1//===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a transformation that attaches !callees metadata to
10// indirect call sites. For a given call site, the metadata, if present,
11// indicates the set of functions the call site could possibly target at
12// run-time. This metadata is added to indirect call sites when the set of
13// possible targets can be determined by analysis and is known to be small. The
14// analysis driving the transformation is similar to constant propagation and
15// makes uses of the generic sparse propagation solver.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/IPO/CalledValuePropagation.h"
20#include "llvm/Analysis/SparsePropagation.h"
21#include "llvm/Analysis/ValueLatticeUtils.h"
22#include "llvm/IR/MDBuilder.h"
23#include "llvm/InitializePasses.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Transforms/IPO.h"
26using namespace llvm;
27
28#define DEBUG_TYPE "called-value-propagation"
29
30/// The maximum number of functions to track per lattice value. Once the number
31/// of functions a call site can possibly target exceeds this threshold, it's
32/// lattice value becomes overdefined. The number of possible lattice values is
33/// bounded by Ch(F, M), where F is the number of functions in the module and M
34/// is MaxFunctionsPerValue. As such, this value should be kept very small. We
35/// likely can't do anything useful for call sites with a large number of
36/// possible targets, anyway.
37static cl::opt<unsigned> MaxFunctionsPerValue(
38    "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
39    cl::desc("The maximum number of functions to track per lattice value"));
40
41namespace {
42/// To enable interprocedural analysis, we assign LLVM values to the following
43/// groups. The register group represents SSA registers, the return group
44/// represents the return values of functions, and the memory group represents
45/// in-memory values. An LLVM Value can technically be in more than one group.
46/// It's necessary to distinguish these groups so we can, for example, track a
47/// global variable separately from the value stored at its location.
48enum class IPOGrouping { Register, Return, Memory };
49
50/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
51using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
52
53/// The lattice value type used by our custom lattice function. It holds the
54/// lattice state, and a set of functions.
55class CVPLatticeVal {
56public:
57  /// The states of the lattice values. Only the FunctionSet state is
58  /// interesting. It indicates the set of functions to which an LLVM value may
59  /// refer.
60  enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
61
62  /// Comparator for sorting the functions set. We want to keep the order
63  /// deterministic for testing, etc.
64  struct Compare {
65    bool operator()(const Function *LHS, const Function *RHS) const {
66      return LHS->getName() < RHS->getName();
67    }
68  };
69
70  CVPLatticeVal() : LatticeState(Undefined) {}
71  CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
72  CVPLatticeVal(std::vector<Function *> &&Functions)
73      : LatticeState(FunctionSet), Functions(std::move(Functions)) {
74    assert(llvm::is_sorted(this->Functions, Compare()));
75  }
76
77  /// Get a reference to the functions held by this lattice value. The number
78  /// of functions will be zero for states other than FunctionSet.
79  const std::vector<Function *> &getFunctions() const {
80    return Functions;
81  }
82
83  /// Returns true if the lattice value is in the FunctionSet state.
84  bool isFunctionSet() const { return LatticeState == FunctionSet; }
85
86  bool operator==(const CVPLatticeVal &RHS) const {
87    return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
88  }
89
90  bool operator!=(const CVPLatticeVal &RHS) const {
91    return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
92  }
93
94private:
95  /// Holds the state this lattice value is in.
96  CVPLatticeStateTy LatticeState;
97
98  /// Holds functions indicating the possible targets of call sites. This set
99  /// is empty for lattice values in the undefined, overdefined, and untracked
100  /// states. The maximum size of the set is controlled by
101  /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
102  /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
103  /// small and efficiently copyable.
104  // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
105  std::vector<Function *> Functions;
106};
107
108/// The custom lattice function used by the generic sparse propagation solver.
109/// It handles merging lattice values and computing new lattice values for
110/// constants, arguments, values returned from trackable functions, and values
111/// located in trackable global variables. It also computes the lattice values
112/// that change as a result of executing instructions.
113class CVPLatticeFunc
114    : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
115public:
116  CVPLatticeFunc()
117      : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
118                                CVPLatticeVal(CVPLatticeVal::Overdefined),
119                                CVPLatticeVal(CVPLatticeVal::Untracked)) {}
120
121  /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
122  CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
123    switch (Key.getInt()) {
124    case IPOGrouping::Register:
125      if (isa<Instruction>(Key.getPointer())) {
126        return getUndefVal();
127      } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
128        if (canTrackArgumentsInterprocedurally(A->getParent()))
129          return getUndefVal();
130      } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
131        return computeConstant(C);
132      }
133      return getOverdefinedVal();
134    case IPOGrouping::Memory:
135    case IPOGrouping::Return:
136      if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
137        if (canTrackGlobalVariableInterprocedurally(GV))
138          return computeConstant(GV->getInitializer());
139      } else if (auto *F = cast<Function>(Key.getPointer()))
140        if (canTrackReturnsInterprocedurally(F))
141          return getUndefVal();
142    }
143    return getOverdefinedVal();
144  }
145
146  /// Merge the two given lattice values. The interesting cases are merging two
147  /// FunctionSet values and a FunctionSet value with an Undefined value. For
148  /// these cases, we simply union the function sets. If the size of the union
149  /// is greater than the maximum functions we track, the merged value is
150  /// overdefined.
151  CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
152    if (X == getOverdefinedVal() || Y == getOverdefinedVal())
153      return getOverdefinedVal();
154    if (X == getUndefVal() && Y == getUndefVal())
155      return getUndefVal();
156    std::vector<Function *> Union;
157    std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
158                   Y.getFunctions().begin(), Y.getFunctions().end(),
159                   std::back_inserter(Union), CVPLatticeVal::Compare{});
160    if (Union.size() > MaxFunctionsPerValue)
161      return getOverdefinedVal();
162    return CVPLatticeVal(std::move(Union));
163  }
164
165  /// Compute the lattice values that change as a result of executing the given
166  /// instruction. The changed values are stored in \p ChangedValues. We handle
167  /// just a few kinds of instructions since we're only propagating values that
168  /// can be called.
169  void ComputeInstructionState(
170      Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
171      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
172    switch (I.getOpcode()) {
173    case Instruction::Call:
174    case Instruction::Invoke:
175      return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
176    case Instruction::Load:
177      return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
178    case Instruction::Ret:
179      return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
180    case Instruction::Select:
181      return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
182    case Instruction::Store:
183      return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
184    default:
185      return visitInst(I, ChangedValues, SS);
186    }
187  }
188
189  /// Print the given CVPLatticeVal to the specified stream.
190  void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
191    if (LV == getUndefVal())
192      OS << "Undefined  ";
193    else if (LV == getOverdefinedVal())
194      OS << "Overdefined";
195    else if (LV == getUntrackedVal())
196      OS << "Untracked  ";
197    else
198      OS << "FunctionSet";
199  }
200
201  /// Print the given CVPLatticeKey to the specified stream.
202  void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
203    if (Key.getInt() == IPOGrouping::Register)
204      OS << "<reg> ";
205    else if (Key.getInt() == IPOGrouping::Memory)
206      OS << "<mem> ";
207    else if (Key.getInt() == IPOGrouping::Return)
208      OS << "<ret> ";
209    if (isa<Function>(Key.getPointer()))
210      OS << Key.getPointer()->getName();
211    else
212      OS << *Key.getPointer();
213  }
214
215  /// We collect a set of indirect calls when visiting call sites. This method
216  /// returns a reference to that set.
217  SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
218
219private:
220  /// Holds the indirect calls we encounter during the analysis. We will attach
221  /// metadata to these calls after the analysis indicating the functions the
222  /// calls can possibly target.
223  SmallPtrSet<CallBase *, 32> IndirectCalls;
224
225  /// Compute a new lattice value for the given constant. The constant, after
226  /// stripping any pointer casts, should be a Function. We ignore null
227  /// pointers as an optimization, since calling these values is undefined
228  /// behavior.
229  CVPLatticeVal computeConstant(Constant *C) {
230    if (isa<ConstantPointerNull>(C))
231      return CVPLatticeVal(CVPLatticeVal::FunctionSet);
232    if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
233      return CVPLatticeVal({F});
234    return getOverdefinedVal();
235  }
236
237  /// Handle return instructions. The function's return state is the merge of
238  /// the returned value state and the function's return state.
239  void visitReturn(ReturnInst &I,
240                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
241                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
242    Function *F = I.getParent()->getParent();
243    if (F->getReturnType()->isVoidTy())
244      return;
245    auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
246    auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
247    ChangedValues[RetF] =
248        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
249  }
250
251  /// Handle call sites. The state of a called function's formal arguments is
252  /// the merge of the argument state with the call sites corresponding actual
253  /// argument state. The call site state is the merge of the call site state
254  /// with the returned value state of the called function.
255  void visitCallBase(CallBase &CB,
256                     DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
257                     SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
258    Function *F = CB.getCalledFunction();
259    auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
260
261    // If this is an indirect call, save it so we can quickly revisit it when
262    // attaching metadata.
263    if (!F)
264      IndirectCalls.insert(&CB);
265
266    // If we can't track the function's return values, there's nothing to do.
267    if (!F || !canTrackReturnsInterprocedurally(F)) {
268      // Void return, No need to create and update CVPLattice state as no one
269      // can use it.
270      if (CB.getType()->isVoidTy())
271        return;
272      ChangedValues[RegI] = getOverdefinedVal();
273      return;
274    }
275
276    // Inform the solver that the called function is executable, and perform
277    // the merges for the arguments and return value.
278    SS.MarkBlockExecutable(&F->front());
279    auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
280    for (Argument &A : F->args()) {
281      auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
282      auto RegActual =
283          CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
284      ChangedValues[RegFormal] =
285          MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
286    }
287
288    // Void return, No need to create and update CVPLattice state as no one can
289    // use it.
290    if (CB.getType()->isVoidTy())
291      return;
292
293    ChangedValues[RegI] =
294        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
295  }
296
297  /// Handle select instructions. The select instruction state is the merge the
298  /// true and false value states.
299  void visitSelect(SelectInst &I,
300                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
301                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
302    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
303    auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
304    auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
305    ChangedValues[RegI] =
306        MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
307  }
308
309  /// Handle load instructions. If the pointer operand of the load is a global
310  /// variable, we attempt to track the value. The loaded value state is the
311  /// merge of the loaded value state with the global variable state.
312  void visitLoad(LoadInst &I,
313                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
314                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
315    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
316    if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
317      auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
318      ChangedValues[RegI] =
319          MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
320    } else {
321      ChangedValues[RegI] = getOverdefinedVal();
322    }
323  }
324
325  /// Handle store instructions. If the pointer operand of the store is a
326  /// global variable, we attempt to track the value. The global variable state
327  /// is the merge of the stored value state with the global variable state.
328  void visitStore(StoreInst &I,
329                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
330                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
331    auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
332    if (!GV)
333      return;
334    auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
335    auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
336    ChangedValues[MemGV] =
337        MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
338  }
339
340  /// Handle all other instructions. All other instructions are marked
341  /// overdefined.
342  void visitInst(Instruction &I,
343                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
344                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
345    // Simply bail if this instruction has no user.
346    if (I.use_empty())
347      return;
348    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
349    ChangedValues[RegI] = getOverdefinedVal();
350  }
351};
352} // namespace
353
354namespace llvm {
355/// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
356/// must translate between LatticeKeys and LLVM Values when adding Values to
357/// its work list and inspecting the state of control-flow related values.
358template <> struct LatticeKeyInfo<CVPLatticeKey> {
359  static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
360    return Key.getPointer();
361  }
362  static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
363    return CVPLatticeKey(V, IPOGrouping::Register);
364  }
365};
366} // namespace llvm
367
368static bool runCVP(Module &M) {
369  // Our custom lattice function and generic sparse propagation solver.
370  CVPLatticeFunc Lattice;
371  SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
372
373  // For each function in the module, if we can't track its arguments, let the
374  // generic solver assume it is executable.
375  for (Function &F : M)
376    if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
377      Solver.MarkBlockExecutable(&F.front());
378
379  // Solver our custom lattice. In doing so, we will also build a set of
380  // indirect call sites.
381  Solver.Solve();
382
383  // Attach metadata to the indirect call sites that were collected indicating
384  // the set of functions they can possibly target.
385  bool Changed = false;
386  MDBuilder MDB(M.getContext());
387  for (CallBase *C : Lattice.getIndirectCalls()) {
388    auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
389    CVPLatticeVal LV = Solver.getExistingValueState(RegI);
390    if (!LV.isFunctionSet() || LV.getFunctions().empty())
391      continue;
392    MDNode *Callees = MDB.createCallees(LV.getFunctions());
393    C->setMetadata(LLVMContext::MD_callees, Callees);
394    Changed = true;
395  }
396
397  return Changed;
398}
399
400PreservedAnalyses CalledValuePropagationPass::run(Module &M,
401                                                  ModuleAnalysisManager &) {
402  runCVP(M);
403  return PreservedAnalyses::all();
404}
405
406namespace {
407class CalledValuePropagationLegacyPass : public ModulePass {
408public:
409  static char ID;
410
411  void getAnalysisUsage(AnalysisUsage &AU) const override {
412    AU.setPreservesAll();
413  }
414
415  CalledValuePropagationLegacyPass() : ModulePass(ID) {
416    initializeCalledValuePropagationLegacyPassPass(
417        *PassRegistry::getPassRegistry());
418  }
419
420  bool runOnModule(Module &M) override {
421    if (skipModule(M))
422      return false;
423    return runCVP(M);
424  }
425};
426} // namespace
427
428char CalledValuePropagationLegacyPass::ID = 0;
429INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
430                "Called Value Propagation", false, false)
431
432ModulePass *llvm::createCalledValuePropagationPass() {
433  return new CalledValuePropagationLegacyPass();
434}
435