 0" to index computations.
1853  Value *X = And->getOperand(0);
1854  Value *Y = And->getOperand(1);
1855  if (auto *LI = dyn_cast<LoadInst>(X))
1856    if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1857      if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1858        if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1859            !LI->isVolatile() && isa<ConstantInt>(Y)) {
1860          ConstantInt *C2 = cast<ConstantInt>(Y);
1861          if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1862            return Res;
1863        }
1864
1865  if (!Cmp.isEquality())
1866    return nullptr;
1867
1868  // X & -C == -C -> X >  u ~C
1869  // X & -C != -C -> X <= u ~C
1870  //   iff C is a power of 2
1871  if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1872    auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1873                                                          : CmpInst::ICMP_ULE;
1874    return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1875  }
1876
1877  // (X & C2) == 0 -> (trunc X) >= 0
1878  // (X & C2) != 0 -> (trunc X) <  0
1879  //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1880  const APInt *C2;
1881  if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1882    int32_t ExactLogBase2 = C2->exactLogBase2();
1883    if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1884      Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1885      if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1886        NTy = FixedVectorType::get(NTy, AndVTy->getNumElements());
1887      Value *Trunc = Builder.CreateTrunc(X, NTy);
1888      auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1889                                                            : CmpInst::ICMP_SLT;
1890      return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1891    }
1892  }
1893
1894  return nullptr;
1895}
1896
1897/// Fold icmp (or X, Y), C.
1898Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
1899                                              const APInt &C) {
1900  ICmpInst::Predicate Pred = Cmp.getPredicate();
1901  if (C.isOneValue()) {
1902    // icmp slt signum(V) 1 --> icmp slt V, 1
1903    Value *V = nullptr;
1904    if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1905      return new ICmpInst(ICmpInst::ICMP_SLT, V,
1906                          ConstantInt::get(V->getType(), 1));
1907  }
1908
1909  Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1910  const APInt *MaskC;
1911  if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1912    if (*MaskC == C && (C + 1).isPowerOf2()) {
1913      // X | C == C --> X <=u C
1914      // X | C != C --> X  >u C
1915      //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1916      Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1917      return new ICmpInst(Pred, OrOp0, OrOp1);
1918    }
1919
1920    // More general: canonicalize 'equality with set bits mask' to
1921    // 'equality with clear bits mask'.
1922    // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1923    // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1924    if (Or->hasOneUse()) {
1925      Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1926      Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1927      return new ICmpInst(Pred, And, NewC);
1928    }
1929  }
1930
1931  if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1932    return nullptr;
1933
1934  Value *P, *Q;
1935  if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1936    // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1937    // -> and (icmp eq P, null), (icmp eq Q, null).
1938    Value *CmpP =
1939        Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1940    Value *CmpQ =
1941        Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1942    auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1943    return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1944  }
1945
1946  // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1947  // a shorter form that has more potential to be folded even further.
1948  Value *X1, *X2, *X3, *X4;
1949  if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1950      match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1951    // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1952    // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1953    Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1954    Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1955    auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1956    return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1957  }
1958
1959  return nullptr;
1960}
1961
1962/// Fold icmp (mul X, Y), C.
1963Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
1964                                               BinaryOperator *Mul,
1965                                               const APInt &C) {
1966  const APInt *MulC;
1967  if (!match(Mul->getOperand(1), m_APInt(MulC)))
1968    return nullptr;
1969
1970  // If this is a test of the sign bit and the multiply is sign-preserving with
1971  // a constant operand, use the multiply LHS operand instead.
1972  ICmpInst::Predicate Pred = Cmp.getPredicate();
1973  if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1974    if (MulC->isNegative())
1975      Pred = ICmpInst::getSwappedPredicate(Pred);
1976    return new ICmpInst(Pred, Mul->getOperand(0),
1977                        Constant::getNullValue(Mul->getType()));
1978  }
1979
1980  return nullptr;
1981}
1982
1983/// Fold icmp (shl 1, Y), C.
1984static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
1985                                   const APInt &C) {
1986  Value *Y;
1987  if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
1988    return nullptr;
1989
1990  Type *ShiftType = Shl->getType();
1991  unsigned TypeBits = C.getBitWidth();
1992  bool CIsPowerOf2 = C.isPowerOf2();
1993  ICmpInst::Predicate Pred = Cmp.getPredicate();
1994  if (Cmp.isUnsigned()) {
1995    // (1 << Y) pred C -> Y pred Log2(C)
1996    if (!CIsPowerOf2) {
1997      // (1 << Y) <  30 -> Y <= 4
1998      // (1 << Y) <= 30 -> Y <= 4
1999      // (1 << Y) >= 30 -> Y >  4
2000      // (1 << Y) >  30 -> Y >  4
2001      if (Pred == ICmpInst::ICMP_ULT)
2002        Pred = ICmpInst::ICMP_ULE;
2003      else if (Pred == ICmpInst::ICMP_UGE)
2004        Pred = ICmpInst::ICMP_UGT;
2005    }
2006
2007    // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2008    // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2009    unsigned CLog2 = C.logBase2();
2010    if (CLog2 == TypeBits - 1) {
2011      if (Pred == ICmpInst::ICMP_UGE)
2012        Pred = ICmpInst::ICMP_EQ;
2013      else if (Pred == ICmpInst::ICMP_ULT)
2014        Pred = ICmpInst::ICMP_NE;
2015    }
2016    return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2017  } else if (Cmp.isSigned()) {
2018    Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2019    if (C.isAllOnesValue()) {
2020      // (1 << Y) <= -1 -> Y == 31
2021      if (Pred == ICmpInst::ICMP_SLE)
2022        return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2023
2024      // (1 << Y) >  -1 -> Y != 31
2025      if (Pred == ICmpInst::ICMP_SGT)
2026        return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2027    } else if (!C) {
2028      // (1 << Y) <  0 -> Y == 31
2029      // (1 << Y) <= 0 -> Y == 31
2030      if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2031        return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2032
2033      // (1 << Y) >= 0 -> Y != 31
2034      // (1 << Y) >  0 -> Y != 31
2035      if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2036        return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2037    }
2038  } else if (Cmp.isEquality() && CIsPowerOf2) {
2039    return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2040  }
2041
2042  return nullptr;
2043}
2044
2045/// Fold icmp (shl X, Y), C.
2046Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
2047                                               BinaryOperator *Shl,
2048                                               const APInt &C) {
2049  const APInt *ShiftVal;
2050  if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2051    return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2052
2053  const APInt *ShiftAmt;
2054  if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2055    return foldICmpShlOne(Cmp, Shl, C);
2056
2057  // Check that the shift amount is in range. If not, don't perform undefined
2058  // shifts. When the shift is visited, it will be simplified.
2059  unsigned TypeBits = C.getBitWidth();
2060  if (ShiftAmt->uge(TypeBits))
2061    return nullptr;
2062
2063  ICmpInst::Predicate Pred = Cmp.getPredicate();
2064  Value *X = Shl->getOperand(0);
2065  Type *ShType = Shl->getType();
2066
2067  // NSW guarantees that we are only shifting out sign bits from the high bits,
2068  // so we can ASHR the compare constant without needing a mask and eliminate
2069  // the shift.
2070  if (Shl->hasNoSignedWrap()) {
2071    if (Pred == ICmpInst::ICMP_SGT) {
2072      // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2073      APInt ShiftedC = C.ashr(*ShiftAmt);
2074      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2075    }
2076    if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2077        C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2078      APInt ShiftedC = C.ashr(*ShiftAmt);
2079      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2080    }
2081    if (Pred == ICmpInst::ICMP_SLT) {
2082      // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2083      // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2084      // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2085      // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2086      assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2087      APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2088      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2089    }
2090    // If this is a signed comparison to 0 and the shift is sign preserving,
2091    // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2092    // do that if we're sure to not continue on in this function.
2093    if (isSignTest(Pred, C))
2094      return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2095  }
2096
2097  // NUW guarantees that we are only shifting out zero bits from the high bits,
2098  // so we can LSHR the compare constant without needing a mask and eliminate
2099  // the shift.
2100  if (Shl->hasNoUnsignedWrap()) {
2101    if (Pred == ICmpInst::ICMP_UGT) {
2102      // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2103      APInt ShiftedC = C.lshr(*ShiftAmt);
2104      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2105    }
2106    if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2107        C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2108      APInt ShiftedC = C.lshr(*ShiftAmt);
2109      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2110    }
2111    if (Pred == ICmpInst::ICMP_ULT) {
2112      // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2113      // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2114      // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2115      // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2116      assert(C.ugt(0) && "ult 0 should have been eliminated");
2117      APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2118      return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2119    }
2120  }
2121
2122  if (Cmp.isEquality() && Shl->hasOneUse()) {
2123    // Strength-reduce the shift into an 'and'.
2124    Constant *Mask = ConstantInt::get(
2125        ShType,
2126        APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2127    Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2128    Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2129    return new ICmpInst(Pred, And, LShrC);
2130  }
2131
2132  // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2133  bool TrueIfSigned = false;
2134  if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2135    // (X << 31) <s 0  --> (X & 1) != 0
2136    Constant *Mask = ConstantInt::get(
2137        ShType,
2138        APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2139    Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2140    return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2141                        And, Constant::getNullValue(ShType));
2142  }
2143
2144  // Simplify 'shl' inequality test into 'and' equality test.
2145  if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2146    // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2147    if ((C + 1).isPowerOf2() &&
2148        (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2149      Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2150      return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2151                                                     : ICmpInst::ICMP_NE,
2152                          And, Constant::getNullValue(ShType));
2153    }
2154    // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2155    if (C.isPowerOf2() &&
2156        (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2157      Value *And =
2158          Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2159      return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2160                                                     : ICmpInst::ICMP_NE,
2161                          And, Constant::getNullValue(ShType));
2162    }
2163  }
2164
2165  // Transform (icmp pred iM (shl iM %v, N), C)
2166  // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2167  // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2168  // This enables us to get rid of the shift in favor of a trunc that may be
2169  // free on the target. It has the additional benefit of comparing to a
2170  // smaller constant that may be more target-friendly.
2171  unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2172  if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2173      DL.isLegalInteger(TypeBits - Amt)) {
2174    Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2175    if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2176      TruncTy = FixedVectorType::get(TruncTy, ShVTy->getNumElements());
2177    Constant *NewC =
2178        ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2179    return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2180  }
2181
2182  return nullptr;
2183}
2184
2185/// Fold icmp ({al}shr X, Y), C.
2186Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
2187                                               BinaryOperator *Shr,
2188                                               const APInt &C) {
2189  // An exact shr only shifts out zero bits, so:
2190  // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2191  Value *X = Shr->getOperand(0);
2192  CmpInst::Predicate Pred = Cmp.getPredicate();
2193  if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2194      C.isNullValue())
2195    return new ICmpInst(Pred, X, Cmp.getOperand(1));
2196
2197  const APInt *ShiftVal;
2198  if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2199    return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2200
2201  const APInt *ShiftAmt;
2202  if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2203    return nullptr;
2204
2205  // Check that the shift amount is in range. If not, don't perform undefined
2206  // shifts. When the shift is visited it will be simplified.
2207  unsigned TypeBits = C.getBitWidth();
2208  unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2209  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2210    return nullptr;
2211
2212  bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2213  bool IsExact = Shr->isExact();
2214  Type *ShrTy = Shr->getType();
2215  // TODO: If we could guarantee that InstSimplify would handle all of the
2216  // constant-value-based preconditions in the folds below, then we could assert
2217  // those conditions rather than checking them. This is difficult because of
2218  // undef/poison (PR34838).
2219  if (IsAShr) {
2220    if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2221      // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2222      // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2223      APInt ShiftedC = C.shl(ShAmtVal);
2224      if (ShiftedC.ashr(ShAmtVal) == C)
2225        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2226    }
2227    if (Pred == CmpInst::ICMP_SGT) {
2228      // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2229      APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2230      if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2231          (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2232        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2233    }
2234  } else {
2235    if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2236      // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2237      // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2238      APInt ShiftedC = C.shl(ShAmtVal);
2239      if (ShiftedC.lshr(ShAmtVal) == C)
2240        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2241    }
2242    if (Pred == CmpInst::ICMP_UGT) {
2243      // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2244      APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2245      if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2246        return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2247    }
2248  }
2249
2250  if (!Cmp.isEquality())
2251    return nullptr;
2252
2253  // Handle equality comparisons of shift-by-constant.
2254
2255  // If the comparison constant changes with the shift, the comparison cannot
2256  // succeed (bits of the comparison constant cannot match the shifted value).
2257  // This should be known by InstSimplify and already be folded to true/false.
2258  assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2259          (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2260         "Expected icmp+shr simplify did not occur.");
2261
2262  // If the bits shifted out are known zero, compare the unshifted value:
2263  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2264  if (Shr->isExact())
2265    return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2266
2267  if (Shr->hasOneUse()) {
2268    // Canonicalize the shift into an 'and':
2269    // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2270    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2271    Constant *Mask = ConstantInt::get(ShrTy, Val);
2272    Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2273    return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2274  }
2275
2276  return nullptr;
2277}
2278
2279Instruction *InstCombiner::foldICmpSRemConstant(ICmpInst &Cmp,
2280                                                BinaryOperator *SRem,
2281                                                const APInt &C) {
2282  // Match an 'is positive' or 'is negative' comparison of remainder by a
2283  // constant power-of-2 value:
2284  // (X % pow2C) sgt/slt 0
2285  const ICmpInst::Predicate Pred = Cmp.getPredicate();
2286  if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2287    return nullptr;
2288
2289  // TODO: The one-use check is standard because we do not typically want to
2290  //       create longer instruction sequences, but this might be a special-case
2291  //       because srem is not good for analysis or codegen.
2292  if (!SRem->hasOneUse())
2293    return nullptr;
2294
2295  const APInt *DivisorC;
2296  if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2297    return nullptr;
2298
2299  // Mask off the sign bit and the modulo bits (low-bits).
2300  Type *Ty = SRem->getType();
2301  APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2302  Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2303  Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2304
2305  // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2306  // bit is set. Example:
2307  // (i8 X % 32) s> 0 --> (X & 159) s> 0
2308  if (Pred == ICmpInst::ICMP_SGT)
2309    return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2310
2311  // For 'is negative?' check that the sign-bit is set and at least 1 masked
2312  // bit is set. Example:
2313  // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2314  return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2315}
2316
2317/// Fold icmp (udiv X, Y), C.
2318Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
2319                                                BinaryOperator *UDiv,
2320                                                const APInt &C) {
2321  const APInt *C2;
2322  if (!match(UDiv->getOperand(0), m_APInt(C2)))
2323    return nullptr;
2324
2325  assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2326
2327  // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2328  Value *Y = UDiv->getOperand(1);
2329  if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2330    assert(!C.isMaxValue() &&
2331           "icmp ugt X, UINT_MAX should have been simplified already.");
2332    return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2333                        ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2334  }
2335
2336  // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2337  if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2338    assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2339    return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2340                        ConstantInt::get(Y->getType(), C2->udiv(C)));
2341  }
2342
2343  return nullptr;
2344}
2345
2346/// Fold icmp ({su}div X, Y), C.
2347Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
2348                                               BinaryOperator *Div,
2349                                               const APInt &C) {
2350  // Fold: icmp pred ([us]div X, C2), C -> range test
2351  // Fold this div into the comparison, producing a range check.
2352  // Determine, based on the divide type, what the range is being
2353  // checked.  If there is an overflow on the low or high side, remember
2354  // it, otherwise compute the range [low, hi) bounding the new value.
2355  // See: InsertRangeTest above for the kinds of replacements possible.
2356  const APInt *C2;
2357  if (!match(Div->getOperand(1), m_APInt(C2)))
2358    return nullptr;
2359
2360  // FIXME: If the operand types don't match the type of the divide
2361  // then don't attempt this transform. The code below doesn't have the
2362  // logic to deal with a signed divide and an unsigned compare (and
2363  // vice versa). This is because (x /s C2) <s C  produces different
2364  // results than (x /s C2) <u C or (x /u C2) <s C or even
2365  // (x /u C2) <u C.  Simply casting the operands and result won't
2366  // work. :(  The if statement below tests that condition and bails
2367  // if it finds it.
2368  bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2369  if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2370    return nullptr;
2371
2372  // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2373  // INT_MIN will also fail if the divisor is 1. Although folds of all these
2374  // division-by-constant cases should be present, we can not assert that they
2375  // have happened before we reach this icmp instruction.
2376  if (C2->isNullValue() || C2->isOneValue() ||
2377      (DivIsSigned && C2->isAllOnesValue()))
2378    return nullptr;
2379
2380  // Compute Prod = C * C2. We are essentially solving an equation of
2381  // form X / C2 = C. We solve for X by multiplying C2 and C.
2382  // By solving for X, we can turn this into a range check instead of computing
2383  // a divide.
2384  APInt Prod = C * *C2;
2385
2386  // Determine if the product overflows by seeing if the product is not equal to
2387  // the divide. Make sure we do the same kind of divide as in the LHS
2388  // instruction that we're folding.
2389  bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2390
2391  ICmpInst::Predicate Pred = Cmp.getPredicate();
2392
2393  // If the division is known to be exact, then there is no remainder from the
2394  // divide, so the covered range size is unit, otherwise it is the divisor.
2395  APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2396
2397  // Figure out the interval that is being checked.  For example, a comparison
2398  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2399  // Compute this interval based on the constants involved and the signedness of
2400  // the compare/divide.  This computes a half-open interval, keeping track of
2401  // whether either value in the interval overflows.  After analysis each
2402  // overflow variable is set to 0 if it's corresponding bound variable is valid
2403  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2404  int LoOverflow = 0, HiOverflow = 0;
2405  APInt LoBound, HiBound;
2406
2407  if (!DivIsSigned) {  // udiv
2408    // e.g. X/5 op 3  --> [15, 20)
2409    LoBound = Prod;
2410    HiOverflow = LoOverflow = ProdOV;
2411    if (!HiOverflow) {
2412      // If this is not an exact divide, then many values in the range collapse
2413      // to the same result value.
2414      HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2415    }
2416  } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2417    if (C.isNullValue()) {       // (X / pos) op 0
2418      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2419      LoBound = -(RangeSize - 1);
2420      HiBound = RangeSize;
2421    } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2422      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2423      HiOverflow = LoOverflow = ProdOV;
2424      if (!HiOverflow)
2425        HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2426    } else {                       // (X / pos) op neg
2427      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2428      HiBound = Prod + 1;
2429      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2430      if (!LoOverflow) {
2431        APInt DivNeg = -RangeSize;
2432        LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2433      }
2434    }
2435  } else if (C2->isNegative()) { // Divisor is < 0.
2436    if (Div->isExact())
2437      RangeSize.negate();
2438    if (C.isNullValue()) { // (X / neg) op 0
2439      // e.g. X/-5 op 0  --> [-4, 5)
2440      LoBound = RangeSize + 1;
2441      HiBound = -RangeSize;
2442      if (HiBound == *C2) {        // -INTMIN = INTMIN
2443        HiOverflow = 1;            // [INTMIN+1, overflow)
2444        HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2445      }
2446    } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2447      // e.g. X/-5 op 3  --> [-19, -14)
2448      HiBound = Prod + 1;
2449      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2450      if (!LoOverflow)
2451        LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2452    } else {                       // (X / neg) op neg
2453      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2454      LoOverflow = HiOverflow = ProdOV;
2455      if (!HiOverflow)
2456        HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2457    }
2458
2459    // Dividing by a negative swaps the condition.  LT <-> GT
2460    Pred = ICmpInst::getSwappedPredicate(Pred);
2461  }
2462
2463  Value *X = Div->getOperand(0);
2464  switch (Pred) {
2465    default: llvm_unreachable("Unhandled icmp opcode!");
2466    case ICmpInst::ICMP_EQ:
2467      if (LoOverflow && HiOverflow)
2468        return replaceInstUsesWith(Cmp, Builder.getFalse());
2469      if (HiOverflow)
2470        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2471                            ICmpInst::ICMP_UGE, X,
2472                            ConstantInt::get(Div->getType(), LoBound));
2473      if (LoOverflow)
2474        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2475                            ICmpInst::ICMP_ULT, X,
2476                            ConstantInt::get(Div->getType(), HiBound));
2477      return replaceInstUsesWith(
2478          Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2479    case ICmpInst::ICMP_NE:
2480      if (LoOverflow && HiOverflow)
2481        return replaceInstUsesWith(Cmp, Builder.getTrue());
2482      if (HiOverflow)
2483        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2484                            ICmpInst::ICMP_ULT, X,
2485                            ConstantInt::get(Div->getType(), LoBound));
2486      if (LoOverflow)
2487        return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2488                            ICmpInst::ICMP_UGE, X,
2489                            ConstantInt::get(Div->getType(), HiBound));
2490      return replaceInstUsesWith(Cmp,
2491                                 insertRangeTest(X, LoBound, HiBound,
2492                                                 DivIsSigned, false));
2493    case ICmpInst::ICMP_ULT:
2494    case ICmpInst::ICMP_SLT:
2495      if (LoOverflow == +1)   // Low bound is greater than input range.
2496        return replaceInstUsesWith(Cmp, Builder.getTrue());
2497      if (LoOverflow == -1)   // Low bound is less than input range.
2498        return replaceInstUsesWith(Cmp, Builder.getFalse());
2499      return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2500    case ICmpInst::ICMP_UGT:
2501    case ICmpInst::ICMP_SGT:
2502      if (HiOverflow == +1)       // High bound greater than input range.
2503        return replaceInstUsesWith(Cmp, Builder.getFalse());
2504      if (HiOverflow == -1)       // High bound less than input range.
2505        return replaceInstUsesWith(Cmp, Builder.getTrue());
2506      if (Pred == ICmpInst::ICMP_UGT)
2507        return new ICmpInst(ICmpInst::ICMP_UGE, X,
2508                            ConstantInt::get(Div->getType(), HiBound));
2509      return new ICmpInst(ICmpInst::ICMP_SGE, X,
2510                          ConstantInt::get(Div->getType(), HiBound));
2511  }
2512
2513  return nullptr;
2514}
2515
2516/// Fold icmp (sub X, Y), C.
2517Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
2518                                               BinaryOperator *Sub,
2519                                               const APInt &C) {
2520  Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2521  ICmpInst::Predicate Pred = Cmp.getPredicate();
2522  const APInt *C2;
2523  APInt SubResult;
2524
2525  // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2526  if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2527    return new ICmpInst(Cmp.getPredicate(), Y,
2528                        ConstantInt::get(Y->getType(), 0));
2529
2530  // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2531  if (match(X, m_APInt(C2)) &&
2532      ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2533       (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2534      !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2535    return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2536                        ConstantInt::get(Y->getType(), SubResult));
2537
2538  // The following transforms are only worth it if the only user of the subtract
2539  // is the icmp.
2540  if (!Sub->hasOneUse())
2541    return nullptr;
2542
2543  if (Sub->hasNoSignedWrap()) {
2544    // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2545    if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2546      return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2547
2548    // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2549    if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2550      return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2551
2552    // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2553    if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2554      return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2555
2556    // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2557    if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2558      return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2559  }
2560
2561  if (!match(X, m_APInt(C2)))
2562    return nullptr;
2563
2564  // C2 - Y <u C -> (Y | (C - 1)) == C2
2565  //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2566  if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2567      (*C2 & (C - 1)) == (C - 1))
2568    return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2569
2570  // C2 - Y >u C -> (Y | C) != C2
2571  //   iff C2 & C == C and C + 1 is a power of 2
2572  if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2573    return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2574
2575  return nullptr;
2576}
2577
2578/// Fold icmp (add X, Y), C.
2579Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
2580                                               BinaryOperator *Add,
2581                                               const APInt &C) {
2582  Value *Y = Add->getOperand(1);
2583  const APInt *C2;
2584  if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2585    return nullptr;
2586
2587  // Fold icmp pred (add X, C2), C.
2588  Value *X = Add->getOperand(0);
2589  Type *Ty = Add->getType();
2590  CmpInst::Predicate Pred = Cmp.getPredicate();
2591
2592  // If the add does not wrap, we can always adjust the compare by subtracting
2593  // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2594  // are canonicalized to SGT/SLT/UGT/ULT.
2595  if ((Add->hasNoSignedWrap() &&
2596       (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2597      (Add->hasNoUnsignedWrap() &&
2598       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2599    bool Overflow;
2600    APInt NewC =
2601        Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2602    // If there is overflow, the result must be true or false.
2603    // TODO: Can we assert there is no overflow because InstSimplify always
2604    // handles those cases?
2605    if (!Overflow)
2606      // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2607      return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2608  }
2609
2610  auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2611  const APInt &Upper = CR.getUpper();
2612  const APInt &Lower = CR.getLower();
2613  if (Cmp.isSigned()) {
2614    if (Lower.isSignMask())
2615      return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2616    if (Upper.isSignMask())
2617      return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2618  } else {
2619    if (Lower.isMinValue())
2620      return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2621    if (Upper.isMinValue())
2622      return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2623  }
2624
2625  if (!Add->hasOneUse())
2626    return nullptr;
2627
2628  // X+C <u C2 -> (X & -C2) == C
2629  //   iff C & (C2-1) == 0
2630  //       C2 is a power of 2
2631  if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2632    return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2633                        ConstantExpr::getNeg(cast<Constant>(Y)));
2634
2635  // X+C >u C2 -> (X & ~C2) != C
2636  //   iff C & C2 == 0
2637  //       C2+1 is a power of 2
2638  if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2639    return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2640                        ConstantExpr::getNeg(cast<Constant>(Y)));
2641
2642  return nullptr;
2643}
2644
2645bool InstCombiner::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2646                                           Value *&RHS, ConstantInt *&Less,
2647                                           ConstantInt *&Equal,
2648                                           ConstantInt *&Greater) {
2649  // TODO: Generalize this to work with other comparison idioms or ensure
2650  // they get canonicalized into this form.
2651
2652  // select i1 (a == b),
2653  //        i32 Equal,
2654  //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2655  // where Equal, Less and Greater are placeholders for any three constants.
2656  ICmpInst::Predicate PredA;
2657  if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2658      !ICmpInst::isEquality(PredA))
2659    return false;
2660  Value *EqualVal = SI->getTrueValue();
2661  Value *UnequalVal = SI->getFalseValue();
2662  // We still can get non-canonical predicate here, so canonicalize.
2663  if (PredA == ICmpInst::ICMP_NE)
2664    std::swap(EqualVal, UnequalVal);
2665  if (!match(EqualVal, m_ConstantInt(Equal)))
2666    return false;
2667  ICmpInst::Predicate PredB;
2668  Value *LHS2, *RHS2;
2669  if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2670                                  m_ConstantInt(Less), m_ConstantInt(Greater))))
2671    return false;
2672  // We can get predicate mismatch here, so canonicalize if possible:
2673  // First, ensure that 'LHS' match.
2674  if (LHS2 != LHS) {
2675    // x sgt y <--> y slt x
2676    std::swap(LHS2, RHS2);
2677    PredB = ICmpInst::getSwappedPredicate(PredB);
2678  }
2679  if (LHS2 != LHS)
2680    return false;
2681  // We also need to canonicalize 'RHS'.
2682  if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2683    // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2684    auto FlippedStrictness =
2685        getFlippedStrictnessPredicateAndConstant(PredB, cast<Constant>(RHS2));
2686    if (!FlippedStrictness)
2687      return false;
2688    assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2689    RHS2 = FlippedStrictness->second;
2690    // And kind-of perform the result swap.
2691    std::swap(Less, Greater);
2692    PredB = ICmpInst::ICMP_SLT;
2693  }
2694  return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2695}
2696
2697Instruction *InstCombiner::foldICmpSelectConstant(ICmpInst &Cmp,
2698                                                  SelectInst *Select,
2699                                                  ConstantInt *C) {
2700
2701  assert(C && "Cmp RHS should be a constant int!");
2702  // If we're testing a constant value against the result of a three way
2703  // comparison, the result can be expressed directly in terms of the
2704  // original values being compared.  Note: We could possibly be more
2705  // aggressive here and remove the hasOneUse test. The original select is
2706  // really likely to simplify or sink when we remove a test of the result.
2707  Value *OrigLHS, *OrigRHS;
2708  ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2709  if (Cmp.hasOneUse() &&
2710      matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2711                              C3GreaterThan)) {
2712    assert(C1LessThan && C2Equal && C3GreaterThan);
2713
2714    bool TrueWhenLessThan =
2715        ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2716            ->isAllOnesValue();
2717    bool TrueWhenEqual =
2718        ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2719            ->isAllOnesValue();
2720    bool TrueWhenGreaterThan =
2721        ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2722            ->isAllOnesValue();
2723
2724    // This generates the new instruction that will replace the original Cmp
2725    // Instruction. Instead of enumerating the various combinations when
2726    // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2727    // false, we rely on chaining of ORs and future passes of InstCombine to
2728    // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2729
2730    // When none of the three constants satisfy the predicate for the RHS (C),
2731    // the entire original Cmp can be simplified to a false.
2732    Value *Cond = Builder.getFalse();
2733    if (TrueWhenLessThan)
2734      Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2735                                                       OrigLHS, OrigRHS));
2736    if (TrueWhenEqual)
2737      Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2738                                                       OrigLHS, OrigRHS));
2739    if (TrueWhenGreaterThan)
2740      Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2741                                                       OrigLHS, OrigRHS));
2742
2743    return replaceInstUsesWith(Cmp, Cond);
2744  }
2745  return nullptr;
2746}
2747
2748static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2749                                    InstCombiner::BuilderTy &Builder) {
2750  auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2751  if (!Bitcast)
2752    return nullptr;
2753
2754  ICmpInst::Predicate Pred = Cmp.getPredicate();
2755  Value *Op1 = Cmp.getOperand(1);
2756  Value *BCSrcOp = Bitcast->getOperand(0);
2757
2758  // Make sure the bitcast doesn't change the number of vector elements.
2759  if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2760          Bitcast->getDestTy()->getScalarSizeInBits()) {
2761    // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2762    Value *X;
2763    if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2764      // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2765      // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2766      // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2767      // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2768      if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2769           Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2770          match(Op1, m_Zero()))
2771        return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2772
2773      // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2774      if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2775        return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2776
2777      // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2778      if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2779        return new ICmpInst(Pred, X,
2780                            ConstantInt::getAllOnesValue(X->getType()));
2781    }
2782
2783    // Zero-equality checks are preserved through unsigned floating-point casts:
2784    // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2785    // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2786    if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2787      if (Cmp.isEquality() && match(Op1, m_Zero()))
2788        return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2789
2790    // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2791    // the FP extend/truncate because that cast does not change the sign-bit.
2792    // This is true for all standard IEEE-754 types and the X86 80-bit type.
2793    // The sign-bit is always the most significant bit in those types.
2794    const APInt *C;
2795    bool TrueIfSigned;
2796    if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2797        isSignBitCheck(Pred, *C, TrueIfSigned)) {
2798      if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2799          match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2800        // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2801        // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2802        Type *XType = X->getType();
2803
2804        // We can't currently handle Power style floating point operations here.
2805        if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2806
2807          Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2808          if (auto *XVTy = dyn_cast<VectorType>(XType))
2809            NewType = FixedVectorType::get(NewType, XVTy->getNumElements());
2810          Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2811          if (TrueIfSigned)
2812            return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2813                                ConstantInt::getNullValue(NewType));
2814          else
2815            return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2816                                ConstantInt::getAllOnesValue(NewType));
2817        }
2818      }
2819    }
2820  }
2821
2822  // Test to see if the operands of the icmp are casted versions of other
2823  // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2824  if (Bitcast->getType()->isPointerTy() &&
2825      (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2826    // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2827    // so eliminate it as well.
2828    if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2829      Op1 = BC2->getOperand(0);
2830
2831    Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2832    return new ICmpInst(Pred, BCSrcOp, Op1);
2833  }
2834
2835  // Folding: icmp <pred> iN X, C
2836  //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2837  //    and C is a splat of a K-bit pattern
2838  //    and SC is a constant vector = <C', C', C', ..., C'>
2839  // Into:
2840  //   %E = extractelement <M x iK> %vec, i32 C'
2841  //   icmp <pred> iK %E, trunc(C)
2842  const APInt *C;
2843  if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2844      !Bitcast->getType()->isIntegerTy() ||
2845      !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2846    return nullptr;
2847
2848  Value *Vec;
2849  ArrayRef<int> Mask;
2850  if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2851    // Check whether every element of Mask is the same constant
2852    if (is_splat(Mask)) {
2853      auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2854      auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2855      if (C->isSplat(EltTy->getBitWidth())) {
2856        // Fold the icmp based on the value of C
2857        // If C is M copies of an iK sized bit pattern,
2858        // then:
2859        //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2860        //       icmp <pred> iK %SplatVal, <pattern>
2861        Value *Elem = Builder.getInt32(Mask[0]);
2862        Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2863        Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2864        return new ICmpInst(Pred, Extract, NewC);
2865      }
2866    }
2867  }
2868  return nullptr;
2869}
2870
2871/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2872/// where X is some kind of instruction.
2873Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
2874  const APInt *C;
2875  if (!match(Cmp.getOperand(1), m_APInt(C)))
2876    return nullptr;
2877
2878  if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2879    switch (BO->getOpcode()) {
2880    case Instruction::Xor:
2881      if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2882        return I;
2883      break;
2884    case Instruction::And:
2885      if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2886        return I;
2887      break;
2888    case Instruction::Or:
2889      if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2890        return I;
2891      break;
2892    case Instruction::Mul:
2893      if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2894        return I;
2895      break;
2896    case Instruction::Shl:
2897      if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2898        return I;
2899      break;
2900    case Instruction::LShr:
2901    case Instruction::AShr:
2902      if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2903        return I;
2904      break;
2905    case Instruction::SRem:
2906      if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2907        return I;
2908      break;
2909    case Instruction::UDiv:
2910      if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2911        return I;
2912      LLVM_FALLTHROUGH;
2913    case Instruction::SDiv:
2914      if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2915        return I;
2916      break;
2917    case Instruction::Sub:
2918      if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2919        return I;
2920      break;
2921    case Instruction::Add:
2922      if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2923        return I;
2924      break;
2925    default:
2926      break;
2927    }
2928    // TODO: These folds could be refactored to be part of the above calls.
2929    if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2930      return I;
2931  }
2932
2933  // Match against CmpInst LHS being instructions other than binary operators.
2934
2935  if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2936    // For now, we only support constant integers while folding the
2937    // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2938    // similar to the cases handled by binary ops above.
2939    if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2940      if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2941        return I;
2942  }
2943
2944  if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2945    if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2946      return I;
2947  }
2948
2949  if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2950    if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2951      return I;
2952
2953  return nullptr;
2954}
2955
2956/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2957/// icmp eq/ne BO, C.
2958Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
2959                                                             BinaryOperator *BO,
2960                                                             const APInt &C) {
2961  // TODO: Some of these folds could work with arbitrary constants, but this
2962  // function is limited to scalar and vector splat constants.
2963  if (!Cmp.isEquality())
2964    return nullptr;
2965
2966  ICmpInst::Predicate Pred = Cmp.getPredicate();
2967  bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2968  Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2969  Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2970
2971  switch (BO->getOpcode()) {
2972  case Instruction::SRem:
2973    // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2974    if (C.isNullValue() && BO->hasOneUse()) {
2975      const APInt *BOC;
2976      if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2977        Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
2978        return new ICmpInst(Pred, NewRem,
2979                            Constant::getNullValue(BO->getType()));
2980      }
2981    }
2982    break;
2983  case Instruction::Add: {
2984    // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
2985    if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
2986      if (BO->hasOneUse())
2987        return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
2988    } else if (C.isNullValue()) {
2989      // Replace ((add A, B) != 0) with (A != -B) if A or B is
2990      // efficiently invertible, or if the add has just this one use.
2991      if (Value *NegVal = dyn_castNegVal(BOp1))
2992        return new ICmpInst(Pred, BOp0, NegVal);
2993      if (Value *NegVal = dyn_castNegVal(BOp0))
2994        return new ICmpInst(Pred, NegVal, BOp1);
2995      if (BO->hasOneUse()) {
2996        Value *Neg = Builder.CreateNeg(BOp1);
2997        Neg->takeName(BO);
2998        return new ICmpInst(Pred, BOp0, Neg);
2999      }
3000    }
3001    break;
3002  }
3003  case Instruction::Xor:
3004    if (BO->hasOneUse()) {
3005      if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3006        // For the xor case, we can xor two constants together, eliminating
3007        // the explicit xor.
3008        return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3009      } else if (C.isNullValue()) {
3010        // Replace ((xor A, B) != 0) with (A != B)
3011        return new ICmpInst(Pred, BOp0, BOp1);
3012      }
3013    }
3014    break;
3015  case Instruction::Sub:
3016    if (BO->hasOneUse()) {
3017      // Only check for constant LHS here, as constant RHS will be canonicalized
3018      // to add and use the fold above.
3019      if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3020        // Replace ((sub BOC, B) != C) with (B != BOC-C).
3021        return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3022      } else if (C.isNullValue()) {
3023        // Replace ((sub A, B) != 0) with (A != B).
3024        return new ICmpInst(Pred, BOp0, BOp1);
3025      }
3026    }
3027    break;
3028  case Instruction::Or: {
3029    const APInt *BOC;
3030    if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3031      // Comparing if all bits outside of a constant mask are set?
3032      // Replace (X | C) == -1 with (X & ~C) == ~C.
3033      // This removes the -1 constant.
3034      Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3035      Value *And = Builder.CreateAnd(BOp0, NotBOC);
3036      return new ICmpInst(Pred, And, NotBOC);
3037    }
3038    break;
3039  }
3040  case Instruction::And: {
3041    const APInt *BOC;
3042    if (match(BOp1, m_APInt(BOC))) {
3043      // If we have ((X & C) == C), turn it into ((X & C) != 0).
3044      if (C == *BOC && C.isPowerOf2())
3045        return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3046                            BO, Constant::getNullValue(RHS->getType()));
3047    }
3048    break;
3049  }
3050  case Instruction::Mul:
3051    if (C.isNullValue() && BO->hasNoSignedWrap()) {
3052      const APInt *BOC;
3053      if (match(BOp1, m_APInt(BOC)) && !BOC->isNullValue()) {
3054        // The trivial case (mul X, 0) is handled by InstSimplify.
3055        // General case : (mul X, C) != 0 iff X != 0
3056        //                (mul X, C) == 0 iff X == 0
3057        return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
3058      }
3059    }
3060    break;
3061  case Instruction::UDiv:
3062    if (C.isNullValue()) {
3063      // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3064      auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3065      return new ICmpInst(NewPred, BOp1, BOp0);
3066    }
3067    break;
3068  default:
3069    break;
3070  }
3071  return nullptr;
3072}
3073
3074/// Fold an equality icmp with LLVM intrinsic and constant operand.
3075Instruction *InstCombiner::foldICmpEqIntrinsicWithConstant(ICmpInst &Cmp,
3076                                                           IntrinsicInst *II,
3077                                                           const APInt &C) {
3078  Type *Ty = II->getType();
3079  unsigned BitWidth = C.getBitWidth();
3080  switch (II->getIntrinsicID()) {
3081  case Intrinsic::bswap:
3082    // bswap(A) == C  ->  A == bswap(C)
3083    return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3084                        ConstantInt::get(Ty, C.byteSwap()));
3085
3086  case Intrinsic::ctlz:
3087  case Intrinsic::cttz: {
3088    // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3089    if (C == BitWidth)
3090      return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3091                          ConstantInt::getNullValue(Ty));
3092
3093    // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3094    // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3095    // Limit to one use to ensure we don't increase instruction count.
3096    unsigned Num = C.getLimitedValue(BitWidth);
3097    if (Num != BitWidth && II->hasOneUse()) {
3098      bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3099      APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3100                               : APInt::getHighBitsSet(BitWidth, Num + 1);
3101      APInt Mask2 = IsTrailing
3102        ? APInt::getOneBitSet(BitWidth, Num)
3103        : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3104      return new ICmpInst(Cmp.getPredicate(),
3105          Builder.CreateAnd(II->getArgOperand(0), Mask1),
3106          ConstantInt::get(Ty, Mask2));
3107    }
3108    break;
3109  }
3110
3111  case Intrinsic::ctpop: {
3112    // popcount(A) == 0  ->  A == 0 and likewise for !=
3113    // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3114    bool IsZero = C.isNullValue();
3115    if (IsZero || C == BitWidth)
3116      return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3117          IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3118
3119    break;
3120  }
3121
3122  case Intrinsic::uadd_sat: {
3123    // uadd.sat(a, b) == 0  ->  (a | b) == 0
3124    if (C.isNullValue()) {
3125      Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3126      return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3127    }
3128    break;
3129  }
3130
3131  case Intrinsic::usub_sat: {
3132    // usub.sat(a, b) == 0  ->  a <= b
3133    if (C.isNullValue()) {
3134      ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3135          ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3136      return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3137    }
3138    break;
3139  }
3140  default:
3141    break;
3142  }
3143
3144  return nullptr;
3145}
3146
3147/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3148Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3149                                                         IntrinsicInst *II,
3150                                                         const APInt &C) {
3151  if (Cmp.isEquality())
3152    return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3153
3154  Type *Ty = II->getType();
3155  unsigned BitWidth = C.getBitWidth();
3156  switch (II->getIntrinsicID()) {
3157  case Intrinsic::ctlz: {
3158    // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3159    if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3160      unsigned Num = C.getLimitedValue();
3161      APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3162      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3163                             II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3164    }
3165
3166    // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3167    if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3168        C.uge(1) && C.ule(BitWidth)) {
3169      unsigned Num = C.getLimitedValue();
3170      APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3171      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3172                             II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3173    }
3174    break;
3175  }
3176  case Intrinsic::cttz: {
3177    // Limit to one use to ensure we don't increase instruction count.
3178    if (!II->hasOneUse())
3179      return nullptr;
3180
3181    // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3182    if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3183      APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3184      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3185                             Builder.CreateAnd(II->getArgOperand(0), Mask),
3186                             ConstantInt::getNullValue(Ty));
3187    }
3188
3189    // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3190    if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3191        C.uge(1) && C.ule(BitWidth)) {
3192      APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3193      return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3194                             Builder.CreateAnd(II->getArgOperand(0), Mask),
3195                             ConstantInt::getNullValue(Ty));
3196    }
3197    break;
3198  }
3199  default:
3200    break;
3201  }
3202
3203  return nullptr;
3204}
3205
3206/// Handle icmp with constant (but not simple integer constant) RHS.
3207Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3208  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3209  Constant *RHSC = dyn_cast<Constant>(Op1);
3210  Instruction *LHSI = dyn_cast<Instruction>(Op0);
3211  if (!RHSC || !LHSI)
3212    return nullptr;
3213
3214  switch (LHSI->getOpcode()) {
3215  case Instruction::GetElementPtr:
3216    // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3217    if (RHSC->isNullValue() &&
3218        cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3219      return new ICmpInst(
3220          I.getPredicate(), LHSI->getOperand(0),
3221          Constant::getNullValue(LHSI->getOperand(0)->getType()));
3222    break;
3223  case Instruction::PHI:
3224    // Only fold icmp into the PHI if the phi and icmp are in the same
3225    // block.  If in the same block, we're encouraging jump threading.  If
3226    // not, we are just pessimizing the code by making an i1 phi.
3227    if (LHSI->getParent() == I.getParent())
3228      if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3229        return NV;
3230    break;
3231  case Instruction::Select: {
3232    // If either operand of the select is a constant, we can fold the
3233    // comparison into the select arms, which will cause one to be
3234    // constant folded and the select turned into a bitwise or.
3235    Value *Op1 = nullptr, *Op2 = nullptr;
3236    ConstantInt *CI = nullptr;
3237    if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3238      Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3239      CI = dyn_cast<ConstantInt>(Op1);
3240    }
3241    if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3242      Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3243      CI = dyn_cast<ConstantInt>(Op2);
3244    }
3245
3246    // We only want to perform this transformation if it will not lead to
3247    // additional code. This is true if either both sides of the select
3248    // fold to a constant (in which case the icmp is replaced with a select
3249    // which will usually simplify) or this is the only user of the
3250    // select (in which case we are trading a select+icmp for a simpler
3251    // select+icmp) or all uses of the select can be replaced based on
3252    // dominance information ("Global cases").
3253    bool Transform = false;
3254    if (Op1 && Op2)
3255      Transform = true;
3256    else if (Op1 || Op2) {
3257      // Local case
3258      if (LHSI->hasOneUse())
3259        Transform = true;
3260      // Global cases
3261      else if (CI && !CI->isZero())
3262        // When Op1 is constant try replacing select with second operand.
3263        // Otherwise Op2 is constant and try replacing select with first
3264        // operand.
3265        Transform =
3266            replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3267    }
3268    if (Transform) {
3269      if (!Op1)
3270        Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3271                                 I.getName());
3272      if (!Op2)
3273        Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3274                                 I.getName());
3275      return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3276    }
3277    break;
3278  }
3279  case Instruction::IntToPtr:
3280    // icmp pred inttoptr(X), null -> icmp pred X, 0
3281    if (RHSC->isNullValue() &&
3282        DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3283      return new ICmpInst(
3284          I.getPredicate(), LHSI->getOperand(0),
3285          Constant::getNullValue(LHSI->getOperand(0)->getType()));
3286    break;
3287
3288  case Instruction::Load:
3289    // Try to optimize things like "A[i] > 4" to index computations.
3290    if (GetElementPtrInst *GEP =
3291            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3292      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3293        if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3294            !cast<LoadInst>(LHSI)->isVolatile())
3295          if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3296            return Res;
3297    }
3298    break;
3299  }
3300
3301  return nullptr;
3302}
3303
3304/// Some comparisons can be simplified.
3305/// In this case, we are looking for comparisons that look like
3306/// a check for a lossy truncation.
3307/// Folds:
3308///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3309/// Where Mask is some pattern that produces all-ones in low bits:
3310///    (-1 >> y)
3311///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3312///   ~(-1 << y)
3313///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3314/// The Mask can be a constant, too.
3315/// For some predicates, the operands are commutative.
3316/// For others, x can only be on a specific side.
3317static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3318                                          InstCombiner::BuilderTy &Builder) {
3319  ICmpInst::Predicate SrcPred;
3320  Value *X, *M, *Y;
3321  auto m_VariableMask = m_CombineOr(
3322      m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3323                  m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3324      m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3325                  m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3326  auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3327  if (!match(&I, m_c_ICmp(SrcPred,
3328                          m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3329                          m_Deferred(X))))
3330    return nullptr;
3331
3332  ICmpInst::Predicate DstPred;
3333  switch (SrcPred) {
3334  case ICmpInst::Predicate::ICMP_EQ:
3335    //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3336    DstPred = ICmpInst::Predicate::ICMP_ULE;
3337    break;
3338  case ICmpInst::Predicate::ICMP_NE:
3339    //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3340    DstPred = ICmpInst::Predicate::ICMP_UGT;
3341    break;
3342  case ICmpInst::Predicate::ICMP_ULT:
3343    //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3344    //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3345    DstPred = ICmpInst::Predicate::ICMP_UGT;
3346    break;
3347  case ICmpInst::Predicate::ICMP_UGE:
3348    //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3349    //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3350    DstPred = ICmpInst::Predicate::ICMP_ULE;
3351    break;
3352  case ICmpInst::Predicate::ICMP_SLT:
3353    //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3354    //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3355    if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3356      return nullptr;
3357    if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3358      return nullptr;
3359    DstPred = ICmpInst::Predicate::ICMP_SGT;
3360    break;
3361  case ICmpInst::Predicate::ICMP_SGE:
3362    //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3363    //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3364    if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3365      return nullptr;
3366    if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3367      return nullptr;
3368    DstPred = ICmpInst::Predicate::ICMP_SLE;
3369    break;
3370  case ICmpInst::Predicate::ICMP_SGT:
3371  case ICmpInst::Predicate::ICMP_SLE:
3372    return nullptr;
3373  case ICmpInst::Predicate::ICMP_UGT:
3374  case ICmpInst::Predicate::ICMP_ULE:
3375    llvm_unreachable("Instsimplify took care of commut. variant");
3376    break;
3377  default:
3378    llvm_unreachable("All possible folds are handled.");
3379  }
3380
3381  // The mask value may be a vector constant that has undefined elements. But it
3382  // may not be safe to propagate those undefs into the new compare, so replace
3383  // those elements by copying an existing, defined, and safe scalar constant.
3384  Type *OpTy = M->getType();
3385  auto *VecC = dyn_cast<Constant>(M);
3386  if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3387    auto *OpVTy = cast<VectorType>(OpTy);
3388    Constant *SafeReplacementConstant = nullptr;
3389    for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3390      if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3391        SafeReplacementConstant = VecC->getAggregateElement(i);
3392        break;
3393      }
3394    }
3395    assert(SafeReplacementConstant && "Failed to find undef replacement");
3396    M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3397  }
3398
3399  return Builder.CreateICmp(DstPred, X, M);
3400}
3401
3402/// Some comparisons can be simplified.
3403/// In this case, we are looking for comparisons that look like
3404/// a check for a lossy signed truncation.
3405/// Folds:   (MaskedBits is a constant.)
3406///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3407/// Into:
3408///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3409/// Where  KeptBits = bitwidth(%x) - MaskedBits
3410static Value *
3411foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3412                                 InstCombiner::BuilderTy &Builder) {
3413  ICmpInst::Predicate SrcPred;
3414  Value *X;
3415  const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3416  // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3417  if (!match(&I, m_c_ICmp(SrcPred,
3418                          m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3419                                          m_APInt(C1))),
3420                          m_Deferred(X))))
3421    return nullptr;
3422
3423  // Potential handling of non-splats: for each element:
3424  //  * if both are undef, replace with constant 0.
3425  //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3426  //  * if both are not undef, and are different, bailout.
3427  //  * else, only one is undef, then pick the non-undef one.
3428
3429  // The shift amount must be equal.
3430  if (*C0 != *C1)
3431    return nullptr;
3432  const APInt &MaskedBits = *C0;
3433  assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3434
3435  ICmpInst::Predicate DstPred;
3436  switch (SrcPred) {
3437  case ICmpInst::Predicate::ICMP_EQ:
3438    // ((%x << MaskedBits) a>> MaskedBits) == %x
3439    //   =>
3440    // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3441    DstPred = ICmpInst::Predicate::ICMP_ULT;
3442    break;
3443  case ICmpInst::Predicate::ICMP_NE:
3444    // ((%x << MaskedBits) a>> MaskedBits) != %x
3445    //   =>
3446    // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3447    DstPred = ICmpInst::Predicate::ICMP_UGE;
3448    break;
3449  // FIXME: are more folds possible?
3450  default:
3451    return nullptr;
3452  }
3453
3454  auto *XType = X->getType();
3455  const unsigned XBitWidth = XType->getScalarSizeInBits();
3456  const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3457  assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3458
3459  // KeptBits = bitwidth(%x) - MaskedBits
3460  const APInt KeptBits = BitWidth - MaskedBits;
3461  assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3462  // ICmpCst = (1 << KeptBits)
3463  const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3464  assert(ICmpCst.isPowerOf2());
3465  // AddCst = (1 << (KeptBits-1))
3466  const APInt AddCst = ICmpCst.lshr(1);
3467  assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3468
3469  // T0 = add %x, AddCst
3470  Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3471  // T1 = T0 DstPred ICmpCst
3472  Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3473
3474  return T1;
3475}
3476
3477// Given pattern:
3478//   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3479// we should move shifts to the same hand of 'and', i.e. rewrite as
3480//   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3481// We are only interested in opposite logical shifts here.
3482// One of the shifts can be truncated.
3483// If we can, we want to end up creating 'lshr' shift.
3484static Value *
3485foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3486                                           InstCombiner::BuilderTy &Builder) {
3487  if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3488      !I.getOperand(0)->hasOneUse())
3489    return nullptr;
3490
3491  auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3492
3493  // Look for an 'and' of two logical shifts, one of which may be truncated.
3494  // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3495  Instruction *XShift, *MaybeTruncation, *YShift;
3496  if (!match(
3497          I.getOperand(0),
3498          m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3499                  m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3500                                   m_AnyLogicalShift, m_Instruction(YShift))),
3501                               m_Instruction(MaybeTruncation)))))
3502    return nullptr;
3503
3504  // We potentially looked past 'trunc', but only when matching YShift,
3505  // therefore YShift must have the widest type.
3506  Instruction *WidestShift = YShift;
3507  // Therefore XShift must have the shallowest type.
3508  // Or they both have identical types if there was no truncation.
3509  Instruction *NarrowestShift = XShift;
3510
3511  Type *WidestTy = WidestShift->getType();
3512  Type *NarrowestTy = NarrowestShift->getType();
3513  assert(NarrowestTy == I.getOperand(0)->getType() &&
3514         "We did not look past any shifts while matching XShift though.");
3515  bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3516
3517  // If YShift is a 'lshr', swap the shifts around.
3518  if (match(YShift, m_LShr(m_Value(), m_Value())))
3519    std::swap(XShift, YShift);
3520
3521  // The shifts must be in opposite directions.
3522  auto XShiftOpcode = XShift->getOpcode();
3523  if (XShiftOpcode == YShift->getOpcode())
3524    return nullptr; // Do not care about same-direction shifts here.
3525
3526  Value *X, *XShAmt, *Y, *YShAmt;
3527  match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3528  match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3529
3530  // If one of the values being shifted is a constant, then we will end with
3531  // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3532  // however, we will need to ensure that we won't increase instruction count.
3533  if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3534    // At least one of the hands of the 'and' should be one-use shift.
3535    if (!match(I.getOperand(0),
3536               m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3537      return nullptr;
3538    if (HadTrunc) {
3539      // Due to the 'trunc', we will need to widen X. For that either the old
3540      // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3541      if (!MaybeTruncation->hasOneUse() &&
3542          !NarrowestShift->getOperand(1)->hasOneUse())
3543        return nullptr;
3544    }
3545  }
3546
3547  // We have two shift amounts from two different shifts. The types of those
3548  // shift amounts may not match. If that's the case let's bailout now.
3549  if (XShAmt->getType() != YShAmt->getType())
3550    return nullptr;
3551
3552  // As input, we have the following pattern:
3553  //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3554  // We want to rewrite that as:
3555  //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3556  // While we know that originally (Q+K) would not overflow
3557  // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3558  // shift amounts. so it may now overflow in smaller bitwidth.
3559  // To ensure that does not happen, we need to ensure that the total maximal
3560  // shift amount is still representable in that smaller bit width.
3561  unsigned MaximalPossibleTotalShiftAmount =
3562      (WidestTy->getScalarSizeInBits() - 1) +
3563      (NarrowestTy->getScalarSizeInBits() - 1);
3564  APInt MaximalRepresentableShiftAmount =
3565      APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3566  if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3567    return nullptr;
3568
3569  // Can we fold (XShAmt+YShAmt) ?
3570  auto *NewShAmt = dyn_cast_or_null<Constant>(
3571      SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3572                      /*isNUW=*/false, SQ.getWithInstruction(&I)));
3573  if (!NewShAmt)
3574    return nullptr;
3575  NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3576  unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3577
3578  // Is the new shift amount smaller than the bit width?
3579  // FIXME: could also rely on ConstantRange.
3580  if (!match(NewShAmt,
3581             m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3582                                APInt(WidestBitWidth, WidestBitWidth))))
3583    return nullptr;
3584
3585  // An extra legality check is needed if we had trunc-of-lshr.
3586  if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3587    auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3588                    WidestShift]() {
3589      // It isn't obvious whether it's worth it to analyze non-constants here.
3590      // Also, let's basically give up on non-splat cases, pessimizing vectors.
3591      // If *any* of these preconditions matches we can perform the fold.
3592      Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3593                                    ? NewShAmt->getSplatValue()
3594                                    : NewShAmt;
3595      // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3596      if (NewShAmtSplat &&
3597          (NewShAmtSplat->isNullValue() ||
3598           NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3599        return true;
3600      // We consider *min* leading zeros so a single outlier
3601      // blocks the transform as opposed to allowing it.
3602      if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3603        KnownBits Known = computeKnownBits(C, SQ.DL);
3604        unsigned MinLeadZero = Known.countMinLeadingZeros();
3605        // If the value being shifted has at most lowest bit set we can fold.
3606        unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3607        if (MaxActiveBits <= 1)
3608          return true;
3609        // Precondition:  NewShAmt u<= countLeadingZeros(C)
3610        if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3611          return true;
3612      }
3613      if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3614        KnownBits Known = computeKnownBits(C, SQ.DL);
3615        unsigned MinLeadZero = Known.countMinLeadingZeros();
3616        // If the value being shifted has at most lowest bit set we can fold.
3617        unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3618        if (MaxActiveBits <= 1)
3619          return true;
3620        // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3621        if (NewShAmtSplat) {
3622          APInt AdjNewShAmt =
3623              (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3624          if (AdjNewShAmt.ule(MinLeadZero))
3625            return true;
3626        }
3627      }
3628      return false; // Can't tell if it's ok.
3629    };
3630    if (!CanFold())
3631      return nullptr;
3632  }
3633
3634  // All good, we can do this fold.
3635  X = Builder.CreateZExt(X, WidestTy);
3636  Y = Builder.CreateZExt(Y, WidestTy);
3637  // The shift is the same that was for X.
3638  Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3639                  ? Builder.CreateLShr(X, NewShAmt)
3640                  : Builder.CreateShl(X, NewShAmt);
3641  Value *T1 = Builder.CreateAnd(T0, Y);
3642  return Builder.CreateICmp(I.getPredicate(), T1,
3643                            Constant::getNullValue(WidestTy));
3644}
3645
3646/// Fold
3647///   (-1 u/ x) u< y
3648///   ((x * y) u/ x) != y
3649/// to
3650///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3651/// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3652/// will mean that we are looking for the opposite answer.
3653Value *InstCombiner::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3654  ICmpInst::Predicate Pred;
3655  Value *X, *Y;
3656  Instruction *Mul;
3657  bool NeedNegation;
3658  // Look for: (-1 u/ x) u</u>= y
3659  if (!I.isEquality() &&
3660      match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3661                         m_Value(Y)))) {
3662    Mul = nullptr;
3663
3664    // Are we checking that overflow does not happen, or does happen?
3665    switch (Pred) {
3666    case ICmpInst::Predicate::ICMP_ULT:
3667      NeedNegation = false;
3668      break; // OK
3669    case ICmpInst::Predicate::ICMP_UGE:
3670      NeedNegation = true;
3671      break; // OK
3672    default:
3673      return nullptr; // Wrong predicate.
3674    }
3675  } else // Look for: ((x * y) u/ x) !=/== y
3676      if (I.isEquality() &&
3677          match(&I, m_c_ICmp(Pred, m_Value(Y),
3678                             m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3679                                                                  m_Value(X)),
3680                                                          m_Instruction(Mul)),
3681                                             m_Deferred(X)))))) {
3682    NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3683  } else
3684    return nullptr;
3685
3686  BuilderTy::InsertPointGuard Guard(Builder);
3687  // If the pattern included (x * y), we'll want to insert new instructions
3688  // right before that original multiplication so that we can replace it.
3689  bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3690  if (MulHadOtherUses)
3691    Builder.SetInsertPoint(Mul);
3692
3693  Function *F = Intrinsic::getDeclaration(
3694      I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3695  CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3696
3697  // If the multiplication was used elsewhere, to ensure that we don't leave
3698  // "duplicate" instructions, replace uses of that original multiplication
3699  // with the multiplication result from the with.overflow intrinsic.
3700  if (MulHadOtherUses)
3701    replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3702
3703  Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3704  if (NeedNegation) // This technically increases instruction count.
3705    Res = Builder.CreateNot(Res, "umul.not.ov");
3706
3707  // If we replaced the mul, erase it. Do this after all uses of Builder,
3708  // as the mul is used as insertion point.
3709  if (MulHadOtherUses)
3710    eraseInstFromFunction(*Mul);
3711
3712  return Res;
3713}
3714
3715/// Try to fold icmp (binop), X or icmp X, (binop).
3716/// TODO: A large part of this logic is duplicated in InstSimplify's
3717/// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3718/// duplication.
3719Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I, const SimplifyQuery &SQ) {
3720  const SimplifyQuery Q = SQ.getWithInstruction(&I);
3721  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3722
3723  // Special logic for binary operators.
3724  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3725  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3726  if (!BO0 && !BO1)
3727    return nullptr;
3728
3729  const CmpInst::Predicate Pred = I.getPredicate();
3730  Value *X;
3731
3732  // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3733  // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3734  if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3735      (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3736    return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3737  // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3738  if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3739      (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3740    return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3741
3742  bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3743  if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3744    NoOp0WrapProblem =
3745        ICmpInst::isEquality(Pred) ||
3746        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3747        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3748  if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3749    NoOp1WrapProblem =
3750        ICmpInst::isEquality(Pred) ||
3751        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3752        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3753
3754  // Analyze the case when either Op0 or Op1 is an add instruction.
3755  // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3756  Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3757  if (BO0 && BO0->getOpcode() == Instruction::Add) {
3758    A = BO0->getOperand(0);
3759    B = BO0->getOperand(1);
3760  }
3761  if (BO1 && BO1->getOpcode() == Instruction::Add) {
3762    C = BO1->getOperand(0);
3763    D = BO1->getOperand(1);
3764  }
3765
3766  // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3767  // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3768  if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3769    return new ICmpInst(Pred, A == Op1 ? B : A,
3770                        Constant::getNullValue(Op1->getType()));
3771
3772  // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3773  // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3774  if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3775    return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3776                        C == Op0 ? D : C);
3777
3778  // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3779  if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3780      NoOp1WrapProblem) {
3781    // Determine Y and Z in the form icmp (X+Y), (X+Z).
3782    Value *Y, *Z;
3783    if (A == C) {
3784      // C + B == C + D  ->  B == D
3785      Y = B;
3786      Z = D;
3787    } else if (A == D) {
3788      // D + B == C + D  ->  B == C
3789      Y = B;
3790      Z = C;
3791    } else if (B == C) {
3792      // A + C == C + D  ->  A == D
3793      Y = A;
3794      Z = D;
3795    } else {
3796      assert(B == D);
3797      // A + D == C + D  ->  A == C
3798      Y = A;
3799      Z = C;
3800    }
3801    return new ICmpInst(Pred, Y, Z);
3802  }
3803
3804  // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3805  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3806      match(B, m_AllOnes()))
3807    return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3808
3809  // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3810  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3811      match(B, m_AllOnes()))
3812    return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3813
3814  // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3815  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3816    return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3817
3818  // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3819  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3820    return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3821
3822  // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3823  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3824      match(D, m_AllOnes()))
3825    return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3826
3827  // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3828  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3829      match(D, m_AllOnes()))
3830    return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3831
3832  // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3833  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3834    return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3835
3836  // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3837  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3838    return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3839
3840  // TODO: The subtraction-related identities shown below also hold, but
3841  // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3842  // wouldn't happen even if they were implemented.
3843  //
3844  // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3845  // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3846  // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3847  // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3848
3849  // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3850  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3851    return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3852
3853  // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3854  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3855    return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3856
3857  // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3858  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3859    return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3860
3861  // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3862  if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3863    return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3864
3865  // if C1 has greater magnitude than C2:
3866  //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3867  //  s.t. C3 = C1 - C2
3868  //
3869  // if C2 has greater magnitude than C1:
3870  //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3871  //  s.t. C3 = C2 - C1
3872  if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3873      (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3874    if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3875      if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3876        const APInt &AP1 = C1->getValue();
3877        const APInt &AP2 = C2->getValue();
3878        if (AP1.isNegative() == AP2.isNegative()) {
3879          APInt AP1Abs = C1->getValue().abs();
3880          APInt AP2Abs = C2->getValue().abs();
3881          if (AP1Abs.uge(AP2Abs)) {
3882            ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3883            Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3884            return new ICmpInst(Pred, NewAdd, C);
3885          } else {
3886            ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3887            Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3888            return new ICmpInst(Pred, A, NewAdd);
3889          }
3890        }
3891      }
3892
3893  // Analyze the case when either Op0 or Op1 is a sub instruction.
3894  // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3895  A = nullptr;
3896  B = nullptr;
3897  C = nullptr;
3898  D = nullptr;
3899  if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3900    A = BO0->getOperand(0);
3901    B = BO0->getOperand(1);
3902  }
3903  if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3904    C = BO1->getOperand(0);
3905    D = BO1->getOperand(1);
3906  }
3907
3908  // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3909  if (A == Op1 && NoOp0WrapProblem)
3910    return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3911  // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3912  if (C == Op0 && NoOp1WrapProblem)
3913    return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3914
3915  // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3916  // (A - B) u>/u<= A --> B u>/u<= A
3917  if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3918    return new ICmpInst(Pred, B, A);
3919  // C u</u>= (C - D) --> C u</u>= D
3920  if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3921    return new ICmpInst(Pred, C, D);
3922  // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
3923  if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3924      isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3925    return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3926  // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
3927  if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3928      isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3929    return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3930
3931  // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3932  if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3933    return new ICmpInst(Pred, A, C);
3934
3935  // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3936  if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3937    return new ICmpInst(Pred, D, B);
3938
3939  // icmp (0-X) < cst --> x > -cst
3940  if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3941    Value *X;
3942    if (match(BO0, m_Neg(m_Value(X))))
3943      if (Constant *RHSC = dyn_cast<Constant>(Op1))
3944        if (RHSC->isNotMinSignedValue())
3945          return new ICmpInst(I.getSwappedPredicate(), X,
3946                              ConstantExpr::getNeg(RHSC));
3947  }
3948
3949  BinaryOperator *SRem = nullptr;
3950  // icmp (srem X, Y), Y
3951  if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
3952    SRem = BO0;
3953  // icmp Y, (srem X, Y)
3954  else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
3955           Op0 == BO1->getOperand(1))
3956    SRem = BO1;
3957  if (SRem) {
3958    // We don't check hasOneUse to avoid increasing register pressure because
3959    // the value we use is the same value this instruction was already using.
3960    switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
3961    default:
3962      break;
3963    case ICmpInst::ICMP_EQ:
3964      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
3965    case ICmpInst::ICMP_NE:
3966      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
3967    case ICmpInst::ICMP_SGT:
3968    case ICmpInst::ICMP_SGE:
3969      return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
3970                          Constant::getAllOnesValue(SRem->getType()));
3971    case ICmpInst::ICMP_SLT:
3972    case ICmpInst::ICMP_SLE:
3973      return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
3974                          Constant::getNullValue(SRem->getType()));
3975    }
3976  }
3977
3978  if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
3979      BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
3980    switch (BO0->getOpcode()) {
3981    default:
3982      break;
3983    case Instruction::Add:
3984    case Instruction::Sub:
3985    case Instruction::Xor: {
3986      if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
3987        return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
3988
3989      const APInt *C;
3990      if (match(BO0->getOperand(1), m_APInt(C))) {
3991        // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
3992        if (C->isSignMask()) {
3993          ICmpInst::Predicate NewPred =
3994              I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
3995          return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
3996        }
3997
3998        // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
3999        if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4000          ICmpInst::Predicate NewPred =
4001              I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
4002          NewPred = I.getSwappedPredicate(NewPred);
4003          return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4004        }
4005      }
4006      break;
4007    }
4008    case Instruction::Mul: {
4009      if (!I.isEquality())
4010        break;
4011
4012      const APInt *C;
4013      if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4014          !C->isOneValue()) {
4015        // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4016        // Mask = -1 >> count-trailing-zeros(C).
4017        if (unsigned TZs = C->countTrailingZeros()) {
4018          Constant *Mask = ConstantInt::get(
4019              BO0->getType(),
4020              APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4021          Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4022          Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4023          return new ICmpInst(Pred, And1, And2);
4024        }
4025        // If there are no trailing zeros in the multiplier, just eliminate
4026        // the multiplies (no masking is needed):
4027        // icmp eq/ne (X * C), (Y * C) --> icmp eq/ne X, Y
4028        return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4029      }
4030      break;
4031    }
4032    case Instruction::UDiv:
4033    case Instruction::LShr:
4034      if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4035        break;
4036      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4037
4038    case Instruction::SDiv:
4039      if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4040        break;
4041      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4042
4043    case Instruction::AShr:
4044      if (!BO0->isExact() || !BO1->isExact())
4045        break;
4046      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4047
4048    case Instruction::Shl: {
4049      bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4050      bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4051      if (!NUW && !NSW)
4052        break;
4053      if (!NSW && I.isSigned())
4054        break;
4055      return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4056    }
4057    }
4058  }
4059
4060  if (BO0) {
4061    // Transform  A & (L - 1) `ult` L --> L != 0
4062    auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4063    auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4064
4065    if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4066      auto *Zero = Constant::getNullValue(BO0->getType());
4067      return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4068    }
4069  }
4070
4071  if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4072    return replaceInstUsesWith(I, V);
4073
4074  if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4075    return replaceInstUsesWith(I, V);
4076
4077  if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4078    return replaceInstUsesWith(I, V);
4079
4080  if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4081    return replaceInstUsesWith(I, V);
4082
4083  return nullptr;
4084}
4085
4086/// Fold icmp Pred min|max(X, Y), X.
4087static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4088  ICmpInst::Predicate Pred = Cmp.getPredicate();
4089  Value *Op0 = Cmp.getOperand(0);
4090  Value *X = Cmp.getOperand(1);
4091
4092  // Canonicalize minimum or maximum operand to LHS of the icmp.
4093  if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4094      match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4095      match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4096      match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4097    std::swap(Op0, X);
4098    Pred = Cmp.getSwappedPredicate();
4099  }
4100
4101  Value *Y;
4102  if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4103    // smin(X, Y)  == X --> X s<= Y
4104    // smin(X, Y) s>= X --> X s<= Y
4105    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4106      return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4107
4108    // smin(X, Y) != X --> X s> Y
4109    // smin(X, Y) s< X --> X s> Y
4110    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4111      return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4112
4113    // These cases should be handled in InstSimplify:
4114    // smin(X, Y) s<= X --> true
4115    // smin(X, Y) s> X --> false
4116    return nullptr;
4117  }
4118
4119  if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4120    // smax(X, Y)  == X --> X s>= Y
4121    // smax(X, Y) s<= X --> X s>= Y
4122    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4123      return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4124
4125    // smax(X, Y) != X --> X s< Y
4126    // smax(X, Y) s> X --> X s< Y
4127    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4128      return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4129
4130    // These cases should be handled in InstSimplify:
4131    // smax(X, Y) s>= X --> true
4132    // smax(X, Y) s< X --> false
4133    return nullptr;
4134  }
4135
4136  if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4137    // umin(X, Y)  == X --> X u<= Y
4138    // umin(X, Y) u>= X --> X u<= Y
4139    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4140      return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4141
4142    // umin(X, Y) != X --> X u> Y
4143    // umin(X, Y) u< X --> X u> Y
4144    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4145      return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4146
4147    // These cases should be handled in InstSimplify:
4148    // umin(X, Y) u<= X --> true
4149    // umin(X, Y) u> X --> false
4150    return nullptr;
4151  }
4152
4153  if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4154    // umax(X, Y)  == X --> X u>= Y
4155    // umax(X, Y) u<= X --> X u>= Y
4156    if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4157      return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4158
4159    // umax(X, Y) != X --> X u< Y
4160    // umax(X, Y) u> X --> X u< Y
4161    if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4162      return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4163
4164    // These cases should be handled in InstSimplify:
4165    // umax(X, Y) u>= X --> true
4166    // umax(X, Y) u< X --> false
4167    return nullptr;
4168  }
4169
4170  return nullptr;
4171}
4172
4173Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
4174  if (!I.isEquality())
4175    return nullptr;
4176
4177  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4178  const CmpInst::Predicate Pred = I.getPredicate();
4179  Value *A, *B, *C, *D;
4180  if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4181    if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4182      Value *OtherVal = A == Op1 ? B : A;
4183      return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4184    }
4185
4186    if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4187      // A^c1 == C^c2 --> A == C^(c1^c2)
4188      ConstantInt *C1, *C2;
4189      if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4190          Op1->hasOneUse()) {
4191        Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4192        Value *Xor = Builder.CreateXor(C, NC);
4193        return new ICmpInst(Pred, A, Xor);
4194      }
4195
4196      // A^B == A^D -> B == D
4197      if (A == C)
4198        return new ICmpInst(Pred, B, D);
4199      if (A == D)
4200        return new ICmpInst(Pred, B, C);
4201      if (B == C)
4202        return new ICmpInst(Pred, A, D);
4203      if (B == D)
4204        return new ICmpInst(Pred, A, C);
4205    }
4206  }
4207
4208  if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4209    // A == (A^B)  ->  B == 0
4210    Value *OtherVal = A == Op0 ? B : A;
4211    return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4212  }
4213
4214  // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4215  if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4216      match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4217    Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4218
4219    if (A == C) {
4220      X = B;
4221      Y = D;
4222      Z = A;
4223    } else if (A == D) {
4224      X = B;
4225      Y = C;
4226      Z = A;
4227    } else if (B == C) {
4228      X = A;
4229      Y = D;
4230      Z = B;
4231    } else if (B == D) {
4232      X = A;
4233      Y = C;
4234      Z = B;
4235    }
4236
4237    if (X) { // Build (X^Y) & Z
4238      Op1 = Builder.CreateXor(X, Y);
4239      Op1 = Builder.CreateAnd(Op1, Z);
4240      return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4241    }
4242  }
4243
4244  // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4245  // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4246  ConstantInt *Cst1;
4247  if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4248       match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4249      (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4250       match(Op1, m_ZExt(m_Value(A))))) {
4251    APInt Pow2 = Cst1->getValue() + 1;
4252    if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4253        Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4254      return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4255  }
4256
4257  // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4258  // For lshr and ashr pairs.
4259  if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4260       match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4261      (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4262       match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4263    unsigned TypeBits = Cst1->getBitWidth();
4264    unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4265    if (ShAmt < TypeBits && ShAmt != 0) {
4266      ICmpInst::Predicate NewPred =
4267          Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4268      Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4269      APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4270      return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4271    }
4272  }
4273
4274  // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4275  if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4276      match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4277    unsigned TypeBits = Cst1->getBitWidth();
4278    unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4279    if (ShAmt < TypeBits && ShAmt != 0) {
4280      Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4281      APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4282      Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4283                                      I.getName() + ".mask");
4284      return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4285    }
4286  }
4287
4288  // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4289  // "icmp (and X, mask), cst"
4290  uint64_t ShAmt = 0;
4291  if (Op0->hasOneUse() &&
4292      match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4293      match(Op1, m_ConstantInt(Cst1)) &&
4294      // Only do this when A has multiple uses.  This is most important to do
4295      // when it exposes other optimizations.
4296      !A->hasOneUse()) {
4297    unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4298
4299    if (ShAmt < ASize) {
4300      APInt MaskV =
4301          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4302      MaskV <<= ShAmt;
4303
4304      APInt CmpV = Cst1->getValue().zext(ASize);
4305      CmpV <<= ShAmt;
4306
4307      Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4308      return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4309    }
4310  }
4311
4312  // If both operands are byte-swapped or bit-reversed, just compare the
4313  // original values.
4314  // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4315  // and handle more intrinsics.
4316  if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4317      (match(Op0, m_BitReverse(m_Value(A))) &&
4318       match(Op1, m_BitReverse(m_Value(B)))))
4319    return new ICmpInst(Pred, A, B);
4320
4321  // Canonicalize checking for a power-of-2-or-zero value:
4322  // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4323  // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4324  if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4325                                   m_Deferred(A)))) ||
4326      !match(Op1, m_ZeroInt()))
4327    A = nullptr;
4328
4329  // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4330  // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4331  if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4332    A = Op1;
4333  else if (match(Op1,
4334                 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4335    A = Op0;
4336
4337  if (A) {
4338    Type *Ty = A->getType();
4339    CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4340    return Pred == ICmpInst::ICMP_EQ
4341        ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4342        : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4343  }
4344
4345  return nullptr;
4346}
4347
4348static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4349                                           InstCombiner::BuilderTy &Builder) {
4350  assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4351  auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4352  Value *X;
4353  if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4354    return nullptr;
4355
4356  bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4357  bool IsSignedCmp = ICmp.isSigned();
4358  if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4359    // If the signedness of the two casts doesn't agree (i.e. one is a sext
4360    // and the other is a zext), then we can't handle this.
4361    // TODO: This is too strict. We can handle some predicates (equality?).
4362    if (CastOp0->getOpcode() != CastOp1->getOpcode())
4363      return nullptr;
4364
4365    // Not an extension from the same type?
4366    Value *Y = CastOp1->getOperand(0);
4367    Type *XTy = X->getType(), *YTy = Y->getType();
4368    if (XTy != YTy) {
4369      // One of the casts must have one use because we are creating a new cast.
4370      if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4371        return nullptr;
4372      // Extend the narrower operand to the type of the wider operand.
4373      if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4374        X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4375      else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4376        Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4377      else
4378        return nullptr;
4379    }
4380
4381    // (zext X) == (zext Y) --> X == Y
4382    // (sext X) == (sext Y) --> X == Y
4383    if (ICmp.isEquality())
4384      return new ICmpInst(ICmp.getPredicate(), X, Y);
4385
4386    // A signed comparison of sign extended values simplifies into a
4387    // signed comparison.
4388    if (IsSignedCmp && IsSignedExt)
4389      return new ICmpInst(ICmp.getPredicate(), X, Y);
4390
4391    // The other three cases all fold into an unsigned comparison.
4392    return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4393  }
4394
4395  // Below here, we are only folding a compare with constant.
4396  auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4397  if (!C)
4398    return nullptr;
4399
4400  // Compute the constant that would happen if we truncated to SrcTy then
4401  // re-extended to DestTy.
4402  Type *SrcTy = CastOp0->getSrcTy();
4403  Type *DestTy = CastOp0->getDestTy();
4404  Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4405  Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4406
4407  // If the re-extended constant didn't change...
4408  if (Res2 == C) {
4409    if (ICmp.isEquality())
4410      return new ICmpInst(ICmp.getPredicate(), X, Res1);
4411
4412    // A signed comparison of sign extended values simplifies into a
4413    // signed comparison.
4414    if (IsSignedExt && IsSignedCmp)
4415      return new ICmpInst(ICmp.getPredicate(), X, Res1);
4416
4417    // The other three cases all fold into an unsigned comparison.
4418    return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4419  }
4420
4421  // The re-extended constant changed, partly changed (in the case of a vector),
4422  // or could not be determined to be equal (in the case of a constant
4423  // expression), so the constant cannot be represented in the shorter type.
4424  // All the cases that fold to true or false will have already been handled
4425  // by SimplifyICmpInst, so only deal with the tricky case.
4426  if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4427    return nullptr;
4428
4429  // Is source op positive?
4430  // icmp ult (sext X), C --> icmp sgt X, -1
4431  if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4432    return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4433
4434  // Is source op negative?
4435  // icmp ugt (sext X), C --> icmp slt X, 0
4436  assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4437  return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4438}
4439
4440/// Handle icmp (cast x), (cast or constant).
4441Instruction *InstCombiner::foldICmpWithCastOp(ICmpInst &ICmp) {
4442  auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4443  if (!CastOp0)
4444    return nullptr;
4445  if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4446    return nullptr;
4447
4448  Value *Op0Src = CastOp0->getOperand(0);
4449  Type *SrcTy = CastOp0->getSrcTy();
4450  Type *DestTy = CastOp0->getDestTy();
4451
4452  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4453  // integer type is the same size as the pointer type.
4454  auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4455    if (isa<VectorType>(SrcTy)) {
4456      SrcTy = cast<VectorType>(SrcTy)->getElementType();
4457      DestTy = cast<VectorType>(DestTy)->getElementType();
4458    }
4459    return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4460  };
4461  if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4462      CompatibleSizes(SrcTy, DestTy)) {
4463    Value *NewOp1 = nullptr;
4464    if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4465      Value *PtrSrc = PtrToIntOp1->getOperand(0);
4466      if (PtrSrc->getType()->getPointerAddressSpace() ==
4467          Op0Src->getType()->getPointerAddressSpace()) {
4468        NewOp1 = PtrToIntOp1->getOperand(0);
4469        // If the pointer types don't match, insert a bitcast.
4470        if (Op0Src->getType() != NewOp1->getType())
4471          NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4472      }
4473    } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4474      NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4475    }
4476
4477    if (NewOp1)
4478      return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4479  }
4480
4481  return foldICmpWithZextOrSext(ICmp, Builder);
4482}
4483
4484static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4485  switch (BinaryOp) {
4486    default:
4487      llvm_unreachable("Unsupported binary op");
4488    case Instruction::Add:
4489    case Instruction::Sub:
4490      return match(RHS, m_Zero());
4491    case Instruction::Mul:
4492      return match(RHS, m_One());
4493  }
4494}
4495
4496OverflowResult InstCombiner::computeOverflow(
4497    Instruction::BinaryOps BinaryOp, bool IsSigned,
4498    Value *LHS, Value *RHS, Instruction *CxtI) const {
4499  switch (BinaryOp) {
4500    default:
4501      llvm_unreachable("Unsupported binary op");
4502    case Instruction::Add:
4503      if (IsSigned)
4504        return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4505      else
4506        return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4507    case Instruction::Sub:
4508      if (IsSigned)
4509        return computeOverflowForSignedSub(LHS, RHS, CxtI);
4510      else
4511        return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4512    case Instruction::Mul:
4513      if (IsSigned)
4514        return computeOverflowForSignedMul(LHS, RHS, CxtI);
4515      else
4516        return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4517  }
4518}
4519
4520bool InstCombiner::OptimizeOverflowCheck(
4521    Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS,
4522    Instruction &OrigI, Value *&Result, Constant *&Overflow) {
4523  if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4524    std::swap(LHS, RHS);
4525
4526  // If the overflow check was an add followed by a compare, the insertion point
4527  // may be pointing to the compare.  We want to insert the new instructions
4528  // before the add in case there are uses of the add between the add and the
4529  // compare.
4530  Builder.SetInsertPoint(&OrigI);
4531
4532  if (isNeutralValue(BinaryOp, RHS)) {
4533    Result = LHS;
4534    Overflow = Builder.getFalse();
4535    return true;
4536  }
4537
4538  switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4539    case OverflowResult::MayOverflow:
4540      return false;
4541    case OverflowResult::AlwaysOverflowsLow:
4542    case OverflowResult::AlwaysOverflowsHigh:
4543      Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4544      Result->takeName(&OrigI);
4545      Overflow = Builder.getTrue();
4546      return true;
4547    case OverflowResult::NeverOverflows:
4548      Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4549      Result->takeName(&OrigI);
4550      Overflow = Builder.getFalse();
4551      if (auto *Inst = dyn_cast<Instruction>(Result)) {
4552        if (IsSigned)
4553          Inst->setHasNoSignedWrap();
4554        else
4555          Inst->setHasNoUnsignedWrap();
4556      }
4557      return true;
4558  }
4559
4560  llvm_unreachable("Unexpected overflow result");
4561}
4562
4563/// Recognize and process idiom involving test for multiplication
4564/// overflow.
4565///
4566/// The caller has matched a pattern of the form:
4567///   I = cmp u (mul(zext A, zext B), V
4568/// The function checks if this is a test for overflow and if so replaces
4569/// multiplication with call to 'mul.with.overflow' intrinsic.
4570///
4571/// \param I Compare instruction.
4572/// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4573///               the compare instruction.  Must be of integer type.
4574/// \param OtherVal The other argument of compare instruction.
4575/// \returns Instruction which must replace the compare instruction, NULL if no
4576///          replacement required.
4577static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4578                                         Value *OtherVal, InstCombiner &IC) {
4579  // Don't bother doing this transformation for pointers, don't do it for
4580  // vectors.
4581  if (!isa<IntegerType>(MulVal->getType()))
4582    return nullptr;
4583
4584  assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4585  assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4586  auto *MulInstr = dyn_cast<Instruction>(MulVal);
4587  if (!MulInstr)
4588    return nullptr;
4589  assert(MulInstr->getOpcode() == Instruction::Mul);
4590
4591  auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4592       *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4593  assert(LHS->getOpcode() == Instruction::ZExt);
4594  assert(RHS->getOpcode() == Instruction::ZExt);
4595  Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4596
4597  // Calculate type and width of the result produced by mul.with.overflow.
4598  Type *TyA = A->getType(), *TyB = B->getType();
4599  unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4600           WidthB = TyB->getPrimitiveSizeInBits();
4601  unsigned MulWidth;
4602  Type *MulType;
4603  if (WidthB > WidthA) {
4604    MulWidth = WidthB;
4605    MulType = TyB;
4606  } else {
4607    MulWidth = WidthA;
4608    MulType = TyA;
4609  }
4610
4611  // In order to replace the original mul with a narrower mul.with.overflow,
4612  // all uses must ignore upper bits of the product.  The number of used low
4613  // bits must be not greater than the width of mul.with.overflow.
4614  if (MulVal->hasNUsesOrMore(2))
4615    for (User *U : MulVal->users()) {
4616      if (U == &I)
4617        continue;
4618      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4619        // Check if truncation ignores bits above MulWidth.
4620        unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4621        if (TruncWidth > MulWidth)
4622          return nullptr;
4623      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4624        // Check if AND ignores bits above MulWidth.
4625        if (BO->getOpcode() != Instruction::And)
4626          return nullptr;
4627        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4628          const APInt &CVal = CI->getValue();
4629          if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4630            return nullptr;
4631        } else {
4632          // In this case we could have the operand of the binary operation
4633          // being defined in another block, and performing the replacement
4634          // could break the dominance relation.
4635          return nullptr;
4636        }
4637      } else {
4638        // Other uses prohibit this transformation.
4639        return nullptr;
4640      }
4641    }
4642
4643  // Recognize patterns
4644  switch (I.getPredicate()) {
4645  case ICmpInst::ICMP_EQ:
4646  case ICmpInst::ICMP_NE:
4647    // Recognize pattern:
4648    //   mulval = mul(zext A, zext B)
4649    //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4650    ConstantInt *CI;
4651    Value *ValToMask;
4652    if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4653      if (ValToMask != MulVal)
4654        return nullptr;
4655      const APInt &CVal = CI->getValue() + 1;
4656      if (CVal.isPowerOf2()) {
4657        unsigned MaskWidth = CVal.logBase2();
4658        if (MaskWidth == MulWidth)
4659          break; // Recognized
4660      }
4661    }
4662    return nullptr;
4663
4664  case ICmpInst::ICMP_UGT:
4665    // Recognize pattern:
4666    //   mulval = mul(zext A, zext B)
4667    //   cmp ugt mulval, max
4668    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4669      APInt MaxVal = APInt::getMaxValue(MulWidth);
4670      MaxVal = MaxVal.zext(CI->getBitWidth());
4671      if (MaxVal.eq(CI->getValue()))
4672        break; // Recognized
4673    }
4674    return nullptr;
4675
4676  case ICmpInst::ICMP_UGE:
4677    // Recognize pattern:
4678    //   mulval = mul(zext A, zext B)
4679    //   cmp uge mulval, max+1
4680    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4681      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4682      if (MaxVal.eq(CI->getValue()))
4683        break; // Recognized
4684    }
4685    return nullptr;
4686
4687  case ICmpInst::ICMP_ULE:
4688    // Recognize pattern:
4689    //   mulval = mul(zext A, zext B)
4690    //   cmp ule mulval, max
4691    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4692      APInt MaxVal = APInt::getMaxValue(MulWidth);
4693      MaxVal = MaxVal.zext(CI->getBitWidth());
4694      if (MaxVal.eq(CI->getValue()))
4695        break; // Recognized
4696    }
4697    return nullptr;
4698
4699  case ICmpInst::ICMP_ULT:
4700    // Recognize pattern:
4701    //   mulval = mul(zext A, zext B)
4702    //   cmp ule mulval, max + 1
4703    if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4704      APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4705      if (MaxVal.eq(CI->getValue()))
4706        break; // Recognized
4707    }
4708    return nullptr;
4709
4710  default:
4711    return nullptr;
4712  }
4713
4714  InstCombiner::BuilderTy &Builder = IC.Builder;
4715  Builder.SetInsertPoint(MulInstr);
4716
4717  // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4718  Value *MulA = A, *MulB = B;
4719  if (WidthA < MulWidth)
4720    MulA = Builder.CreateZExt(A, MulType);
4721  if (WidthB < MulWidth)
4722    MulB = Builder.CreateZExt(B, MulType);
4723  Function *F = Intrinsic::getDeclaration(
4724      I.getModule(), Intrinsic::umul_with_overflow, MulType);
4725  CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4726  IC.Worklist.push(MulInstr);
4727
4728  // If there are uses of mul result other than the comparison, we know that
4729  // they are truncation or binary AND. Change them to use result of
4730  // mul.with.overflow and adjust properly mask/size.
4731  if (MulVal->hasNUsesOrMore(2)) {
4732    Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4733    for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4734      User *U = *UI++;
4735      if (U == &I || U == OtherVal)
4736        continue;
4737      if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4738        if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4739          IC.replaceInstUsesWith(*TI, Mul);
4740        else
4741          TI->setOperand(0, Mul);
4742      } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4743        assert(BO->getOpcode() == Instruction::And);
4744        // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4745        ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4746        APInt ShortMask = CI->getValue().trunc(MulWidth);
4747        Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4748        Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4749        IC.replaceInstUsesWith(*BO, Zext);
4750      } else {
4751        llvm_unreachable("Unexpected Binary operation");
4752      }
4753      IC.Worklist.push(cast<Instruction>(U));
4754    }
4755  }
4756  if (isa<Instruction>(OtherVal))
4757    IC.Worklist.push(cast<Instruction>(OtherVal));
4758
4759  // The original icmp gets replaced with the overflow value, maybe inverted
4760  // depending on predicate.
4761  bool Inverse = false;
4762  switch (I.getPredicate()) {
4763  case ICmpInst::ICMP_NE:
4764    break;
4765  case ICmpInst::ICMP_EQ:
4766    Inverse = true;
4767    break;
4768  case ICmpInst::ICMP_UGT:
4769  case ICmpInst::ICMP_UGE:
4770    if (I.getOperand(0) == MulVal)
4771      break;
4772    Inverse = true;
4773    break;
4774  case ICmpInst::ICMP_ULT:
4775  case ICmpInst::ICMP_ULE:
4776    if (I.getOperand(1) == MulVal)
4777      break;
4778    Inverse = true;
4779    break;
4780  default:
4781    llvm_unreachable("Unexpected predicate");
4782  }
4783  if (Inverse) {
4784    Value *Res = Builder.CreateExtractValue(Call, 1);
4785    return BinaryOperator::CreateNot(Res);
4786  }
4787
4788  return ExtractValueInst::Create(Call, 1);
4789}
4790
4791/// When performing a comparison against a constant, it is possible that not all
4792/// the bits in the LHS are demanded. This helper method computes the mask that
4793/// IS demanded.
4794static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4795  const APInt *RHS;
4796  if (!match(I.getOperand(1), m_APInt(RHS)))
4797    return APInt::getAllOnesValue(BitWidth);
4798
4799  // If this is a normal comparison, it demands all bits. If it is a sign bit
4800  // comparison, it only demands the sign bit.
4801  bool UnusedBit;
4802  if (isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4803    return APInt::getSignMask(BitWidth);
4804
4805  switch (I.getPredicate()) {
4806  // For a UGT comparison, we don't care about any bits that
4807  // correspond to the trailing ones of the comparand.  The value of these
4808  // bits doesn't impact the outcome of the comparison, because any value
4809  // greater than the RHS must differ in a bit higher than these due to carry.
4810  case ICmpInst::ICMP_UGT:
4811    return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4812
4813  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4814  // Any value less than the RHS must differ in a higher bit because of carries.
4815  case ICmpInst::ICMP_ULT:
4816    return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4817
4818  default:
4819    return APInt::getAllOnesValue(BitWidth);
4820  }
4821}
4822
4823/// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4824/// should be swapped.
4825/// The decision is based on how many times these two operands are reused
4826/// as subtract operands and their positions in those instructions.
4827/// The rationale is that several architectures use the same instruction for
4828/// both subtract and cmp. Thus, it is better if the order of those operands
4829/// match.
4830/// \return true if Op0 and Op1 should be swapped.
4831static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4832  // Filter out pointer values as those cannot appear directly in subtract.
4833  // FIXME: we may want to go through inttoptrs or bitcasts.
4834  if (Op0->getType()->isPointerTy())
4835    return false;
4836  // If a subtract already has the same operands as a compare, swapping would be
4837  // bad. If a subtract has the same operands as a compare but in reverse order,
4838  // then swapping is good.
4839  int GoodToSwap = 0;
4840  for (const User *U : Op0->users()) {
4841    if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4842      GoodToSwap++;
4843    else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4844      GoodToSwap--;
4845  }
4846  return GoodToSwap > 0;
4847}
4848
4849/// Check that one use is in the same block as the definition and all
4850/// other uses are in blocks dominated by a given block.
4851///
4852/// \param DI Definition
4853/// \param UI Use
4854/// \param DB Block that must dominate all uses of \p DI outside
4855///           the parent block
4856/// \return true when \p UI is the only use of \p DI in the parent block
4857/// and all other uses of \p DI are in blocks dominated by \p DB.
4858///
4859bool InstCombiner::dominatesAllUses(const Instruction *DI,
4860                                    const Instruction *UI,
4861                                    const BasicBlock *DB) const {
4862  assert(DI && UI && "Instruction not defined\n");
4863  // Ignore incomplete definitions.
4864  if (!DI->getParent())
4865    return false;
4866  // DI and UI must be in the same block.
4867  if (DI->getParent() != UI->getParent())
4868    return false;
4869  // Protect from self-referencing blocks.
4870  if (DI->getParent() == DB)
4871    return false;
4872  for (const User *U : DI->users()) {
4873    auto *Usr = cast<Instruction>(U);
4874    if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4875      return false;
4876  }
4877  return true;
4878}
4879
4880/// Return true when the instruction sequence within a block is select-cmp-br.
4881static bool isChainSelectCmpBranch(const SelectInst *SI) {
4882  const BasicBlock *BB = SI->getParent();
4883  if (!BB)
4884    return false;
4885  auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4886  if (!BI || BI->getNumSuccessors() != 2)
4887    return false;
4888  auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4889  if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4890    return false;
4891  return true;
4892}
4893
4894/// True when a select result is replaced by one of its operands
4895/// in select-icmp sequence. This will eventually result in the elimination
4896/// of the select.
4897///
4898/// \param SI    Select instruction
4899/// \param Icmp  Compare instruction
4900/// \param SIOpd Operand that replaces the select
4901///
4902/// Notes:
4903/// - The replacement is global and requires dominator information
4904/// - The caller is responsible for the actual replacement
4905///
4906/// Example:
4907///
4908/// entry:
4909///  %4 = select i1 %3, %C* %0, %C* null
4910///  %5 = icmp eq %C* %4, null
4911///  br i1 %5, label %9, label %7
4912///  ...
4913///  ; <label>:7                                       ; preds = %entry
4914///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4915///  ...
4916///
4917/// can be transformed to
4918///
4919///  %5 = icmp eq %C* %0, null
4920///  %6 = select i1 %3, i1 %5, i1 true
4921///  br i1 %6, label %9, label %7
4922///  ...
4923///  ; <label>:7                                       ; preds = %entry
4924///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
4925///
4926/// Similar when the first operand of the select is a constant or/and
4927/// the compare is for not equal rather than equal.
4928///
4929/// NOTE: The function is only called when the select and compare constants
4930/// are equal, the optimization can work only for EQ predicates. This is not a
4931/// major restriction since a NE compare should be 'normalized' to an equal
4932/// compare, which usually happens in the combiner and test case
4933/// select-cmp-br.ll checks for it.
4934bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
4935                                             const ICmpInst *Icmp,
4936                                             const unsigned SIOpd) {
4937  assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
4938  if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4939    BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4940    // The check for the single predecessor is not the best that can be
4941    // done. But it protects efficiently against cases like when SI's
4942    // home block has two successors, Succ and Succ1, and Succ1 predecessor
4943    // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4944    // replaced can be reached on either path. So the uniqueness check
4945    // guarantees that the path all uses of SI (outside SI's parent) are on
4946    // is disjoint from all other paths out of SI. But that information
4947    // is more expensive to compute, and the trade-off here is in favor
4948    // of compile-time. It should also be noticed that we check for a single
4949    // predecessor and not only uniqueness. This to handle the situation when
4950    // Succ and Succ1 points to the same basic block.
4951    if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
4952      NumSel++;
4953      SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
4954      return true;
4955    }
4956  }
4957  return false;
4958}
4959
4960/// Try to fold the comparison based on range information we can get by checking
4961/// whether bits are known to be zero or one in the inputs.
4962Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
4963  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4964  Type *Ty = Op0->getType();
4965  ICmpInst::Predicate Pred = I.getPredicate();
4966
4967  // Get scalar or pointer size.
4968  unsigned BitWidth = Ty->isIntOrIntVectorTy()
4969                          ? Ty->getScalarSizeInBits()
4970                          : DL.getPointerTypeSizeInBits(Ty->getScalarType());
4971
4972  if (!BitWidth)
4973    return nullptr;
4974
4975  KnownBits Op0Known(BitWidth);
4976  KnownBits Op1Known(BitWidth);
4977
4978  if (SimplifyDemandedBits(&I, 0,
4979                           getDemandedBitsLHSMask(I, BitWidth),
4980                           Op0Known, 0))
4981    return &I;
4982
4983  if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
4984                           Op1Known, 0))
4985    return &I;
4986
4987  // Given the known and unknown bits, compute a range that the LHS could be
4988  // in.  Compute the Min, Max and RHS values based on the known bits. For the
4989  // EQ and NE we use unsigned values.
4990  APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
4991  APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
4992  if (I.isSigned()) {
4993    computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4994    computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4995  } else {
4996    computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
4997    computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
4998  }
4999
5000  // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5001  // out that the LHS or RHS is a constant. Constant fold this now, so that
5002  // code below can assume that Min != Max.
5003  if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5004    return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5005  if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5006    return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5007
5008  // Based on the range information we know about the LHS, see if we can
5009  // simplify this comparison.  For example, (x&4) < 8 is always true.
5010  switch (Pred) {
5011  default:
5012    llvm_unreachable("Unknown icmp opcode!");
5013  case ICmpInst::ICMP_EQ:
5014  case ICmpInst::ICMP_NE: {
5015    if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
5016      return Pred == CmpInst::ICMP_EQ
5017                 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
5018                 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5019    }
5020
5021    // If all bits are known zero except for one, then we know at most one bit
5022    // is set. If the comparison is against zero, then this is a check to see if
5023    // *that* bit is set.
5024    APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5025    if (Op1Known.isZero()) {
5026      // If the LHS is an AND with the same constant, look through it.
5027      Value *LHS = nullptr;
5028      const APInt *LHSC;
5029      if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5030          *LHSC != Op0KnownZeroInverted)
5031        LHS = Op0;
5032
5033      Value *X;
5034      if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5035        APInt ValToCheck = Op0KnownZeroInverted;
5036        Type *XTy = X->getType();
5037        if (ValToCheck.isPowerOf2()) {
5038          // ((1 << X) & 8) == 0 -> X != 3
5039          // ((1 << X) & 8) != 0 -> X == 3
5040          auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5041          auto NewPred = ICmpInst::getInversePredicate(Pred);
5042          return new ICmpInst(NewPred, X, CmpC);
5043        } else if ((++ValToCheck).isPowerOf2()) {
5044          // ((1 << X) & 7) == 0 -> X >= 3
5045          // ((1 << X) & 7) != 0 -> X  < 3
5046          auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5047          auto NewPred =
5048              Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5049          return new ICmpInst(NewPred, X, CmpC);
5050        }
5051      }
5052
5053      // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5054      const APInt *CI;
5055      if (Op0KnownZeroInverted.isOneValue() &&
5056          match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5057        // ((8 >>u X) & 1) == 0 -> X != 3
5058        // ((8 >>u X) & 1) != 0 -> X == 3
5059        unsigned CmpVal = CI->countTrailingZeros();
5060        auto NewPred = ICmpInst::getInversePredicate(Pred);
5061        return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5062      }
5063    }
5064    break;
5065  }
5066  case ICmpInst::ICMP_ULT: {
5067    if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5068      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5069    if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5070      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5071    if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5072      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5073
5074    const APInt *CmpC;
5075    if (match(Op1, m_APInt(CmpC))) {
5076      // A <u C -> A == C-1 if min(A)+1 == C
5077      if (*CmpC == Op0Min + 1)
5078        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5079                            ConstantInt::get(Op1->getType(), *CmpC - 1));
5080      // X <u C --> X == 0, if the number of zero bits in the bottom of X
5081      // exceeds the log2 of C.
5082      if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5083        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5084                            Constant::getNullValue(Op1->getType()));
5085    }
5086    break;
5087  }
5088  case ICmpInst::ICMP_UGT: {
5089    if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5090      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5091    if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5092      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5093    if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5094      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5095
5096    const APInt *CmpC;
5097    if (match(Op1, m_APInt(CmpC))) {
5098      // A >u C -> A == C+1 if max(a)-1 == C
5099      if (*CmpC == Op0Max - 1)
5100        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5101                            ConstantInt::get(Op1->getType(), *CmpC + 1));
5102      // X >u C --> X != 0, if the number of zero bits in the bottom of X
5103      // exceeds the log2 of C.
5104      if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5105        return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5106                            Constant::getNullValue(Op1->getType()));
5107    }
5108    break;
5109  }
5110  case ICmpInst::ICMP_SLT: {
5111    if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5112      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5113    if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5114      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5115    if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5116      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5117    const APInt *CmpC;
5118    if (match(Op1, m_APInt(CmpC))) {
5119      if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5120        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5121                            ConstantInt::get(Op1->getType(), *CmpC - 1));
5122    }
5123    break;
5124  }
5125  case ICmpInst::ICMP_SGT: {
5126    if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5127      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5128    if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5129      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5130    if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5131      return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5132    const APInt *CmpC;
5133    if (match(Op1, m_APInt(CmpC))) {
5134      if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5135        return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5136                            ConstantInt::get(Op1->getType(), *CmpC + 1));
5137    }
5138    break;
5139  }
5140  case ICmpInst::ICMP_SGE:
5141    assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5142    if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5143      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5144    if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5145      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5146    if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5147      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5148    break;
5149  case ICmpInst::ICMP_SLE:
5150    assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5151    if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5152      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5153    if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5154      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5155    if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5156      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5157    break;
5158  case ICmpInst::ICMP_UGE:
5159    assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5160    if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5161      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5162    if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5163      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5164    if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5165      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5166    break;
5167  case ICmpInst::ICMP_ULE:
5168    assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5169    if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5170      return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5171    if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5172      return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5173    if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5174      return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5175    break;
5176  }
5177
5178  // Turn a signed comparison into an unsigned one if both operands are known to
5179  // have the same sign.
5180  if (I.isSigned() &&
5181      ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5182       (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5183    return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5184
5185  return nullptr;
5186}
5187
5188llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5189llvm::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5190                                               Constant *C) {
5191  assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5192         "Only for relational integer predicates.");
5193
5194  Type *Type = C->getType();
5195  bool IsSigned = ICmpInst::isSigned(Pred);
5196
5197  CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5198  bool WillIncrement =
5199      UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5200
5201  // Check if the constant operand can be safely incremented/decremented
5202  // without overflowing/underflowing.
5203  auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5204    return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5205  };
5206
5207  Constant *SafeReplacementConstant = nullptr;
5208  if (auto *CI = dyn_cast<ConstantInt>(C)) {
5209    // Bail out if the constant can't be safely incremented/decremented.
5210    if (!ConstantIsOk(CI))
5211      return llvm::None;
5212  } else if (auto *VTy = dyn_cast<VectorType>(Type)) {
5213    unsigned NumElts = VTy->getNumElements();
5214    for (unsigned i = 0; i != NumElts; ++i) {
5215      Constant *Elt = C->getAggregateElement(i);
5216      if (!Elt)
5217        return llvm::None;
5218
5219      if (isa<UndefValue>(Elt))
5220        continue;
5221
5222      // Bail out if we can't determine if this constant is min/max or if we
5223      // know that this constant is min/max.
5224      auto *CI = dyn_cast<ConstantInt>(Elt);
5225      if (!CI || !ConstantIsOk(CI))
5226        return llvm::None;
5227
5228      if (!SafeReplacementConstant)
5229        SafeReplacementConstant = CI;
5230    }
5231  } else {
5232    // ConstantExpr?
5233    return llvm::None;
5234  }
5235
5236  // It may not be safe to change a compare predicate in the presence of
5237  // undefined elements, so replace those elements with the first safe constant
5238  // that we found.
5239  if (C->containsUndefElement()) {
5240    assert(SafeReplacementConstant && "Replacement constant not set");
5241    C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5242  }
5243
5244  CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5245
5246  // Increment or decrement the constant.
5247  Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5248  Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5249
5250  return std::make_pair(NewPred, NewC);
5251}
5252
5253/// If we have an icmp le or icmp ge instruction with a constant operand, turn
5254/// it into the appropriate icmp lt or icmp gt instruction. This transform
5255/// allows them to be folded in visitICmpInst.
5256static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5257  ICmpInst::Predicate Pred = I.getPredicate();
5258  if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5259      isCanonicalPredicate(Pred))
5260    return nullptr;
5261
5262  Value *Op0 = I.getOperand(0);
5263  Value *Op1 = I.getOperand(1);
5264  auto *Op1C = dyn_cast<Constant>(Op1);
5265  if (!Op1C)
5266    return nullptr;
5267
5268  auto FlippedStrictness = getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5269  if (!FlippedStrictness)
5270    return nullptr;
5271
5272  return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5273}
5274
5275/// If we have a comparison with a non-canonical predicate, if we can update
5276/// all the users, invert the predicate and adjust all the users.
5277static CmpInst *canonicalizeICmpPredicate(CmpInst &I) {
5278  // Is the predicate already canonical?
5279  CmpInst::Predicate Pred = I.getPredicate();
5280  if (isCanonicalPredicate(Pred))
5281    return nullptr;
5282
5283  // Can all users be adjusted to predicate inversion?
5284  if (!canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5285    return nullptr;
5286
5287  // Ok, we can canonicalize comparison!
5288  // Let's first invert the comparison's predicate.
5289  I.setPredicate(CmpInst::getInversePredicate(Pred));
5290  I.setName(I.getName() + ".not");
5291
5292  // And now let's adjust every user.
5293  for (User *U : I.users()) {
5294    switch (cast<Instruction>(U)->getOpcode()) {
5295    case Instruction::Select: {
5296      auto *SI = cast<SelectInst>(U);
5297      SI->swapValues();
5298      SI->swapProfMetadata();
5299      break;
5300    }
5301    case Instruction::Br:
5302      cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
5303      break;
5304    case Instruction::Xor:
5305      U->replaceAllUsesWith(&I);
5306      break;
5307    default:
5308      llvm_unreachable("Got unexpected user - out of sync with "
5309                       "canFreelyInvertAllUsersOf() ?");
5310    }
5311  }
5312
5313  return &I;
5314}
5315
5316/// Integer compare with boolean values can always be turned into bitwise ops.
5317static Instruction *canonicalizeICmpBool(ICmpInst &I,
5318                                         InstCombiner::BuilderTy &Builder) {
5319  Value *A = I.getOperand(0), *B = I.getOperand(1);
5320  assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5321
5322  // A boolean compared to true/false can be simplified to Op0/true/false in
5323  // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5324  // Cases not handled by InstSimplify are always 'not' of Op0.
5325  if (match(B, m_Zero())) {
5326    switch (I.getPredicate()) {
5327      case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5328      case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5329      case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5330        return BinaryOperator::CreateNot(A);
5331      default:
5332        llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5333    }
5334  } else if (match(B, m_One())) {
5335    switch (I.getPredicate()) {
5336      case CmpInst::ICMP_NE:  // A !=  1 -> !A
5337      case CmpInst::ICMP_ULT: // A <u  1 -> !A
5338      case CmpInst::ICMP_SGT: // A >s -1 -> !A
5339        return BinaryOperator::CreateNot(A);
5340      default:
5341        llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5342    }
5343  }
5344
5345  switch (I.getPredicate()) {
5346  default:
5347    llvm_unreachable("Invalid icmp instruction!");
5348  case ICmpInst::ICMP_EQ:
5349    // icmp eq i1 A, B -> ~(A ^ B)
5350    return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5351
5352  case ICmpInst::ICMP_NE:
5353    // icmp ne i1 A, B -> A ^ B
5354    return BinaryOperator::CreateXor(A, B);
5355
5356  case ICmpInst::ICMP_UGT:
5357    // icmp ugt -> icmp ult
5358    std::swap(A, B);
5359    LLVM_FALLTHROUGH;
5360  case ICmpInst::ICMP_ULT:
5361    // icmp ult i1 A, B -> ~A & B
5362    return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5363
5364  case ICmpInst::ICMP_SGT:
5365    // icmp sgt -> icmp slt
5366    std::swap(A, B);
5367    LLVM_FALLTHROUGH;
5368  case ICmpInst::ICMP_SLT:
5369    // icmp slt i1 A, B -> A & ~B
5370    return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5371
5372  case ICmpInst::ICMP_UGE:
5373    // icmp uge -> icmp ule
5374    std::swap(A, B);
5375    LLVM_FALLTHROUGH;
5376  case ICmpInst::ICMP_ULE:
5377    // icmp ule i1 A, B -> ~A | B
5378    return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5379
5380  case ICmpInst::ICMP_SGE:
5381    // icmp sge -> icmp sle
5382    std::swap(A, B);
5383    LLVM_FALLTHROUGH;
5384  case ICmpInst::ICMP_SLE:
5385    // icmp sle i1 A, B -> A | ~B
5386    return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5387  }
5388}
5389
5390// Transform pattern like:
5391//   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5392//   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5393// Into:
5394//   (X l>> Y) != 0
5395//   (X l>> Y) == 0
5396static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5397                                            InstCombiner::BuilderTy &Builder) {
5398  ICmpInst::Predicate Pred, NewPred;
5399  Value *X, *Y;
5400  if (match(&Cmp,
5401            m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5402    switch (Pred) {
5403    case ICmpInst::ICMP_ULE:
5404      NewPred = ICmpInst::ICMP_NE;
5405      break;
5406    case ICmpInst::ICMP_UGT:
5407      NewPred = ICmpInst::ICMP_EQ;
5408      break;
5409    default:
5410      return nullptr;
5411    }
5412  } else if (match(&Cmp, m_c_ICmp(Pred,
5413                                  m_OneUse(m_CombineOr(
5414                                      m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5415                                      m_Add(m_Shl(m_One(), m_Value(Y)),
5416                                            m_AllOnes()))),
5417                                  m_Value(X)))) {
5418    // The variant with 'add' is not canonical, (the variant with 'not' is)
5419    // we only get it because it has extra uses, and can't be canonicalized,
5420
5421    switch (Pred) {
5422    case ICmpInst::ICMP_ULT:
5423      NewPred = ICmpInst::ICMP_NE;
5424      break;
5425    case ICmpInst::ICMP_UGE:
5426      NewPred = ICmpInst::ICMP_EQ;
5427      break;
5428    default:
5429      return nullptr;
5430    }
5431  } else
5432    return nullptr;
5433
5434  Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5435  Constant *Zero = Constant::getNullValue(NewX->getType());
5436  return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5437}
5438
5439static Instruction *foldVectorCmp(CmpInst &Cmp,
5440                                  InstCombiner::BuilderTy &Builder) {
5441  const CmpInst::Predicate Pred = Cmp.getPredicate();
5442  Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5443  Value *V1, *V2;
5444  ArrayRef<int> M;
5445  if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5446    return nullptr;
5447
5448  // If both arguments of the cmp are shuffles that use the same mask and
5449  // shuffle within a single vector, move the shuffle after the cmp:
5450  // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5451  Type *V1Ty = V1->getType();
5452  if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5453      V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5454    Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5455    return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5456  }
5457
5458  // Try to canonicalize compare with splatted operand and splat constant.
5459  // TODO: We could generalize this for more than splats. See/use the code in
5460  //       InstCombiner::foldVectorBinop().
5461  Constant *C;
5462  if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5463    return nullptr;
5464
5465  // Length-changing splats are ok, so adjust the constants as needed:
5466  // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5467  Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5468  int MaskSplatIndex;
5469  if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5470    // We allow undefs in matching, but this transform removes those for safety.
5471    // Demanded elements analysis should be able to recover some/all of that.
5472    C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5473                                 ScalarC);
5474    SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5475    Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5476    return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5477                                 NewM);
5478  }
5479
5480  return nullptr;
5481}
5482
5483// extract(uadd.with.overflow(A, B), 0) ult A
5484//  -> extract(uadd.with.overflow(A, B), 1)
5485static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5486  CmpInst::Predicate Pred = I.getPredicate();
5487  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5488
5489  Value *UAddOv;
5490  Value *A, *B;
5491  auto UAddOvResultPat = m_ExtractValue<0>(
5492      m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5493  if (match(Op0, UAddOvResultPat) &&
5494      ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5495       (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5496        (match(A, m_One()) || match(B, m_One()))) ||
5497       (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5498        (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5499    // extract(uadd.with.overflow(A, B), 0) < A
5500    // extract(uadd.with.overflow(A, 1), 0) == 0
5501    // extract(uadd.with.overflow(A, -1), 0) != -1
5502    UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5503  else if (match(Op1, UAddOvResultPat) &&
5504           Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5505    // A > extract(uadd.with.overflow(A, B), 0)
5506    UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5507  else
5508    return nullptr;
5509
5510  return ExtractValueInst::Create(UAddOv, 1);
5511}
5512
5513Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
5514  bool Changed = false;
5515  const SimplifyQuery Q = SQ.getWithInstruction(&I);
5516  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5517  unsigned Op0Cplxity = getComplexity(Op0);
5518  unsigned Op1Cplxity = getComplexity(Op1);
5519
5520  /// Orders the operands of the compare so that they are listed from most
5521  /// complex to least complex.  This puts constants before unary operators,
5522  /// before binary operators.
5523  if (Op0Cplxity < Op1Cplxity ||
5524      (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5525    I.swapOperands();
5526    std::swap(Op0, Op1);
5527    Changed = true;
5528  }
5529
5530  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5531    return replaceInstUsesWith(I, V);
5532
5533  // Comparing -val or val with non-zero is the same as just comparing val
5534  // ie, abs(val) != 0 -> val != 0
5535  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5536    Value *Cond, *SelectTrue, *SelectFalse;
5537    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5538                            m_Value(SelectFalse)))) {
5539      if (Value *V = dyn_castNegVal(SelectTrue)) {
5540        if (V == SelectFalse)
5541          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5542      }
5543      else if (Value *V = dyn_castNegVal(SelectFalse)) {
5544        if (V == SelectTrue)
5545          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5546      }
5547    }
5548  }
5549
5550  if (Op0->getType()->isIntOrIntVectorTy(1))
5551    if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5552      return Res;
5553
5554  if (Instruction *Res = canonicalizeCmpWithConstant(I))
5555    return Res;
5556
5557  if (Instruction *Res = canonicalizeICmpPredicate(I))
5558    return Res;
5559
5560  if (Instruction *Res = foldICmpWithConstant(I))
5561    return Res;
5562
5563  if (Instruction *Res = foldICmpWithDominatingICmp(I))
5564    return Res;
5565
5566  if (Instruction *Res = foldICmpBinOp(I, Q))
5567    return Res;
5568
5569  if (Instruction *Res = foldICmpUsingKnownBits(I))
5570    return Res;
5571
5572  // Test if the ICmpInst instruction is used exclusively by a select as
5573  // part of a minimum or maximum operation. If so, refrain from doing
5574  // any other folding. This helps out other analyses which understand
5575  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5576  // and CodeGen. And in this case, at least one of the comparison
5577  // operands has at least one user besides the compare (the select),
5578  // which would often largely negate the benefit of folding anyway.
5579  //
5580  // Do the same for the other patterns recognized by matchSelectPattern.
5581  if (I.hasOneUse())
5582    if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5583      Value *A, *B;
5584      SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5585      if (SPR.Flavor != SPF_UNKNOWN)
5586        return nullptr;
5587    }
5588
5589  // Do this after checking for min/max to prevent infinite looping.
5590  if (Instruction *Res = foldICmpWithZero(I))
5591    return Res;
5592
5593  // FIXME: We only do this after checking for min/max to prevent infinite
5594  // looping caused by a reverse canonicalization of these patterns for min/max.
5595  // FIXME: The organization of folds is a mess. These would naturally go into
5596  // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5597  // down here after the min/max restriction.
5598  ICmpInst::Predicate Pred = I.getPredicate();
5599  const APInt *C;
5600  if (match(Op1, m_APInt(C))) {
5601    // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5602    if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5603      Constant *Zero = Constant::getNullValue(Op0->getType());
5604      return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5605    }
5606
5607    // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5608    if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5609      Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5610      return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5611    }
5612  }
5613
5614  if (Instruction *Res = foldICmpInstWithConstant(I))
5615    return Res;
5616
5617  // Try to match comparison as a sign bit test. Intentionally do this after
5618  // foldICmpInstWithConstant() to potentially let other folds to happen first.
5619  if (Instruction *New = foldSignBitTest(I))
5620    return New;
5621
5622  if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5623    return Res;
5624
5625  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5626  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5627    if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5628      return NI;
5629  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5630    if (Instruction *NI = foldGEPICmp(GEP, Op0,
5631                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5632      return NI;
5633
5634  // Try to optimize equality comparisons against alloca-based pointers.
5635  if (Op0->getType()->isPointerTy() && I.isEquality()) {
5636    assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5637    if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
5638      if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5639        return New;
5640    if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
5641      if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5642        return New;
5643  }
5644
5645  if (Instruction *Res = foldICmpBitCast(I, Builder))
5646    return Res;
5647
5648  // TODO: Hoist this above the min/max bailout.
5649  if (Instruction *R = foldICmpWithCastOp(I))
5650    return R;
5651
5652  if (Instruction *Res = foldICmpWithMinMax(I))
5653    return Res;
5654
5655  {
5656    Value *A, *B;
5657    // Transform (A & ~B) == 0 --> (A & B) != 0
5658    // and       (A & ~B) != 0 --> (A & B) == 0
5659    // if A is a power of 2.
5660    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5661        match(Op1, m_Zero()) &&
5662        isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5663      return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5664                          Op1);
5665
5666    // ~X < ~Y --> Y < X
5667    // ~X < C -->  X > ~C
5668    if (match(Op0, m_Not(m_Value(A)))) {
5669      if (match(Op1, m_Not(m_Value(B))))
5670        return new ICmpInst(I.getPredicate(), B, A);
5671
5672      const APInt *C;
5673      if (match(Op1, m_APInt(C)))
5674        return new ICmpInst(I.getSwappedPredicate(), A,
5675                            ConstantInt::get(Op1->getType(), ~(*C)));
5676    }
5677
5678    Instruction *AddI = nullptr;
5679    if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5680                                     m_Instruction(AddI))) &&
5681        isa<IntegerType>(A->getType())) {
5682      Value *Result;
5683      Constant *Overflow;
5684      // m_UAddWithOverflow can match patterns that do not include  an explicit
5685      // "add" instruction, so check the opcode of the matched op.
5686      if (AddI->getOpcode() == Instruction::Add &&
5687          OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5688                                Result, Overflow)) {
5689        replaceInstUsesWith(*AddI, Result);
5690        eraseInstFromFunction(*AddI);
5691        return replaceInstUsesWith(I, Overflow);
5692      }
5693    }
5694
5695    // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5696    if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5697      if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5698        return R;
5699    }
5700    if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5701      if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5702        return R;
5703    }
5704  }
5705
5706  if (Instruction *Res = foldICmpEquality(I))
5707    return Res;
5708
5709  if (Instruction *Res = foldICmpOfUAddOv(I))
5710    return Res;
5711
5712  // The 'cmpxchg' instruction returns an aggregate containing the old value and
5713  // an i1 which indicates whether or not we successfully did the swap.
5714  //
5715  // Replace comparisons between the old value and the expected value with the
5716  // indicator that 'cmpxchg' returns.
5717  //
5718  // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5719  // spuriously fail.  In those cases, the old value may equal the expected
5720  // value but it is possible for the swap to not occur.
5721  if (I.getPredicate() == ICmpInst::ICMP_EQ)
5722    if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5723      if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5724        if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5725            !ACXI->isWeak())
5726          return ExtractValueInst::Create(ACXI, 1);
5727
5728  {
5729    Value *X;
5730    const APInt *C;
5731    // icmp X+Cst, X
5732    if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5733      return foldICmpAddOpConst(X, *C, I.getPredicate());
5734
5735    // icmp X, X+Cst
5736    if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5737      return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5738  }
5739
5740  if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5741    return Res;
5742
5743  if (I.getType()->isVectorTy())
5744    if (Instruction *Res = foldVectorCmp(I, Builder))
5745      return Res;
5746
5747  return Changed ? &I : nullptr;
5748}
5749
5750/// Fold fcmp ([us]itofp x, cst) if possible.
5751Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
5752                                                Constant *RHSC) {
5753  if (!isa<ConstantFP>(RHSC)) return nullptr;
5754  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5755
5756  // Get the width of the mantissa.  We don't want to hack on conversions that
5757  // might lose information from the integer, e.g. "i64 -> float"
5758  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5759  if (MantissaWidth == -1) return nullptr;  // Unknown.
5760
5761  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5762
5763  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5764
5765  if (I.isEquality()) {
5766    FCmpInst::Predicate P = I.getPredicate();
5767    bool IsExact = false;
5768    APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5769    RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5770
5771    // If the floating point constant isn't an integer value, we know if we will
5772    // ever compare equal / not equal to it.
5773    if (!IsExact) {
5774      // TODO: Can never be -0.0 and other non-representable values
5775      APFloat RHSRoundInt(RHS);
5776      RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5777      if (RHS != RHSRoundInt) {
5778        if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5779          return replaceInstUsesWith(I, Builder.getFalse());
5780
5781        assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5782        return replaceInstUsesWith(I, Builder.getTrue());
5783      }
5784    }
5785
5786    // TODO: If the constant is exactly representable, is it always OK to do
5787    // equality compares as integer?
5788  }
5789
5790  // Check to see that the input is converted from an integer type that is small
5791  // enough that preserves all bits.  TODO: check here for "known" sign bits.
5792  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5793  unsigned InputSize = IntTy->getScalarSizeInBits();
5794
5795  // Following test does NOT adjust InputSize downwards for signed inputs,
5796  // because the most negative value still requires all the mantissa bits
5797  // to distinguish it from one less than that value.
5798  if ((int)InputSize > MantissaWidth) {
5799    // Conversion would lose accuracy. Check if loss can impact comparison.
5800    int Exp = ilogb(RHS);
5801    if (Exp == APFloat::IEK_Inf) {
5802      int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5803      if (MaxExponent < (int)InputSize - !LHSUnsigned)
5804        // Conversion could create infinity.
5805        return nullptr;
5806    } else {
5807      // Note that if RHS is zero or NaN, then Exp is negative
5808      // and first condition is trivially false.
5809      if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5810        // Conversion could affect comparison.
5811        return nullptr;
5812    }
5813  }
5814
5815  // Otherwise, we can potentially simplify the comparison.  We know that it
5816  // will always come through as an integer value and we know the constant is
5817  // not a NAN (it would have been previously simplified).
5818  assert(!RHS.isNaN() && "NaN comparison not already folded!");
5819
5820  ICmpInst::Predicate Pred;
5821  switch (I.getPredicate()) {
5822  default: llvm_unreachable("Unexpected predicate!");
5823  case FCmpInst::FCMP_UEQ:
5824  case FCmpInst::FCMP_OEQ:
5825    Pred = ICmpInst::ICMP_EQ;
5826    break;
5827  case FCmpInst::FCMP_UGT:
5828  case FCmpInst::FCMP_OGT:
5829    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5830    break;
5831  case FCmpInst::FCMP_UGE:
5832  case FCmpInst::FCMP_OGE:
5833    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5834    break;
5835  case FCmpInst::FCMP_ULT:
5836  case FCmpInst::FCMP_OLT:
5837    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5838    break;
5839  case FCmpInst::FCMP_ULE:
5840  case FCmpInst::FCMP_OLE:
5841    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5842    break;
5843  case FCmpInst::FCMP_UNE:
5844  case FCmpInst::FCMP_ONE:
5845    Pred = ICmpInst::ICMP_NE;
5846    break;
5847  case FCmpInst::FCMP_ORD:
5848    return replaceInstUsesWith(I, Builder.getTrue());
5849  case FCmpInst::FCMP_UNO:
5850    return replaceInstUsesWith(I, Builder.getFalse());
5851  }
5852
5853  // Now we know that the APFloat is a normal number, zero or inf.
5854
5855  // See if the FP constant is too large for the integer.  For example,
5856  // comparing an i8 to 300.0.
5857  unsigned IntWidth = IntTy->getScalarSizeInBits();
5858
5859  if (!LHSUnsigned) {
5860    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
5861    // and large values.
5862    APFloat SMax(RHS.getSemantics());
5863    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5864                          APFloat::rmNearestTiesToEven);
5865    if (SMax < RHS) { // smax < 13123.0
5866      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
5867          Pred == ICmpInst::ICMP_SLE)
5868        return replaceInstUsesWith(I, Builder.getTrue());
5869      return replaceInstUsesWith(I, Builder.getFalse());
5870    }
5871  } else {
5872    // If the RHS value is > UnsignedMax, fold the comparison. This handles
5873    // +INF and large values.
5874    APFloat UMax(RHS.getSemantics());
5875    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5876                          APFloat::rmNearestTiesToEven);
5877    if (UMax < RHS) { // umax < 13123.0
5878      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
5879          Pred == ICmpInst::ICMP_ULE)
5880        return replaceInstUsesWith(I, Builder.getTrue());
5881      return replaceInstUsesWith(I, Builder.getFalse());
5882    }
5883  }
5884
5885  if (!LHSUnsigned) {
5886    // See if the RHS value is < SignedMin.
5887    APFloat SMin(RHS.getSemantics());
5888    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5889                          APFloat::rmNearestTiesToEven);
5890    if (SMin > RHS) { // smin > 12312.0
5891      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5892          Pred == ICmpInst::ICMP_SGE)
5893        return replaceInstUsesWith(I, Builder.getTrue());
5894      return replaceInstUsesWith(I, Builder.getFalse());
5895    }
5896  } else {
5897    // See if the RHS value is < UnsignedMin.
5898    APFloat UMin(RHS.getSemantics());
5899    UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5900                          APFloat::rmNearestTiesToEven);
5901    if (UMin > RHS) { // umin > 12312.0
5902      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5903          Pred == ICmpInst::ICMP_UGE)
5904        return replaceInstUsesWith(I, Builder.getTrue());
5905      return replaceInstUsesWith(I, Builder.getFalse());
5906    }
5907  }
5908
5909  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5910  // [0, UMAX], but it may still be fractional.  See if it is fractional by
5911  // casting the FP value to the integer value and back, checking for equality.
5912  // Don't do this for zero, because -0.0 is not fractional.
5913  Constant *RHSInt = LHSUnsigned
5914    ? ConstantExpr::getFPToUI(RHSC, IntTy)
5915    : ConstantExpr::getFPToSI(RHSC, IntTy);
5916  if (!RHS.isZero()) {
5917    bool Equal = LHSUnsigned
5918      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5919      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5920    if (!Equal) {
5921      // If we had a comparison against a fractional value, we have to adjust
5922      // the compare predicate and sometimes the value.  RHSC is rounded towards
5923      // zero at this point.
5924      switch (Pred) {
5925      default: llvm_unreachable("Unexpected integer comparison!");
5926      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
5927        return replaceInstUsesWith(I, Builder.getTrue());
5928      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
5929        return replaceInstUsesWith(I, Builder.getFalse());
5930      case ICmpInst::ICMP_ULE:
5931        // (float)int <= 4.4   --> int <= 4
5932        // (float)int <= -4.4  --> false
5933        if (RHS.isNegative())
5934          return replaceInstUsesWith(I, Builder.getFalse());
5935        break;
5936      case ICmpInst::ICMP_SLE:
5937        // (float)int <= 4.4   --> int <= 4
5938        // (float)int <= -4.4  --> int < -4
5939        if (RHS.isNegative())
5940          Pred = ICmpInst::ICMP_SLT;
5941        break;
5942      case ICmpInst::ICMP_ULT:
5943        // (float)int < -4.4   --> false
5944        // (float)int < 4.4    --> int <= 4
5945        if (RHS.isNegative())
5946          return replaceInstUsesWith(I, Builder.getFalse());
5947        Pred = ICmpInst::ICMP_ULE;
5948        break;
5949      case ICmpInst::ICMP_SLT:
5950        // (float)int < -4.4   --> int < -4
5951        // (float)int < 4.4    --> int <= 4
5952        if (!RHS.isNegative())
5953          Pred = ICmpInst::ICMP_SLE;
5954        break;
5955      case ICmpInst::ICMP_UGT:
5956        // (float)int > 4.4    --> int > 4
5957        // (float)int > -4.4   --> true
5958        if (RHS.isNegative())
5959          return replaceInstUsesWith(I, Builder.getTrue());
5960        break;
5961      case ICmpInst::ICMP_SGT:
5962        // (float)int > 4.4    --> int > 4
5963        // (float)int > -4.4   --> int >= -4
5964        if (RHS.isNegative())
5965          Pred = ICmpInst::ICMP_SGE;
5966        break;
5967      case ICmpInst::ICMP_UGE:
5968        // (float)int >= -4.4   --> true
5969        // (float)int >= 4.4    --> int > 4
5970        if (RHS.isNegative())
5971          return replaceInstUsesWith(I, Builder.getTrue());
5972        Pred = ICmpInst::ICMP_UGT;
5973        break;
5974      case ICmpInst::ICMP_SGE:
5975        // (float)int >= -4.4   --> int >= -4
5976        // (float)int >= 4.4    --> int > 4
5977        if (!RHS.isNegative())
5978          Pred = ICmpInst::ICMP_SGT;
5979        break;
5980      }
5981    }
5982  }
5983
5984  // Lower this FP comparison into an appropriate integer version of the
5985  // comparison.
5986  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
5987}
5988
5989/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
5990static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
5991                                              Constant *RHSC) {
5992  // When C is not 0.0 and infinities are not allowed:
5993  // (C / X) < 0.0 is a sign-bit test of X
5994  // (C / X) < 0.0 --> X < 0.0 (if C is positive)
5995  // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
5996  //
5997  // Proof:
5998  // Multiply (C / X) < 0.0 by X * X / C.
5999  // - X is non zero, if it is the flag 'ninf' is violated.
6000  // - C defines the sign of X * X * C. Thus it also defines whether to swap
6001  //   the predicate. C is also non zero by definition.
6002  //
6003  // Thus X * X / C is non zero and the transformation is valid. [qed]
6004
6005  FCmpInst::Predicate Pred = I.getPredicate();
6006
6007  // Check that predicates are valid.
6008  if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6009      (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6010    return nullptr;
6011
6012  // Check that RHS operand is zero.
6013  if (!match(RHSC, m_AnyZeroFP()))
6014    return nullptr;
6015
6016  // Check fastmath flags ('ninf').
6017  if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6018    return nullptr;
6019
6020  // Check the properties of the dividend. It must not be zero to avoid a
6021  // division by zero (see Proof).
6022  const APFloat *C;
6023  if (!match(LHSI->getOperand(0), m_APFloat(C)))
6024    return nullptr;
6025
6026  if (C->isZero())
6027    return nullptr;
6028
6029  // Get swapped predicate if necessary.
6030  if (C->isNegative())
6031    Pred = I.getSwappedPredicate();
6032
6033  return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6034}
6035
6036/// Optimize fabs(X) compared with zero.
6037static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombiner &IC) {
6038  Value *X;
6039  if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
6040      !match(I.getOperand(1), m_PosZeroFP()))
6041    return nullptr;
6042
6043  auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6044    I->setPredicate(P);
6045    return IC.replaceOperand(*I, 0, X);
6046  };
6047
6048  switch (I.getPredicate()) {
6049  case FCmpInst::FCMP_UGE:
6050  case FCmpInst::FCMP_OLT:
6051    // fabs(X) >= 0.0 --> true
6052    // fabs(X) <  0.0 --> false
6053    llvm_unreachable("fcmp should have simplified");
6054
6055  case FCmpInst::FCMP_OGT:
6056    // fabs(X) > 0.0 --> X != 0.0
6057    return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6058
6059  case FCmpInst::FCMP_UGT:
6060    // fabs(X) u> 0.0 --> X u!= 0.0
6061    return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6062
6063  case FCmpInst::FCMP_OLE:
6064    // fabs(X) <= 0.0 --> X == 0.0
6065    return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6066
6067  case FCmpInst::FCMP_ULE:
6068    // fabs(X) u<= 0.0 --> X u== 0.0
6069    return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6070
6071  case FCmpInst::FCMP_OGE:
6072    // fabs(X) >= 0.0 --> !isnan(X)
6073    assert(!I.hasNoNaNs() && "fcmp should have simplified");
6074    return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6075
6076  case FCmpInst::FCMP_ULT:
6077    // fabs(X) u< 0.0 --> isnan(X)
6078    assert(!I.hasNoNaNs() && "fcmp should have simplified");
6079    return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6080
6081  case FCmpInst::FCMP_OEQ:
6082  case FCmpInst::FCMP_UEQ:
6083  case FCmpInst::FCMP_ONE:
6084  case FCmpInst::FCMP_UNE:
6085  case FCmpInst::FCMP_ORD:
6086  case FCmpInst::FCMP_UNO:
6087    // Look through the fabs() because it doesn't change anything but the sign.
6088    // fabs(X) == 0.0 --> X == 0.0,
6089    // fabs(X) != 0.0 --> X != 0.0
6090    // isnan(fabs(X)) --> isnan(X)
6091    // !isnan(fabs(X) --> !isnan(X)
6092    return replacePredAndOp0(&I, I.getPredicate(), X);
6093
6094  default:
6095    return nullptr;
6096  }
6097}
6098
6099Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
6100  bool Changed = false;
6101
6102  /// Orders the operands of the compare so that they are listed from most
6103  /// complex to least complex.  This puts constants before unary operators,
6104  /// before binary operators.
6105  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6106    I.swapOperands();
6107    Changed = true;
6108  }
6109
6110  const CmpInst::Predicate Pred = I.getPredicate();
6111  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6112  if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6113                                  SQ.getWithInstruction(&I)))
6114    return replaceInstUsesWith(I, V);
6115
6116  // Simplify 'fcmp pred X, X'
6117  Type *OpType = Op0->getType();
6118  assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6119  if (Op0 == Op1) {
6120    switch (Pred) {
6121      default: break;
6122    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6123    case FCmpInst::FCMP_ULT:    // True if unordered or less than
6124    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6125    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6126      // Canonicalize these to be 'fcmp uno %X, 0.0'.
6127      I.setPredicate(FCmpInst::FCMP_UNO);
6128      I.setOperand(1, Constant::getNullValue(OpType));
6129      return &I;
6130
6131    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6132    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6133    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6134    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6135      // Canonicalize these to be 'fcmp ord %X, 0.0'.
6136      I.setPredicate(FCmpInst::FCMP_ORD);
6137      I.setOperand(1, Constant::getNullValue(OpType));
6138      return &I;
6139    }
6140  }
6141
6142  // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6143  // then canonicalize the operand to 0.0.
6144  if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6145    if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6146      return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6147
6148    if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6149      return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6150  }
6151
6152  // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6153  Value *X, *Y;
6154  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6155    return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6156
6157  // Test if the FCmpInst instruction is used exclusively by a select as
6158  // part of a minimum or maximum operation. If so, refrain from doing
6159  // any other folding. This helps out other analyses which understand
6160  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6161  // and CodeGen. And in this case, at least one of the comparison
6162  // operands has at least one user besides the compare (the select),
6163  // which would often largely negate the benefit of folding anyway.
6164  if (I.hasOneUse())
6165    if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6166      Value *A, *B;
6167      SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6168      if (SPR.Flavor != SPF_UNKNOWN)
6169        return nullptr;
6170    }
6171
6172  // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6173  // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6174  if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6175    return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6176
6177  // Handle fcmp with instruction LHS and constant RHS.
6178  Instruction *LHSI;
6179  Constant *RHSC;
6180  if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6181    switch (LHSI->getOpcode()) {
6182    case Instruction::PHI:
6183      // Only fold fcmp into the PHI if the phi and fcmp are in the same
6184      // block.  If in the same block, we're encouraging jump threading.  If
6185      // not, we are just pessimizing the code by making an i1 phi.
6186      if (LHSI->getParent() == I.getParent())
6187        if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6188          return NV;
6189      break;
6190    case Instruction::SIToFP:
6191    case Instruction::UIToFP:
6192      if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6193        return NV;
6194      break;
6195    case Instruction::FDiv:
6196      if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6197        return NV;
6198      break;
6199    case Instruction::Load:
6200      if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6201        if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6202          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6203              !cast<LoadInst>(LHSI)->isVolatile())
6204            if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6205              return Res;
6206      break;
6207  }
6208  }
6209
6210  if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6211    return R;
6212
6213  if (match(Op0, m_FNeg(m_Value(X)))) {
6214    // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6215    Constant *C;
6216    if (match(Op1, m_Constant(C))) {
6217      Constant *NegC = ConstantExpr::getFNeg(C);
6218      return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6219    }
6220  }
6221
6222  if (match(Op0, m_FPExt(m_Value(X)))) {
6223    // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6224    if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6225      return new FCmpInst(Pred, X, Y, "", &I);
6226
6227    // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6228    const APFloat *C;
6229    if (match(Op1, m_APFloat(C))) {
6230      const fltSemantics &FPSem =
6231          X->getType()->getScalarType()->getFltSemantics();
6232      bool Lossy;
6233      APFloat TruncC = *C;
6234      TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6235
6236      // Avoid lossy conversions and denormals.
6237      // Zero is a special case that's OK to convert.
6238      APFloat Fabs = TruncC;
6239      Fabs.clearSign();
6240      if (!Lossy &&
6241          (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6242        Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6243        return new FCmpInst(Pred, X, NewC, "", &I);
6244      }
6245    }
6246  }
6247
6248  if (I.getType()->isVectorTy())
6249    if (Instruction *Res = foldVectorCmp(I, Builder))
6250      return Res;
6251
6252  return Changed ? &I : nullptr;
6253}
6254