1//===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that NVPTX uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "NVPTXISelLowering.h"
15#include "MCTargetDesc/NVPTXBaseInfo.h"
16#include "NVPTX.h"
17#include "NVPTXSubtarget.h"
18#include "NVPTXTargetMachine.h"
19#include "NVPTXTargetObjectFile.h"
20#include "NVPTXUtilities.h"
21#include "llvm/ADT/APInt.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineMemOperand.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/SelectionDAGNodes.h"
29#include "llvm/CodeGen/TargetCallingConv.h"
30#include "llvm/CodeGen/TargetLowering.h"
31#include "llvm/CodeGen/ValueTypes.h"
32#include "llvm/IR/Argument.h"
33#include "llvm/IR/Attributes.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
39#include "llvm/IR/Instruction.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/IntrinsicsNVPTX.h"
42#include "llvm/IR/Module.h"
43#include "llvm/IR/Type.h"
44#include "llvm/IR/Value.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CodeGen.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MachineValueType.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/Target/TargetMachine.h"
53#include "llvm/Target/TargetOptions.h"
54#include <algorithm>
55#include <cassert>
56#include <cstdint>
57#include <iterator>
58#include <sstream>
59#include <string>
60#include <utility>
61#include <vector>
62
63#define DEBUG_TYPE "nvptx-lower"
64
65using namespace llvm;
66
67static unsigned int uniqueCallSite = 0;
68
69static cl::opt<bool> sched4reg(
70    "nvptx-sched4reg",
71    cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
72
73static cl::opt<unsigned>
74FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
75                    cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
76                             " 1: do it  2: do it aggressively"),
77                    cl::init(2));
78
79static cl::opt<int> UsePrecDivF32(
80    "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
81    cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
82             " IEEE Compliant F32 div.rnd if available."),
83    cl::init(2));
84
85static cl::opt<bool> UsePrecSqrtF32(
86    "nvptx-prec-sqrtf32", cl::Hidden,
87    cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
88    cl::init(true));
89
90int NVPTXTargetLowering::getDivF32Level() const {
91  if (UsePrecDivF32.getNumOccurrences() > 0) {
92    // If nvptx-prec-div32=N is used on the command-line, always honor it
93    return UsePrecDivF32;
94  } else {
95    // Otherwise, use div.approx if fast math is enabled
96    if (getTargetMachine().Options.UnsafeFPMath)
97      return 0;
98    else
99      return 2;
100  }
101}
102
103bool NVPTXTargetLowering::usePrecSqrtF32() const {
104  if (UsePrecSqrtF32.getNumOccurrences() > 0) {
105    // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
106    return UsePrecSqrtF32;
107  } else {
108    // Otherwise, use sqrt.approx if fast math is enabled
109    return !getTargetMachine().Options.UnsafeFPMath;
110  }
111}
112
113bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
114  return MF.getDenormalMode(APFloat::IEEEsingle()).Output ==
115         DenormalMode::PreserveSign;
116}
117
118static bool IsPTXVectorType(MVT VT) {
119  switch (VT.SimpleTy) {
120  default:
121    return false;
122  case MVT::v2i1:
123  case MVT::v4i1:
124  case MVT::v2i8:
125  case MVT::v4i8:
126  case MVT::v2i16:
127  case MVT::v4i16:
128  case MVT::v2i32:
129  case MVT::v4i32:
130  case MVT::v2i64:
131  case MVT::v2f16:
132  case MVT::v4f16:
133  case MVT::v8f16: // <4 x f16x2>
134  case MVT::v2f32:
135  case MVT::v4f32:
136  case MVT::v2f64:
137    return true;
138  }
139}
140
141/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
142/// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
143/// into their primitive components.
144/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
145/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
146/// LowerCall, and LowerReturn.
147static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
148                               Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
149                               SmallVectorImpl<uint64_t> *Offsets = nullptr,
150                               uint64_t StartingOffset = 0) {
151  SmallVector<EVT, 16> TempVTs;
152  SmallVector<uint64_t, 16> TempOffsets;
153
154  // Special case for i128 - decompose to (i64, i64)
155  if (Ty->isIntegerTy(128)) {
156    ValueVTs.push_back(EVT(MVT::i64));
157    ValueVTs.push_back(EVT(MVT::i64));
158
159    if (Offsets) {
160      Offsets->push_back(StartingOffset + 0);
161      Offsets->push_back(StartingOffset + 8);
162    }
163
164    return;
165  }
166
167  // Given a struct type, recursively traverse the elements with custom ComputePTXValueVTs.
168  if (StructType *STy = dyn_cast<StructType>(Ty)) {
169    auto const *SL = DL.getStructLayout(STy);
170    auto ElementNum = 0;
171    for(auto *EI : STy->elements()) {
172      ComputePTXValueVTs(TLI, DL, EI, ValueVTs, Offsets,
173                         StartingOffset + SL->getElementOffset(ElementNum));
174      ++ElementNum;
175    }
176    return;
177  }
178
179  ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
180  for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
181    EVT VT = TempVTs[i];
182    uint64_t Off = TempOffsets[i];
183    // Split vectors into individual elements, except for v2f16, which
184    // we will pass as a single scalar.
185    if (VT.isVector()) {
186      unsigned NumElts = VT.getVectorNumElements();
187      EVT EltVT = VT.getVectorElementType();
188      // Vectors with an even number of f16 elements will be passed to
189      // us as an array of v2f16 elements. We must match this so we
190      // stay in sync with Ins/Outs.
191      if (EltVT == MVT::f16 && NumElts % 2 == 0) {
192        EltVT = MVT::v2f16;
193        NumElts /= 2;
194      }
195      for (unsigned j = 0; j != NumElts; ++j) {
196        ValueVTs.push_back(EltVT);
197        if (Offsets)
198          Offsets->push_back(Off + j * EltVT.getStoreSize());
199      }
200    } else {
201      ValueVTs.push_back(VT);
202      if (Offsets)
203        Offsets->push_back(Off);
204    }
205  }
206}
207
208// Check whether we can merge loads/stores of some of the pieces of a
209// flattened function parameter or return value into a single vector
210// load/store.
211//
212// The flattened parameter is represented as a list of EVTs and
213// offsets, and the whole structure is aligned to ParamAlignment. This
214// function determines whether we can load/store pieces of the
215// parameter starting at index Idx using a single vectorized op of
216// size AccessSize. If so, it returns the number of param pieces
217// covered by the vector op. Otherwise, it returns 1.
218static unsigned CanMergeParamLoadStoresStartingAt(
219    unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
220    const SmallVectorImpl<uint64_t> &Offsets, Align ParamAlignment) {
221
222  // Can't vectorize if param alignment is not sufficient.
223  if (ParamAlignment < AccessSize)
224    return 1;
225  // Can't vectorize if offset is not aligned.
226  if (Offsets[Idx] & (AccessSize - 1))
227    return 1;
228
229  EVT EltVT = ValueVTs[Idx];
230  unsigned EltSize = EltVT.getStoreSize();
231
232  // Element is too large to vectorize.
233  if (EltSize >= AccessSize)
234    return 1;
235
236  unsigned NumElts = AccessSize / EltSize;
237  // Can't vectorize if AccessBytes if not a multiple of EltSize.
238  if (AccessSize != EltSize * NumElts)
239    return 1;
240
241  // We don't have enough elements to vectorize.
242  if (Idx + NumElts > ValueVTs.size())
243    return 1;
244
245  // PTX ISA can only deal with 2- and 4-element vector ops.
246  if (NumElts != 4 && NumElts != 2)
247    return 1;
248
249  for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
250    // Types do not match.
251    if (ValueVTs[j] != EltVT)
252      return 1;
253
254    // Elements are not contiguous.
255    if (Offsets[j] - Offsets[j - 1] != EltSize)
256      return 1;
257  }
258  // OK. We can vectorize ValueVTs[i..i+NumElts)
259  return NumElts;
260}
261
262// Flags for tracking per-element vectorization state of loads/stores
263// of a flattened function parameter or return value.
264enum ParamVectorizationFlags {
265  PVF_INNER = 0x0, // Middle elements of a vector.
266  PVF_FIRST = 0x1, // First element of the vector.
267  PVF_LAST = 0x2,  // Last element of the vector.
268  // Scalar is effectively a 1-element vector.
269  PVF_SCALAR = PVF_FIRST | PVF_LAST
270};
271
272// Computes whether and how we can vectorize the loads/stores of a
273// flattened function parameter or return value.
274//
275// The flattened parameter is represented as the list of ValueVTs and
276// Offsets, and is aligned to ParamAlignment bytes. We return a vector
277// of the same size as ValueVTs indicating how each piece should be
278// loaded/stored (i.e. as a scalar, or as part of a vector
279// load/store).
280static SmallVector<ParamVectorizationFlags, 16>
281VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
282                     const SmallVectorImpl<uint64_t> &Offsets,
283                     Align ParamAlignment) {
284  // Set vector size to match ValueVTs and mark all elements as
285  // scalars by default.
286  SmallVector<ParamVectorizationFlags, 16> VectorInfo;
287  VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
288
289  // Check what we can vectorize using 128/64/32-bit accesses.
290  for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
291    // Skip elements we've already processed.
292    assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
293    for (unsigned AccessSize : {16, 8, 4, 2}) {
294      unsigned NumElts = CanMergeParamLoadStoresStartingAt(
295          I, AccessSize, ValueVTs, Offsets, ParamAlignment);
296      // Mark vectorized elements.
297      switch (NumElts) {
298      default:
299        llvm_unreachable("Unexpected return value");
300      case 1:
301        // Can't vectorize using this size, try next smaller size.
302        continue;
303      case 2:
304        assert(I + 1 < E && "Not enough elements.");
305        VectorInfo[I] = PVF_FIRST;
306        VectorInfo[I + 1] = PVF_LAST;
307        I += 1;
308        break;
309      case 4:
310        assert(I + 3 < E && "Not enough elements.");
311        VectorInfo[I] = PVF_FIRST;
312        VectorInfo[I + 1] = PVF_INNER;
313        VectorInfo[I + 2] = PVF_INNER;
314        VectorInfo[I + 3] = PVF_LAST;
315        I += 3;
316        break;
317      }
318      // Break out of the inner loop because we've already succeeded
319      // using largest possible AccessSize.
320      break;
321    }
322  }
323  return VectorInfo;
324}
325
326// NVPTXTargetLowering Constructor.
327NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
328                                         const NVPTXSubtarget &STI)
329    : TargetLowering(TM), nvTM(&TM), STI(STI) {
330  // always lower memset, memcpy, and memmove intrinsics to load/store
331  // instructions, rather
332  // then generating calls to memset, mempcy or memmove.
333  MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
334  MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
335  MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
336
337  setBooleanContents(ZeroOrNegativeOneBooleanContent);
338  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
339
340  // Jump is Expensive. Don't create extra control flow for 'and', 'or'
341  // condition branches.
342  setJumpIsExpensive(true);
343
344  // Wide divides are _very_ slow. Try to reduce the width of the divide if
345  // possible.
346  addBypassSlowDiv(64, 32);
347
348  // By default, use the Source scheduling
349  if (sched4reg)
350    setSchedulingPreference(Sched::RegPressure);
351  else
352    setSchedulingPreference(Sched::Source);
353
354  auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
355                                    LegalizeAction NoF16Action) {
356    setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
357  };
358
359  addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
360  addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
361  addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
362  addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
363  addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
364  addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
365  addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
366  addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
367
368  // Conversion to/from FP16/FP16x2 is always legal.
369  setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
370  setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
371  setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
372  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
373  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
374  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
375
376  setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
377  setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
378
379  // Operations not directly supported by NVPTX.
380  for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
381                 MVT::i16, MVT::i32, MVT::i64}) {
382    setOperationAction(ISD::SELECT_CC, VT, Expand);
383    setOperationAction(ISD::BR_CC, VT, Expand);
384  }
385
386  // Some SIGN_EXTEND_INREG can be done using cvt instruction.
387  // For others we will expand to a SHL/SRA pair.
388  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
389  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
390  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
391  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
392  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
393
394  setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
395  setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
396  setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
397  setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
398  setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
399  setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
400
401  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
402  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
403
404  // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
405  // that don't have h/w rotation we lower them to multi-instruction assembly.
406  // See ROT*_sw in NVPTXIntrInfo.td
407  setOperationAction(ISD::ROTL, MVT::i64, Legal);
408  setOperationAction(ISD::ROTR, MVT::i64, Legal);
409  setOperationAction(ISD::ROTL, MVT::i32, Legal);
410  setOperationAction(ISD::ROTR, MVT::i32, Legal);
411
412  setOperationAction(ISD::ROTL, MVT::i16, Expand);
413  setOperationAction(ISD::ROTR, MVT::i16, Expand);
414  setOperationAction(ISD::ROTL, MVT::i8, Expand);
415  setOperationAction(ISD::ROTR, MVT::i8, Expand);
416  setOperationAction(ISD::BSWAP, MVT::i16, Expand);
417  setOperationAction(ISD::BSWAP, MVT::i32, Expand);
418  setOperationAction(ISD::BSWAP, MVT::i64, Expand);
419
420  // Indirect branch is not supported.
421  // This also disables Jump Table creation.
422  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
423  setOperationAction(ISD::BRIND, MVT::Other, Expand);
424
425  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
426  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
427
428  // We want to legalize constant related memmove and memcopy
429  // intrinsics.
430  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
431
432  // Turn FP extload into load/fpextend
433  setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
434  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
435  setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
436  setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
437  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
438  setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
439  setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
440  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
441  setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
442  // Turn FP truncstore into trunc + store.
443  // FIXME: vector types should also be expanded
444  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
445  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
446  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
447
448  // PTX does not support load / store predicate registers
449  setOperationAction(ISD::LOAD, MVT::i1, Custom);
450  setOperationAction(ISD::STORE, MVT::i1, Custom);
451
452  for (MVT VT : MVT::integer_valuetypes()) {
453    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
454    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
455    setTruncStoreAction(VT, MVT::i1, Expand);
456  }
457
458  // This is legal in NVPTX
459  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
460  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
461  setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
462
463  // TRAP can be lowered to PTX trap
464  setOperationAction(ISD::TRAP, MVT::Other, Legal);
465
466  // Register custom handling for vector loads/stores
467  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
468    if (IsPTXVectorType(VT)) {
469      setOperationAction(ISD::LOAD, VT, Custom);
470      setOperationAction(ISD::STORE, VT, Custom);
471      setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
472    }
473  }
474
475  // Custom handling for i8 intrinsics
476  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
477
478  for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
479    setOperationAction(ISD::ABS,  Ty, Legal);
480    setOperationAction(ISD::SMIN, Ty, Legal);
481    setOperationAction(ISD::SMAX, Ty, Legal);
482    setOperationAction(ISD::UMIN, Ty, Legal);
483    setOperationAction(ISD::UMAX, Ty, Legal);
484
485    setOperationAction(ISD::CTPOP, Ty, Legal);
486    setOperationAction(ISD::CTLZ, Ty, Legal);
487  }
488
489  setOperationAction(ISD::CTTZ, MVT::i16, Expand);
490  setOperationAction(ISD::CTTZ, MVT::i32, Expand);
491  setOperationAction(ISD::CTTZ, MVT::i64, Expand);
492
493  // PTX does not directly support SELP of i1, so promote to i32 first
494  setOperationAction(ISD::SELECT, MVT::i1, Custom);
495
496  // PTX cannot multiply two i64s in a single instruction.
497  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
498  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
499
500  // We have some custom DAG combine patterns for these nodes
501  setTargetDAGCombine(ISD::ADD);
502  setTargetDAGCombine(ISD::AND);
503  setTargetDAGCombine(ISD::FADD);
504  setTargetDAGCombine(ISD::MUL);
505  setTargetDAGCombine(ISD::SHL);
506  setTargetDAGCombine(ISD::SREM);
507  setTargetDAGCombine(ISD::UREM);
508
509  // setcc for f16x2 needs special handling to prevent legalizer's
510  // attempt to scalarize it due to v2i1 not being legal.
511  if (STI.allowFP16Math())
512    setTargetDAGCombine(ISD::SETCC);
513
514  // Promote fp16 arithmetic if fp16 hardware isn't available or the
515  // user passed --nvptx-no-fp16-math. The flag is useful because,
516  // although sm_53+ GPUs have some sort of FP16 support in
517  // hardware, only sm_53 and sm_60 have full implementation. Others
518  // only have token amount of hardware and are likely to run faster
519  // by using fp32 units instead.
520  for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
521    setFP16OperationAction(Op, MVT::f16, Legal, Promote);
522    setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
523  }
524
525  // There's no neg.f16 instruction. Expand to (0-x).
526  setOperationAction(ISD::FNEG, MVT::f16, Expand);
527  setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
528
529  // (would be) Library functions.
530
531  // These map to conversion instructions for scalar FP types.
532  for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
533                         ISD::FTRUNC}) {
534    setOperationAction(Op, MVT::f16, Legal);
535    setOperationAction(Op, MVT::f32, Legal);
536    setOperationAction(Op, MVT::f64, Legal);
537    setOperationAction(Op, MVT::v2f16, Expand);
538  }
539
540  setOperationAction(ISD::FROUND, MVT::f16, Promote);
541  setOperationAction(ISD::FROUND, MVT::v2f16, Expand);
542  setOperationAction(ISD::FROUND, MVT::f32, Custom);
543  setOperationAction(ISD::FROUND, MVT::f64, Custom);
544
545
546  // 'Expand' implements FCOPYSIGN without calling an external library.
547  setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
548  setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
549  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
550  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
551
552  // These map to corresponding instructions for f32/f64. f16 must be
553  // promoted to f32. v2f16 is expanded to f16, which is then promoted
554  // to f32.
555  for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
556                         ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
557    setOperationAction(Op, MVT::f16, Promote);
558    setOperationAction(Op, MVT::f32, Legal);
559    setOperationAction(Op, MVT::f64, Legal);
560    setOperationAction(Op, MVT::v2f16, Expand);
561  }
562  setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
563  setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
564  setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
565  setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
566
567  // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
568  // No FPOW or FREM in PTX.
569
570  // Now deduce the information based on the above mentioned
571  // actions
572  computeRegisterProperties(STI.getRegisterInfo());
573}
574
575const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
576  switch ((NVPTXISD::NodeType)Opcode) {
577  case NVPTXISD::FIRST_NUMBER:
578    break;
579  case NVPTXISD::CALL:
580    return "NVPTXISD::CALL";
581  case NVPTXISD::RET_FLAG:
582    return "NVPTXISD::RET_FLAG";
583  case NVPTXISD::LOAD_PARAM:
584    return "NVPTXISD::LOAD_PARAM";
585  case NVPTXISD::Wrapper:
586    return "NVPTXISD::Wrapper";
587  case NVPTXISD::DeclareParam:
588    return "NVPTXISD::DeclareParam";
589  case NVPTXISD::DeclareScalarParam:
590    return "NVPTXISD::DeclareScalarParam";
591  case NVPTXISD::DeclareRet:
592    return "NVPTXISD::DeclareRet";
593  case NVPTXISD::DeclareScalarRet:
594    return "NVPTXISD::DeclareScalarRet";
595  case NVPTXISD::DeclareRetParam:
596    return "NVPTXISD::DeclareRetParam";
597  case NVPTXISD::PrintCall:
598    return "NVPTXISD::PrintCall";
599  case NVPTXISD::PrintConvergentCall:
600    return "NVPTXISD::PrintConvergentCall";
601  case NVPTXISD::PrintCallUni:
602    return "NVPTXISD::PrintCallUni";
603  case NVPTXISD::PrintConvergentCallUni:
604    return "NVPTXISD::PrintConvergentCallUni";
605  case NVPTXISD::LoadParam:
606    return "NVPTXISD::LoadParam";
607  case NVPTXISD::LoadParamV2:
608    return "NVPTXISD::LoadParamV2";
609  case NVPTXISD::LoadParamV4:
610    return "NVPTXISD::LoadParamV4";
611  case NVPTXISD::StoreParam:
612    return "NVPTXISD::StoreParam";
613  case NVPTXISD::StoreParamV2:
614    return "NVPTXISD::StoreParamV2";
615  case NVPTXISD::StoreParamV4:
616    return "NVPTXISD::StoreParamV4";
617  case NVPTXISD::StoreParamS32:
618    return "NVPTXISD::StoreParamS32";
619  case NVPTXISD::StoreParamU32:
620    return "NVPTXISD::StoreParamU32";
621  case NVPTXISD::CallArgBegin:
622    return "NVPTXISD::CallArgBegin";
623  case NVPTXISD::CallArg:
624    return "NVPTXISD::CallArg";
625  case NVPTXISD::LastCallArg:
626    return "NVPTXISD::LastCallArg";
627  case NVPTXISD::CallArgEnd:
628    return "NVPTXISD::CallArgEnd";
629  case NVPTXISD::CallVoid:
630    return "NVPTXISD::CallVoid";
631  case NVPTXISD::CallVal:
632    return "NVPTXISD::CallVal";
633  case NVPTXISD::CallSymbol:
634    return "NVPTXISD::CallSymbol";
635  case NVPTXISD::Prototype:
636    return "NVPTXISD::Prototype";
637  case NVPTXISD::MoveParam:
638    return "NVPTXISD::MoveParam";
639  case NVPTXISD::StoreRetval:
640    return "NVPTXISD::StoreRetval";
641  case NVPTXISD::StoreRetvalV2:
642    return "NVPTXISD::StoreRetvalV2";
643  case NVPTXISD::StoreRetvalV4:
644    return "NVPTXISD::StoreRetvalV4";
645  case NVPTXISD::PseudoUseParam:
646    return "NVPTXISD::PseudoUseParam";
647  case NVPTXISD::RETURN:
648    return "NVPTXISD::RETURN";
649  case NVPTXISD::CallSeqBegin:
650    return "NVPTXISD::CallSeqBegin";
651  case NVPTXISD::CallSeqEnd:
652    return "NVPTXISD::CallSeqEnd";
653  case NVPTXISD::CallPrototype:
654    return "NVPTXISD::CallPrototype";
655  case NVPTXISD::ProxyReg:
656    return "NVPTXISD::ProxyReg";
657  case NVPTXISD::LoadV2:
658    return "NVPTXISD::LoadV2";
659  case NVPTXISD::LoadV4:
660    return "NVPTXISD::LoadV4";
661  case NVPTXISD::LDGV2:
662    return "NVPTXISD::LDGV2";
663  case NVPTXISD::LDGV4:
664    return "NVPTXISD::LDGV4";
665  case NVPTXISD::LDUV2:
666    return "NVPTXISD::LDUV2";
667  case NVPTXISD::LDUV4:
668    return "NVPTXISD::LDUV4";
669  case NVPTXISD::StoreV2:
670    return "NVPTXISD::StoreV2";
671  case NVPTXISD::StoreV4:
672    return "NVPTXISD::StoreV4";
673  case NVPTXISD::FUN_SHFL_CLAMP:
674    return "NVPTXISD::FUN_SHFL_CLAMP";
675  case NVPTXISD::FUN_SHFR_CLAMP:
676    return "NVPTXISD::FUN_SHFR_CLAMP";
677  case NVPTXISD::IMAD:
678    return "NVPTXISD::IMAD";
679  case NVPTXISD::SETP_F16X2:
680    return "NVPTXISD::SETP_F16X2";
681  case NVPTXISD::Dummy:
682    return "NVPTXISD::Dummy";
683  case NVPTXISD::MUL_WIDE_SIGNED:
684    return "NVPTXISD::MUL_WIDE_SIGNED";
685  case NVPTXISD::MUL_WIDE_UNSIGNED:
686    return "NVPTXISD::MUL_WIDE_UNSIGNED";
687  case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
688  case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
689  case NVPTXISD::Tex1DFloatFloatLevel:
690    return "NVPTXISD::Tex1DFloatFloatLevel";
691  case NVPTXISD::Tex1DFloatFloatGrad:
692    return "NVPTXISD::Tex1DFloatFloatGrad";
693  case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
694  case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
695  case NVPTXISD::Tex1DS32FloatLevel:
696    return "NVPTXISD::Tex1DS32FloatLevel";
697  case NVPTXISD::Tex1DS32FloatGrad:
698    return "NVPTXISD::Tex1DS32FloatGrad";
699  case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
700  case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
701  case NVPTXISD::Tex1DU32FloatLevel:
702    return "NVPTXISD::Tex1DU32FloatLevel";
703  case NVPTXISD::Tex1DU32FloatGrad:
704    return "NVPTXISD::Tex1DU32FloatGrad";
705  case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
706  case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
707  case NVPTXISD::Tex1DArrayFloatFloatLevel:
708    return "NVPTXISD::Tex1DArrayFloatFloatLevel";
709  case NVPTXISD::Tex1DArrayFloatFloatGrad:
710    return "NVPTXISD::Tex1DArrayFloatFloatGrad";
711  case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
712  case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
713  case NVPTXISD::Tex1DArrayS32FloatLevel:
714    return "NVPTXISD::Tex1DArrayS32FloatLevel";
715  case NVPTXISD::Tex1DArrayS32FloatGrad:
716    return "NVPTXISD::Tex1DArrayS32FloatGrad";
717  case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
718  case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
719  case NVPTXISD::Tex1DArrayU32FloatLevel:
720    return "NVPTXISD::Tex1DArrayU32FloatLevel";
721  case NVPTXISD::Tex1DArrayU32FloatGrad:
722    return "NVPTXISD::Tex1DArrayU32FloatGrad";
723  case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
724  case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
725  case NVPTXISD::Tex2DFloatFloatLevel:
726    return "NVPTXISD::Tex2DFloatFloatLevel";
727  case NVPTXISD::Tex2DFloatFloatGrad:
728    return "NVPTXISD::Tex2DFloatFloatGrad";
729  case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
730  case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
731  case NVPTXISD::Tex2DS32FloatLevel:
732    return "NVPTXISD::Tex2DS32FloatLevel";
733  case NVPTXISD::Tex2DS32FloatGrad:
734    return "NVPTXISD::Tex2DS32FloatGrad";
735  case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
736  case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
737  case NVPTXISD::Tex2DU32FloatLevel:
738    return "NVPTXISD::Tex2DU32FloatLevel";
739  case NVPTXISD::Tex2DU32FloatGrad:
740    return "NVPTXISD::Tex2DU32FloatGrad";
741  case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
742  case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
743  case NVPTXISD::Tex2DArrayFloatFloatLevel:
744    return "NVPTXISD::Tex2DArrayFloatFloatLevel";
745  case NVPTXISD::Tex2DArrayFloatFloatGrad:
746    return "NVPTXISD::Tex2DArrayFloatFloatGrad";
747  case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
748  case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
749  case NVPTXISD::Tex2DArrayS32FloatLevel:
750    return "NVPTXISD::Tex2DArrayS32FloatLevel";
751  case NVPTXISD::Tex2DArrayS32FloatGrad:
752    return "NVPTXISD::Tex2DArrayS32FloatGrad";
753  case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
754  case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
755  case NVPTXISD::Tex2DArrayU32FloatLevel:
756    return "NVPTXISD::Tex2DArrayU32FloatLevel";
757  case NVPTXISD::Tex2DArrayU32FloatGrad:
758    return "NVPTXISD::Tex2DArrayU32FloatGrad";
759  case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
760  case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
761  case NVPTXISD::Tex3DFloatFloatLevel:
762    return "NVPTXISD::Tex3DFloatFloatLevel";
763  case NVPTXISD::Tex3DFloatFloatGrad:
764    return "NVPTXISD::Tex3DFloatFloatGrad";
765  case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
766  case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
767  case NVPTXISD::Tex3DS32FloatLevel:
768    return "NVPTXISD::Tex3DS32FloatLevel";
769  case NVPTXISD::Tex3DS32FloatGrad:
770    return "NVPTXISD::Tex3DS32FloatGrad";
771  case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
772  case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
773  case NVPTXISD::Tex3DU32FloatLevel:
774    return "NVPTXISD::Tex3DU32FloatLevel";
775  case NVPTXISD::Tex3DU32FloatGrad:
776    return "NVPTXISD::Tex3DU32FloatGrad";
777  case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
778  case NVPTXISD::TexCubeFloatFloatLevel:
779    return "NVPTXISD::TexCubeFloatFloatLevel";
780  case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
781  case NVPTXISD::TexCubeS32FloatLevel:
782    return "NVPTXISD::TexCubeS32FloatLevel";
783  case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
784  case NVPTXISD::TexCubeU32FloatLevel:
785    return "NVPTXISD::TexCubeU32FloatLevel";
786  case NVPTXISD::TexCubeArrayFloatFloat:
787    return "NVPTXISD::TexCubeArrayFloatFloat";
788  case NVPTXISD::TexCubeArrayFloatFloatLevel:
789    return "NVPTXISD::TexCubeArrayFloatFloatLevel";
790  case NVPTXISD::TexCubeArrayS32Float:
791    return "NVPTXISD::TexCubeArrayS32Float";
792  case NVPTXISD::TexCubeArrayS32FloatLevel:
793    return "NVPTXISD::TexCubeArrayS32FloatLevel";
794  case NVPTXISD::TexCubeArrayU32Float:
795    return "NVPTXISD::TexCubeArrayU32Float";
796  case NVPTXISD::TexCubeArrayU32FloatLevel:
797    return "NVPTXISD::TexCubeArrayU32FloatLevel";
798  case NVPTXISD::Tld4R2DFloatFloat:
799    return "NVPTXISD::Tld4R2DFloatFloat";
800  case NVPTXISD::Tld4G2DFloatFloat:
801    return "NVPTXISD::Tld4G2DFloatFloat";
802  case NVPTXISD::Tld4B2DFloatFloat:
803    return "NVPTXISD::Tld4B2DFloatFloat";
804  case NVPTXISD::Tld4A2DFloatFloat:
805    return "NVPTXISD::Tld4A2DFloatFloat";
806  case NVPTXISD::Tld4R2DS64Float:
807    return "NVPTXISD::Tld4R2DS64Float";
808  case NVPTXISD::Tld4G2DS64Float:
809    return "NVPTXISD::Tld4G2DS64Float";
810  case NVPTXISD::Tld4B2DS64Float:
811    return "NVPTXISD::Tld4B2DS64Float";
812  case NVPTXISD::Tld4A2DS64Float:
813    return "NVPTXISD::Tld4A2DS64Float";
814  case NVPTXISD::Tld4R2DU64Float:
815    return "NVPTXISD::Tld4R2DU64Float";
816  case NVPTXISD::Tld4G2DU64Float:
817    return "NVPTXISD::Tld4G2DU64Float";
818  case NVPTXISD::Tld4B2DU64Float:
819    return "NVPTXISD::Tld4B2DU64Float";
820  case NVPTXISD::Tld4A2DU64Float:
821    return "NVPTXISD::Tld4A2DU64Float";
822
823  case NVPTXISD::TexUnified1DFloatS32:
824    return "NVPTXISD::TexUnified1DFloatS32";
825  case NVPTXISD::TexUnified1DFloatFloat:
826    return "NVPTXISD::TexUnified1DFloatFloat";
827  case NVPTXISD::TexUnified1DFloatFloatLevel:
828    return "NVPTXISD::TexUnified1DFloatFloatLevel";
829  case NVPTXISD::TexUnified1DFloatFloatGrad:
830    return "NVPTXISD::TexUnified1DFloatFloatGrad";
831  case NVPTXISD::TexUnified1DS32S32:
832    return "NVPTXISD::TexUnified1DS32S32";
833  case NVPTXISD::TexUnified1DS32Float:
834    return "NVPTXISD::TexUnified1DS32Float";
835  case NVPTXISD::TexUnified1DS32FloatLevel:
836    return "NVPTXISD::TexUnified1DS32FloatLevel";
837  case NVPTXISD::TexUnified1DS32FloatGrad:
838    return "NVPTXISD::TexUnified1DS32FloatGrad";
839  case NVPTXISD::TexUnified1DU32S32:
840    return "NVPTXISD::TexUnified1DU32S32";
841  case NVPTXISD::TexUnified1DU32Float:
842    return "NVPTXISD::TexUnified1DU32Float";
843  case NVPTXISD::TexUnified1DU32FloatLevel:
844    return "NVPTXISD::TexUnified1DU32FloatLevel";
845  case NVPTXISD::TexUnified1DU32FloatGrad:
846    return "NVPTXISD::TexUnified1DU32FloatGrad";
847  case NVPTXISD::TexUnified1DArrayFloatS32:
848    return "NVPTXISD::TexUnified1DArrayFloatS32";
849  case NVPTXISD::TexUnified1DArrayFloatFloat:
850    return "NVPTXISD::TexUnified1DArrayFloatFloat";
851  case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
852    return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
853  case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
854    return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
855  case NVPTXISD::TexUnified1DArrayS32S32:
856    return "NVPTXISD::TexUnified1DArrayS32S32";
857  case NVPTXISD::TexUnified1DArrayS32Float:
858    return "NVPTXISD::TexUnified1DArrayS32Float";
859  case NVPTXISD::TexUnified1DArrayS32FloatLevel:
860    return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
861  case NVPTXISD::TexUnified1DArrayS32FloatGrad:
862    return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
863  case NVPTXISD::TexUnified1DArrayU32S32:
864    return "NVPTXISD::TexUnified1DArrayU32S32";
865  case NVPTXISD::TexUnified1DArrayU32Float:
866    return "NVPTXISD::TexUnified1DArrayU32Float";
867  case NVPTXISD::TexUnified1DArrayU32FloatLevel:
868    return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
869  case NVPTXISD::TexUnified1DArrayU32FloatGrad:
870    return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
871  case NVPTXISD::TexUnified2DFloatS32:
872    return "NVPTXISD::TexUnified2DFloatS32";
873  case NVPTXISD::TexUnified2DFloatFloat:
874    return "NVPTXISD::TexUnified2DFloatFloat";
875  case NVPTXISD::TexUnified2DFloatFloatLevel:
876    return "NVPTXISD::TexUnified2DFloatFloatLevel";
877  case NVPTXISD::TexUnified2DFloatFloatGrad:
878    return "NVPTXISD::TexUnified2DFloatFloatGrad";
879  case NVPTXISD::TexUnified2DS32S32:
880    return "NVPTXISD::TexUnified2DS32S32";
881  case NVPTXISD::TexUnified2DS32Float:
882    return "NVPTXISD::TexUnified2DS32Float";
883  case NVPTXISD::TexUnified2DS32FloatLevel:
884    return "NVPTXISD::TexUnified2DS32FloatLevel";
885  case NVPTXISD::TexUnified2DS32FloatGrad:
886    return "NVPTXISD::TexUnified2DS32FloatGrad";
887  case NVPTXISD::TexUnified2DU32S32:
888    return "NVPTXISD::TexUnified2DU32S32";
889  case NVPTXISD::TexUnified2DU32Float:
890    return "NVPTXISD::TexUnified2DU32Float";
891  case NVPTXISD::TexUnified2DU32FloatLevel:
892    return "NVPTXISD::TexUnified2DU32FloatLevel";
893  case NVPTXISD::TexUnified2DU32FloatGrad:
894    return "NVPTXISD::TexUnified2DU32FloatGrad";
895  case NVPTXISD::TexUnified2DArrayFloatS32:
896    return "NVPTXISD::TexUnified2DArrayFloatS32";
897  case NVPTXISD::TexUnified2DArrayFloatFloat:
898    return "NVPTXISD::TexUnified2DArrayFloatFloat";
899  case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
900    return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
901  case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
902    return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
903  case NVPTXISD::TexUnified2DArrayS32S32:
904    return "NVPTXISD::TexUnified2DArrayS32S32";
905  case NVPTXISD::TexUnified2DArrayS32Float:
906    return "NVPTXISD::TexUnified2DArrayS32Float";
907  case NVPTXISD::TexUnified2DArrayS32FloatLevel:
908    return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
909  case NVPTXISD::TexUnified2DArrayS32FloatGrad:
910    return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
911  case NVPTXISD::TexUnified2DArrayU32S32:
912    return "NVPTXISD::TexUnified2DArrayU32S32";
913  case NVPTXISD::TexUnified2DArrayU32Float:
914    return "NVPTXISD::TexUnified2DArrayU32Float";
915  case NVPTXISD::TexUnified2DArrayU32FloatLevel:
916    return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
917  case NVPTXISD::TexUnified2DArrayU32FloatGrad:
918    return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
919  case NVPTXISD::TexUnified3DFloatS32:
920    return "NVPTXISD::TexUnified3DFloatS32";
921  case NVPTXISD::TexUnified3DFloatFloat:
922    return "NVPTXISD::TexUnified3DFloatFloat";
923  case NVPTXISD::TexUnified3DFloatFloatLevel:
924    return "NVPTXISD::TexUnified3DFloatFloatLevel";
925  case NVPTXISD::TexUnified3DFloatFloatGrad:
926    return "NVPTXISD::TexUnified3DFloatFloatGrad";
927  case NVPTXISD::TexUnified3DS32S32:
928    return "NVPTXISD::TexUnified3DS32S32";
929  case NVPTXISD::TexUnified3DS32Float:
930    return "NVPTXISD::TexUnified3DS32Float";
931  case NVPTXISD::TexUnified3DS32FloatLevel:
932    return "NVPTXISD::TexUnified3DS32FloatLevel";
933  case NVPTXISD::TexUnified3DS32FloatGrad:
934    return "NVPTXISD::TexUnified3DS32FloatGrad";
935  case NVPTXISD::TexUnified3DU32S32:
936    return "NVPTXISD::TexUnified3DU32S32";
937  case NVPTXISD::TexUnified3DU32Float:
938    return "NVPTXISD::TexUnified3DU32Float";
939  case NVPTXISD::TexUnified3DU32FloatLevel:
940    return "NVPTXISD::TexUnified3DU32FloatLevel";
941  case NVPTXISD::TexUnified3DU32FloatGrad:
942    return "NVPTXISD::TexUnified3DU32FloatGrad";
943  case NVPTXISD::TexUnifiedCubeFloatFloat:
944    return "NVPTXISD::TexUnifiedCubeFloatFloat";
945  case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
946    return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
947  case NVPTXISD::TexUnifiedCubeS32Float:
948    return "NVPTXISD::TexUnifiedCubeS32Float";
949  case NVPTXISD::TexUnifiedCubeS32FloatLevel:
950    return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
951  case NVPTXISD::TexUnifiedCubeU32Float:
952    return "NVPTXISD::TexUnifiedCubeU32Float";
953  case NVPTXISD::TexUnifiedCubeU32FloatLevel:
954    return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
955  case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
956    return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
957  case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
958    return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
959  case NVPTXISD::TexUnifiedCubeArrayS32Float:
960    return "NVPTXISD::TexUnifiedCubeArrayS32Float";
961  case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
962    return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
963  case NVPTXISD::TexUnifiedCubeArrayU32Float:
964    return "NVPTXISD::TexUnifiedCubeArrayU32Float";
965  case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
966    return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
967  case NVPTXISD::Tld4UnifiedR2DFloatFloat:
968    return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
969  case NVPTXISD::Tld4UnifiedG2DFloatFloat:
970    return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
971  case NVPTXISD::Tld4UnifiedB2DFloatFloat:
972    return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
973  case NVPTXISD::Tld4UnifiedA2DFloatFloat:
974    return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
975  case NVPTXISD::Tld4UnifiedR2DS64Float:
976    return "NVPTXISD::Tld4UnifiedR2DS64Float";
977  case NVPTXISD::Tld4UnifiedG2DS64Float:
978    return "NVPTXISD::Tld4UnifiedG2DS64Float";
979  case NVPTXISD::Tld4UnifiedB2DS64Float:
980    return "NVPTXISD::Tld4UnifiedB2DS64Float";
981  case NVPTXISD::Tld4UnifiedA2DS64Float:
982    return "NVPTXISD::Tld4UnifiedA2DS64Float";
983  case NVPTXISD::Tld4UnifiedR2DU64Float:
984    return "NVPTXISD::Tld4UnifiedR2DU64Float";
985  case NVPTXISD::Tld4UnifiedG2DU64Float:
986    return "NVPTXISD::Tld4UnifiedG2DU64Float";
987  case NVPTXISD::Tld4UnifiedB2DU64Float:
988    return "NVPTXISD::Tld4UnifiedB2DU64Float";
989  case NVPTXISD::Tld4UnifiedA2DU64Float:
990    return "NVPTXISD::Tld4UnifiedA2DU64Float";
991
992  case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
993  case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
994  case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
995  case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
996  case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
997  case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
998  case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
999  case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
1000  case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
1001  case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
1002  case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
1003
1004  case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
1005  case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
1006  case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
1007  case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
1008  case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
1009  case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
1010  case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
1011  case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
1012  case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
1013  case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
1014  case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
1015
1016  case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
1017  case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
1018  case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
1019  case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
1020  case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
1021  case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
1022  case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
1023  case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
1024  case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
1025  case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
1026  case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
1027
1028  case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
1029  case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
1030  case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
1031  case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
1032  case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
1033  case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
1034  case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
1035  case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
1036  case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
1037  case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
1038  case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
1039
1040  case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
1041  case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
1042  case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
1043  case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
1044  case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
1045  case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
1046  case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
1047  case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
1048  case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
1049  case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
1050  case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
1051
1052  case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
1053  case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
1054  case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
1055  case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
1056  case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
1057  case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
1058  case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
1059  case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
1060  case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
1061  case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
1062  case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
1063
1064  case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
1065  case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
1066  case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
1067  case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
1068  case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
1069  case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
1070  case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
1071  case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
1072  case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
1073  case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
1074  case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
1075
1076  case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
1077  case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
1078  case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
1079  case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
1080  case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
1081  case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
1082  case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
1083  case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
1084  case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
1085  case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
1086  case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
1087
1088  case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
1089  case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
1090  case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
1091  case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
1092  case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
1093  case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
1094  case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
1095  case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
1096  case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
1097  case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
1098  case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
1099
1100  case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
1101  case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
1102  case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
1103  case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
1104  case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
1105  case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
1106  case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
1107  case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
1108  case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
1109  case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
1110  case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
1111
1112  case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
1113  case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
1114  case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
1115  case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
1116  case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
1117  case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
1118  case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
1119  case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
1120  case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
1121  case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
1122  case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
1123
1124  case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
1125  case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
1126  case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
1127  case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
1128  case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
1129  case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
1130  case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
1131  case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
1132  case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
1133  case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
1134  case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
1135
1136  case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
1137  case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
1138  case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
1139  case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
1140  case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
1141  case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
1142  case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
1143  case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
1144  case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
1145  case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
1146  case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
1147
1148  case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
1149  case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
1150  case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
1151  case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
1152  case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
1153  case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
1154  case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
1155  case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
1156  case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
1157  case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
1158  case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
1159
1160  case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
1161  case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
1162  case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
1163  case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
1164  case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
1165  case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
1166  case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
1167  case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
1168  case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
1169  case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
1170  case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
1171  }
1172  return nullptr;
1173}
1174
1175TargetLoweringBase::LegalizeTypeAction
1176NVPTXTargetLowering::getPreferredVectorAction(MVT VT) const {
1177  if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
1178    return TypeSplitVector;
1179  if (VT == MVT::v2f16)
1180    return TypeLegal;
1181  return TargetLoweringBase::getPreferredVectorAction(VT);
1182}
1183
1184SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1185                                             int Enabled, int &ExtraSteps,
1186                                             bool &UseOneConst,
1187                                             bool Reciprocal) const {
1188  if (!(Enabled == ReciprocalEstimate::Enabled ||
1189        (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1190    return SDValue();
1191
1192  if (ExtraSteps == ReciprocalEstimate::Unspecified)
1193    ExtraSteps = 0;
1194
1195  SDLoc DL(Operand);
1196  EVT VT = Operand.getValueType();
1197  bool Ftz = useF32FTZ(DAG.getMachineFunction());
1198
1199  auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1200    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1201                       DAG.getConstant(IID, DL, MVT::i32), Operand);
1202  };
1203
1204  // The sqrt and rsqrt refinement processes assume we always start out with an
1205  // approximation of the rsqrt.  Therefore, if we're going to do any refinement
1206  // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
1207  // any refinement, we must return a regular sqrt.
1208  if (Reciprocal || ExtraSteps > 0) {
1209    if (VT == MVT::f32)
1210      return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1211                                   : Intrinsic::nvvm_rsqrt_approx_f);
1212    else if (VT == MVT::f64)
1213      return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1214    else
1215      return SDValue();
1216  } else {
1217    if (VT == MVT::f32)
1218      return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1219                                   : Intrinsic::nvvm_sqrt_approx_f);
1220    else {
1221      // There's no sqrt.approx.f64 instruction, so we emit
1222      // reciprocal(rsqrt(x)).  This is faster than
1223      // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
1224      // x * rsqrt(x).)
1225      return DAG.getNode(
1226          ISD::INTRINSIC_WO_CHAIN, DL, VT,
1227          DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1228          MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1229    }
1230  }
1231}
1232
1233SDValue
1234NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1235  SDLoc dl(Op);
1236  const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
1237  auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
1238  Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
1239  return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1240}
1241
1242std::string NVPTXTargetLowering::getPrototype(
1243    const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1244    const SmallVectorImpl<ISD::OutputArg> &Outs, MaybeAlign retAlignment,
1245    const CallBase &CB) const {
1246  auto PtrVT = getPointerTy(DL);
1247
1248  bool isABI = (STI.getSmVersion() >= 20);
1249  assert(isABI && "Non-ABI compilation is not supported");
1250  if (!isABI)
1251    return "";
1252
1253  std::stringstream O;
1254  O << "prototype_" << uniqueCallSite << " : .callprototype ";
1255
1256  if (retTy->getTypeID() == Type::VoidTyID) {
1257    O << "()";
1258  } else {
1259    O << "(";
1260    if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
1261      unsigned size = 0;
1262      if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1263        size = ITy->getBitWidth();
1264      } else {
1265        assert(retTy->isFloatingPointTy() &&
1266               "Floating point type expected here");
1267        size = retTy->getPrimitiveSizeInBits();
1268      }
1269      // PTX ABI requires all scalar return values to be at least 32
1270      // bits in size.  fp16 normally uses .b16 as its storage type in
1271      // PTX, so its size must be adjusted here, too.
1272      if (size < 32)
1273        size = 32;
1274
1275      O << ".param .b" << size << " _";
1276    } else if (isa<PointerType>(retTy)) {
1277      O << ".param .b" << PtrVT.getSizeInBits() << " _";
1278    } else if (retTy->isAggregateType() || retTy->isVectorTy() ||
1279               retTy->isIntegerTy(128)) {
1280      O << ".param .align " << (retAlignment ? retAlignment->value() : 0)
1281        << " .b8 _[" << DL.getTypeAllocSize(retTy) << "]";
1282    } else {
1283      llvm_unreachable("Unknown return type");
1284    }
1285    O << ") ";
1286  }
1287  O << "_ (";
1288
1289  bool first = true;
1290
1291  unsigned OIdx = 0;
1292  for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1293    Type *Ty = Args[i].Ty;
1294    if (!first) {
1295      O << ", ";
1296    }
1297    first = false;
1298
1299    if (!Outs[OIdx].Flags.isByVal()) {
1300      if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1301        unsigned align = 0;
1302        const CallInst *CallI = cast<CallInst>(&CB);
1303        // +1 because index 0 is reserved for return type alignment
1304        if (!getAlign(*CallI, i + 1, align))
1305          align = DL.getABITypeAlignment(Ty);
1306        unsigned sz = DL.getTypeAllocSize(Ty);
1307        O << ".param .align " << align << " .b8 ";
1308        O << "_";
1309        O << "[" << sz << "]";
1310        // update the index for Outs
1311        SmallVector<EVT, 16> vtparts;
1312        ComputeValueVTs(*this, DL, Ty, vtparts);
1313        if (unsigned len = vtparts.size())
1314          OIdx += len - 1;
1315        continue;
1316      }
1317      // i8 types in IR will be i16 types in SDAG
1318      assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
1319              (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
1320             "type mismatch between callee prototype and arguments");
1321      // scalar type
1322      unsigned sz = 0;
1323      if (isa<IntegerType>(Ty)) {
1324        sz = cast<IntegerType>(Ty)->getBitWidth();
1325        if (sz < 32)
1326          sz = 32;
1327      } else if (isa<PointerType>(Ty)) {
1328        sz = PtrVT.getSizeInBits();
1329      } else if (Ty->isHalfTy())
1330        // PTX ABI requires all scalar parameters to be at least 32
1331        // bits in size.  fp16 normally uses .b16 as its storage type
1332        // in PTX, so its size must be adjusted here, too.
1333        sz = 32;
1334      else
1335        sz = Ty->getPrimitiveSizeInBits();
1336      O << ".param .b" << sz << " ";
1337      O << "_";
1338      continue;
1339    }
1340    auto *PTy = dyn_cast<PointerType>(Ty);
1341    assert(PTy && "Param with byval attribute should be a pointer type");
1342    Type *ETy = PTy->getElementType();
1343
1344    Align align = Outs[OIdx].Flags.getNonZeroByValAlign();
1345    unsigned sz = DL.getTypeAllocSize(ETy);
1346    O << ".param .align " << align.value() << " .b8 ";
1347    O << "_";
1348    O << "[" << sz << "]";
1349  }
1350  O << ");";
1351  return O.str();
1352}
1353
1354Align NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1355                                                const CallBase *CB, Type *Ty,
1356                                                unsigned Idx,
1357                                                const DataLayout &DL) const {
1358  if (!CB) {
1359    // CallSite is zero, fallback to ABI type alignment
1360    return DL.getABITypeAlign(Ty);
1361  }
1362
1363  unsigned Alignment = 0;
1364  const Function *DirectCallee = CB->getCalledFunction();
1365
1366  if (!DirectCallee) {
1367    // We don't have a direct function symbol, but that may be because of
1368    // constant cast instructions in the call.
1369
1370    // With bitcast'd call targets, the instruction will be the call
1371    if (const auto *CI = dyn_cast<CallInst>(CB)) {
1372      // Check if we have call alignment metadata
1373      if (getAlign(*CI, Idx, Alignment))
1374        return Align(Alignment);
1375
1376      const Value *CalleeV = CI->getCalledOperand();
1377      // Ignore any bitcast instructions
1378      while (isa<ConstantExpr>(CalleeV)) {
1379        const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1380        if (!CE->isCast())
1381          break;
1382        // Look through the bitcast
1383        CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1384      }
1385
1386      // We have now looked past all of the bitcasts.  Do we finally have a
1387      // Function?
1388      if (const auto *CalleeF = dyn_cast<Function>(CalleeV))
1389        DirectCallee = CalleeF;
1390    }
1391  }
1392
1393  // Check for function alignment information if we found that the
1394  // ultimate target is a Function
1395  if (DirectCallee)
1396    if (getAlign(*DirectCallee, Idx, Alignment))
1397      return Align(Alignment);
1398
1399  // Call is indirect or alignment information is not available, fall back to
1400  // the ABI type alignment
1401  return DL.getABITypeAlign(Ty);
1402}
1403
1404SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1405                                       SmallVectorImpl<SDValue> &InVals) const {
1406  SelectionDAG &DAG = CLI.DAG;
1407  SDLoc dl = CLI.DL;
1408  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1409  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1410  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1411  SDValue Chain = CLI.Chain;
1412  SDValue Callee = CLI.Callee;
1413  bool &isTailCall = CLI.IsTailCall;
1414  ArgListTy &Args = CLI.getArgs();
1415  Type *RetTy = CLI.RetTy;
1416  const CallBase *CB = CLI.CB;
1417  const DataLayout &DL = DAG.getDataLayout();
1418
1419  bool isABI = (STI.getSmVersion() >= 20);
1420  assert(isABI && "Non-ABI compilation is not supported");
1421  if (!isABI)
1422    return Chain;
1423
1424  SDValue tempChain = Chain;
1425  Chain = DAG.getCALLSEQ_START(Chain, uniqueCallSite, 0, dl);
1426  SDValue InFlag = Chain.getValue(1);
1427
1428  unsigned paramCount = 0;
1429  // Args.size() and Outs.size() need not match.
1430  // Outs.size() will be larger
1431  //   * if there is an aggregate argument with multiple fields (each field
1432  //     showing up separately in Outs)
1433  //   * if there is a vector argument with more than typical vector-length
1434  //     elements (generally if more than 4) where each vector element is
1435  //     individually present in Outs.
1436  // So a different index should be used for indexing into Outs/OutVals.
1437  // See similar issue in LowerFormalArguments.
1438  unsigned OIdx = 0;
1439  // Declare the .params or .reg need to pass values
1440  // to the function
1441  for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1442    EVT VT = Outs[OIdx].VT;
1443    Type *Ty = Args[i].Ty;
1444
1445    if (!Outs[OIdx].Flags.isByVal()) {
1446      SmallVector<EVT, 16> VTs;
1447      SmallVector<uint64_t, 16> Offsets;
1448      ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
1449      Align ArgAlign = getArgumentAlignment(Callee, CB, Ty, paramCount + 1, DL);
1450      unsigned AllocSize = DL.getTypeAllocSize(Ty);
1451      SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1452      bool NeedAlign; // Does argument declaration specify alignment?
1453      if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
1454        // declare .param .align <align> .b8 .param<n>[<size>];
1455        SDValue DeclareParamOps[] = {
1456            Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1457            DAG.getConstant(paramCount, dl, MVT::i32),
1458            DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
1459        Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1460                            DeclareParamOps);
1461        NeedAlign = true;
1462      } else {
1463        // declare .param .b<size> .param<n>;
1464        if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
1465          // PTX ABI requires integral types to be at least 32 bits in
1466          // size. FP16 is loaded/stored using i16, so it's handled
1467          // here as well.
1468          AllocSize = 4;
1469        }
1470        SDValue DeclareScalarParamOps[] = {
1471            Chain, DAG.getConstant(paramCount, dl, MVT::i32),
1472            DAG.getConstant(AllocSize * 8, dl, MVT::i32),
1473            DAG.getConstant(0, dl, MVT::i32), InFlag};
1474        Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1475                            DeclareScalarParamOps);
1476        NeedAlign = false;
1477      }
1478      InFlag = Chain.getValue(1);
1479
1480      // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
1481      // than 32-bits are sign extended or zero extended, depending on
1482      // whether they are signed or unsigned types. This case applies
1483      // only to scalar parameters and not to aggregate values.
1484      bool ExtendIntegerParam =
1485          Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
1486
1487      auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
1488      SmallVector<SDValue, 6> StoreOperands;
1489      for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1490        // New store.
1491        if (VectorInfo[j] & PVF_FIRST) {
1492          assert(StoreOperands.empty() && "Unfinished preceding store.");
1493          StoreOperands.push_back(Chain);
1494          StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1495          StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
1496        }
1497
1498        EVT EltVT = VTs[j];
1499        SDValue StVal = OutVals[OIdx];
1500        if (ExtendIntegerParam) {
1501          assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
1502          // zext/sext to i32
1503          StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
1504                                                        : ISD::ZERO_EXTEND,
1505                              dl, MVT::i32, StVal);
1506        } else if (EltVT.getSizeInBits() < 16) {
1507          // Use 16-bit registers for small stores as it's the
1508          // smallest general purpose register size supported by NVPTX.
1509          StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1510        }
1511
1512        // Record the value to store.
1513        StoreOperands.push_back(StVal);
1514
1515        if (VectorInfo[j] & PVF_LAST) {
1516          unsigned NumElts = StoreOperands.size() - 3;
1517          NVPTXISD::NodeType Op;
1518          switch (NumElts) {
1519          case 1:
1520            Op = NVPTXISD::StoreParam;
1521            break;
1522          case 2:
1523            Op = NVPTXISD::StoreParamV2;
1524            break;
1525          case 4:
1526            Op = NVPTXISD::StoreParamV4;
1527            break;
1528          default:
1529            llvm_unreachable("Invalid vector info.");
1530          }
1531
1532          StoreOperands.push_back(InFlag);
1533
1534          // Adjust type of the store op if we've extended the scalar
1535          // return value.
1536          EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
1537          MaybeAlign EltAlign;
1538          if (NeedAlign)
1539            EltAlign = commonAlignment(ArgAlign, Offsets[j]);
1540
1541          Chain = DAG.getMemIntrinsicNode(
1542              Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
1543              TheStoreType, MachinePointerInfo(), EltAlign,
1544              MachineMemOperand::MOStore);
1545          InFlag = Chain.getValue(1);
1546
1547          // Cleanup.
1548          StoreOperands.clear();
1549        }
1550        ++OIdx;
1551      }
1552      assert(StoreOperands.empty() && "Unfinished parameter store.");
1553      if (VTs.size() > 0)
1554        --OIdx;
1555      ++paramCount;
1556      continue;
1557    }
1558
1559    // ByVal arguments
1560    SmallVector<EVT, 16> VTs;
1561    SmallVector<uint64_t, 16> Offsets;
1562    auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1563    assert(PTy && "Type of a byval parameter should be pointer");
1564    ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0);
1565
1566    // declare .param .align <align> .b8 .param<n>[<size>];
1567    unsigned sz = Outs[OIdx].Flags.getByValSize();
1568    SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1569    Align ArgAlign = Outs[OIdx].Flags.getNonZeroByValAlign();
1570    // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1571    // so we don't need to worry about natural alignment or not.
1572    // See TargetLowering::LowerCallTo().
1573
1574    // Enforce minumum alignment of 4 to work around ptxas miscompile
1575    // for sm_50+. See corresponding alignment adjustment in
1576    // emitFunctionParamList() for details.
1577    if (ArgAlign < Align(4))
1578      ArgAlign = Align(4);
1579    SDValue DeclareParamOps[] = {
1580        Chain, DAG.getConstant(ArgAlign.value(), dl, MVT::i32),
1581        DAG.getConstant(paramCount, dl, MVT::i32),
1582        DAG.getConstant(sz, dl, MVT::i32), InFlag};
1583    Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1584                        DeclareParamOps);
1585    InFlag = Chain.getValue(1);
1586    for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
1587      EVT elemtype = VTs[j];
1588      int curOffset = Offsets[j];
1589      unsigned PartAlign = GreatestCommonDivisor64(ArgAlign.value(), curOffset);
1590      auto PtrVT = getPointerTy(DL);
1591      SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1592                                    DAG.getConstant(curOffset, dl, PtrVT));
1593      SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1594                                   MachinePointerInfo(), PartAlign);
1595      if (elemtype.getSizeInBits() < 16) {
1596        theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1597      }
1598      SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1599      SDValue CopyParamOps[] = { Chain,
1600                                 DAG.getConstant(paramCount, dl, MVT::i32),
1601                                 DAG.getConstant(curOffset, dl, MVT::i32),
1602                                 theVal, InFlag };
1603      Chain = DAG.getMemIntrinsicNode(
1604          NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, elemtype,
1605          MachinePointerInfo(), /* Align */ None, MachineMemOperand::MOStore);
1606
1607      InFlag = Chain.getValue(1);
1608    }
1609    ++paramCount;
1610  }
1611
1612  GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1613  MaybeAlign retAlignment = None;
1614
1615  // Handle Result
1616  if (Ins.size() > 0) {
1617    SmallVector<EVT, 16> resvtparts;
1618    ComputeValueVTs(*this, DL, RetTy, resvtparts);
1619
1620    // Declare
1621    //  .param .align 16 .b8 retval0[<size-in-bytes>], or
1622    //  .param .b<size-in-bits> retval0
1623    unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
1624    // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1625    // these three types to match the logic in
1626    // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1627    // Plus, this behavior is consistent with nvcc's.
1628    if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
1629        (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
1630      // Scalar needs to be at least 32bit wide
1631      if (resultsz < 32)
1632        resultsz = 32;
1633      SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1634      SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1635                                  DAG.getConstant(resultsz, dl, MVT::i32),
1636                                  DAG.getConstant(0, dl, MVT::i32), InFlag };
1637      Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1638                          DeclareRetOps);
1639      InFlag = Chain.getValue(1);
1640    } else {
1641      retAlignment = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1642      assert(retAlignment && "retAlignment is guaranteed to be set");
1643      SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1644      SDValue DeclareRetOps[] = {
1645          Chain, DAG.getConstant(retAlignment->value(), dl, MVT::i32),
1646          DAG.getConstant(resultsz / 8, dl, MVT::i32),
1647          DAG.getConstant(0, dl, MVT::i32), InFlag};
1648      Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1649                          DeclareRetOps);
1650      InFlag = Chain.getValue(1);
1651    }
1652  }
1653
1654  // Both indirect calls and libcalls have nullptr Func. In order to distinguish
1655  // between them we must rely on the call site value which is valid for
1656  // indirect calls but is always null for libcalls.
1657  bool isIndirectCall = !Func && CB;
1658
1659  if (isa<ExternalSymbolSDNode>(Callee)) {
1660    Function* CalleeFunc = nullptr;
1661
1662    // Try to find the callee in the current module.
1663    Callee = DAG.getSymbolFunctionGlobalAddress(Callee, &CalleeFunc);
1664    assert(CalleeFunc != nullptr && "Libcall callee must be set.");
1665
1666    // Set the "libcall callee" attribute to indicate that the function
1667    // must always have a declaration.
1668    CalleeFunc->addFnAttr("nvptx-libcall-callee", "true");
1669  }
1670
1671  if (isIndirectCall) {
1672    // This is indirect function call case : PTX requires a prototype of the
1673    // form
1674    // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1675    // to be emitted, and the label has to used as the last arg of call
1676    // instruction.
1677    // The prototype is embedded in a string and put as the operand for a
1678    // CallPrototype SDNode which will print out to the value of the string.
1679    SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1680    std::string Proto = getPrototype(DL, RetTy, Args, Outs, retAlignment, *CB);
1681    const char *ProtoStr =
1682      nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1683    SDValue ProtoOps[] = {
1684      Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1685    };
1686    Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1687    InFlag = Chain.getValue(1);
1688  }
1689  // Op to just print "call"
1690  SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1691  SDValue PrintCallOps[] = {
1692    Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1693  };
1694  // We model convergent calls as separate opcodes.
1695  unsigned Opcode = isIndirectCall ? NVPTXISD::PrintCall : NVPTXISD::PrintCallUni;
1696  if (CLI.IsConvergent)
1697    Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1698                                              : NVPTXISD::PrintConvergentCall;
1699  Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1700  InFlag = Chain.getValue(1);
1701
1702  // Ops to print out the function name
1703  SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1704  SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1705  Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1706  InFlag = Chain.getValue(1);
1707
1708  // Ops to print out the param list
1709  SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1710  SDValue CallArgBeginOps[] = { Chain, InFlag };
1711  Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1712                      CallArgBeginOps);
1713  InFlag = Chain.getValue(1);
1714
1715  for (unsigned i = 0, e = paramCount; i != e; ++i) {
1716    unsigned opcode;
1717    if (i == (e - 1))
1718      opcode = NVPTXISD::LastCallArg;
1719    else
1720      opcode = NVPTXISD::CallArg;
1721    SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1722    SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1723                             DAG.getConstant(i, dl, MVT::i32), InFlag };
1724    Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1725    InFlag = Chain.getValue(1);
1726  }
1727  SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1728  SDValue CallArgEndOps[] = { Chain,
1729                              DAG.getConstant(isIndirectCall ? 0 : 1, dl, MVT::i32),
1730                              InFlag };
1731  Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1732  InFlag = Chain.getValue(1);
1733
1734  if (isIndirectCall) {
1735    SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1736    SDValue PrototypeOps[] = { Chain,
1737                               DAG.getConstant(uniqueCallSite, dl, MVT::i32),
1738                               InFlag };
1739    Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1740    InFlag = Chain.getValue(1);
1741  }
1742
1743  SmallVector<SDValue, 16> ProxyRegOps;
1744  SmallVector<Optional<MVT>, 16> ProxyRegTruncates;
1745
1746  // Generate loads from param memory/moves from registers for result
1747  if (Ins.size() > 0) {
1748    SmallVector<EVT, 16> VTs;
1749    SmallVector<uint64_t, 16> Offsets;
1750    ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
1751    assert(VTs.size() == Ins.size() && "Bad value decomposition");
1752
1753    Align RetAlign = getArgumentAlignment(Callee, CB, RetTy, 0, DL);
1754    auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
1755
1756    SmallVector<EVT, 6> LoadVTs;
1757    int VecIdx = -1; // Index of the first element of the vector.
1758
1759    // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
1760    // 32-bits are sign extended or zero extended, depending on whether
1761    // they are signed or unsigned types.
1762    bool ExtendIntegerRetVal =
1763        RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
1764
1765    for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
1766      bool needTruncate = false;
1767      EVT TheLoadType = VTs[i];
1768      EVT EltType = Ins[i].VT;
1769      Align EltAlign = commonAlignment(RetAlign, Offsets[i]);
1770      if (ExtendIntegerRetVal) {
1771        TheLoadType = MVT::i32;
1772        EltType = MVT::i32;
1773        needTruncate = true;
1774      } else if (TheLoadType.getSizeInBits() < 16) {
1775        if (VTs[i].isInteger())
1776          needTruncate = true;
1777        EltType = MVT::i16;
1778      }
1779
1780      // Record index of the very first element of the vector.
1781      if (VectorInfo[i] & PVF_FIRST) {
1782        assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
1783        VecIdx = i;
1784      }
1785
1786      LoadVTs.push_back(EltType);
1787
1788      if (VectorInfo[i] & PVF_LAST) {
1789        unsigned NumElts = LoadVTs.size();
1790        LoadVTs.push_back(MVT::Other);
1791        LoadVTs.push_back(MVT::Glue);
1792        NVPTXISD::NodeType Op;
1793        switch (NumElts) {
1794        case 1:
1795          Op = NVPTXISD::LoadParam;
1796          break;
1797        case 2:
1798          Op = NVPTXISD::LoadParamV2;
1799          break;
1800        case 4:
1801          Op = NVPTXISD::LoadParamV4;
1802          break;
1803        default:
1804          llvm_unreachable("Invalid vector info.");
1805        }
1806
1807        SDValue LoadOperands[] = {
1808            Chain, DAG.getConstant(1, dl, MVT::i32),
1809            DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
1810        SDValue RetVal = DAG.getMemIntrinsicNode(
1811            Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
1812            MachinePointerInfo(), EltAlign,
1813            MachineMemOperand::MOLoad);
1814
1815        for (unsigned j = 0; j < NumElts; ++j) {
1816          ProxyRegOps.push_back(RetVal.getValue(j));
1817
1818          if (needTruncate)
1819            ProxyRegTruncates.push_back(Optional<MVT>(Ins[VecIdx + j].VT));
1820          else
1821            ProxyRegTruncates.push_back(Optional<MVT>());
1822        }
1823
1824        Chain = RetVal.getValue(NumElts);
1825        InFlag = RetVal.getValue(NumElts + 1);
1826
1827        // Cleanup
1828        VecIdx = -1;
1829        LoadVTs.clear();
1830      }
1831    }
1832  }
1833
1834  Chain = DAG.getCALLSEQ_END(Chain,
1835                             DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1836                             DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
1837                                                   true),
1838                             InFlag, dl);
1839  InFlag = Chain.getValue(1);
1840  uniqueCallSite++;
1841
1842  // Append ProxyReg instructions to the chain to make sure that `callseq_end`
1843  // will not get lost. Otherwise, during libcalls expansion, the nodes can become
1844  // dangling.
1845  for (unsigned i = 0; i < ProxyRegOps.size(); ++i) {
1846    SDValue Ret = DAG.getNode(
1847      NVPTXISD::ProxyReg, dl,
1848      DAG.getVTList(ProxyRegOps[i].getSimpleValueType(), MVT::Other, MVT::Glue),
1849      { Chain, ProxyRegOps[i], InFlag }
1850    );
1851
1852    Chain = Ret.getValue(1);
1853    InFlag = Ret.getValue(2);
1854
1855    if (ProxyRegTruncates[i].hasValue()) {
1856      Ret = DAG.getNode(ISD::TRUNCATE, dl, ProxyRegTruncates[i].getValue(), Ret);
1857    }
1858
1859    InVals.push_back(Ret);
1860  }
1861
1862  // set isTailCall to false for now, until we figure out how to express
1863  // tail call optimization in PTX
1864  isTailCall = false;
1865  return Chain;
1866}
1867
1868// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1869// (see LegalizeDAG.cpp). This is slow and uses local memory.
1870// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1871SDValue
1872NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1873  SDNode *Node = Op.getNode();
1874  SDLoc dl(Node);
1875  SmallVector<SDValue, 8> Ops;
1876  unsigned NumOperands = Node->getNumOperands();
1877  for (unsigned i = 0; i < NumOperands; ++i) {
1878    SDValue SubOp = Node->getOperand(i);
1879    EVT VVT = SubOp.getNode()->getValueType(0);
1880    EVT EltVT = VVT.getVectorElementType();
1881    unsigned NumSubElem = VVT.getVectorNumElements();
1882    for (unsigned j = 0; j < NumSubElem; ++j) {
1883      Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1884                                DAG.getIntPtrConstant(j, dl)));
1885    }
1886  }
1887  return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1888}
1889
1890// We can init constant f16x2 with a single .b32 move.  Normally it
1891// would get lowered as two constant loads and vector-packing move.
1892//        mov.b16         %h1, 0x4000;
1893//        mov.b16         %h2, 0x3C00;
1894//        mov.b32         %hh2, {%h2, %h1};
1895// Instead we want just a constant move:
1896//        mov.b32         %hh2, 0x40003C00
1897//
1898// This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
1899// generates good SASS in both cases.
1900SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1901                                               SelectionDAG &DAG) const {
1902  //return Op;
1903  if (!(Op->getValueType(0) == MVT::v2f16 &&
1904        isa<ConstantFPSDNode>(Op->getOperand(0)) &&
1905        isa<ConstantFPSDNode>(Op->getOperand(1))))
1906    return Op;
1907
1908  APInt E0 =
1909      cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
1910  APInt E1 =
1911      cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
1912  SDValue Const =
1913      DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
1914  return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
1915}
1916
1917SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
1918                                                     SelectionDAG &DAG) const {
1919  SDValue Index = Op->getOperand(1);
1920  // Constant index will be matched by tablegen.
1921  if (isa<ConstantSDNode>(Index.getNode()))
1922    return Op;
1923
1924  // Extract individual elements and select one of them.
1925  SDValue Vector = Op->getOperand(0);
1926  EVT VectorVT = Vector.getValueType();
1927  assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
1928  EVT EltVT = VectorVT.getVectorElementType();
1929
1930  SDLoc dl(Op.getNode());
1931  SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1932                           DAG.getIntPtrConstant(0, dl));
1933  SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
1934                           DAG.getIntPtrConstant(1, dl));
1935  return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
1936                         ISD::CondCode::SETEQ);
1937}
1938
1939/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1940/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1941///    amount, or
1942/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1943///    amount.
1944SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1945                                                  SelectionDAG &DAG) const {
1946  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1947  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1948
1949  EVT VT = Op.getValueType();
1950  unsigned VTBits = VT.getSizeInBits();
1951  SDLoc dl(Op);
1952  SDValue ShOpLo = Op.getOperand(0);
1953  SDValue ShOpHi = Op.getOperand(1);
1954  SDValue ShAmt  = Op.getOperand(2);
1955  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1956
1957  if (VTBits == 32 && STI.getSmVersion() >= 35) {
1958    // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1959    // {dHi, dLo} = {aHi, aLo} >> Amt
1960    //   dHi = aHi >> Amt
1961    //   dLo = shf.r.clamp aLo, aHi, Amt
1962
1963    SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1964    SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1965                             ShAmt);
1966
1967    SDValue Ops[2] = { Lo, Hi };
1968    return DAG.getMergeValues(Ops, dl);
1969  }
1970  else {
1971    // {dHi, dLo} = {aHi, aLo} >> Amt
1972    // - if (Amt>=size) then
1973    //      dLo = aHi >> (Amt-size)
1974    //      dHi = aHi >> Amt (this is either all 0 or all 1)
1975    //   else
1976    //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1977    //      dHi = aHi >> Amt
1978
1979    SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1980                                   DAG.getConstant(VTBits, dl, MVT::i32),
1981                                   ShAmt);
1982    SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
1983    SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1984                                     DAG.getConstant(VTBits, dl, MVT::i32));
1985    SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
1986    SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1987    SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
1988
1989    SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
1990                               DAG.getConstant(VTBits, dl, MVT::i32),
1991                               ISD::SETGE);
1992    SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1993    SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
1994
1995    SDValue Ops[2] = { Lo, Hi };
1996    return DAG.getMergeValues(Ops, dl);
1997  }
1998}
1999
2000/// LowerShiftLeftParts - Lower SHL_PARTS, which
2001/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
2002///    amount, or
2003/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
2004///    amount.
2005SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
2006                                                 SelectionDAG &DAG) const {
2007  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2008  assert(Op.getOpcode() == ISD::SHL_PARTS);
2009
2010  EVT VT = Op.getValueType();
2011  unsigned VTBits = VT.getSizeInBits();
2012  SDLoc dl(Op);
2013  SDValue ShOpLo = Op.getOperand(0);
2014  SDValue ShOpHi = Op.getOperand(1);
2015  SDValue ShAmt  = Op.getOperand(2);
2016
2017  if (VTBits == 32 && STI.getSmVersion() >= 35) {
2018    // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2019    // {dHi, dLo} = {aHi, aLo} << Amt
2020    //   dHi = shf.l.clamp aLo, aHi, Amt
2021    //   dLo = aLo << Amt
2022
2023    SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2024                             ShAmt);
2025    SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2026
2027    SDValue Ops[2] = { Lo, Hi };
2028    return DAG.getMergeValues(Ops, dl);
2029  }
2030  else {
2031    // {dHi, dLo} = {aHi, aLo} << Amt
2032    // - if (Amt>=size) then
2033    //      dLo = aLo << Amt (all 0)
2034    //      dLo = aLo << (Amt-size)
2035    //   else
2036    //      dLo = aLo << Amt
2037    //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
2038
2039    SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2040                                   DAG.getConstant(VTBits, dl, MVT::i32),
2041                                   ShAmt);
2042    SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2043    SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2044                                     DAG.getConstant(VTBits, dl, MVT::i32));
2045    SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2046    SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2047    SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2048
2049    SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2050                               DAG.getConstant(VTBits, dl, MVT::i32),
2051                               ISD::SETGE);
2052    SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2053    SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2054
2055    SDValue Ops[2] = { Lo, Hi };
2056    return DAG.getMergeValues(Ops, dl);
2057  }
2058}
2059
2060SDValue NVPTXTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2061  EVT VT = Op.getValueType();
2062
2063  if (VT == MVT::f32)
2064    return LowerFROUND32(Op, DAG);
2065
2066  if (VT == MVT::f64)
2067    return LowerFROUND64(Op, DAG);
2068
2069  llvm_unreachable("unhandled type");
2070}
2071
2072// This is the the rounding method used in CUDA libdevice in C like code:
2073// float roundf(float A)
2074// {
2075//   float RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f));
2076//   RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2077//   return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2078// }
2079SDValue NVPTXTargetLowering::LowerFROUND32(SDValue Op,
2080                                           SelectionDAG &DAG) const {
2081  SDLoc SL(Op);
2082  SDValue A = Op.getOperand(0);
2083  EVT VT = Op.getValueType();
2084
2085  SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2086
2087  // RoundedA = (float) (int) ( A > 0 ? (A + 0.5f) : (A - 0.5f))
2088  SDValue Bitcast  = DAG.getNode(ISD::BITCAST, SL, MVT::i32, A);
2089  const int SignBitMask = 0x80000000;
2090  SDValue Sign = DAG.getNode(ISD::AND, SL, MVT::i32, Bitcast,
2091                             DAG.getConstant(SignBitMask, SL, MVT::i32));
2092  const int PointFiveInBits = 0x3F000000;
2093  SDValue PointFiveWithSignRaw =
2094      DAG.getNode(ISD::OR, SL, MVT::i32, Sign,
2095                  DAG.getConstant(PointFiveInBits, SL, MVT::i32));
2096  SDValue PointFiveWithSign =
2097      DAG.getNode(ISD::BITCAST, SL, VT, PointFiveWithSignRaw);
2098  SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, A, PointFiveWithSign);
2099  SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2100
2101  // RoundedA = abs(A) > 0x1.0p23 ? A : RoundedA;
2102  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2103  SDValue IsLarge =
2104      DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 23.0), SL, VT),
2105                   ISD::SETOGT);
2106  RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2107
2108  // return abs(A) < 0.5 ? (float)(int)A : RoundedA;
2109  SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2110                                DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2111  SDValue RoundedAForSmallA = DAG.getNode(ISD::FTRUNC, SL, VT, A);
2112  return DAG.getNode(ISD::SELECT, SL, VT, IsSmall, RoundedAForSmallA, RoundedA);
2113}
2114
2115// The implementation of round(double) is similar to that of round(float) in
2116// that they both separate the value range into three regions and use a method
2117// specific to the region to round the values. However, round(double) first
2118// calculates the round of the absolute value and then adds the sign back while
2119// round(float) directly rounds the value with sign.
2120SDValue NVPTXTargetLowering::LowerFROUND64(SDValue Op,
2121                                           SelectionDAG &DAG) const {
2122  SDLoc SL(Op);
2123  SDValue A = Op.getOperand(0);
2124  EVT VT = Op.getValueType();
2125
2126  SDValue AbsA = DAG.getNode(ISD::FABS, SL, VT, A);
2127
2128  // double RoundedA = (double) (int) (abs(A) + 0.5f);
2129  SDValue AdjustedA = DAG.getNode(ISD::FADD, SL, VT, AbsA,
2130                                  DAG.getConstantFP(0.5, SL, VT));
2131  SDValue RoundedA = DAG.getNode(ISD::FTRUNC, SL, VT, AdjustedA);
2132
2133  // RoundedA = abs(A) < 0.5 ? (double)0 : RoundedA;
2134  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2135  SDValue IsSmall =DAG.getSetCC(SL, SetCCVT, AbsA,
2136                                DAG.getConstantFP(0.5, SL, VT), ISD::SETOLT);
2137  RoundedA = DAG.getNode(ISD::SELECT, SL, VT, IsSmall,
2138                         DAG.getConstantFP(0, SL, VT),
2139                         RoundedA);
2140
2141  // Add sign to rounded_A
2142  RoundedA = DAG.getNode(ISD::FCOPYSIGN, SL, VT, RoundedA, A);
2143  DAG.getNode(ISD::FTRUNC, SL, VT, A);
2144
2145  // RoundedA = abs(A) > 0x1.0p52 ? A : RoundedA;
2146  SDValue IsLarge =
2147      DAG.getSetCC(SL, SetCCVT, AbsA, DAG.getConstantFP(pow(2.0, 52.0), SL, VT),
2148                   ISD::SETOGT);
2149  return DAG.getNode(ISD::SELECT, SL, VT, IsLarge, A, RoundedA);
2150}
2151
2152
2153
2154SDValue
2155NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2156  switch (Op.getOpcode()) {
2157  case ISD::RETURNADDR:
2158    return SDValue();
2159  case ISD::FRAMEADDR:
2160    return SDValue();
2161  case ISD::GlobalAddress:
2162    return LowerGlobalAddress(Op, DAG);
2163  case ISD::INTRINSIC_W_CHAIN:
2164    return Op;
2165  case ISD::BUILD_VECTOR:
2166    return LowerBUILD_VECTOR(Op, DAG);
2167  case ISD::EXTRACT_SUBVECTOR:
2168    return Op;
2169  case ISD::EXTRACT_VECTOR_ELT:
2170    return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2171  case ISD::CONCAT_VECTORS:
2172    return LowerCONCAT_VECTORS(Op, DAG);
2173  case ISD::STORE:
2174    return LowerSTORE(Op, DAG);
2175  case ISD::LOAD:
2176    return LowerLOAD(Op, DAG);
2177  case ISD::SHL_PARTS:
2178    return LowerShiftLeftParts(Op, DAG);
2179  case ISD::SRA_PARTS:
2180  case ISD::SRL_PARTS:
2181    return LowerShiftRightParts(Op, DAG);
2182  case ISD::SELECT:
2183    return LowerSelect(Op, DAG);
2184  case ISD::FROUND:
2185    return LowerFROUND(Op, DAG);
2186  default:
2187    llvm_unreachable("Custom lowering not defined for operation");
2188  }
2189}
2190
2191SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2192  SDValue Op0 = Op->getOperand(0);
2193  SDValue Op1 = Op->getOperand(1);
2194  SDValue Op2 = Op->getOperand(2);
2195  SDLoc DL(Op.getNode());
2196
2197  assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
2198
2199  Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2200  Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2201  SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2202  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2203
2204  return Trunc;
2205}
2206
2207SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2208  if (Op.getValueType() == MVT::i1)
2209    return LowerLOADi1(Op, DAG);
2210
2211  // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2212  // loads and have to handle it here.
2213  if (Op.getValueType() == MVT::v2f16) {
2214    LoadSDNode *Load = cast<LoadSDNode>(Op);
2215    EVT MemVT = Load->getMemoryVT();
2216    if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2217                                        MemVT, *Load->getMemOperand())) {
2218      SDValue Ops[2];
2219      std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2220      return DAG.getMergeValues(Ops, SDLoc(Op));
2221    }
2222  }
2223
2224  return SDValue();
2225}
2226
2227// v = ld i1* addr
2228//   =>
2229// v1 = ld i8* addr (-> i16)
2230// v = trunc i16 to i1
2231SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2232  SDNode *Node = Op.getNode();
2233  LoadSDNode *LD = cast<LoadSDNode>(Node);
2234  SDLoc dl(Node);
2235  assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
2236  assert(Node->getValueType(0) == MVT::i1 &&
2237         "Custom lowering for i1 load only");
2238  SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2239                              LD->getPointerInfo(), LD->getAlignment(),
2240                              LD->getMemOperand()->getFlags());
2241  SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2242  // The legalizer (the caller) is expecting two values from the legalized
2243  // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2244  // in LegalizeDAG.cpp which also uses MergeValues.
2245  SDValue Ops[] = { result, LD->getChain() };
2246  return DAG.getMergeValues(Ops, dl);
2247}
2248
2249SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2250  StoreSDNode *Store = cast<StoreSDNode>(Op);
2251  EVT VT = Store->getMemoryVT();
2252
2253  if (VT == MVT::i1)
2254    return LowerSTOREi1(Op, DAG);
2255
2256  // v2f16 is legal, so we can't rely on legalizer to handle unaligned
2257  // stores and have to handle it here.
2258  if (VT == MVT::v2f16 &&
2259      !allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2260                                      VT, *Store->getMemOperand()))
2261    return expandUnalignedStore(Store, DAG);
2262
2263  if (VT.isVector())
2264    return LowerSTOREVector(Op, DAG);
2265
2266  return SDValue();
2267}
2268
2269SDValue
2270NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2271  SDNode *N = Op.getNode();
2272  SDValue Val = N->getOperand(1);
2273  SDLoc DL(N);
2274  EVT ValVT = Val.getValueType();
2275
2276  if (ValVT.isVector()) {
2277    // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2278    // legal.  We can (and should) split that into 2 stores of <2 x double> here
2279    // but I'm leaving that as a TODO for now.
2280    if (!ValVT.isSimple())
2281      return SDValue();
2282    switch (ValVT.getSimpleVT().SimpleTy) {
2283    default:
2284      return SDValue();
2285    case MVT::v2i8:
2286    case MVT::v2i16:
2287    case MVT::v2i32:
2288    case MVT::v2i64:
2289    case MVT::v2f16:
2290    case MVT::v2f32:
2291    case MVT::v2f64:
2292    case MVT::v4i8:
2293    case MVT::v4i16:
2294    case MVT::v4i32:
2295    case MVT::v4f16:
2296    case MVT::v4f32:
2297    case MVT::v8f16: // <4 x f16x2>
2298      // This is a "native" vector type
2299      break;
2300    }
2301
2302    MemSDNode *MemSD = cast<MemSDNode>(N);
2303    const DataLayout &TD = DAG.getDataLayout();
2304
2305    Align Alignment = MemSD->getAlign();
2306    Align PrefAlign =
2307        TD.getPrefTypeAlign(ValVT.getTypeForEVT(*DAG.getContext()));
2308    if (Alignment < PrefAlign) {
2309      // This store is not sufficiently aligned, so bail out and let this vector
2310      // store be scalarized.  Note that we may still be able to emit smaller
2311      // vector stores.  For example, if we are storing a <4 x float> with an
2312      // alignment of 8, this check will fail but the legalizer will try again
2313      // with 2 x <2 x float>, which will succeed with an alignment of 8.
2314      return SDValue();
2315    }
2316
2317    unsigned Opcode = 0;
2318    EVT EltVT = ValVT.getVectorElementType();
2319    unsigned NumElts = ValVT.getVectorNumElements();
2320
2321    // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2322    // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
2323    // stored type to i16 and propagate the "real" type as the memory type.
2324    bool NeedExt = false;
2325    if (EltVT.getSizeInBits() < 16)
2326      NeedExt = true;
2327
2328    bool StoreF16x2 = false;
2329    switch (NumElts) {
2330    default:
2331      return SDValue();
2332    case 2:
2333      Opcode = NVPTXISD::StoreV2;
2334      break;
2335    case 4:
2336      Opcode = NVPTXISD::StoreV4;
2337      break;
2338    case 8:
2339      // v8f16 is a special case. PTX doesn't have st.v8.f16
2340      // instruction. Instead, we split the vector into v2f16 chunks and
2341      // store them with st.v4.b32.
2342      assert(EltVT == MVT::f16 && "Wrong type for the vector.");
2343      Opcode = NVPTXISD::StoreV4;
2344      StoreF16x2 = true;
2345      break;
2346    }
2347
2348    SmallVector<SDValue, 8> Ops;
2349
2350    // First is the chain
2351    Ops.push_back(N->getOperand(0));
2352
2353    if (StoreF16x2) {
2354      // Combine f16,f16 -> v2f16
2355      NumElts /= 2;
2356      for (unsigned i = 0; i < NumElts; ++i) {
2357        SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2358                                 DAG.getIntPtrConstant(i * 2, DL));
2359        SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
2360                                 DAG.getIntPtrConstant(i * 2 + 1, DL));
2361        SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
2362        Ops.push_back(V2);
2363      }
2364    } else {
2365      // Then the split values
2366      for (unsigned i = 0; i < NumElts; ++i) {
2367        SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2368                                     DAG.getIntPtrConstant(i, DL));
2369        if (NeedExt)
2370          ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2371        Ops.push_back(ExtVal);
2372      }
2373    }
2374
2375    // Then any remaining arguments
2376    Ops.append(N->op_begin() + 2, N->op_end());
2377
2378    SDValue NewSt =
2379        DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2380                                MemSD->getMemoryVT(), MemSD->getMemOperand());
2381
2382    // return DCI.CombineTo(N, NewSt, true);
2383    return NewSt;
2384  }
2385
2386  return SDValue();
2387}
2388
2389// st i1 v, addr
2390//    =>
2391// v1 = zxt v to i16
2392// st.u8 i16, addr
2393SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2394  SDNode *Node = Op.getNode();
2395  SDLoc dl(Node);
2396  StoreSDNode *ST = cast<StoreSDNode>(Node);
2397  SDValue Tmp1 = ST->getChain();
2398  SDValue Tmp2 = ST->getBasePtr();
2399  SDValue Tmp3 = ST->getValue();
2400  assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2401  Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2402  SDValue Result =
2403      DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2404                        ST->getAlignment(), ST->getMemOperand()->getFlags());
2405  return Result;
2406}
2407
2408SDValue
2409NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2410  std::string ParamSym;
2411  raw_string_ostream ParamStr(ParamSym);
2412
2413  ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2414  ParamStr.flush();
2415
2416  std::string *SavedStr =
2417    nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2418  return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2419}
2420
2421// Check to see if the kernel argument is image*_t or sampler_t
2422
2423static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
2424  static const char *const specialTypes[] = { "struct._image2d_t",
2425                                              "struct._image3d_t",
2426                                              "struct._sampler_t" };
2427
2428  Type *Ty = arg->getType();
2429  auto *PTy = dyn_cast<PointerType>(Ty);
2430
2431  if (!PTy)
2432    return false;
2433
2434  if (!context)
2435    return false;
2436
2437  auto *STy = dyn_cast<StructType>(PTy->getElementType());
2438  if (!STy || STy->isLiteral())
2439    return false;
2440
2441  return std::find(std::begin(specialTypes), std::end(specialTypes),
2442                   STy->getName()) != std::end(specialTypes);
2443}
2444
2445SDValue NVPTXTargetLowering::LowerFormalArguments(
2446    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2447    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2448    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2449  MachineFunction &MF = DAG.getMachineFunction();
2450  const DataLayout &DL = DAG.getDataLayout();
2451  auto PtrVT = getPointerTy(DAG.getDataLayout());
2452
2453  const Function *F = &MF.getFunction();
2454  const AttributeList &PAL = F->getAttributes();
2455  const TargetLowering *TLI = STI.getTargetLowering();
2456
2457  SDValue Root = DAG.getRoot();
2458  std::vector<SDValue> OutChains;
2459
2460  bool isABI = (STI.getSmVersion() >= 20);
2461  assert(isABI && "Non-ABI compilation is not supported");
2462  if (!isABI)
2463    return Chain;
2464
2465  std::vector<Type *> argTypes;
2466  std::vector<const Argument *> theArgs;
2467  for (const Argument &I : F->args()) {
2468    theArgs.push_back(&I);
2469    argTypes.push_back(I.getType());
2470  }
2471  // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2472  // Ins.size() will be larger
2473  //   * if there is an aggregate argument with multiple fields (each field
2474  //     showing up separately in Ins)
2475  //   * if there is a vector argument with more than typical vector-length
2476  //     elements (generally if more than 4) where each vector element is
2477  //     individually present in Ins.
2478  // So a different index should be used for indexing into Ins.
2479  // See similar issue in LowerCall.
2480  unsigned InsIdx = 0;
2481
2482  int idx = 0;
2483  for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2484    Type *Ty = argTypes[i];
2485
2486    // If the kernel argument is image*_t or sampler_t, convert it to
2487    // a i32 constant holding the parameter position. This can later
2488    // matched in the AsmPrinter to output the correct mangled name.
2489    if (isImageOrSamplerVal(
2490            theArgs[i],
2491            (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2492                                     : nullptr))) {
2493      assert(isKernelFunction(*F) &&
2494             "Only kernels can have image/sampler params");
2495      InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2496      continue;
2497    }
2498
2499    if (theArgs[i]->use_empty()) {
2500      // argument is dead
2501      if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
2502        SmallVector<EVT, 16> vtparts;
2503
2504        ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2505        assert(vtparts.size() > 0 && "empty aggregate type not expected");
2506        for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2507             ++parti) {
2508          InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2509          ++InsIdx;
2510        }
2511        if (vtparts.size() > 0)
2512          --InsIdx;
2513        continue;
2514      }
2515      if (Ty->isVectorTy()) {
2516        EVT ObjectVT = getValueType(DL, Ty);
2517        unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2518        for (unsigned parti = 0; parti < NumRegs; ++parti) {
2519          InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2520          ++InsIdx;
2521        }
2522        if (NumRegs > 0)
2523          --InsIdx;
2524        continue;
2525      }
2526      InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2527      continue;
2528    }
2529
2530    // In the following cases, assign a node order of "idx+1"
2531    // to newly created nodes. The SDNodes for params have to
2532    // appear in the same order as their order of appearance
2533    // in the original function. "idx+1" holds that order.
2534    if (!PAL.hasParamAttribute(i, Attribute::ByVal)) {
2535      bool aggregateIsPacked = false;
2536      if (StructType *STy = dyn_cast<StructType>(Ty))
2537        aggregateIsPacked = STy->isPacked();
2538
2539      SmallVector<EVT, 16> VTs;
2540      SmallVector<uint64_t, 16> Offsets;
2541      ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
2542      assert(VTs.size() > 0 && "Unexpected empty type.");
2543      auto VectorInfo =
2544          VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlign(Ty));
2545
2546      SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2547      int VecIdx = -1; // Index of the first element of the current vector.
2548      for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
2549        if (VectorInfo[parti] & PVF_FIRST) {
2550          assert(VecIdx == -1 && "Orphaned vector.");
2551          VecIdx = parti;
2552        }
2553
2554        // That's the last element of this store op.
2555        if (VectorInfo[parti] & PVF_LAST) {
2556          unsigned NumElts = parti - VecIdx + 1;
2557          EVT EltVT = VTs[parti];
2558          // i1 is loaded/stored as i8.
2559          EVT LoadVT = EltVT;
2560          if (EltVT == MVT::i1)
2561            LoadVT = MVT::i8;
2562          else if (EltVT == MVT::v2f16)
2563            // getLoad needs a vector type, but it can't handle
2564            // vectors which contain v2f16 elements. So we must load
2565            // using i32 here and then bitcast back.
2566            LoadVT = MVT::i32;
2567
2568          EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
2569          SDValue VecAddr =
2570              DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2571                          DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
2572          Value *srcValue = Constant::getNullValue(PointerType::get(
2573              EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2574          SDValue P =
2575              DAG.getLoad(VecVT, dl, Root, VecAddr,
2576                          MachinePointerInfo(srcValue), aggregateIsPacked,
2577                          MachineMemOperand::MODereferenceable |
2578                              MachineMemOperand::MOInvariant);
2579          if (P.getNode())
2580            P.getNode()->setIROrder(idx + 1);
2581          for (unsigned j = 0; j < NumElts; ++j) {
2582            SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
2583                                      DAG.getIntPtrConstant(j, dl));
2584            // We've loaded i1 as an i8 and now must truncate it back to i1
2585            if (EltVT == MVT::i1)
2586              Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
2587            // v2f16 was loaded as an i32. Now we must bitcast it back.
2588            else if (EltVT == MVT::v2f16)
2589              Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
2590            // Extend the element if necessary (e.g. an i8 is loaded
2591            // into an i16 register)
2592            if (Ins[InsIdx].VT.isInteger() &&
2593                Ins[InsIdx].VT.getSizeInBits() > LoadVT.getSizeInBits()) {
2594              unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
2595                                                           : ISD::ZERO_EXTEND;
2596              Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
2597            }
2598            InVals.push_back(Elt);
2599          }
2600
2601          // Reset vector tracking state.
2602          VecIdx = -1;
2603        }
2604        ++InsIdx;
2605      }
2606      if (VTs.size() > 0)
2607        --InsIdx;
2608      continue;
2609    }
2610
2611    // Param has ByVal attribute
2612    // Return MoveParam(param symbol).
2613    // Ideally, the param symbol can be returned directly,
2614    // but when SDNode builder decides to use it in a CopyToReg(),
2615    // machine instruction fails because TargetExternalSymbol
2616    // (not lowered) is target dependent, and CopyToReg assumes
2617    // the source is lowered.
2618    EVT ObjectVT = getValueType(DL, Ty);
2619    assert(ObjectVT == Ins[InsIdx].VT &&
2620           "Ins type did not match function type");
2621    SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2622    SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2623    if (p.getNode())
2624      p.getNode()->setIROrder(idx + 1);
2625    InVals.push_back(p);
2626  }
2627
2628  // Clang will check explicit VarArg and issue error if any. However, Clang
2629  // will let code with
2630  // implicit var arg like f() pass. See bug 617733.
2631  // We treat this case as if the arg list is empty.
2632  // if (F.isVarArg()) {
2633  // assert(0 && "VarArg not supported yet!");
2634  //}
2635
2636  if (!OutChains.empty())
2637    DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2638
2639  return Chain;
2640}
2641
2642SDValue
2643NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2644                                 bool isVarArg,
2645                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
2646                                 const SmallVectorImpl<SDValue> &OutVals,
2647                                 const SDLoc &dl, SelectionDAG &DAG) const {
2648  MachineFunction &MF = DAG.getMachineFunction();
2649  Type *RetTy = MF.getFunction().getReturnType();
2650
2651  bool isABI = (STI.getSmVersion() >= 20);
2652  assert(isABI && "Non-ABI compilation is not supported");
2653  if (!isABI)
2654    return Chain;
2655
2656  const DataLayout DL = DAG.getDataLayout();
2657  SmallVector<EVT, 16> VTs;
2658  SmallVector<uint64_t, 16> Offsets;
2659  ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
2660  assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
2661
2662  auto VectorInfo = VectorizePTXValueVTs(
2663      VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlign(RetTy) : Align(1));
2664
2665  // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
2666  // 32-bits are sign extended or zero extended, depending on whether
2667  // they are signed or unsigned types.
2668  bool ExtendIntegerRetVal =
2669      RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
2670
2671  SmallVector<SDValue, 6> StoreOperands;
2672  for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2673    // New load/store. Record chain and offset operands.
2674    if (VectorInfo[i] & PVF_FIRST) {
2675      assert(StoreOperands.empty() && "Orphaned operand list.");
2676      StoreOperands.push_back(Chain);
2677      StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
2678    }
2679
2680    SDValue RetVal = OutVals[i];
2681    if (ExtendIntegerRetVal) {
2682      RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
2683                                                  : ISD::ZERO_EXTEND,
2684                           dl, MVT::i32, RetVal);
2685    } else if (RetVal.getValueSizeInBits() < 16) {
2686      // Use 16-bit registers for small load-stores as it's the
2687      // smallest general purpose register size supported by NVPTX.
2688      RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
2689    }
2690
2691    // Record the value to return.
2692    StoreOperands.push_back(RetVal);
2693
2694    // That's the last element of this store op.
2695    if (VectorInfo[i] & PVF_LAST) {
2696      NVPTXISD::NodeType Op;
2697      unsigned NumElts = StoreOperands.size() - 2;
2698      switch (NumElts) {
2699      case 1:
2700        Op = NVPTXISD::StoreRetval;
2701        break;
2702      case 2:
2703        Op = NVPTXISD::StoreRetvalV2;
2704        break;
2705      case 4:
2706        Op = NVPTXISD::StoreRetvalV4;
2707        break;
2708      default:
2709        llvm_unreachable("Invalid vector info.");
2710      }
2711
2712      // Adjust type of load/store op if we've extended the scalar
2713      // return value.
2714      EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
2715      Chain = DAG.getMemIntrinsicNode(
2716          Op, dl, DAG.getVTList(MVT::Other), StoreOperands, TheStoreType,
2717          MachinePointerInfo(), Align(1), MachineMemOperand::MOStore);
2718      // Cleanup vector state.
2719      StoreOperands.clear();
2720    }
2721  }
2722
2723  return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2724}
2725
2726void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2727    SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2728    SelectionDAG &DAG) const {
2729  if (Constraint.length() > 1)
2730    return;
2731  else
2732    TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2733}
2734
2735static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2736  switch (Intrinsic) {
2737  default:
2738    return 0;
2739
2740  case Intrinsic::nvvm_tex_1d_v4f32_s32:
2741    return NVPTXISD::Tex1DFloatS32;
2742  case Intrinsic::nvvm_tex_1d_v4f32_f32:
2743    return NVPTXISD::Tex1DFloatFloat;
2744  case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2745    return NVPTXISD::Tex1DFloatFloatLevel;
2746  case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2747    return NVPTXISD::Tex1DFloatFloatGrad;
2748  case Intrinsic::nvvm_tex_1d_v4s32_s32:
2749    return NVPTXISD::Tex1DS32S32;
2750  case Intrinsic::nvvm_tex_1d_v4s32_f32:
2751    return NVPTXISD::Tex1DS32Float;
2752  case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2753    return NVPTXISD::Tex1DS32FloatLevel;
2754  case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2755    return NVPTXISD::Tex1DS32FloatGrad;
2756  case Intrinsic::nvvm_tex_1d_v4u32_s32:
2757    return NVPTXISD::Tex1DU32S32;
2758  case Intrinsic::nvvm_tex_1d_v4u32_f32:
2759    return NVPTXISD::Tex1DU32Float;
2760  case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2761    return NVPTXISD::Tex1DU32FloatLevel;
2762  case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2763    return NVPTXISD::Tex1DU32FloatGrad;
2764
2765  case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2766    return NVPTXISD::Tex1DArrayFloatS32;
2767  case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2768    return NVPTXISD::Tex1DArrayFloatFloat;
2769  case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2770    return NVPTXISD::Tex1DArrayFloatFloatLevel;
2771  case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2772    return NVPTXISD::Tex1DArrayFloatFloatGrad;
2773  case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2774    return NVPTXISD::Tex1DArrayS32S32;
2775  case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2776    return NVPTXISD::Tex1DArrayS32Float;
2777  case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2778    return NVPTXISD::Tex1DArrayS32FloatLevel;
2779  case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2780    return NVPTXISD::Tex1DArrayS32FloatGrad;
2781  case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2782    return NVPTXISD::Tex1DArrayU32S32;
2783  case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2784    return NVPTXISD::Tex1DArrayU32Float;
2785  case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2786    return NVPTXISD::Tex1DArrayU32FloatLevel;
2787  case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2788    return NVPTXISD::Tex1DArrayU32FloatGrad;
2789
2790  case Intrinsic::nvvm_tex_2d_v4f32_s32:
2791    return NVPTXISD::Tex2DFloatS32;
2792  case Intrinsic::nvvm_tex_2d_v4f32_f32:
2793    return NVPTXISD::Tex2DFloatFloat;
2794  case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2795    return NVPTXISD::Tex2DFloatFloatLevel;
2796  case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2797    return NVPTXISD::Tex2DFloatFloatGrad;
2798  case Intrinsic::nvvm_tex_2d_v4s32_s32:
2799    return NVPTXISD::Tex2DS32S32;
2800  case Intrinsic::nvvm_tex_2d_v4s32_f32:
2801    return NVPTXISD::Tex2DS32Float;
2802  case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2803    return NVPTXISD::Tex2DS32FloatLevel;
2804  case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2805    return NVPTXISD::Tex2DS32FloatGrad;
2806  case Intrinsic::nvvm_tex_2d_v4u32_s32:
2807    return NVPTXISD::Tex2DU32S32;
2808  case Intrinsic::nvvm_tex_2d_v4u32_f32:
2809    return NVPTXISD::Tex2DU32Float;
2810  case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2811    return NVPTXISD::Tex2DU32FloatLevel;
2812  case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2813    return NVPTXISD::Tex2DU32FloatGrad;
2814
2815  case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2816    return NVPTXISD::Tex2DArrayFloatS32;
2817  case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2818    return NVPTXISD::Tex2DArrayFloatFloat;
2819  case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2820    return NVPTXISD::Tex2DArrayFloatFloatLevel;
2821  case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2822    return NVPTXISD::Tex2DArrayFloatFloatGrad;
2823  case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2824    return NVPTXISD::Tex2DArrayS32S32;
2825  case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2826    return NVPTXISD::Tex2DArrayS32Float;
2827  case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2828    return NVPTXISD::Tex2DArrayS32FloatLevel;
2829  case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2830    return NVPTXISD::Tex2DArrayS32FloatGrad;
2831  case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2832    return NVPTXISD::Tex2DArrayU32S32;
2833  case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2834    return NVPTXISD::Tex2DArrayU32Float;
2835  case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2836    return NVPTXISD::Tex2DArrayU32FloatLevel;
2837  case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2838    return NVPTXISD::Tex2DArrayU32FloatGrad;
2839
2840  case Intrinsic::nvvm_tex_3d_v4f32_s32:
2841    return NVPTXISD::Tex3DFloatS32;
2842  case Intrinsic::nvvm_tex_3d_v4f32_f32:
2843    return NVPTXISD::Tex3DFloatFloat;
2844  case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2845    return NVPTXISD::Tex3DFloatFloatLevel;
2846  case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2847    return NVPTXISD::Tex3DFloatFloatGrad;
2848  case Intrinsic::nvvm_tex_3d_v4s32_s32:
2849    return NVPTXISD::Tex3DS32S32;
2850  case Intrinsic::nvvm_tex_3d_v4s32_f32:
2851    return NVPTXISD::Tex3DS32Float;
2852  case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2853    return NVPTXISD::Tex3DS32FloatLevel;
2854  case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2855    return NVPTXISD::Tex3DS32FloatGrad;
2856  case Intrinsic::nvvm_tex_3d_v4u32_s32:
2857    return NVPTXISD::Tex3DU32S32;
2858  case Intrinsic::nvvm_tex_3d_v4u32_f32:
2859    return NVPTXISD::Tex3DU32Float;
2860  case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2861    return NVPTXISD::Tex3DU32FloatLevel;
2862  case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2863    return NVPTXISD::Tex3DU32FloatGrad;
2864
2865  case Intrinsic::nvvm_tex_cube_v4f32_f32:
2866    return NVPTXISD::TexCubeFloatFloat;
2867  case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2868    return NVPTXISD::TexCubeFloatFloatLevel;
2869  case Intrinsic::nvvm_tex_cube_v4s32_f32:
2870    return NVPTXISD::TexCubeS32Float;
2871  case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2872    return NVPTXISD::TexCubeS32FloatLevel;
2873  case Intrinsic::nvvm_tex_cube_v4u32_f32:
2874    return NVPTXISD::TexCubeU32Float;
2875  case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2876    return NVPTXISD::TexCubeU32FloatLevel;
2877
2878  case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2879    return NVPTXISD::TexCubeArrayFloatFloat;
2880  case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2881    return NVPTXISD::TexCubeArrayFloatFloatLevel;
2882  case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2883    return NVPTXISD::TexCubeArrayS32Float;
2884  case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2885    return NVPTXISD::TexCubeArrayS32FloatLevel;
2886  case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2887    return NVPTXISD::TexCubeArrayU32Float;
2888  case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2889    return NVPTXISD::TexCubeArrayU32FloatLevel;
2890
2891  case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2892    return NVPTXISD::Tld4R2DFloatFloat;
2893  case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2894    return NVPTXISD::Tld4G2DFloatFloat;
2895  case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2896    return NVPTXISD::Tld4B2DFloatFloat;
2897  case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2898    return NVPTXISD::Tld4A2DFloatFloat;
2899  case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2900    return NVPTXISD::Tld4R2DS64Float;
2901  case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2902    return NVPTXISD::Tld4G2DS64Float;
2903  case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2904    return NVPTXISD::Tld4B2DS64Float;
2905  case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2906    return NVPTXISD::Tld4A2DS64Float;
2907  case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2908    return NVPTXISD::Tld4R2DU64Float;
2909  case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2910    return NVPTXISD::Tld4G2DU64Float;
2911  case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2912    return NVPTXISD::Tld4B2DU64Float;
2913  case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2914    return NVPTXISD::Tld4A2DU64Float;
2915
2916  case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2917    return NVPTXISD::TexUnified1DFloatS32;
2918  case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2919    return NVPTXISD::TexUnified1DFloatFloat;
2920  case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2921    return NVPTXISD::TexUnified1DFloatFloatLevel;
2922  case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2923    return NVPTXISD::TexUnified1DFloatFloatGrad;
2924  case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2925    return NVPTXISD::TexUnified1DS32S32;
2926  case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2927    return NVPTXISD::TexUnified1DS32Float;
2928  case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2929    return NVPTXISD::TexUnified1DS32FloatLevel;
2930  case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2931    return NVPTXISD::TexUnified1DS32FloatGrad;
2932  case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2933    return NVPTXISD::TexUnified1DU32S32;
2934  case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2935    return NVPTXISD::TexUnified1DU32Float;
2936  case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2937    return NVPTXISD::TexUnified1DU32FloatLevel;
2938  case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2939    return NVPTXISD::TexUnified1DU32FloatGrad;
2940
2941  case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2942    return NVPTXISD::TexUnified1DArrayFloatS32;
2943  case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2944    return NVPTXISD::TexUnified1DArrayFloatFloat;
2945  case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2946    return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2947  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2948    return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2949  case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2950    return NVPTXISD::TexUnified1DArrayS32S32;
2951  case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2952    return NVPTXISD::TexUnified1DArrayS32Float;
2953  case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2954    return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2955  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2956    return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2957  case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2958    return NVPTXISD::TexUnified1DArrayU32S32;
2959  case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2960    return NVPTXISD::TexUnified1DArrayU32Float;
2961  case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2962    return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2963  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2964    return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2965
2966  case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2967    return NVPTXISD::TexUnified2DFloatS32;
2968  case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2969    return NVPTXISD::TexUnified2DFloatFloat;
2970  case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2971    return NVPTXISD::TexUnified2DFloatFloatLevel;
2972  case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2973    return NVPTXISD::TexUnified2DFloatFloatGrad;
2974  case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2975    return NVPTXISD::TexUnified2DS32S32;
2976  case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2977    return NVPTXISD::TexUnified2DS32Float;
2978  case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2979    return NVPTXISD::TexUnified2DS32FloatLevel;
2980  case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
2981    return NVPTXISD::TexUnified2DS32FloatGrad;
2982  case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
2983    return NVPTXISD::TexUnified2DU32S32;
2984  case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
2985    return NVPTXISD::TexUnified2DU32Float;
2986  case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
2987    return NVPTXISD::TexUnified2DU32FloatLevel;
2988  case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
2989    return NVPTXISD::TexUnified2DU32FloatGrad;
2990
2991  case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
2992    return NVPTXISD::TexUnified2DArrayFloatS32;
2993  case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
2994    return NVPTXISD::TexUnified2DArrayFloatFloat;
2995  case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
2996    return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
2997  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
2998    return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
2999  case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3000    return NVPTXISD::TexUnified2DArrayS32S32;
3001  case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3002    return NVPTXISD::TexUnified2DArrayS32Float;
3003  case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3004    return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3005  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3006    return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3007  case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3008    return NVPTXISD::TexUnified2DArrayU32S32;
3009  case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3010    return NVPTXISD::TexUnified2DArrayU32Float;
3011  case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3012    return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3013  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3014    return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3015
3016  case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3017    return NVPTXISD::TexUnified3DFloatS32;
3018  case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3019    return NVPTXISD::TexUnified3DFloatFloat;
3020  case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3021    return NVPTXISD::TexUnified3DFloatFloatLevel;
3022  case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3023    return NVPTXISD::TexUnified3DFloatFloatGrad;
3024  case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3025    return NVPTXISD::TexUnified3DS32S32;
3026  case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3027    return NVPTXISD::TexUnified3DS32Float;
3028  case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3029    return NVPTXISD::TexUnified3DS32FloatLevel;
3030  case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3031    return NVPTXISD::TexUnified3DS32FloatGrad;
3032  case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3033    return NVPTXISD::TexUnified3DU32S32;
3034  case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3035    return NVPTXISD::TexUnified3DU32Float;
3036  case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3037    return NVPTXISD::TexUnified3DU32FloatLevel;
3038  case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3039    return NVPTXISD::TexUnified3DU32FloatGrad;
3040
3041  case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3042    return NVPTXISD::TexUnifiedCubeFloatFloat;
3043  case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3044    return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3045  case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3046    return NVPTXISD::TexUnifiedCubeS32Float;
3047  case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3048    return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3049  case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3050    return NVPTXISD::TexUnifiedCubeU32Float;
3051  case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3052    return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3053
3054  case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3055    return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3056  case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3057    return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3058  case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3059    return NVPTXISD::TexUnifiedCubeArrayS32Float;
3060  case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3061    return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3062  case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3063    return NVPTXISD::TexUnifiedCubeArrayU32Float;
3064  case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3065    return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3066
3067  case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3068    return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3069  case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3070    return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3071  case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3072    return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3073  case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3074    return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3075  case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3076    return NVPTXISD::Tld4UnifiedR2DS64Float;
3077  case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3078    return NVPTXISD::Tld4UnifiedG2DS64Float;
3079  case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3080    return NVPTXISD::Tld4UnifiedB2DS64Float;
3081  case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3082    return NVPTXISD::Tld4UnifiedA2DS64Float;
3083  case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3084    return NVPTXISD::Tld4UnifiedR2DU64Float;
3085  case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3086    return NVPTXISD::Tld4UnifiedG2DU64Float;
3087  case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3088    return NVPTXISD::Tld4UnifiedB2DU64Float;
3089  case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3090    return NVPTXISD::Tld4UnifiedA2DU64Float;
3091  }
3092}
3093
3094static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3095  switch (Intrinsic) {
3096  default:
3097    return 0;
3098  case Intrinsic::nvvm_suld_1d_i8_clamp:
3099    return NVPTXISD::Suld1DI8Clamp;
3100  case Intrinsic::nvvm_suld_1d_i16_clamp:
3101    return NVPTXISD::Suld1DI16Clamp;
3102  case Intrinsic::nvvm_suld_1d_i32_clamp:
3103    return NVPTXISD::Suld1DI32Clamp;
3104  case Intrinsic::nvvm_suld_1d_i64_clamp:
3105    return NVPTXISD::Suld1DI64Clamp;
3106  case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3107    return NVPTXISD::Suld1DV2I8Clamp;
3108  case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3109    return NVPTXISD::Suld1DV2I16Clamp;
3110  case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3111    return NVPTXISD::Suld1DV2I32Clamp;
3112  case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3113    return NVPTXISD::Suld1DV2I64Clamp;
3114  case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3115    return NVPTXISD::Suld1DV4I8Clamp;
3116  case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3117    return NVPTXISD::Suld1DV4I16Clamp;
3118  case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3119    return NVPTXISD::Suld1DV4I32Clamp;
3120  case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3121    return NVPTXISD::Suld1DArrayI8Clamp;
3122  case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3123    return NVPTXISD::Suld1DArrayI16Clamp;
3124  case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3125    return NVPTXISD::Suld1DArrayI32Clamp;
3126  case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3127    return NVPTXISD::Suld1DArrayI64Clamp;
3128  case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3129    return NVPTXISD::Suld1DArrayV2I8Clamp;
3130  case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3131    return NVPTXISD::Suld1DArrayV2I16Clamp;
3132  case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3133    return NVPTXISD::Suld1DArrayV2I32Clamp;
3134  case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3135    return NVPTXISD::Suld1DArrayV2I64Clamp;
3136  case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3137    return NVPTXISD::Suld1DArrayV4I8Clamp;
3138  case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3139    return NVPTXISD::Suld1DArrayV4I16Clamp;
3140  case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3141    return NVPTXISD::Suld1DArrayV4I32Clamp;
3142  case Intrinsic::nvvm_suld_2d_i8_clamp:
3143    return NVPTXISD::Suld2DI8Clamp;
3144  case Intrinsic::nvvm_suld_2d_i16_clamp:
3145    return NVPTXISD::Suld2DI16Clamp;
3146  case Intrinsic::nvvm_suld_2d_i32_clamp:
3147    return NVPTXISD::Suld2DI32Clamp;
3148  case Intrinsic::nvvm_suld_2d_i64_clamp:
3149    return NVPTXISD::Suld2DI64Clamp;
3150  case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3151    return NVPTXISD::Suld2DV2I8Clamp;
3152  case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3153    return NVPTXISD::Suld2DV2I16Clamp;
3154  case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3155    return NVPTXISD::Suld2DV2I32Clamp;
3156  case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3157    return NVPTXISD::Suld2DV2I64Clamp;
3158  case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3159    return NVPTXISD::Suld2DV4I8Clamp;
3160  case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3161    return NVPTXISD::Suld2DV4I16Clamp;
3162  case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3163    return NVPTXISD::Suld2DV4I32Clamp;
3164  case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3165    return NVPTXISD::Suld2DArrayI8Clamp;
3166  case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3167    return NVPTXISD::Suld2DArrayI16Clamp;
3168  case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3169    return NVPTXISD::Suld2DArrayI32Clamp;
3170  case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3171    return NVPTXISD::Suld2DArrayI64Clamp;
3172  case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3173    return NVPTXISD::Suld2DArrayV2I8Clamp;
3174  case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3175    return NVPTXISD::Suld2DArrayV2I16Clamp;
3176  case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3177    return NVPTXISD::Suld2DArrayV2I32Clamp;
3178  case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3179    return NVPTXISD::Suld2DArrayV2I64Clamp;
3180  case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3181    return NVPTXISD::Suld2DArrayV4I8Clamp;
3182  case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3183    return NVPTXISD::Suld2DArrayV4I16Clamp;
3184  case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3185    return NVPTXISD::Suld2DArrayV4I32Clamp;
3186  case Intrinsic::nvvm_suld_3d_i8_clamp:
3187    return NVPTXISD::Suld3DI8Clamp;
3188  case Intrinsic::nvvm_suld_3d_i16_clamp:
3189    return NVPTXISD::Suld3DI16Clamp;
3190  case Intrinsic::nvvm_suld_3d_i32_clamp:
3191    return NVPTXISD::Suld3DI32Clamp;
3192  case Intrinsic::nvvm_suld_3d_i64_clamp:
3193    return NVPTXISD::Suld3DI64Clamp;
3194  case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3195    return NVPTXISD::Suld3DV2I8Clamp;
3196  case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3197    return NVPTXISD::Suld3DV2I16Clamp;
3198  case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3199    return NVPTXISD::Suld3DV2I32Clamp;
3200  case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3201    return NVPTXISD::Suld3DV2I64Clamp;
3202  case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3203    return NVPTXISD::Suld3DV4I8Clamp;
3204  case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3205    return NVPTXISD::Suld3DV4I16Clamp;
3206  case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3207    return NVPTXISD::Suld3DV4I32Clamp;
3208  case Intrinsic::nvvm_suld_1d_i8_trap:
3209    return NVPTXISD::Suld1DI8Trap;
3210  case Intrinsic::nvvm_suld_1d_i16_trap:
3211    return NVPTXISD::Suld1DI16Trap;
3212  case Intrinsic::nvvm_suld_1d_i32_trap:
3213    return NVPTXISD::Suld1DI32Trap;
3214  case Intrinsic::nvvm_suld_1d_i64_trap:
3215    return NVPTXISD::Suld1DI64Trap;
3216  case Intrinsic::nvvm_suld_1d_v2i8_trap:
3217    return NVPTXISD::Suld1DV2I8Trap;
3218  case Intrinsic::nvvm_suld_1d_v2i16_trap:
3219    return NVPTXISD::Suld1DV2I16Trap;
3220  case Intrinsic::nvvm_suld_1d_v2i32_trap:
3221    return NVPTXISD::Suld1DV2I32Trap;
3222  case Intrinsic::nvvm_suld_1d_v2i64_trap:
3223    return NVPTXISD::Suld1DV2I64Trap;
3224  case Intrinsic::nvvm_suld_1d_v4i8_trap:
3225    return NVPTXISD::Suld1DV4I8Trap;
3226  case Intrinsic::nvvm_suld_1d_v4i16_trap:
3227    return NVPTXISD::Suld1DV4I16Trap;
3228  case Intrinsic::nvvm_suld_1d_v4i32_trap:
3229    return NVPTXISD::Suld1DV4I32Trap;
3230  case Intrinsic::nvvm_suld_1d_array_i8_trap:
3231    return NVPTXISD::Suld1DArrayI8Trap;
3232  case Intrinsic::nvvm_suld_1d_array_i16_trap:
3233    return NVPTXISD::Suld1DArrayI16Trap;
3234  case Intrinsic::nvvm_suld_1d_array_i32_trap:
3235    return NVPTXISD::Suld1DArrayI32Trap;
3236  case Intrinsic::nvvm_suld_1d_array_i64_trap:
3237    return NVPTXISD::Suld1DArrayI64Trap;
3238  case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3239    return NVPTXISD::Suld1DArrayV2I8Trap;
3240  case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3241    return NVPTXISD::Suld1DArrayV2I16Trap;
3242  case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3243    return NVPTXISD::Suld1DArrayV2I32Trap;
3244  case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3245    return NVPTXISD::Suld1DArrayV2I64Trap;
3246  case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3247    return NVPTXISD::Suld1DArrayV4I8Trap;
3248  case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3249    return NVPTXISD::Suld1DArrayV4I16Trap;
3250  case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3251    return NVPTXISD::Suld1DArrayV4I32Trap;
3252  case Intrinsic::nvvm_suld_2d_i8_trap:
3253    return NVPTXISD::Suld2DI8Trap;
3254  case Intrinsic::nvvm_suld_2d_i16_trap:
3255    return NVPTXISD::Suld2DI16Trap;
3256  case Intrinsic::nvvm_suld_2d_i32_trap:
3257    return NVPTXISD::Suld2DI32Trap;
3258  case Intrinsic::nvvm_suld_2d_i64_trap:
3259    return NVPTXISD::Suld2DI64Trap;
3260  case Intrinsic::nvvm_suld_2d_v2i8_trap:
3261    return NVPTXISD::Suld2DV2I8Trap;
3262  case Intrinsic::nvvm_suld_2d_v2i16_trap:
3263    return NVPTXISD::Suld2DV2I16Trap;
3264  case Intrinsic::nvvm_suld_2d_v2i32_trap:
3265    return NVPTXISD::Suld2DV2I32Trap;
3266  case Intrinsic::nvvm_suld_2d_v2i64_trap:
3267    return NVPTXISD::Suld2DV2I64Trap;
3268  case Intrinsic::nvvm_suld_2d_v4i8_trap:
3269    return NVPTXISD::Suld2DV4I8Trap;
3270  case Intrinsic::nvvm_suld_2d_v4i16_trap:
3271    return NVPTXISD::Suld2DV4I16Trap;
3272  case Intrinsic::nvvm_suld_2d_v4i32_trap:
3273    return NVPTXISD::Suld2DV4I32Trap;
3274  case Intrinsic::nvvm_suld_2d_array_i8_trap:
3275    return NVPTXISD::Suld2DArrayI8Trap;
3276  case Intrinsic::nvvm_suld_2d_array_i16_trap:
3277    return NVPTXISD::Suld2DArrayI16Trap;
3278  case Intrinsic::nvvm_suld_2d_array_i32_trap:
3279    return NVPTXISD::Suld2DArrayI32Trap;
3280  case Intrinsic::nvvm_suld_2d_array_i64_trap:
3281    return NVPTXISD::Suld2DArrayI64Trap;
3282  case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3283    return NVPTXISD::Suld2DArrayV2I8Trap;
3284  case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3285    return NVPTXISD::Suld2DArrayV2I16Trap;
3286  case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3287    return NVPTXISD::Suld2DArrayV2I32Trap;
3288  case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3289    return NVPTXISD::Suld2DArrayV2I64Trap;
3290  case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3291    return NVPTXISD::Suld2DArrayV4I8Trap;
3292  case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3293    return NVPTXISD::Suld2DArrayV4I16Trap;
3294  case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3295    return NVPTXISD::Suld2DArrayV4I32Trap;
3296  case Intrinsic::nvvm_suld_3d_i8_trap:
3297    return NVPTXISD::Suld3DI8Trap;
3298  case Intrinsic::nvvm_suld_3d_i16_trap:
3299    return NVPTXISD::Suld3DI16Trap;
3300  case Intrinsic::nvvm_suld_3d_i32_trap:
3301    return NVPTXISD::Suld3DI32Trap;
3302  case Intrinsic::nvvm_suld_3d_i64_trap:
3303    return NVPTXISD::Suld3DI64Trap;
3304  case Intrinsic::nvvm_suld_3d_v2i8_trap:
3305    return NVPTXISD::Suld3DV2I8Trap;
3306  case Intrinsic::nvvm_suld_3d_v2i16_trap:
3307    return NVPTXISD::Suld3DV2I16Trap;
3308  case Intrinsic::nvvm_suld_3d_v2i32_trap:
3309    return NVPTXISD::Suld3DV2I32Trap;
3310  case Intrinsic::nvvm_suld_3d_v2i64_trap:
3311    return NVPTXISD::Suld3DV2I64Trap;
3312  case Intrinsic::nvvm_suld_3d_v4i8_trap:
3313    return NVPTXISD::Suld3DV4I8Trap;
3314  case Intrinsic::nvvm_suld_3d_v4i16_trap:
3315    return NVPTXISD::Suld3DV4I16Trap;
3316  case Intrinsic::nvvm_suld_3d_v4i32_trap:
3317    return NVPTXISD::Suld3DV4I32Trap;
3318  case Intrinsic::nvvm_suld_1d_i8_zero:
3319    return NVPTXISD::Suld1DI8Zero;
3320  case Intrinsic::nvvm_suld_1d_i16_zero:
3321    return NVPTXISD::Suld1DI16Zero;
3322  case Intrinsic::nvvm_suld_1d_i32_zero:
3323    return NVPTXISD::Suld1DI32Zero;
3324  case Intrinsic::nvvm_suld_1d_i64_zero:
3325    return NVPTXISD::Suld1DI64Zero;
3326  case Intrinsic::nvvm_suld_1d_v2i8_zero:
3327    return NVPTXISD::Suld1DV2I8Zero;
3328  case Intrinsic::nvvm_suld_1d_v2i16_zero:
3329    return NVPTXISD::Suld1DV2I16Zero;
3330  case Intrinsic::nvvm_suld_1d_v2i32_zero:
3331    return NVPTXISD::Suld1DV2I32Zero;
3332  case Intrinsic::nvvm_suld_1d_v2i64_zero:
3333    return NVPTXISD::Suld1DV2I64Zero;
3334  case Intrinsic::nvvm_suld_1d_v4i8_zero:
3335    return NVPTXISD::Suld1DV4I8Zero;
3336  case Intrinsic::nvvm_suld_1d_v4i16_zero:
3337    return NVPTXISD::Suld1DV4I16Zero;
3338  case Intrinsic::nvvm_suld_1d_v4i32_zero:
3339    return NVPTXISD::Suld1DV4I32Zero;
3340  case Intrinsic::nvvm_suld_1d_array_i8_zero:
3341    return NVPTXISD::Suld1DArrayI8Zero;
3342  case Intrinsic::nvvm_suld_1d_array_i16_zero:
3343    return NVPTXISD::Suld1DArrayI16Zero;
3344  case Intrinsic::nvvm_suld_1d_array_i32_zero:
3345    return NVPTXISD::Suld1DArrayI32Zero;
3346  case Intrinsic::nvvm_suld_1d_array_i64_zero:
3347    return NVPTXISD::Suld1DArrayI64Zero;
3348  case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3349    return NVPTXISD::Suld1DArrayV2I8Zero;
3350  case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3351    return NVPTXISD::Suld1DArrayV2I16Zero;
3352  case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3353    return NVPTXISD::Suld1DArrayV2I32Zero;
3354  case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3355    return NVPTXISD::Suld1DArrayV2I64Zero;
3356  case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3357    return NVPTXISD::Suld1DArrayV4I8Zero;
3358  case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3359    return NVPTXISD::Suld1DArrayV4I16Zero;
3360  case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3361    return NVPTXISD::Suld1DArrayV4I32Zero;
3362  case Intrinsic::nvvm_suld_2d_i8_zero:
3363    return NVPTXISD::Suld2DI8Zero;
3364  case Intrinsic::nvvm_suld_2d_i16_zero:
3365    return NVPTXISD::Suld2DI16Zero;
3366  case Intrinsic::nvvm_suld_2d_i32_zero:
3367    return NVPTXISD::Suld2DI32Zero;
3368  case Intrinsic::nvvm_suld_2d_i64_zero:
3369    return NVPTXISD::Suld2DI64Zero;
3370  case Intrinsic::nvvm_suld_2d_v2i8_zero:
3371    return NVPTXISD::Suld2DV2I8Zero;
3372  case Intrinsic::nvvm_suld_2d_v2i16_zero:
3373    return NVPTXISD::Suld2DV2I16Zero;
3374  case Intrinsic::nvvm_suld_2d_v2i32_zero:
3375    return NVPTXISD::Suld2DV2I32Zero;
3376  case Intrinsic::nvvm_suld_2d_v2i64_zero:
3377    return NVPTXISD::Suld2DV2I64Zero;
3378  case Intrinsic::nvvm_suld_2d_v4i8_zero:
3379    return NVPTXISD::Suld2DV4I8Zero;
3380  case Intrinsic::nvvm_suld_2d_v4i16_zero:
3381    return NVPTXISD::Suld2DV4I16Zero;
3382  case Intrinsic::nvvm_suld_2d_v4i32_zero:
3383    return NVPTXISD::Suld2DV4I32Zero;
3384  case Intrinsic::nvvm_suld_2d_array_i8_zero:
3385    return NVPTXISD::Suld2DArrayI8Zero;
3386  case Intrinsic::nvvm_suld_2d_array_i16_zero:
3387    return NVPTXISD::Suld2DArrayI16Zero;
3388  case Intrinsic::nvvm_suld_2d_array_i32_zero:
3389    return NVPTXISD::Suld2DArrayI32Zero;
3390  case Intrinsic::nvvm_suld_2d_array_i64_zero:
3391    return NVPTXISD::Suld2DArrayI64Zero;
3392  case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3393    return NVPTXISD::Suld2DArrayV2I8Zero;
3394  case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3395    return NVPTXISD::Suld2DArrayV2I16Zero;
3396  case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3397    return NVPTXISD::Suld2DArrayV2I32Zero;
3398  case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3399    return NVPTXISD::Suld2DArrayV2I64Zero;
3400  case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3401    return NVPTXISD::Suld2DArrayV4I8Zero;
3402  case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3403    return NVPTXISD::Suld2DArrayV4I16Zero;
3404  case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3405    return NVPTXISD::Suld2DArrayV4I32Zero;
3406  case Intrinsic::nvvm_suld_3d_i8_zero:
3407    return NVPTXISD::Suld3DI8Zero;
3408  case Intrinsic::nvvm_suld_3d_i16_zero:
3409    return NVPTXISD::Suld3DI16Zero;
3410  case Intrinsic::nvvm_suld_3d_i32_zero:
3411    return NVPTXISD::Suld3DI32Zero;
3412  case Intrinsic::nvvm_suld_3d_i64_zero:
3413    return NVPTXISD::Suld3DI64Zero;
3414  case Intrinsic::nvvm_suld_3d_v2i8_zero:
3415    return NVPTXISD::Suld3DV2I8Zero;
3416  case Intrinsic::nvvm_suld_3d_v2i16_zero:
3417    return NVPTXISD::Suld3DV2I16Zero;
3418  case Intrinsic::nvvm_suld_3d_v2i32_zero:
3419    return NVPTXISD::Suld3DV2I32Zero;
3420  case Intrinsic::nvvm_suld_3d_v2i64_zero:
3421    return NVPTXISD::Suld3DV2I64Zero;
3422  case Intrinsic::nvvm_suld_3d_v4i8_zero:
3423    return NVPTXISD::Suld3DV4I8Zero;
3424  case Intrinsic::nvvm_suld_3d_v4i16_zero:
3425    return NVPTXISD::Suld3DV4I16Zero;
3426  case Intrinsic::nvvm_suld_3d_v4i32_zero:
3427    return NVPTXISD::Suld3DV4I32Zero;
3428  }
3429}
3430
3431// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3432// TgtMemIntrinsic
3433// because we need the information that is only available in the "Value" type
3434// of destination
3435// pointer. In particular, the address space information.
3436bool NVPTXTargetLowering::getTgtMemIntrinsic(
3437    IntrinsicInfo &Info, const CallInst &I,
3438    MachineFunction &MF, unsigned Intrinsic) const {
3439  switch (Intrinsic) {
3440  default:
3441    return false;
3442  case Intrinsic::nvvm_match_all_sync_i32p:
3443  case Intrinsic::nvvm_match_all_sync_i64p:
3444    Info.opc = ISD::INTRINSIC_W_CHAIN;
3445    // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
3446    // in order to model data exchange with other threads, but perform no real
3447    // memory accesses.
3448    Info.memVT = MVT::i1;
3449
3450    // Our result depends on both our and other thread's arguments.
3451    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3452    return true;
3453  case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
3454  case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
3455  case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
3456  case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
3457  case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
3458  case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
3459  case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
3460  case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
3461  case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
3462  case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
3463  case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
3464  case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
3465  case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
3466  case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
3467  case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
3468  case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
3469  case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
3470  case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
3471  case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
3472  case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
3473  case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
3474  case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
3475  case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
3476  case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
3477    Info.opc = ISD::INTRINSIC_W_CHAIN;
3478    Info.memVT = MVT::v8f16;
3479    Info.ptrVal = I.getArgOperand(0);
3480    Info.offset = 0;
3481    Info.flags = MachineMemOperand::MOLoad;
3482    Info.align = Align(16);
3483    return true;
3484  }
3485  case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col:
3486  case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_col_stride:
3487  case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col_stride:
3488  case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_col:
3489  case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row:
3490  case Intrinsic::nvvm_wmma_m16n16k16_load_a_s8_row_stride:
3491  case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row_stride:
3492  case Intrinsic::nvvm_wmma_m16n16k16_load_a_u8_row:
3493  case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col:
3494  case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_col_stride:
3495  case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col_stride:
3496  case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_col:
3497  case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row:
3498  case Intrinsic::nvvm_wmma_m16n16k16_load_b_s8_row_stride:
3499  case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row_stride:
3500  case Intrinsic::nvvm_wmma_m16n16k16_load_b_u8_row: {
3501    Info.opc = ISD::INTRINSIC_W_CHAIN;
3502    Info.memVT = MVT::v2i32;
3503    Info.ptrVal = I.getArgOperand(0);
3504    Info.offset = 0;
3505    Info.flags = MachineMemOperand::MOLoad;
3506    Info.align = Align(8);
3507    return true;
3508  }
3509
3510  case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col:
3511  case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_col_stride:
3512  case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col_stride:
3513  case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_col:
3514  case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row:
3515  case Intrinsic::nvvm_wmma_m32n8k16_load_a_s8_row_stride:
3516  case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row_stride:
3517  case Intrinsic::nvvm_wmma_m32n8k16_load_a_u8_row:
3518
3519  case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col:
3520  case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_col_stride:
3521  case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col_stride:
3522  case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_col:
3523  case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row:
3524  case Intrinsic::nvvm_wmma_m8n32k16_load_b_s8_row_stride:
3525  case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row_stride:
3526  case Intrinsic::nvvm_wmma_m8n32k16_load_b_u8_row: {
3527    Info.opc = ISD::INTRINSIC_W_CHAIN;
3528    Info.memVT = MVT::v4i32;
3529    Info.ptrVal = I.getArgOperand(0);
3530    Info.offset = 0;
3531    Info.flags = MachineMemOperand::MOLoad;
3532    Info.align = Align(16);
3533    return true;
3534  }
3535
3536  case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col:
3537  case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_col_stride:
3538  case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col_stride:
3539  case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_col:
3540  case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row:
3541  case Intrinsic::nvvm_wmma_m32n8k16_load_b_s8_row_stride:
3542  case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row_stride:
3543  case Intrinsic::nvvm_wmma_m32n8k16_load_b_u8_row:
3544
3545  case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col:
3546  case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_col_stride:
3547  case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col_stride:
3548  case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_col:
3549  case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row:
3550  case Intrinsic::nvvm_wmma_m8n32k16_load_a_s8_row_stride:
3551  case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row_stride:
3552  case Intrinsic::nvvm_wmma_m8n32k16_load_a_u8_row:
3553  case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row:
3554  case Intrinsic::nvvm_wmma_m8n8k128_load_a_b1_row_stride:
3555  case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col:
3556  case Intrinsic::nvvm_wmma_m8n8k128_load_b_b1_col_stride:
3557  case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row:
3558  case Intrinsic::nvvm_wmma_m8n8k32_load_a_s4_row_stride:
3559  case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row_stride:
3560  case Intrinsic::nvvm_wmma_m8n8k32_load_a_u4_row:
3561  case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col:
3562  case Intrinsic::nvvm_wmma_m8n8k32_load_b_s4_col_stride:
3563  case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col_stride:
3564  case Intrinsic::nvvm_wmma_m8n8k32_load_b_u4_col: {
3565    Info.opc = ISD::INTRINSIC_W_CHAIN;
3566    Info.memVT = MVT::i32;
3567    Info.ptrVal = I.getArgOperand(0);
3568    Info.offset = 0;
3569    Info.flags = MachineMemOperand::MOLoad;
3570    Info.align = Align(4);
3571    return true;
3572  }
3573
3574  case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
3575  case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
3576  case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
3577  case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
3578  case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
3579  case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
3580  case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
3581  case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
3582  case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
3583  case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
3584  case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
3585  case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
3586    Info.opc = ISD::INTRINSIC_W_CHAIN;
3587    Info.memVT = MVT::v4f16;
3588    Info.ptrVal = I.getArgOperand(0);
3589    Info.offset = 0;
3590    Info.flags = MachineMemOperand::MOLoad;
3591    Info.align = Align(16);
3592    return true;
3593  }
3594
3595  case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
3596  case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
3597  case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
3598  case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
3599  case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
3600  case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
3601  case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
3602  case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
3603  case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
3604  case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
3605  case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
3606  case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: {
3607    Info.opc = ISD::INTRINSIC_W_CHAIN;
3608    Info.memVT = MVT::v8f32;
3609    Info.ptrVal = I.getArgOperand(0);
3610    Info.offset = 0;
3611    Info.flags = MachineMemOperand::MOLoad;
3612    Info.align = Align(16);
3613    return true;
3614  }
3615
3616  case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col:
3617  case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_col_stride:
3618  case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row:
3619  case Intrinsic::nvvm_wmma_m16n16k16_load_c_s32_row_stride:
3620  case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col:
3621  case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_col_stride:
3622  case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row:
3623  case Intrinsic::nvvm_wmma_m32n8k16_load_c_s32_row_stride:
3624  case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col:
3625  case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_col_stride:
3626  case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row:
3627  case Intrinsic::nvvm_wmma_m8n32k16_load_c_s32_row_stride: {
3628    Info.opc = ISD::INTRINSIC_W_CHAIN;
3629    Info.memVT = MVT::v8i32;
3630    Info.ptrVal = I.getArgOperand(0);
3631    Info.offset = 0;
3632    Info.flags = MachineMemOperand::MOLoad;
3633    Info.align = Align(16);
3634    return true;
3635  }
3636
3637  case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col:
3638  case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_col_stride:
3639  case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row:
3640  case Intrinsic::nvvm_wmma_m8n8k128_load_c_s32_row_stride:
3641  case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col:
3642  case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_col_stride:
3643  case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row:
3644  case Intrinsic::nvvm_wmma_m8n8k32_load_c_s32_row_stride: {
3645    Info.opc = ISD::INTRINSIC_W_CHAIN;
3646    Info.memVT = MVT::v2i32;
3647    Info.ptrVal = I.getArgOperand(0);
3648    Info.offset = 0;
3649    Info.flags = MachineMemOperand::MOLoad;
3650    Info.align = Align(8);
3651    return true;
3652  }
3653
3654  case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
3655  case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
3656  case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
3657  case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
3658  case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
3659  case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
3660  case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
3661  case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
3662  case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
3663  case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
3664  case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
3665  case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
3666    Info.opc = ISD::INTRINSIC_VOID;
3667    Info.memVT = MVT::v4f16;
3668    Info.ptrVal = I.getArgOperand(0);
3669    Info.offset = 0;
3670    Info.flags = MachineMemOperand::MOStore;
3671    Info.align = Align(16);
3672    return true;
3673  }
3674
3675  case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
3676  case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
3677  case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
3678  case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
3679  case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
3680  case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
3681  case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
3682  case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
3683  case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
3684  case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
3685  case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
3686  case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: {
3687    Info.opc = ISD::INTRINSIC_VOID;
3688    Info.memVT = MVT::v8f32;
3689    Info.ptrVal = I.getArgOperand(0);
3690    Info.offset = 0;
3691    Info.flags = MachineMemOperand::MOStore;
3692    Info.align = Align(16);
3693    return true;
3694  }
3695
3696  case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col:
3697  case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_col_stride:
3698  case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row:
3699  case Intrinsic::nvvm_wmma_m16n16k16_store_d_s32_row_stride:
3700  case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col:
3701  case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_col_stride:
3702  case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row:
3703  case Intrinsic::nvvm_wmma_m32n8k16_store_d_s32_row_stride:
3704  case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col:
3705  case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_col_stride:
3706  case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row:
3707  case Intrinsic::nvvm_wmma_m8n32k16_store_d_s32_row_stride: {
3708    Info.opc = ISD::INTRINSIC_VOID;
3709    Info.memVT = MVT::v8i32;
3710    Info.ptrVal = I.getArgOperand(0);
3711    Info.offset = 0;
3712    Info.flags = MachineMemOperand::MOStore;
3713    Info.align = Align(16);
3714    return true;
3715  }
3716
3717  case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col:
3718  case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_col_stride:
3719  case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row:
3720  case Intrinsic::nvvm_wmma_m8n8k128_store_d_s32_row_stride:
3721  case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col:
3722  case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_col_stride:
3723  case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row:
3724  case Intrinsic::nvvm_wmma_m8n8k32_store_d_s32_row_stride: {
3725    Info.opc = ISD::INTRINSIC_VOID;
3726    Info.memVT = MVT::v2i32;
3727    Info.ptrVal = I.getArgOperand(0);
3728    Info.offset = 0;
3729    Info.flags = MachineMemOperand::MOStore;
3730    Info.align = Align(8);
3731    return true;
3732  }
3733
3734  case Intrinsic::nvvm_atomic_load_inc_32:
3735  case Intrinsic::nvvm_atomic_load_dec_32:
3736
3737  case Intrinsic::nvvm_atomic_add_gen_f_cta:
3738  case Intrinsic::nvvm_atomic_add_gen_f_sys:
3739  case Intrinsic::nvvm_atomic_add_gen_i_cta:
3740  case Intrinsic::nvvm_atomic_add_gen_i_sys:
3741  case Intrinsic::nvvm_atomic_and_gen_i_cta:
3742  case Intrinsic::nvvm_atomic_and_gen_i_sys:
3743  case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3744  case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3745  case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3746  case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3747  case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3748  case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3749  case Intrinsic::nvvm_atomic_max_gen_i_cta:
3750  case Intrinsic::nvvm_atomic_max_gen_i_sys:
3751  case Intrinsic::nvvm_atomic_min_gen_i_cta:
3752  case Intrinsic::nvvm_atomic_min_gen_i_sys:
3753  case Intrinsic::nvvm_atomic_or_gen_i_cta:
3754  case Intrinsic::nvvm_atomic_or_gen_i_sys:
3755  case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3756  case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3757  case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3758  case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3759    auto &DL = I.getModule()->getDataLayout();
3760    Info.opc = ISD::INTRINSIC_W_CHAIN;
3761    Info.memVT = getValueType(DL, I.getType());
3762    Info.ptrVal = I.getArgOperand(0);
3763    Info.offset = 0;
3764    Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3765    Info.align.reset();
3766    return true;
3767  }
3768
3769  case Intrinsic::nvvm_ldu_global_i:
3770  case Intrinsic::nvvm_ldu_global_f:
3771  case Intrinsic::nvvm_ldu_global_p: {
3772    auto &DL = I.getModule()->getDataLayout();
3773    Info.opc = ISD::INTRINSIC_W_CHAIN;
3774    if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3775      Info.memVT = getValueType(DL, I.getType());
3776    else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3777      Info.memVT = getPointerTy(DL);
3778    else
3779      Info.memVT = getValueType(DL, I.getType());
3780    Info.ptrVal = I.getArgOperand(0);
3781    Info.offset = 0;
3782    Info.flags = MachineMemOperand::MOLoad;
3783    Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3784
3785    return true;
3786  }
3787  case Intrinsic::nvvm_ldg_global_i:
3788  case Intrinsic::nvvm_ldg_global_f:
3789  case Intrinsic::nvvm_ldg_global_p: {
3790    auto &DL = I.getModule()->getDataLayout();
3791
3792    Info.opc = ISD::INTRINSIC_W_CHAIN;
3793    if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3794      Info.memVT = getValueType(DL, I.getType());
3795    else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3796      Info.memVT = getPointerTy(DL);
3797    else
3798      Info.memVT = getValueType(DL, I.getType());
3799    Info.ptrVal = I.getArgOperand(0);
3800    Info.offset = 0;
3801    Info.flags = MachineMemOperand::MOLoad;
3802    Info.align = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
3803
3804    return true;
3805  }
3806
3807  case Intrinsic::nvvm_tex_1d_v4f32_s32:
3808  case Intrinsic::nvvm_tex_1d_v4f32_f32:
3809  case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3810  case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3811  case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3812  case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3813  case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3814  case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3815  case Intrinsic::nvvm_tex_2d_v4f32_s32:
3816  case Intrinsic::nvvm_tex_2d_v4f32_f32:
3817  case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3818  case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3819  case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3820  case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3821  case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3822  case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3823  case Intrinsic::nvvm_tex_3d_v4f32_s32:
3824  case Intrinsic::nvvm_tex_3d_v4f32_f32:
3825  case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3826  case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3827  case Intrinsic::nvvm_tex_cube_v4f32_f32:
3828  case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3829  case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3830  case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3831  case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3832  case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3833  case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3834  case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3835  case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3836  case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3837  case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3838  case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3839  case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3840  case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3841  case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3842  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3843  case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3844  case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3845  case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3846  case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3847  case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3848  case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3849  case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3850  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3851  case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3852  case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3853  case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3854  case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3855  case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3856  case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3857  case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3858  case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3859  case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3860  case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3861  case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3862  case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3863    Info.opc = getOpcForTextureInstr(Intrinsic);
3864    Info.memVT = MVT::v4f32;
3865    Info.ptrVal = nullptr;
3866    Info.offset = 0;
3867    Info.flags = MachineMemOperand::MOLoad;
3868    Info.align = Align(16);
3869    return true;
3870
3871  case Intrinsic::nvvm_tex_1d_v4s32_s32:
3872  case Intrinsic::nvvm_tex_1d_v4s32_f32:
3873  case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3874  case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3875  case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3876  case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3877  case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3878  case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3879  case Intrinsic::nvvm_tex_2d_v4s32_s32:
3880  case Intrinsic::nvvm_tex_2d_v4s32_f32:
3881  case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3882  case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3883  case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3884  case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3885  case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3886  case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3887  case Intrinsic::nvvm_tex_3d_v4s32_s32:
3888  case Intrinsic::nvvm_tex_3d_v4s32_f32:
3889  case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3890  case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3891  case Intrinsic::nvvm_tex_cube_v4s32_f32:
3892  case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3893  case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3894  case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3895  case Intrinsic::nvvm_tex_cube_v4u32_f32:
3896  case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3897  case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3898  case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3899  case Intrinsic::nvvm_tex_1d_v4u32_s32:
3900  case Intrinsic::nvvm_tex_1d_v4u32_f32:
3901  case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3902  case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3903  case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3904  case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3905  case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3906  case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3907  case Intrinsic::nvvm_tex_2d_v4u32_s32:
3908  case Intrinsic::nvvm_tex_2d_v4u32_f32:
3909  case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3910  case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3911  case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3912  case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3913  case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3914  case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3915  case Intrinsic::nvvm_tex_3d_v4u32_s32:
3916  case Intrinsic::nvvm_tex_3d_v4u32_f32:
3917  case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3918  case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3919  case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3920  case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3921  case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3922  case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3923  case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3924  case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3925  case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3926  case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3927  case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3928  case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3929  case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3930  case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3931  case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3932  case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3933  case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3934  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3935  case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3936  case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3937  case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3938  case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3939  case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3940  case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3941  case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3942  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3943  case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3944  case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3945  case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3946  case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3947  case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3948  case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3949  case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3950  case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3951  case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3952  case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3953  case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3954  case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3955  case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3956  case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3957  case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3958  case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3959  case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3960  case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3961  case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3962  case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3963  case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3964  case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3965  case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3966  case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3967  case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3968  case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3969  case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3970  case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3971  case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3972  case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3973  case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3974  case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3975  case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3976  case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3977  case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3978  case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3979  case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3980  case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3981  case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3982  case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3983    Info.opc = getOpcForTextureInstr(Intrinsic);
3984    Info.memVT = MVT::v4i32;
3985    Info.ptrVal = nullptr;
3986    Info.offset = 0;
3987    Info.flags = MachineMemOperand::MOLoad;
3988    Info.align = Align(16);
3989    return true;
3990
3991  case Intrinsic::nvvm_suld_1d_i8_clamp:
3992  case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3993  case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3994  case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3995  case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3996  case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3997  case Intrinsic::nvvm_suld_2d_i8_clamp:
3998  case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3999  case Intrinsic::nvvm_suld_2d_v4i8_clamp:
4000  case Intrinsic::nvvm_suld_2d_array_i8_clamp:
4001  case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
4002  case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
4003  case Intrinsic::nvvm_suld_3d_i8_clamp:
4004  case Intrinsic::nvvm_suld_3d_v2i8_clamp:
4005  case Intrinsic::nvvm_suld_3d_v4i8_clamp:
4006  case Intrinsic::nvvm_suld_1d_i8_trap:
4007  case Intrinsic::nvvm_suld_1d_v2i8_trap:
4008  case Intrinsic::nvvm_suld_1d_v4i8_trap:
4009  case Intrinsic::nvvm_suld_1d_array_i8_trap:
4010  case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
4011  case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
4012  case Intrinsic::nvvm_suld_2d_i8_trap:
4013  case Intrinsic::nvvm_suld_2d_v2i8_trap:
4014  case Intrinsic::nvvm_suld_2d_v4i8_trap:
4015  case Intrinsic::nvvm_suld_2d_array_i8_trap:
4016  case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
4017  case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
4018  case Intrinsic::nvvm_suld_3d_i8_trap:
4019  case Intrinsic::nvvm_suld_3d_v2i8_trap:
4020  case Intrinsic::nvvm_suld_3d_v4i8_trap:
4021  case Intrinsic::nvvm_suld_1d_i8_zero:
4022  case Intrinsic::nvvm_suld_1d_v2i8_zero:
4023  case Intrinsic::nvvm_suld_1d_v4i8_zero:
4024  case Intrinsic::nvvm_suld_1d_array_i8_zero:
4025  case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
4026  case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
4027  case Intrinsic::nvvm_suld_2d_i8_zero:
4028  case Intrinsic::nvvm_suld_2d_v2i8_zero:
4029  case Intrinsic::nvvm_suld_2d_v4i8_zero:
4030  case Intrinsic::nvvm_suld_2d_array_i8_zero:
4031  case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
4032  case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
4033  case Intrinsic::nvvm_suld_3d_i8_zero:
4034  case Intrinsic::nvvm_suld_3d_v2i8_zero:
4035  case Intrinsic::nvvm_suld_3d_v4i8_zero:
4036    Info.opc = getOpcForSurfaceInstr(Intrinsic);
4037    Info.memVT = MVT::i8;
4038    Info.ptrVal = nullptr;
4039    Info.offset = 0;
4040    Info.flags = MachineMemOperand::MOLoad;
4041    Info.align = Align(16);
4042    return true;
4043
4044  case Intrinsic::nvvm_suld_1d_i16_clamp:
4045  case Intrinsic::nvvm_suld_1d_v2i16_clamp:
4046  case Intrinsic::nvvm_suld_1d_v4i16_clamp:
4047  case Intrinsic::nvvm_suld_1d_array_i16_clamp:
4048  case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
4049  case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
4050  case Intrinsic::nvvm_suld_2d_i16_clamp:
4051  case Intrinsic::nvvm_suld_2d_v2i16_clamp:
4052  case Intrinsic::nvvm_suld_2d_v4i16_clamp:
4053  case Intrinsic::nvvm_suld_2d_array_i16_clamp:
4054  case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
4055  case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
4056  case Intrinsic::nvvm_suld_3d_i16_clamp:
4057  case Intrinsic::nvvm_suld_3d_v2i16_clamp:
4058  case Intrinsic::nvvm_suld_3d_v4i16_clamp:
4059  case Intrinsic::nvvm_suld_1d_i16_trap:
4060  case Intrinsic::nvvm_suld_1d_v2i16_trap:
4061  case Intrinsic::nvvm_suld_1d_v4i16_trap:
4062  case Intrinsic::nvvm_suld_1d_array_i16_trap:
4063  case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
4064  case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
4065  case Intrinsic::nvvm_suld_2d_i16_trap:
4066  case Intrinsic::nvvm_suld_2d_v2i16_trap:
4067  case Intrinsic::nvvm_suld_2d_v4i16_trap:
4068  case Intrinsic::nvvm_suld_2d_array_i16_trap:
4069  case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
4070  case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
4071  case Intrinsic::nvvm_suld_3d_i16_trap:
4072  case Intrinsic::nvvm_suld_3d_v2i16_trap:
4073  case Intrinsic::nvvm_suld_3d_v4i16_trap:
4074  case Intrinsic::nvvm_suld_1d_i16_zero:
4075  case Intrinsic::nvvm_suld_1d_v2i16_zero:
4076  case Intrinsic::nvvm_suld_1d_v4i16_zero:
4077  case Intrinsic::nvvm_suld_1d_array_i16_zero:
4078  case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
4079  case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
4080  case Intrinsic::nvvm_suld_2d_i16_zero:
4081  case Intrinsic::nvvm_suld_2d_v2i16_zero:
4082  case Intrinsic::nvvm_suld_2d_v4i16_zero:
4083  case Intrinsic::nvvm_suld_2d_array_i16_zero:
4084  case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
4085  case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
4086  case Intrinsic::nvvm_suld_3d_i16_zero:
4087  case Intrinsic::nvvm_suld_3d_v2i16_zero:
4088  case Intrinsic::nvvm_suld_3d_v4i16_zero:
4089    Info.opc = getOpcForSurfaceInstr(Intrinsic);
4090    Info.memVT = MVT::i16;
4091    Info.ptrVal = nullptr;
4092    Info.offset = 0;
4093    Info.flags = MachineMemOperand::MOLoad;
4094    Info.align = Align(16);
4095    return true;
4096
4097  case Intrinsic::nvvm_suld_1d_i32_clamp:
4098  case Intrinsic::nvvm_suld_1d_v2i32_clamp:
4099  case Intrinsic::nvvm_suld_1d_v4i32_clamp:
4100  case Intrinsic::nvvm_suld_1d_array_i32_clamp:
4101  case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
4102  case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
4103  case Intrinsic::nvvm_suld_2d_i32_clamp:
4104  case Intrinsic::nvvm_suld_2d_v2i32_clamp:
4105  case Intrinsic::nvvm_suld_2d_v4i32_clamp:
4106  case Intrinsic::nvvm_suld_2d_array_i32_clamp:
4107  case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
4108  case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
4109  case Intrinsic::nvvm_suld_3d_i32_clamp:
4110  case Intrinsic::nvvm_suld_3d_v2i32_clamp:
4111  case Intrinsic::nvvm_suld_3d_v4i32_clamp:
4112  case Intrinsic::nvvm_suld_1d_i32_trap:
4113  case Intrinsic::nvvm_suld_1d_v2i32_trap:
4114  case Intrinsic::nvvm_suld_1d_v4i32_trap:
4115  case Intrinsic::nvvm_suld_1d_array_i32_trap:
4116  case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
4117  case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
4118  case Intrinsic::nvvm_suld_2d_i32_trap:
4119  case Intrinsic::nvvm_suld_2d_v2i32_trap:
4120  case Intrinsic::nvvm_suld_2d_v4i32_trap:
4121  case Intrinsic::nvvm_suld_2d_array_i32_trap:
4122  case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
4123  case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
4124  case Intrinsic::nvvm_suld_3d_i32_trap:
4125  case Intrinsic::nvvm_suld_3d_v2i32_trap:
4126  case Intrinsic::nvvm_suld_3d_v4i32_trap:
4127  case Intrinsic::nvvm_suld_1d_i32_zero:
4128  case Intrinsic::nvvm_suld_1d_v2i32_zero:
4129  case Intrinsic::nvvm_suld_1d_v4i32_zero:
4130  case Intrinsic::nvvm_suld_1d_array_i32_zero:
4131  case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
4132  case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
4133  case Intrinsic::nvvm_suld_2d_i32_zero:
4134  case Intrinsic::nvvm_suld_2d_v2i32_zero:
4135  case Intrinsic::nvvm_suld_2d_v4i32_zero:
4136  case Intrinsic::nvvm_suld_2d_array_i32_zero:
4137  case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
4138  case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
4139  case Intrinsic::nvvm_suld_3d_i32_zero:
4140  case Intrinsic::nvvm_suld_3d_v2i32_zero:
4141  case Intrinsic::nvvm_suld_3d_v4i32_zero:
4142    Info.opc = getOpcForSurfaceInstr(Intrinsic);
4143    Info.memVT = MVT::i32;
4144    Info.ptrVal = nullptr;
4145    Info.offset = 0;
4146    Info.flags = MachineMemOperand::MOLoad;
4147    Info.align = Align(16);
4148    return true;
4149
4150  case Intrinsic::nvvm_suld_1d_i64_clamp:
4151  case Intrinsic::nvvm_suld_1d_v2i64_clamp:
4152  case Intrinsic::nvvm_suld_1d_array_i64_clamp:
4153  case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
4154  case Intrinsic::nvvm_suld_2d_i64_clamp:
4155  case Intrinsic::nvvm_suld_2d_v2i64_clamp:
4156  case Intrinsic::nvvm_suld_2d_array_i64_clamp:
4157  case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
4158  case Intrinsic::nvvm_suld_3d_i64_clamp:
4159  case Intrinsic::nvvm_suld_3d_v2i64_clamp:
4160  case Intrinsic::nvvm_suld_1d_i64_trap:
4161  case Intrinsic::nvvm_suld_1d_v2i64_trap:
4162  case Intrinsic::nvvm_suld_1d_array_i64_trap:
4163  case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
4164  case Intrinsic::nvvm_suld_2d_i64_trap:
4165  case Intrinsic::nvvm_suld_2d_v2i64_trap:
4166  case Intrinsic::nvvm_suld_2d_array_i64_trap:
4167  case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
4168  case Intrinsic::nvvm_suld_3d_i64_trap:
4169  case Intrinsic::nvvm_suld_3d_v2i64_trap:
4170  case Intrinsic::nvvm_suld_1d_i64_zero:
4171  case Intrinsic::nvvm_suld_1d_v2i64_zero:
4172  case Intrinsic::nvvm_suld_1d_array_i64_zero:
4173  case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
4174  case Intrinsic::nvvm_suld_2d_i64_zero:
4175  case Intrinsic::nvvm_suld_2d_v2i64_zero:
4176  case Intrinsic::nvvm_suld_2d_array_i64_zero:
4177  case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
4178  case Intrinsic::nvvm_suld_3d_i64_zero:
4179  case Intrinsic::nvvm_suld_3d_v2i64_zero:
4180    Info.opc = getOpcForSurfaceInstr(Intrinsic);
4181    Info.memVT = MVT::i64;
4182    Info.ptrVal = nullptr;
4183    Info.offset = 0;
4184    Info.flags = MachineMemOperand::MOLoad;
4185    Info.align = Align(16);
4186    return true;
4187  }
4188  return false;
4189}
4190
4191/// isLegalAddressingMode - Return true if the addressing mode represented
4192/// by AM is legal for this target, for a load/store of the specified type.
4193/// Used to guide target specific optimizations, like loop strength reduction
4194/// (LoopStrengthReduce.cpp) and memory optimization for address mode
4195/// (CodeGenPrepare.cpp)
4196bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
4197                                                const AddrMode &AM, Type *Ty,
4198                                                unsigned AS, Instruction *I) const {
4199  // AddrMode - This represents an addressing mode of:
4200  //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
4201  //
4202  // The legal address modes are
4203  // - [avar]
4204  // - [areg]
4205  // - [areg+immoff]
4206  // - [immAddr]
4207
4208  if (AM.BaseGV) {
4209    return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
4210  }
4211
4212  switch (AM.Scale) {
4213  case 0: // "r", "r+i" or "i" is allowed
4214    break;
4215  case 1:
4216    if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
4217      return false;
4218    // Otherwise we have r+i.
4219    break;
4220  default:
4221    // No scale > 1 is allowed
4222    return false;
4223  }
4224  return true;
4225}
4226
4227//===----------------------------------------------------------------------===//
4228//                         NVPTX Inline Assembly Support
4229//===----------------------------------------------------------------------===//
4230
4231/// getConstraintType - Given a constraint letter, return the type of
4232/// constraint it is for this target.
4233NVPTXTargetLowering::ConstraintType
4234NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
4235  if (Constraint.size() == 1) {
4236    switch (Constraint[0]) {
4237    default:
4238      break;
4239    case 'b':
4240    case 'r':
4241    case 'h':
4242    case 'c':
4243    case 'l':
4244    case 'f':
4245    case 'd':
4246    case '0':
4247    case 'N':
4248      return C_RegisterClass;
4249    }
4250  }
4251  return TargetLowering::getConstraintType(Constraint);
4252}
4253
4254std::pair<unsigned, const TargetRegisterClass *>
4255NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4256                                                  StringRef Constraint,
4257                                                  MVT VT) const {
4258  if (Constraint.size() == 1) {
4259    switch (Constraint[0]) {
4260    case 'b':
4261      return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4262    case 'c':
4263      return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4264    case 'h':
4265      return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4266    case 'r':
4267      return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4268    case 'l':
4269    case 'N':
4270      return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4271    case 'f':
4272      return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4273    case 'd':
4274      return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4275    }
4276  }
4277  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4278}
4279
4280//===----------------------------------------------------------------------===//
4281//                         NVPTX DAG Combining
4282//===----------------------------------------------------------------------===//
4283
4284bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4285                                   CodeGenOpt::Level OptLevel) const {
4286  // Always honor command-line argument
4287  if (FMAContractLevelOpt.getNumOccurrences() > 0)
4288    return FMAContractLevelOpt > 0;
4289
4290  // Do not contract if we're not optimizing the code.
4291  if (OptLevel == 0)
4292    return false;
4293
4294  // Honor TargetOptions flags that explicitly say fusion is okay.
4295  if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4296    return true;
4297
4298  return allowUnsafeFPMath(MF);
4299}
4300
4301bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4302  // Honor TargetOptions flags that explicitly say unsafe math is okay.
4303  if (MF.getTarget().Options.UnsafeFPMath)
4304    return true;
4305
4306  // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4307  const Function &F = MF.getFunction();
4308  if (F.hasFnAttribute("unsafe-fp-math")) {
4309    Attribute Attr = F.getFnAttribute("unsafe-fp-math");
4310    StringRef Val = Attr.getValueAsString();
4311    if (Val == "true")
4312      return true;
4313  }
4314
4315  return false;
4316}
4317
4318/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4319/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4320/// called with the default operands, and if that fails, with commuted
4321/// operands.
4322static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4323                                           TargetLowering::DAGCombinerInfo &DCI,
4324                                             const NVPTXSubtarget &Subtarget,
4325                                             CodeGenOpt::Level OptLevel) {
4326  SelectionDAG  &DAG = DCI.DAG;
4327  // Skip non-integer, non-scalar case
4328  EVT VT=N0.getValueType();
4329  if (VT.isVector())
4330    return SDValue();
4331
4332  // fold (add (mul a, b), c) -> (mad a, b, c)
4333  //
4334  if (N0.getOpcode() == ISD::MUL) {
4335    assert (VT.isInteger());
4336    // For integer:
4337    // Since integer multiply-add costs the same as integer multiply
4338    // but is more costly than integer add, do the fusion only when
4339    // the mul is only used in the add.
4340    if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4341        !N0.getNode()->hasOneUse())
4342      return SDValue();
4343
4344    // Do the folding
4345    return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4346                       N0.getOperand(0), N0.getOperand(1), N1);
4347  }
4348  else if (N0.getOpcode() == ISD::FMUL) {
4349    if (VT == MVT::f32 || VT == MVT::f64) {
4350      const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4351          &DAG.getTargetLoweringInfo());
4352      if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4353        return SDValue();
4354
4355      // For floating point:
4356      // Do the fusion only when the mul has less than 5 uses and all
4357      // are add.
4358      // The heuristic is that if a use is not an add, then that use
4359      // cannot be fused into fma, therefore mul is still needed anyway.
4360      // If there are more than 4 uses, even if they are all add, fusing
4361      // them will increase register pressue.
4362      //
4363      int numUses = 0;
4364      int nonAddCount = 0;
4365      for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4366           UE = N0.getNode()->use_end();
4367           UI != UE; ++UI) {
4368        numUses++;
4369        SDNode *User = *UI;
4370        if (User->getOpcode() != ISD::FADD)
4371          ++nonAddCount;
4372      }
4373      if (numUses >= 5)
4374        return SDValue();
4375      if (nonAddCount) {
4376        int orderNo = N->getIROrder();
4377        int orderNo2 = N0.getNode()->getIROrder();
4378        // simple heuristics here for considering potential register
4379        // pressure, the logics here is that the differnce are used
4380        // to measure the distance between def and use, the longer distance
4381        // more likely cause register pressure.
4382        if (orderNo - orderNo2 < 500)
4383          return SDValue();
4384
4385        // Now, check if at least one of the FMUL's operands is live beyond the node N,
4386        // which guarantees that the FMA will not increase register pressure at node N.
4387        bool opIsLive = false;
4388        const SDNode *left = N0.getOperand(0).getNode();
4389        const SDNode *right = N0.getOperand(1).getNode();
4390
4391        if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4392          opIsLive = true;
4393
4394        if (!opIsLive)
4395          for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
4396            SDNode *User = *UI;
4397            int orderNo3 = User->getIROrder();
4398            if (orderNo3 > orderNo) {
4399              opIsLive = true;
4400              break;
4401            }
4402          }
4403
4404        if (!opIsLive)
4405          for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
4406            SDNode *User = *UI;
4407            int orderNo3 = User->getIROrder();
4408            if (orderNo3 > orderNo) {
4409              opIsLive = true;
4410              break;
4411            }
4412          }
4413
4414        if (!opIsLive)
4415          return SDValue();
4416      }
4417
4418      return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4419                         N0.getOperand(0), N0.getOperand(1), N1);
4420    }
4421  }
4422
4423  return SDValue();
4424}
4425
4426/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4427///
4428static SDValue PerformADDCombine(SDNode *N,
4429                                 TargetLowering::DAGCombinerInfo &DCI,
4430                                 const NVPTXSubtarget &Subtarget,
4431                                 CodeGenOpt::Level OptLevel) {
4432  SDValue N0 = N->getOperand(0);
4433  SDValue N1 = N->getOperand(1);
4434
4435  // First try with the default operand order.
4436  if (SDValue Result =
4437          PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4438    return Result;
4439
4440  // If that didn't work, try again with the operands commuted.
4441  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4442}
4443
4444static SDValue PerformANDCombine(SDNode *N,
4445                                 TargetLowering::DAGCombinerInfo &DCI) {
4446  // The type legalizer turns a vector load of i8 values into a zextload to i16
4447  // registers, optionally ANY_EXTENDs it (if target type is integer),
4448  // and ANDs off the high 8 bits. Since we turn this load into a
4449  // target-specific DAG node, the DAG combiner fails to eliminate these AND
4450  // nodes. Do that here.
4451  SDValue Val = N->getOperand(0);
4452  SDValue Mask = N->getOperand(1);
4453
4454  if (isa<ConstantSDNode>(Val)) {
4455    std::swap(Val, Mask);
4456  }
4457
4458  SDValue AExt;
4459  // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4460  if (Val.getOpcode() == ISD::ANY_EXTEND) {
4461    AExt = Val;
4462    Val = Val->getOperand(0);
4463  }
4464
4465  if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4466    Val = Val->getOperand(0);
4467  }
4468
4469  if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4470      Val->getOpcode() == NVPTXISD::LoadV4) {
4471    ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4472    if (!MaskCnst) {
4473      // Not an AND with a constant
4474      return SDValue();
4475    }
4476
4477    uint64_t MaskVal = MaskCnst->getZExtValue();
4478    if (MaskVal != 0xff) {
4479      // Not an AND that chops off top 8 bits
4480      return SDValue();
4481    }
4482
4483    MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4484    if (!Mem) {
4485      // Not a MemSDNode?!?
4486      return SDValue();
4487    }
4488
4489    EVT MemVT = Mem->getMemoryVT();
4490    if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4491      // We only handle the i8 case
4492      return SDValue();
4493    }
4494
4495    unsigned ExtType =
4496      cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4497        getZExtValue();
4498    if (ExtType == ISD::SEXTLOAD) {
4499      // If for some reason the load is a sextload, the and is needed to zero
4500      // out the high 8 bits
4501      return SDValue();
4502    }
4503
4504    bool AddTo = false;
4505    if (AExt.getNode() != nullptr) {
4506      // Re-insert the ext as a zext.
4507      Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4508                            AExt.getValueType(), Val);
4509      AddTo = true;
4510    }
4511
4512    // If we get here, the AND is unnecessary.  Just replace it with the load
4513    DCI.CombineTo(N, Val, AddTo);
4514  }
4515
4516  return SDValue();
4517}
4518
4519static SDValue PerformREMCombine(SDNode *N,
4520                                 TargetLowering::DAGCombinerInfo &DCI,
4521                                 CodeGenOpt::Level OptLevel) {
4522  assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
4523
4524  // Don't do anything at less than -O2.
4525  if (OptLevel < CodeGenOpt::Default)
4526    return SDValue();
4527
4528  SelectionDAG &DAG = DCI.DAG;
4529  SDLoc DL(N);
4530  EVT VT = N->getValueType(0);
4531  bool IsSigned = N->getOpcode() == ISD::SREM;
4532  unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4533
4534  const SDValue &Num = N->getOperand(0);
4535  const SDValue &Den = N->getOperand(1);
4536
4537  for (const SDNode *U : Num->uses()) {
4538    if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4539        U->getOperand(1) == Den) {
4540      // Num % Den -> Num - (Num / Den) * Den
4541      return DAG.getNode(ISD::SUB, DL, VT, Num,
4542                         DAG.getNode(ISD::MUL, DL, VT,
4543                                     DAG.getNode(DivOpc, DL, VT, Num, Den),
4544                                     Den));
4545    }
4546  }
4547  return SDValue();
4548}
4549
4550enum OperandSignedness {
4551  Signed = 0,
4552  Unsigned,
4553  Unknown
4554};
4555
4556/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4557/// that can be demoted to \p OptSize bits without loss of information. The
4558/// signedness of the operand, if determinable, is placed in \p S.
4559static bool IsMulWideOperandDemotable(SDValue Op,
4560                                      unsigned OptSize,
4561                                      OperandSignedness &S) {
4562  S = Unknown;
4563
4564  if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4565      Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4566    EVT OrigVT = Op.getOperand(0).getValueType();
4567    if (OrigVT.getSizeInBits() <= OptSize) {
4568      S = Signed;
4569      return true;
4570    }
4571  } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4572    EVT OrigVT = Op.getOperand(0).getValueType();
4573    if (OrigVT.getSizeInBits() <= OptSize) {
4574      S = Unsigned;
4575      return true;
4576    }
4577  }
4578
4579  return false;
4580}
4581
4582/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4583/// be demoted to \p OptSize bits without loss of information. If the operands
4584/// contain a constant, it should appear as the RHS operand. The signedness of
4585/// the operands is placed in \p IsSigned.
4586static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4587                                        unsigned OptSize,
4588                                        bool &IsSigned) {
4589  OperandSignedness LHSSign;
4590
4591  // The LHS operand must be a demotable op
4592  if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4593    return false;
4594
4595  // We should have been able to determine the signedness from the LHS
4596  if (LHSSign == Unknown)
4597    return false;
4598
4599  IsSigned = (LHSSign == Signed);
4600
4601  // The RHS can be a demotable op or a constant
4602  if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4603    const APInt &Val = CI->getAPIntValue();
4604    if (LHSSign == Unsigned) {
4605      return Val.isIntN(OptSize);
4606    } else {
4607      return Val.isSignedIntN(OptSize);
4608    }
4609  } else {
4610    OperandSignedness RHSSign;
4611    if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4612      return false;
4613
4614    return LHSSign == RHSSign;
4615  }
4616}
4617
4618/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4619/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4620/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4621/// amount.
4622static SDValue TryMULWIDECombine(SDNode *N,
4623                                 TargetLowering::DAGCombinerInfo &DCI) {
4624  EVT MulType = N->getValueType(0);
4625  if (MulType != MVT::i32 && MulType != MVT::i64) {
4626    return SDValue();
4627  }
4628
4629  SDLoc DL(N);
4630  unsigned OptSize = MulType.getSizeInBits() >> 1;
4631  SDValue LHS = N->getOperand(0);
4632  SDValue RHS = N->getOperand(1);
4633
4634  // Canonicalize the multiply so the constant (if any) is on the right
4635  if (N->getOpcode() == ISD::MUL) {
4636    if (isa<ConstantSDNode>(LHS)) {
4637      std::swap(LHS, RHS);
4638    }
4639  }
4640
4641  // If we have a SHL, determine the actual multiply amount
4642  if (N->getOpcode() == ISD::SHL) {
4643    ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4644    if (!ShlRHS) {
4645      return SDValue();
4646    }
4647
4648    APInt ShiftAmt = ShlRHS->getAPIntValue();
4649    unsigned BitWidth = MulType.getSizeInBits();
4650    if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4651      APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4652      RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4653    } else {
4654      return SDValue();
4655    }
4656  }
4657
4658  bool Signed;
4659  // Verify that our operands are demotable
4660  if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4661    return SDValue();
4662  }
4663
4664  EVT DemotedVT;
4665  if (MulType == MVT::i32) {
4666    DemotedVT = MVT::i16;
4667  } else {
4668    DemotedVT = MVT::i32;
4669  }
4670
4671  // Truncate the operands to the correct size. Note that these are just for
4672  // type consistency and will (likely) be eliminated in later phases.
4673  SDValue TruncLHS =
4674    DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4675  SDValue TruncRHS =
4676    DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4677
4678  unsigned Opc;
4679  if (Signed) {
4680    Opc = NVPTXISD::MUL_WIDE_SIGNED;
4681  } else {
4682    Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4683  }
4684
4685  return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4686}
4687
4688/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
4689static SDValue PerformMULCombine(SDNode *N,
4690                                 TargetLowering::DAGCombinerInfo &DCI,
4691                                 CodeGenOpt::Level OptLevel) {
4692  if (OptLevel > 0) {
4693    // Try mul.wide combining at OptLevel > 0
4694    if (SDValue Ret = TryMULWIDECombine(N, DCI))
4695      return Ret;
4696  }
4697
4698  return SDValue();
4699}
4700
4701/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
4702static SDValue PerformSHLCombine(SDNode *N,
4703                                 TargetLowering::DAGCombinerInfo &DCI,
4704                                 CodeGenOpt::Level OptLevel) {
4705  if (OptLevel > 0) {
4706    // Try mul.wide combining at OptLevel > 0
4707    if (SDValue Ret = TryMULWIDECombine(N, DCI))
4708      return Ret;
4709  }
4710
4711  return SDValue();
4712}
4713
4714static SDValue PerformSETCCCombine(SDNode *N,
4715                                   TargetLowering::DAGCombinerInfo &DCI) {
4716  EVT CCType = N->getValueType(0);
4717  SDValue A = N->getOperand(0);
4718  SDValue B = N->getOperand(1);
4719
4720  if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
4721    return SDValue();
4722
4723  SDLoc DL(N);
4724  // setp.f16x2 returns two scalar predicates, which we need to
4725  // convert back to v2i1. The returned result will be scalarized by
4726  // the legalizer, but the comparison will remain a single vector
4727  // instruction.
4728  SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
4729                                   DCI.DAG.getVTList(MVT::i1, MVT::i1),
4730                                   {A, B, N->getOperand(2)});
4731  return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
4732                         CCNode.getValue(1));
4733}
4734
4735SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4736                                               DAGCombinerInfo &DCI) const {
4737  CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4738  switch (N->getOpcode()) {
4739    default: break;
4740    case ISD::ADD:
4741    case ISD::FADD:
4742      return PerformADDCombine(N, DCI, STI, OptLevel);
4743    case ISD::MUL:
4744      return PerformMULCombine(N, DCI, OptLevel);
4745    case ISD::SHL:
4746      return PerformSHLCombine(N, DCI, OptLevel);
4747    case ISD::AND:
4748      return PerformANDCombine(N, DCI);
4749    case ISD::UREM:
4750    case ISD::SREM:
4751      return PerformREMCombine(N, DCI, OptLevel);
4752    case ISD::SETCC:
4753      return PerformSETCCCombine(N, DCI);
4754  }
4755  return SDValue();
4756}
4757
4758/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
4759static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4760                              SmallVectorImpl<SDValue> &Results) {
4761  EVT ResVT = N->getValueType(0);
4762  SDLoc DL(N);
4763
4764  assert(ResVT.isVector() && "Vector load must have vector type");
4765
4766  // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4767  // legal.  We can (and should) split that into 2 loads of <2 x double> here
4768  // but I'm leaving that as a TODO for now.
4769  assert(ResVT.isSimple() && "Can only handle simple types");
4770  switch (ResVT.getSimpleVT().SimpleTy) {
4771  default:
4772    return;
4773  case MVT::v2i8:
4774  case MVT::v2i16:
4775  case MVT::v2i32:
4776  case MVT::v2i64:
4777  case MVT::v2f16:
4778  case MVT::v2f32:
4779  case MVT::v2f64:
4780  case MVT::v4i8:
4781  case MVT::v4i16:
4782  case MVT::v4i32:
4783  case MVT::v4f16:
4784  case MVT::v4f32:
4785  case MVT::v8f16: // <4 x f16x2>
4786    // This is a "native" vector type
4787    break;
4788  }
4789
4790  LoadSDNode *LD = cast<LoadSDNode>(N);
4791
4792  Align Alignment = LD->getAlign();
4793  auto &TD = DAG.getDataLayout();
4794  Align PrefAlign = TD.getPrefTypeAlign(ResVT.getTypeForEVT(*DAG.getContext()));
4795  if (Alignment < PrefAlign) {
4796    // This load is not sufficiently aligned, so bail out and let this vector
4797    // load be scalarized.  Note that we may still be able to emit smaller
4798    // vector loads.  For example, if we are loading a <4 x float> with an
4799    // alignment of 8, this check will fail but the legalizer will try again
4800    // with 2 x <2 x float>, which will succeed with an alignment of 8.
4801    return;
4802  }
4803
4804  EVT EltVT = ResVT.getVectorElementType();
4805  unsigned NumElts = ResVT.getVectorNumElements();
4806
4807  // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4808  // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4809  // loaded type to i16 and propagate the "real" type as the memory type.
4810  bool NeedTrunc = false;
4811  if (EltVT.getSizeInBits() < 16) {
4812    EltVT = MVT::i16;
4813    NeedTrunc = true;
4814  }
4815
4816  unsigned Opcode = 0;
4817  SDVTList LdResVTs;
4818  bool LoadF16x2 = false;
4819
4820  switch (NumElts) {
4821  default:
4822    return;
4823  case 2:
4824    Opcode = NVPTXISD::LoadV2;
4825    LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4826    break;
4827  case 4: {
4828    Opcode = NVPTXISD::LoadV4;
4829    EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4830    LdResVTs = DAG.getVTList(ListVTs);
4831    break;
4832  }
4833  case 8: {
4834    // v8f16 is a special case. PTX doesn't have ld.v8.f16
4835    // instruction. Instead, we split the vector into v2f16 chunks and
4836    // load them with ld.v4.b32.
4837    assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
4838    LoadF16x2 = true;
4839    Opcode = NVPTXISD::LoadV4;
4840    EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
4841                     MVT::Other};
4842    LdResVTs = DAG.getVTList(ListVTs);
4843    break;
4844  }
4845  }
4846
4847  // Copy regular operands
4848  SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4849
4850  // The select routine does not have access to the LoadSDNode instance, so
4851  // pass along the extension information
4852  OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4853
4854  SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4855                                          LD->getMemoryVT(),
4856                                          LD->getMemOperand());
4857
4858  SmallVector<SDValue, 8> ScalarRes;
4859  if (LoadF16x2) {
4860    // Split v2f16 subvectors back into individual elements.
4861    NumElts /= 2;
4862    for (unsigned i = 0; i < NumElts; ++i) {
4863      SDValue SubVector = NewLD.getValue(i);
4864      SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4865                               DAG.getIntPtrConstant(0, DL));
4866      SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
4867                               DAG.getIntPtrConstant(1, DL));
4868      ScalarRes.push_back(E0);
4869      ScalarRes.push_back(E1);
4870    }
4871  } else {
4872    for (unsigned i = 0; i < NumElts; ++i) {
4873      SDValue Res = NewLD.getValue(i);
4874      if (NeedTrunc)
4875        Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4876      ScalarRes.push_back(Res);
4877    }
4878  }
4879
4880  SDValue LoadChain = NewLD.getValue(NumElts);
4881
4882  SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
4883
4884  Results.push_back(BuildVec);
4885  Results.push_back(LoadChain);
4886}
4887
4888static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4889                                     SmallVectorImpl<SDValue> &Results) {
4890  SDValue Chain = N->getOperand(0);
4891  SDValue Intrin = N->getOperand(1);
4892  SDLoc DL(N);
4893
4894  // Get the intrinsic ID
4895  unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4896  switch (IntrinNo) {
4897  default:
4898    return;
4899  case Intrinsic::nvvm_ldg_global_i:
4900  case Intrinsic::nvvm_ldg_global_f:
4901  case Intrinsic::nvvm_ldg_global_p:
4902  case Intrinsic::nvvm_ldu_global_i:
4903  case Intrinsic::nvvm_ldu_global_f:
4904  case Intrinsic::nvvm_ldu_global_p: {
4905    EVT ResVT = N->getValueType(0);
4906
4907    if (ResVT.isVector()) {
4908      // Vector LDG/LDU
4909
4910      unsigned NumElts = ResVT.getVectorNumElements();
4911      EVT EltVT = ResVT.getVectorElementType();
4912
4913      // Since LDU/LDG are target nodes, we cannot rely on DAG type
4914      // legalization.
4915      // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
4916      // loaded type to i16 and propagate the "real" type as the memory type.
4917      bool NeedTrunc = false;
4918      if (EltVT.getSizeInBits() < 16) {
4919        EltVT = MVT::i16;
4920        NeedTrunc = true;
4921      }
4922
4923      unsigned Opcode = 0;
4924      SDVTList LdResVTs;
4925
4926      switch (NumElts) {
4927      default:
4928        return;
4929      case 2:
4930        switch (IntrinNo) {
4931        default:
4932          return;
4933        case Intrinsic::nvvm_ldg_global_i:
4934        case Intrinsic::nvvm_ldg_global_f:
4935        case Intrinsic::nvvm_ldg_global_p:
4936          Opcode = NVPTXISD::LDGV2;
4937          break;
4938        case Intrinsic::nvvm_ldu_global_i:
4939        case Intrinsic::nvvm_ldu_global_f:
4940        case Intrinsic::nvvm_ldu_global_p:
4941          Opcode = NVPTXISD::LDUV2;
4942          break;
4943        }
4944        LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4945        break;
4946      case 4: {
4947        switch (IntrinNo) {
4948        default:
4949          return;
4950        case Intrinsic::nvvm_ldg_global_i:
4951        case Intrinsic::nvvm_ldg_global_f:
4952        case Intrinsic::nvvm_ldg_global_p:
4953          Opcode = NVPTXISD::LDGV4;
4954          break;
4955        case Intrinsic::nvvm_ldu_global_i:
4956        case Intrinsic::nvvm_ldu_global_f:
4957        case Intrinsic::nvvm_ldu_global_p:
4958          Opcode = NVPTXISD::LDUV4;
4959          break;
4960        }
4961        EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4962        LdResVTs = DAG.getVTList(ListVTs);
4963        break;
4964      }
4965      }
4966
4967      SmallVector<SDValue, 8> OtherOps;
4968
4969      // Copy regular operands
4970
4971      OtherOps.push_back(Chain); // Chain
4972                                 // Skip operand 1 (intrinsic ID)
4973      // Others
4974      OtherOps.append(N->op_begin() + 2, N->op_end());
4975
4976      MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4977
4978      SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4979                                              MemSD->getMemoryVT(),
4980                                              MemSD->getMemOperand());
4981
4982      SmallVector<SDValue, 4> ScalarRes;
4983
4984      for (unsigned i = 0; i < NumElts; ++i) {
4985        SDValue Res = NewLD.getValue(i);
4986        if (NeedTrunc)
4987          Res =
4988              DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4989        ScalarRes.push_back(Res);
4990      }
4991
4992      SDValue LoadChain = NewLD.getValue(NumElts);
4993
4994      SDValue BuildVec =
4995          DAG.getBuildVector(ResVT, DL, ScalarRes);
4996
4997      Results.push_back(BuildVec);
4998      Results.push_back(LoadChain);
4999    } else {
5000      // i8 LDG/LDU
5001      assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
5002             "Custom handling of non-i8 ldu/ldg?");
5003
5004      // Just copy all operands as-is
5005      SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
5006
5007      // Force output to i16
5008      SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
5009
5010      MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
5011
5012      // We make sure the memory type is i8, which will be used during isel
5013      // to select the proper instruction.
5014      SDValue NewLD =
5015          DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
5016                                  MVT::i8, MemSD->getMemOperand());
5017
5018      Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
5019                                    NewLD.getValue(0)));
5020      Results.push_back(NewLD.getValue(1));
5021    }
5022  }
5023  }
5024}
5025
5026void NVPTXTargetLowering::ReplaceNodeResults(
5027    SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
5028  switch (N->getOpcode()) {
5029  default:
5030    report_fatal_error("Unhandled custom legalization");
5031  case ISD::LOAD:
5032    ReplaceLoadVector(N, DAG, Results);
5033    return;
5034  case ISD::INTRINSIC_W_CHAIN:
5035    ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
5036    return;
5037  }
5038}
5039
5040// Pin NVPTXTargetObjectFile's vtables to this file.
5041NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
5042
5043MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
5044    const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
5045  return getDataSection();
5046}
5047