1//=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7// This pass removes unnecessary copies/moves in BBs based on a dominating
8// condition.
9//
10// We handle three cases:
11// 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of
12//    the CBZ/CBNZ source register is zero on the taken/not-taken path. For
13//    instance, the copy instruction in the code below can be removed because
14//    the CBZW jumps to %bb.2 when w0 is zero.
15//
16//  %bb.1:
17//    cbz w0, .LBB0_2
18//  .LBB0_2:
19//    mov w0, wzr  ; <-- redundant
20//
21// 2. If the flag setting instruction defines a register other than WZR/XZR, we
22//    can remove a zero copy in some cases.
23//
24//  %bb.0:
25//    subs w0, w1, w2
26//    str w0, [x1]
27//    b.ne .LBB0_2
28//  %bb.1:
29//    mov w0, wzr  ; <-- redundant
30//    str w0, [x2]
31//  .LBB0_2
32//
33// 3. Finally, if the flag setting instruction is a comparison against a
34//    constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate
35//    in some cases.
36//
37//  %bb.0:
38//    subs xzr, x0, #1
39//    b.eq .LBB0_1
40//  .LBB0_1:
41//    orr x0, xzr, #0x1  ; <-- redundant
42//
43// This pass should be run after register allocation.
44//
45// FIXME: This could also be extended to check the whole dominance subtree below
46// the comparison if the compile time regression is acceptable.
47//
48// FIXME: Add support for handling CCMP instructions.
49// FIXME: If the known register value is zero, we should be able to rewrite uses
50//        to use WZR/XZR directly in some cases.
51//===----------------------------------------------------------------------===//
52#include "AArch64.h"
53#include "llvm/ADT/Optional.h"
54#include "llvm/ADT/SetVector.h"
55#include "llvm/ADT/Statistic.h"
56#include "llvm/ADT/iterator_range.h"
57#include "llvm/CodeGen/LiveRegUnits.h"
58#include "llvm/CodeGen/MachineFunctionPass.h"
59#include "llvm/CodeGen/MachineRegisterInfo.h"
60#include "llvm/Support/Debug.h"
61
62using namespace llvm;
63
64#define DEBUG_TYPE "aarch64-copyelim"
65
66STATISTIC(NumCopiesRemoved, "Number of copies removed.");
67
68namespace {
69class AArch64RedundantCopyElimination : public MachineFunctionPass {
70  const MachineRegisterInfo *MRI;
71  const TargetRegisterInfo *TRI;
72
73  // DomBBClobberedRegs is used when computing known values in the dominating
74  // BB.
75  LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs;
76
77  // OptBBClobberedRegs is used when optimizing away redundant copies/moves.
78  LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs;
79
80public:
81  static char ID;
82  AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {
83    initializeAArch64RedundantCopyEliminationPass(
84        *PassRegistry::getPassRegistry());
85  }
86
87  struct RegImm {
88    MCPhysReg Reg;
89    int32_t Imm;
90    RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {}
91  };
92
93  bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB,
94                          SmallVectorImpl<RegImm> &KnownRegs,
95                          MachineBasicBlock::iterator &FirstUse);
96  bool optimizeBlock(MachineBasicBlock *MBB);
97  bool runOnMachineFunction(MachineFunction &MF) override;
98  MachineFunctionProperties getRequiredProperties() const override {
99    return MachineFunctionProperties().set(
100        MachineFunctionProperties::Property::NoVRegs);
101  }
102  StringRef getPassName() const override {
103    return "AArch64 Redundant Copy Elimination";
104  }
105};
106char AArch64RedundantCopyElimination::ID = 0;
107}
108
109INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim",
110                "AArch64 redundant copy elimination pass", false, false)
111
112/// It's possible to determine the value of a register based on a dominating
113/// condition.  To do so, this function checks to see if the basic block \p MBB
114/// is the target of a conditional branch \p CondBr with an equality comparison.
115/// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero
116/// in \p MBB for some cases.  Otherwise, we find and inspect the NZCV setting
117/// instruction (e.g., SUBS, ADDS).  If this instruction defines a register
118/// other than WZR/XZR, we know the value of the destination register is zero in
119/// \p MMB for some cases.  In addition, if the NZCV setting instruction is
120/// comparing against a constant we know the other source register is equal to
121/// the constant in \p MBB for some cases.  If we find any constant values, push
122/// a physical register and constant value pair onto the KnownRegs vector and
123/// return true.  Otherwise, return false if no known values were found.
124bool AArch64RedundantCopyElimination::knownRegValInBlock(
125    MachineInstr &CondBr, MachineBasicBlock *MBB,
126    SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) {
127  unsigned Opc = CondBr.getOpcode();
128
129  // Check if the current basic block is the target block to which the
130  // CBZ/CBNZ instruction jumps when its Wt/Xt is zero.
131  if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) &&
132       MBB == CondBr.getOperand(1).getMBB()) ||
133      ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) &&
134       MBB != CondBr.getOperand(1).getMBB())) {
135    FirstUse = CondBr;
136    KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0));
137    return true;
138  }
139
140  // Otherwise, must be a conditional branch.
141  if (Opc != AArch64::Bcc)
142    return false;
143
144  // Must be an equality check (i.e., == or !=).
145  AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm();
146  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
147    return false;
148
149  MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB();
150  if ((CC == AArch64CC::EQ && BrTarget != MBB) ||
151      (CC == AArch64CC::NE && BrTarget == MBB))
152    return false;
153
154  // Stop if we get to the beginning of PredMBB.
155  MachineBasicBlock *PredMBB = *MBB->pred_begin();
156  assert(PredMBB == CondBr.getParent() &&
157         "Conditional branch not in predecessor block!");
158  if (CondBr == PredMBB->begin())
159    return false;
160
161  // Registers clobbered in PredMBB between CondBr instruction and current
162  // instruction being checked in loop.
163  DomBBClobberedRegs.clear();
164  DomBBUsedRegs.clear();
165
166  // Find compare instruction that sets NZCV used by CondBr.
167  MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator();
168  for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) {
169
170    bool IsCMN = false;
171    switch (PredI.getOpcode()) {
172    default:
173      break;
174
175    // CMN is an alias for ADDS with a dead destination register.
176    case AArch64::ADDSWri:
177    case AArch64::ADDSXri:
178      IsCMN = true;
179      LLVM_FALLTHROUGH;
180    // CMP is an alias for SUBS with a dead destination register.
181    case AArch64::SUBSWri:
182    case AArch64::SUBSXri: {
183      // Sometimes the first operand is a FrameIndex. Bail if tht happens.
184      if (!PredI.getOperand(1).isReg())
185        return false;
186      MCPhysReg DstReg = PredI.getOperand(0).getReg();
187      MCPhysReg SrcReg = PredI.getOperand(1).getReg();
188
189      bool Res = false;
190      // If we're comparing against a non-symbolic immediate and the source
191      // register of the compare is not modified (including a self-clobbering
192      // compare) between the compare and conditional branch we known the value
193      // of the 1st source operand.
194      if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) &&
195          SrcReg != DstReg) {
196        // We've found the instruction that sets NZCV.
197        int32_t KnownImm = PredI.getOperand(2).getImm();
198        int32_t Shift = PredI.getOperand(3).getImm();
199        KnownImm <<= Shift;
200        if (IsCMN)
201          KnownImm = -KnownImm;
202        FirstUse = PredI;
203        KnownRegs.push_back(RegImm(SrcReg, KnownImm));
204        Res = true;
205      }
206
207      // If this instructions defines something other than WZR/XZR, we know it's
208      // result is zero in some cases.
209      if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
210        return Res;
211
212      // The destination register must not be modified between the NZCV setting
213      // instruction and the conditional branch.
214      if (!DomBBClobberedRegs.available(DstReg))
215        return Res;
216
217      FirstUse = PredI;
218      KnownRegs.push_back(RegImm(DstReg, 0));
219      return true;
220    }
221
222    // Look for NZCV setting instructions that define something other than
223    // WZR/XZR.
224    case AArch64::ADCSWr:
225    case AArch64::ADCSXr:
226    case AArch64::ADDSWrr:
227    case AArch64::ADDSWrs:
228    case AArch64::ADDSWrx:
229    case AArch64::ADDSXrr:
230    case AArch64::ADDSXrs:
231    case AArch64::ADDSXrx:
232    case AArch64::ADDSXrx64:
233    case AArch64::ANDSWri:
234    case AArch64::ANDSWrr:
235    case AArch64::ANDSWrs:
236    case AArch64::ANDSXri:
237    case AArch64::ANDSXrr:
238    case AArch64::ANDSXrs:
239    case AArch64::BICSWrr:
240    case AArch64::BICSWrs:
241    case AArch64::BICSXrs:
242    case AArch64::BICSXrr:
243    case AArch64::SBCSWr:
244    case AArch64::SBCSXr:
245    case AArch64::SUBSWrr:
246    case AArch64::SUBSWrs:
247    case AArch64::SUBSWrx:
248    case AArch64::SUBSXrr:
249    case AArch64::SUBSXrs:
250    case AArch64::SUBSXrx:
251    case AArch64::SUBSXrx64: {
252      MCPhysReg DstReg = PredI.getOperand(0).getReg();
253      if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
254        return false;
255
256      // The destination register of the NZCV setting instruction must not be
257      // modified before the conditional branch.
258      if (!DomBBClobberedRegs.available(DstReg))
259        return false;
260
261      // We've found the instruction that sets NZCV whose DstReg == 0.
262      FirstUse = PredI;
263      KnownRegs.push_back(RegImm(DstReg, 0));
264      return true;
265    }
266    }
267
268    // Bail if we see an instruction that defines NZCV that we don't handle.
269    if (PredI.definesRegister(AArch64::NZCV))
270      return false;
271
272    // Track clobbered and used registers.
273    LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs,
274                                      TRI);
275  }
276  return false;
277}
278
279bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) {
280  // Check if the current basic block has a single predecessor.
281  if (MBB->pred_size() != 1)
282    return false;
283
284  // Check if the predecessor has two successors, implying the block ends in a
285  // conditional branch.
286  MachineBasicBlock *PredMBB = *MBB->pred_begin();
287  if (PredMBB->succ_size() != 2)
288    return false;
289
290  MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr();
291  if (CondBr == PredMBB->end())
292    return false;
293
294  // Keep track of the earliest point in the PredMBB block where kill markers
295  // need to be removed if a COPY is removed.
296  MachineBasicBlock::iterator FirstUse;
297  // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ
298  // or a compare (i.e., SUBS).  In the latter case, we must take care when
299  // updating FirstUse when scanning for COPY instructions.  In particular, if
300  // there's a COPY in between the compare and branch the COPY should not
301  // update FirstUse.
302  bool SeenFirstUse = false;
303  // Registers that contain a known value at the start of MBB.
304  SmallVector<RegImm, 4> KnownRegs;
305
306  MachineBasicBlock::iterator Itr = std::next(CondBr);
307  do {
308    --Itr;
309
310    if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse))
311      continue;
312
313    // Reset the clobbered and used register units.
314    OptBBClobberedRegs.clear();
315    OptBBUsedRegs.clear();
316
317    // Look backward in PredMBB for COPYs from the known reg to find other
318    // registers that are known to be a constant value.
319    for (auto PredI = Itr;; --PredI) {
320      if (FirstUse == PredI)
321        SeenFirstUse = true;
322
323      if (PredI->isCopy()) {
324        MCPhysReg CopyDstReg = PredI->getOperand(0).getReg();
325        MCPhysReg CopySrcReg = PredI->getOperand(1).getReg();
326        for (auto &KnownReg : KnownRegs) {
327          if (!OptBBClobberedRegs.available(KnownReg.Reg))
328            continue;
329          // If we have X = COPY Y, and Y is known to be zero, then now X is
330          // known to be zero.
331          if (CopySrcReg == KnownReg.Reg &&
332              OptBBClobberedRegs.available(CopyDstReg)) {
333            KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm));
334            if (SeenFirstUse)
335              FirstUse = PredI;
336            break;
337          }
338          // If we have X = COPY Y, and X is known to be zero, then now Y is
339          // known to be zero.
340          if (CopyDstReg == KnownReg.Reg &&
341              OptBBClobberedRegs.available(CopySrcReg)) {
342            KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm));
343            if (SeenFirstUse)
344              FirstUse = PredI;
345            break;
346          }
347        }
348      }
349
350      // Stop if we get to the beginning of PredMBB.
351      if (PredI == PredMBB->begin())
352        break;
353
354      LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs,
355                                        OptBBUsedRegs, TRI);
356      // Stop if all of the known-zero regs have been clobbered.
357      if (all_of(KnownRegs, [&](RegImm KnownReg) {
358            return !OptBBClobberedRegs.available(KnownReg.Reg);
359          }))
360        break;
361    }
362    break;
363
364  } while (Itr != PredMBB->begin() && Itr->isTerminator());
365
366  // We've not found a registers with a known value, time to bail out.
367  if (KnownRegs.empty())
368    return false;
369
370  bool Changed = false;
371  // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB.
372  SmallSetVector<unsigned, 4> UsedKnownRegs;
373  MachineBasicBlock::iterator LastChange = MBB->begin();
374  // Remove redundant copy/move instructions unless KnownReg is modified.
375  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
376    MachineInstr *MI = &*I;
377    ++I;
378    bool RemovedMI = false;
379    bool IsCopy = MI->isCopy();
380    bool IsMoveImm = MI->isMoveImmediate();
381    if (IsCopy || IsMoveImm) {
382      Register DefReg = MI->getOperand(0).getReg();
383      Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register();
384      int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0;
385      if (!MRI->isReserved(DefReg) &&
386          ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) ||
387           IsMoveImm)) {
388        for (RegImm &KnownReg : KnownRegs) {
389          if (KnownReg.Reg != DefReg &&
390              !TRI->isSuperRegister(DefReg, KnownReg.Reg))
391            continue;
392
393          // For a copy, the known value must be a zero.
394          if (IsCopy && KnownReg.Imm != 0)
395            continue;
396
397          if (IsMoveImm) {
398            // For a move immediate, the known immediate must match the source
399            // immediate.
400            if (KnownReg.Imm != SrcImm)
401              continue;
402
403            // Don't remove a move immediate that implicitly defines the upper
404            // bits when only the lower 32 bits are known.
405            MCPhysReg CmpReg = KnownReg.Reg;
406            if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) {
407                  return !O.isDead() && O.isReg() && O.isDef() &&
408                         O.getReg() != CmpReg;
409                }))
410              continue;
411          }
412
413          if (IsCopy)
414            LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI);
415          else
416            LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI);
417
418          MI->eraseFromParent();
419          Changed = true;
420          LastChange = I;
421          NumCopiesRemoved++;
422          UsedKnownRegs.insert(KnownReg.Reg);
423          RemovedMI = true;
424          break;
425        }
426      }
427    }
428
429    // Skip to the next instruction if we removed the COPY/MovImm.
430    if (RemovedMI)
431      continue;
432
433    // Remove any regs the MI clobbers from the KnownConstRegs set.
434    for (unsigned RI = 0; RI < KnownRegs.size();)
435      if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) {
436        std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]);
437        KnownRegs.pop_back();
438        // Don't increment RI since we need to now check the swapped-in
439        // KnownRegs[RI].
440      } else {
441        ++RI;
442      }
443
444    // Continue until the KnownRegs set is empty.
445    if (KnownRegs.empty())
446      break;
447  }
448
449  if (!Changed)
450    return false;
451
452  // Add newly used regs to the block's live-in list if they aren't there
453  // already.
454  for (MCPhysReg KnownReg : UsedKnownRegs)
455    if (!MBB->isLiveIn(KnownReg))
456      MBB->addLiveIn(KnownReg);
457
458  // Clear kills in the range where changes were made.  This is conservative,
459  // but should be okay since kill markers are being phased out.
460  LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse
461                    << "\tLastChange: " << *LastChange);
462  for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end()))
463    MMI.clearKillInfo();
464  for (MachineInstr &MMI : make_range(MBB->begin(), LastChange))
465    MMI.clearKillInfo();
466
467  return true;
468}
469
470bool AArch64RedundantCopyElimination::runOnMachineFunction(
471    MachineFunction &MF) {
472  if (skipFunction(MF.getFunction()))
473    return false;
474  TRI = MF.getSubtarget().getRegisterInfo();
475  MRI = &MF.getRegInfo();
476
477  // Resize the clobbered and used register unit trackers.  We do this once per
478  // function.
479  DomBBClobberedRegs.init(*TRI);
480  DomBBUsedRegs.init(*TRI);
481  OptBBClobberedRegs.init(*TRI);
482  OptBBUsedRegs.init(*TRI);
483
484  bool Changed = false;
485  for (MachineBasicBlock &MBB : MF)
486    Changed |= optimizeBlock(&MBB);
487  return Changed;
488}
489
490FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() {
491  return new AArch64RedundantCopyElimination();
492}
493