1//===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the TwoAddress instruction pass which is used
10// by most register allocators. Two-Address instructions are rewritten
11// from:
12//
13//     A = B op C
14//
15// to:
16//
17//     A = B
18//     A op= C
19//
20// Note that if a register allocator chooses to use this pass, that it
21// has to be capable of handling the non-SSA nature of these rewritten
22// virtual registers.
23//
24// It is also worth noting that the duplicate operand of the two
25// address instruction is removed.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/iterator_range.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/CodeGen/LiveInterval.h"
37#include "llvm/CodeGen/LiveIntervals.h"
38#include "llvm/CodeGen/LiveVariables.h"
39#include "llvm/CodeGen/MachineBasicBlock.h"
40#include "llvm/CodeGen/MachineFunction.h"
41#include "llvm/CodeGen/MachineFunctionPass.h"
42#include "llvm/CodeGen/MachineInstr.h"
43#include "llvm/CodeGen/MachineInstrBuilder.h"
44#include "llvm/CodeGen/MachineOperand.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/CodeGen/Passes.h"
47#include "llvm/CodeGen/SlotIndexes.h"
48#include "llvm/CodeGen/TargetInstrInfo.h"
49#include "llvm/CodeGen/TargetOpcodes.h"
50#include "llvm/CodeGen/TargetRegisterInfo.h"
51#include "llvm/CodeGen/TargetSubtargetInfo.h"
52#include "llvm/MC/MCInstrDesc.h"
53#include "llvm/MC/MCInstrItineraries.h"
54#include "llvm/Pass.h"
55#include "llvm/Support/CodeGen.h"
56#include "llvm/Support/CommandLine.h"
57#include "llvm/Support/Debug.h"
58#include "llvm/Support/ErrorHandling.h"
59#include "llvm/Support/raw_ostream.h"
60#include "llvm/Target/TargetMachine.h"
61#include <cassert>
62#include <iterator>
63#include <utility>
64
65using namespace llvm;
66
67#define DEBUG_TYPE "twoaddressinstruction"
68
69STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
70STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
71STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
72STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
73STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
74STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
75
76// Temporary flag to disable rescheduling.
77static cl::opt<bool>
78EnableRescheduling("twoaddr-reschedule",
79                   cl::desc("Coalesce copies by rescheduling (default=true)"),
80                   cl::init(true), cl::Hidden);
81
82// Limit the number of dataflow edges to traverse when evaluating the benefit
83// of commuting operands.
84static cl::opt<unsigned> MaxDataFlowEdge(
85    "dataflow-edge-limit", cl::Hidden, cl::init(3),
86    cl::desc("Maximum number of dataflow edges to traverse when evaluating "
87             "the benefit of commuting operands"));
88
89namespace {
90
91class TwoAddressInstructionPass : public MachineFunctionPass {
92  MachineFunction *MF;
93  const TargetInstrInfo *TII;
94  const TargetRegisterInfo *TRI;
95  const InstrItineraryData *InstrItins;
96  MachineRegisterInfo *MRI;
97  LiveVariables *LV;
98  LiveIntervals *LIS;
99  AliasAnalysis *AA;
100  CodeGenOpt::Level OptLevel;
101
102  // The current basic block being processed.
103  MachineBasicBlock *MBB;
104
105  // Keep track the distance of a MI from the start of the current basic block.
106  DenseMap<MachineInstr*, unsigned> DistanceMap;
107
108  // Set of already processed instructions in the current block.
109  SmallPtrSet<MachineInstr*, 8> Processed;
110
111  // A map from virtual registers to physical registers which are likely targets
112  // to be coalesced to due to copies from physical registers to virtual
113  // registers. e.g. v1024 = move r0.
114  DenseMap<unsigned, unsigned> SrcRegMap;
115
116  // A map from virtual registers to physical registers which are likely targets
117  // to be coalesced to due to copies to physical registers from virtual
118  // registers. e.g. r1 = move v1024.
119  DenseMap<unsigned, unsigned> DstRegMap;
120
121  bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
122
123  bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
124
125  bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
126                             MachineInstr *MI, unsigned Dist);
127
128  bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
129                          unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
130
131  bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
132
133  bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
134                          MachineBasicBlock::iterator &nmi,
135                          unsigned RegA, unsigned RegB, unsigned Dist);
136
137  bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
138
139  bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
140                             MachineBasicBlock::iterator &nmi,
141                             unsigned Reg);
142  bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
143                             MachineBasicBlock::iterator &nmi,
144                             unsigned Reg);
145
146  bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
147                               MachineBasicBlock::iterator &nmi,
148                               unsigned SrcIdx, unsigned DstIdx,
149                               unsigned Dist, bool shouldOnlyCommute);
150
151  bool tryInstructionCommute(MachineInstr *MI,
152                             unsigned DstOpIdx,
153                             unsigned BaseOpIdx,
154                             bool BaseOpKilled,
155                             unsigned Dist);
156  void scanUses(unsigned DstReg);
157
158  void processCopy(MachineInstr *MI);
159
160  using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
161  using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
162
163  bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
164  void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
165  void eliminateRegSequence(MachineBasicBlock::iterator&);
166
167public:
168  static char ID; // Pass identification, replacement for typeid
169
170  TwoAddressInstructionPass() : MachineFunctionPass(ID) {
171    initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
172  }
173
174  void getAnalysisUsage(AnalysisUsage &AU) const override {
175    AU.setPreservesCFG();
176    AU.addUsedIfAvailable<AAResultsWrapperPass>();
177    AU.addUsedIfAvailable<LiveVariables>();
178    AU.addPreserved<LiveVariables>();
179    AU.addPreserved<SlotIndexes>();
180    AU.addPreserved<LiveIntervals>();
181    AU.addPreservedID(MachineLoopInfoID);
182    AU.addPreservedID(MachineDominatorsID);
183    MachineFunctionPass::getAnalysisUsage(AU);
184  }
185
186  /// Pass entry point.
187  bool runOnMachineFunction(MachineFunction&) override;
188};
189
190} // end anonymous namespace
191
192char TwoAddressInstructionPass::ID = 0;
193
194char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
195
196INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
197                "Two-Address instruction pass", false, false)
198INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
199INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
200                "Two-Address instruction pass", false, false)
201
202static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
203
204/// Return the MachineInstr* if it is the single def of the Reg in current BB.
205static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
206                                  const MachineRegisterInfo *MRI) {
207  MachineInstr *Ret = nullptr;
208  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
209    if (DefMI.getParent() != BB || DefMI.isDebugValue())
210      continue;
211    if (!Ret)
212      Ret = &DefMI;
213    else if (Ret != &DefMI)
214      return nullptr;
215  }
216  return Ret;
217}
218
219/// Check if there is a reversed copy chain from FromReg to ToReg:
220/// %Tmp1 = copy %Tmp2;
221/// %FromReg = copy %Tmp1;
222/// %ToReg = add %FromReg ...
223/// %Tmp2 = copy %ToReg;
224/// MaxLen specifies the maximum length of the copy chain the func
225/// can walk through.
226bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
227                                               int Maxlen) {
228  unsigned TmpReg = FromReg;
229  for (int i = 0; i < Maxlen; i++) {
230    MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
231    if (!Def || !Def->isCopy())
232      return false;
233
234    TmpReg = Def->getOperand(1).getReg();
235
236    if (TmpReg == ToReg)
237      return true;
238  }
239  return false;
240}
241
242/// Return true if there are no intervening uses between the last instruction
243/// in the MBB that defines the specified register and the two-address
244/// instruction which is being processed. It also returns the last def location
245/// by reference.
246bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
247                                                  unsigned &LastDef) {
248  LastDef = 0;
249  unsigned LastUse = Dist;
250  for (MachineOperand &MO : MRI->reg_operands(Reg)) {
251    MachineInstr *MI = MO.getParent();
252    if (MI->getParent() != MBB || MI->isDebugValue())
253      continue;
254    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
255    if (DI == DistanceMap.end())
256      continue;
257    if (MO.isUse() && DI->second < LastUse)
258      LastUse = DI->second;
259    if (MO.isDef() && DI->second > LastDef)
260      LastDef = DI->second;
261  }
262
263  return !(LastUse > LastDef && LastUse < Dist);
264}
265
266/// Return true if the specified MI is a copy instruction or an extract_subreg
267/// instruction. It also returns the source and destination registers and
268/// whether they are physical registers by reference.
269static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
270                        unsigned &SrcReg, unsigned &DstReg,
271                        bool &IsSrcPhys, bool &IsDstPhys) {
272  SrcReg = 0;
273  DstReg = 0;
274  if (MI.isCopy()) {
275    DstReg = MI.getOperand(0).getReg();
276    SrcReg = MI.getOperand(1).getReg();
277  } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
278    DstReg = MI.getOperand(0).getReg();
279    SrcReg = MI.getOperand(2).getReg();
280  } else
281    return false;
282
283  IsSrcPhys = Register::isPhysicalRegister(SrcReg);
284  IsDstPhys = Register::isPhysicalRegister(DstReg);
285  return true;
286}
287
288/// Test if the given register value, which is used by the
289/// given instruction, is killed by the given instruction.
290static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
291                            LiveIntervals *LIS) {
292  if (LIS && Register::isVirtualRegister(Reg) && !LIS->isNotInMIMap(*MI)) {
293    // FIXME: Sometimes tryInstructionTransform() will add instructions and
294    // test whether they can be folded before keeping them. In this case it
295    // sets a kill before recursively calling tryInstructionTransform() again.
296    // If there is no interval available, we assume that this instruction is
297    // one of those. A kill flag is manually inserted on the operand so the
298    // check below will handle it.
299    LiveInterval &LI = LIS->getInterval(Reg);
300    // This is to match the kill flag version where undefs don't have kill
301    // flags.
302    if (!LI.hasAtLeastOneValue())
303      return false;
304
305    SlotIndex useIdx = LIS->getInstructionIndex(*MI);
306    LiveInterval::const_iterator I = LI.find(useIdx);
307    assert(I != LI.end() && "Reg must be live-in to use.");
308    return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
309  }
310
311  return MI->killsRegister(Reg);
312}
313
314/// Test if the given register value, which is used by the given
315/// instruction, is killed by the given instruction. This looks through
316/// coalescable copies to see if the original value is potentially not killed.
317///
318/// For example, in this code:
319///
320///   %reg1034 = copy %reg1024
321///   %reg1035 = copy killed %reg1025
322///   %reg1036 = add killed %reg1034, killed %reg1035
323///
324/// %reg1034 is not considered to be killed, since it is copied from a
325/// register which is not killed. Treating it as not killed lets the
326/// normal heuristics commute the (two-address) add, which lets
327/// coalescing eliminate the extra copy.
328///
329/// If allowFalsePositives is true then likely kills are treated as kills even
330/// if it can't be proven that they are kills.
331static bool isKilled(MachineInstr &MI, unsigned Reg,
332                     const MachineRegisterInfo *MRI,
333                     const TargetInstrInfo *TII,
334                     LiveIntervals *LIS,
335                     bool allowFalsePositives) {
336  MachineInstr *DefMI = &MI;
337  while (true) {
338    // All uses of physical registers are likely to be kills.
339    if (Register::isPhysicalRegister(Reg) &&
340        (allowFalsePositives || MRI->hasOneUse(Reg)))
341      return true;
342    if (!isPlainlyKilled(DefMI, Reg, LIS))
343      return false;
344    if (Register::isPhysicalRegister(Reg))
345      return true;
346    MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
347    // If there are multiple defs, we can't do a simple analysis, so just
348    // go with what the kill flag says.
349    if (std::next(Begin) != MRI->def_end())
350      return true;
351    DefMI = Begin->getParent();
352    bool IsSrcPhys, IsDstPhys;
353    unsigned SrcReg,  DstReg;
354    // If the def is something other than a copy, then it isn't going to
355    // be coalesced, so follow the kill flag.
356    if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
357      return true;
358    Reg = SrcReg;
359  }
360}
361
362/// Return true if the specified MI uses the specified register as a two-address
363/// use. If so, return the destination register by reference.
364static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
365  for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
366    const MachineOperand &MO = MI.getOperand(i);
367    if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
368      continue;
369    unsigned ti;
370    if (MI.isRegTiedToDefOperand(i, &ti)) {
371      DstReg = MI.getOperand(ti).getReg();
372      return true;
373    }
374  }
375  return false;
376}
377
378/// Given a register, if has a single in-basic block use, return the use
379/// instruction if it's a copy or a two-address use.
380static
381MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
382                                     MachineRegisterInfo *MRI,
383                                     const TargetInstrInfo *TII,
384                                     bool &IsCopy,
385                                     unsigned &DstReg, bool &IsDstPhys) {
386  if (!MRI->hasOneNonDBGUse(Reg))
387    // None or more than one use.
388    return nullptr;
389  MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
390  if (UseMI.getParent() != MBB)
391    return nullptr;
392  unsigned SrcReg;
393  bool IsSrcPhys;
394  if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
395    IsCopy = true;
396    return &UseMI;
397  }
398  IsDstPhys = false;
399  if (isTwoAddrUse(UseMI, Reg, DstReg)) {
400    IsDstPhys = Register::isPhysicalRegister(DstReg);
401    return &UseMI;
402  }
403  return nullptr;
404}
405
406/// Return the physical register the specified virtual register might be mapped
407/// to.
408static unsigned
409getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
410  while (Register::isVirtualRegister(Reg)) {
411    DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
412    if (SI == RegMap.end())
413      return 0;
414    Reg = SI->second;
415  }
416  if (Register::isPhysicalRegister(Reg))
417    return Reg;
418  return 0;
419}
420
421/// Return true if the two registers are equal or aliased.
422static bool
423regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
424  if (RegA == RegB)
425    return true;
426  if (!RegA || !RegB)
427    return false;
428  return TRI->regsOverlap(RegA, RegB);
429}
430
431// Returns true if Reg is equal or aliased to at least one register in Set.
432static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg,
433                           const TargetRegisterInfo *TRI) {
434  for (unsigned R : Set)
435    if (TRI->regsOverlap(R, Reg))
436      return true;
437
438  return false;
439}
440
441/// Return true if it's potentially profitable to commute the two-address
442/// instruction that's being processed.
443bool
444TwoAddressInstructionPass::
445isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
446                      MachineInstr *MI, unsigned Dist) {
447  if (OptLevel == CodeGenOpt::None)
448    return false;
449
450  // Determine if it's profitable to commute this two address instruction. In
451  // general, we want no uses between this instruction and the definition of
452  // the two-address register.
453  // e.g.
454  // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
455  // %reg1029 = COPY %reg1028
456  // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
457  // insert => %reg1030 = COPY %reg1028
458  // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
459  // In this case, it might not be possible to coalesce the second COPY
460  // instruction if the first one is coalesced. So it would be profitable to
461  // commute it:
462  // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
463  // %reg1029 = COPY %reg1028
464  // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
465  // insert => %reg1030 = COPY %reg1029
466  // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
467
468  if (!isPlainlyKilled(MI, regC, LIS))
469    return false;
470
471  // Ok, we have something like:
472  // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
473  // let's see if it's worth commuting it.
474
475  // Look for situations like this:
476  // %reg1024 = MOV r1
477  // %reg1025 = MOV r0
478  // %reg1026 = ADD %reg1024, %reg1025
479  // r0            = MOV %reg1026
480  // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
481  unsigned ToRegA = getMappedReg(regA, DstRegMap);
482  if (ToRegA) {
483    unsigned FromRegB = getMappedReg(regB, SrcRegMap);
484    unsigned FromRegC = getMappedReg(regC, SrcRegMap);
485    bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
486    bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
487
488    // Compute if any of the following are true:
489    // -RegB is not tied to a register and RegC is compatible with RegA.
490    // -RegB is tied to the wrong physical register, but RegC is.
491    // -RegB is tied to the wrong physical register, and RegC isn't tied.
492    if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
493      return true;
494    // Don't compute if any of the following are true:
495    // -RegC is not tied to a register and RegB is compatible with RegA.
496    // -RegC is tied to the wrong physical register, but RegB is.
497    // -RegC is tied to the wrong physical register, and RegB isn't tied.
498    if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
499      return false;
500  }
501
502  // If there is a use of regC between its last def (could be livein) and this
503  // instruction, then bail.
504  unsigned LastDefC = 0;
505  if (!noUseAfterLastDef(regC, Dist, LastDefC))
506    return false;
507
508  // If there is a use of regB between its last def (could be livein) and this
509  // instruction, then go ahead and make this transformation.
510  unsigned LastDefB = 0;
511  if (!noUseAfterLastDef(regB, Dist, LastDefB))
512    return true;
513
514  // Look for situation like this:
515  // %reg101 = MOV %reg100
516  // %reg102 = ...
517  // %reg103 = ADD %reg102, %reg101
518  // ... = %reg103 ...
519  // %reg100 = MOV %reg103
520  // If there is a reversed copy chain from reg101 to reg103, commute the ADD
521  // to eliminate an otherwise unavoidable copy.
522  // FIXME:
523  // We can extend the logic further: If an pair of operands in an insn has
524  // been merged, the insn could be regarded as a virtual copy, and the virtual
525  // copy could also be used to construct a copy chain.
526  // To more generally minimize register copies, ideally the logic of two addr
527  // instruction pass should be integrated with register allocation pass where
528  // interference graph is available.
529  if (isRevCopyChain(regC, regA, MaxDataFlowEdge))
530    return true;
531
532  if (isRevCopyChain(regB, regA, MaxDataFlowEdge))
533    return false;
534
535  // Since there are no intervening uses for both registers, then commute
536  // if the def of regC is closer. Its live interval is shorter.
537  return LastDefB && LastDefC && LastDefC > LastDefB;
538}
539
540/// Commute a two-address instruction and update the basic block, distance map,
541/// and live variables if needed. Return true if it is successful.
542bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
543                                                   unsigned DstIdx,
544                                                   unsigned RegBIdx,
545                                                   unsigned RegCIdx,
546                                                   unsigned Dist) {
547  Register RegC = MI->getOperand(RegCIdx).getReg();
548  LLVM_DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
549  MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
550
551  if (NewMI == nullptr) {
552    LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
553    return false;
554  }
555
556  LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
557  assert(NewMI == MI &&
558         "TargetInstrInfo::commuteInstruction() should not return a new "
559         "instruction unless it was requested.");
560
561  // Update source register map.
562  unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
563  if (FromRegC) {
564    Register RegA = MI->getOperand(DstIdx).getReg();
565    SrcRegMap[RegA] = FromRegC;
566  }
567
568  return true;
569}
570
571/// Return true if it is profitable to convert the given 2-address instruction
572/// to a 3-address one.
573bool
574TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
575  // Look for situations like this:
576  // %reg1024 = MOV r1
577  // %reg1025 = MOV r0
578  // %reg1026 = ADD %reg1024, %reg1025
579  // r2            = MOV %reg1026
580  // Turn ADD into a 3-address instruction to avoid a copy.
581  unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
582  if (!FromRegB)
583    return false;
584  unsigned ToRegA = getMappedReg(RegA, DstRegMap);
585  return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
586}
587
588/// Convert the specified two-address instruction into a three address one.
589/// Return true if this transformation was successful.
590bool
591TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
592                                              MachineBasicBlock::iterator &nmi,
593                                              unsigned RegA, unsigned RegB,
594                                              unsigned Dist) {
595  // FIXME: Why does convertToThreeAddress() need an iterator reference?
596  MachineFunction::iterator MFI = MBB->getIterator();
597  MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV);
598  assert(MBB->getIterator() == MFI &&
599         "convertToThreeAddress changed iterator reference");
600  if (!NewMI)
601    return false;
602
603  LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
604  LLVM_DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
605
606  if (LIS)
607    LIS->ReplaceMachineInstrInMaps(*mi, *NewMI);
608
609  MBB->erase(mi); // Nuke the old inst.
610
611  DistanceMap.insert(std::make_pair(NewMI, Dist));
612  mi = NewMI;
613  nmi = std::next(mi);
614
615  // Update source and destination register maps.
616  SrcRegMap.erase(RegA);
617  DstRegMap.erase(RegB);
618  return true;
619}
620
621/// Scan forward recursively for only uses, update maps if the use is a copy or
622/// a two-address instruction.
623void
624TwoAddressInstructionPass::scanUses(unsigned DstReg) {
625  SmallVector<unsigned, 4> VirtRegPairs;
626  bool IsDstPhys;
627  bool IsCopy = false;
628  unsigned NewReg = 0;
629  unsigned Reg = DstReg;
630  while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
631                                                      NewReg, IsDstPhys)) {
632    if (IsCopy && !Processed.insert(UseMI).second)
633      break;
634
635    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
636    if (DI != DistanceMap.end())
637      // Earlier in the same MBB.Reached via a back edge.
638      break;
639
640    if (IsDstPhys) {
641      VirtRegPairs.push_back(NewReg);
642      break;
643    }
644    bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
645    if (!isNew)
646      assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
647    VirtRegPairs.push_back(NewReg);
648    Reg = NewReg;
649  }
650
651  if (!VirtRegPairs.empty()) {
652    unsigned ToReg = VirtRegPairs.back();
653    VirtRegPairs.pop_back();
654    while (!VirtRegPairs.empty()) {
655      unsigned FromReg = VirtRegPairs.back();
656      VirtRegPairs.pop_back();
657      bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
658      if (!isNew)
659        assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
660      ToReg = FromReg;
661    }
662    bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
663    if (!isNew)
664      assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
665  }
666}
667
668/// If the specified instruction is not yet processed, process it if it's a
669/// copy. For a copy instruction, we find the physical registers the
670/// source and destination registers might be mapped to. These are kept in
671/// point-to maps used to determine future optimizations. e.g.
672/// v1024 = mov r0
673/// v1025 = mov r1
674/// v1026 = add v1024, v1025
675/// r1    = mov r1026
676/// If 'add' is a two-address instruction, v1024, v1026 are both potentially
677/// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
678/// potentially joined with r1 on the output side. It's worthwhile to commute
679/// 'add' to eliminate a copy.
680void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
681  if (Processed.count(MI))
682    return;
683
684  bool IsSrcPhys, IsDstPhys;
685  unsigned SrcReg, DstReg;
686  if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
687    return;
688
689  if (IsDstPhys && !IsSrcPhys)
690    DstRegMap.insert(std::make_pair(SrcReg, DstReg));
691  else if (!IsDstPhys && IsSrcPhys) {
692    bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
693    if (!isNew)
694      assert(SrcRegMap[DstReg] == SrcReg &&
695             "Can't map to two src physical registers!");
696
697    scanUses(DstReg);
698  }
699
700  Processed.insert(MI);
701}
702
703/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
704/// consider moving the instruction below the kill instruction in order to
705/// eliminate the need for the copy.
706bool TwoAddressInstructionPass::
707rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
708                      MachineBasicBlock::iterator &nmi,
709                      unsigned Reg) {
710  // Bail immediately if we don't have LV or LIS available. We use them to find
711  // kills efficiently.
712  if (!LV && !LIS)
713    return false;
714
715  MachineInstr *MI = &*mi;
716  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
717  if (DI == DistanceMap.end())
718    // Must be created from unfolded load. Don't waste time trying this.
719    return false;
720
721  MachineInstr *KillMI = nullptr;
722  if (LIS) {
723    LiveInterval &LI = LIS->getInterval(Reg);
724    assert(LI.end() != LI.begin() &&
725           "Reg should not have empty live interval.");
726
727    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
728    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
729    if (I != LI.end() && I->start < MBBEndIdx)
730      return false;
731
732    --I;
733    KillMI = LIS->getInstructionFromIndex(I->end);
734  } else {
735    KillMI = LV->getVarInfo(Reg).findKill(MBB);
736  }
737  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
738    // Don't mess with copies, they may be coalesced later.
739    return false;
740
741  if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
742      KillMI->isBranch() || KillMI->isTerminator())
743    // Don't move pass calls, etc.
744    return false;
745
746  unsigned DstReg;
747  if (isTwoAddrUse(*KillMI, Reg, DstReg))
748    return false;
749
750  bool SeenStore = true;
751  if (!MI->isSafeToMove(AA, SeenStore))
752    return false;
753
754  if (TII->getInstrLatency(InstrItins, *MI) > 1)
755    // FIXME: Needs more sophisticated heuristics.
756    return false;
757
758  SmallVector<unsigned, 2> Uses;
759  SmallVector<unsigned, 2> Kills;
760  SmallVector<unsigned, 2> Defs;
761  for (const MachineOperand &MO : MI->operands()) {
762    if (!MO.isReg())
763      continue;
764    Register MOReg = MO.getReg();
765    if (!MOReg)
766      continue;
767    if (MO.isDef())
768      Defs.push_back(MOReg);
769    else {
770      Uses.push_back(MOReg);
771      if (MOReg != Reg && (MO.isKill() ||
772                           (LIS && isPlainlyKilled(MI, MOReg, LIS))))
773        Kills.push_back(MOReg);
774    }
775  }
776
777  // Move the copies connected to MI down as well.
778  MachineBasicBlock::iterator Begin = MI;
779  MachineBasicBlock::iterator AfterMI = std::next(Begin);
780  MachineBasicBlock::iterator End = AfterMI;
781  while (End != MBB->end()) {
782    End = skipDebugInstructionsForward(End, MBB->end());
783    if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
784      Defs.push_back(End->getOperand(0).getReg());
785    else
786      break;
787    ++End;
788  }
789
790  // Check if the reschedule will not break dependencies.
791  unsigned NumVisited = 0;
792  MachineBasicBlock::iterator KillPos = KillMI;
793  ++KillPos;
794  for (MachineInstr &OtherMI : make_range(End, KillPos)) {
795    // Debug instructions cannot be counted against the limit.
796    if (OtherMI.isDebugInstr())
797      continue;
798    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
799      return false;
800    ++NumVisited;
801    if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
802        OtherMI.isBranch() || OtherMI.isTerminator())
803      // Don't move pass calls, etc.
804      return false;
805    for (const MachineOperand &MO : OtherMI.operands()) {
806      if (!MO.isReg())
807        continue;
808      Register MOReg = MO.getReg();
809      if (!MOReg)
810        continue;
811      if (MO.isDef()) {
812        if (regOverlapsSet(Uses, MOReg, TRI))
813          // Physical register use would be clobbered.
814          return false;
815        if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
816          // May clobber a physical register def.
817          // FIXME: This may be too conservative. It's ok if the instruction
818          // is sunken completely below the use.
819          return false;
820      } else {
821        if (regOverlapsSet(Defs, MOReg, TRI))
822          return false;
823        bool isKill =
824            MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
825        if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
826                             regOverlapsSet(Kills, MOReg, TRI)))
827          // Don't want to extend other live ranges and update kills.
828          return false;
829        if (MOReg == Reg && !isKill)
830          // We can't schedule across a use of the register in question.
831          return false;
832        // Ensure that if this is register in question, its the kill we expect.
833        assert((MOReg != Reg || &OtherMI == KillMI) &&
834               "Found multiple kills of a register in a basic block");
835      }
836    }
837  }
838
839  // Move debug info as well.
840  while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
841    --Begin;
842
843  nmi = End;
844  MachineBasicBlock::iterator InsertPos = KillPos;
845  if (LIS) {
846    // We have to move the copies first so that the MBB is still well-formed
847    // when calling handleMove().
848    for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
849      auto CopyMI = MBBI++;
850      MBB->splice(InsertPos, MBB, CopyMI);
851      LIS->handleMove(*CopyMI);
852      InsertPos = CopyMI;
853    }
854    End = std::next(MachineBasicBlock::iterator(MI));
855  }
856
857  // Copies following MI may have been moved as well.
858  MBB->splice(InsertPos, MBB, Begin, End);
859  DistanceMap.erase(DI);
860
861  // Update live variables
862  if (LIS) {
863    LIS->handleMove(*MI);
864  } else {
865    LV->removeVirtualRegisterKilled(Reg, *KillMI);
866    LV->addVirtualRegisterKilled(Reg, *MI);
867  }
868
869  LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
870  return true;
871}
872
873/// Return true if the re-scheduling will put the given instruction too close
874/// to the defs of its register dependencies.
875bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
876                                              MachineInstr *MI) {
877  for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
878    if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
879      continue;
880    if (&DefMI == MI)
881      return true; // MI is defining something KillMI uses
882    DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
883    if (DDI == DistanceMap.end())
884      return true;  // Below MI
885    unsigned DefDist = DDI->second;
886    assert(Dist > DefDist && "Visited def already?");
887    if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
888      return true;
889  }
890  return false;
891}
892
893/// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
894/// consider moving the kill instruction above the current two-address
895/// instruction in order to eliminate the need for the copy.
896bool TwoAddressInstructionPass::
897rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
898                      MachineBasicBlock::iterator &nmi,
899                      unsigned Reg) {
900  // Bail immediately if we don't have LV or LIS available. We use them to find
901  // kills efficiently.
902  if (!LV && !LIS)
903    return false;
904
905  MachineInstr *MI = &*mi;
906  DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
907  if (DI == DistanceMap.end())
908    // Must be created from unfolded load. Don't waste time trying this.
909    return false;
910
911  MachineInstr *KillMI = nullptr;
912  if (LIS) {
913    LiveInterval &LI = LIS->getInterval(Reg);
914    assert(LI.end() != LI.begin() &&
915           "Reg should not have empty live interval.");
916
917    SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
918    LiveInterval::const_iterator I = LI.find(MBBEndIdx);
919    if (I != LI.end() && I->start < MBBEndIdx)
920      return false;
921
922    --I;
923    KillMI = LIS->getInstructionFromIndex(I->end);
924  } else {
925    KillMI = LV->getVarInfo(Reg).findKill(MBB);
926  }
927  if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
928    // Don't mess with copies, they may be coalesced later.
929    return false;
930
931  unsigned DstReg;
932  if (isTwoAddrUse(*KillMI, Reg, DstReg))
933    return false;
934
935  bool SeenStore = true;
936  if (!KillMI->isSafeToMove(AA, SeenStore))
937    return false;
938
939  SmallSet<unsigned, 2> Uses;
940  SmallSet<unsigned, 2> Kills;
941  SmallSet<unsigned, 2> Defs;
942  SmallSet<unsigned, 2> LiveDefs;
943  for (const MachineOperand &MO : KillMI->operands()) {
944    if (!MO.isReg())
945      continue;
946    Register MOReg = MO.getReg();
947    if (MO.isUse()) {
948      if (!MOReg)
949        continue;
950      if (isDefTooClose(MOReg, DI->second, MI))
951        return false;
952      bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
953      if (MOReg == Reg && !isKill)
954        return false;
955      Uses.insert(MOReg);
956      if (isKill && MOReg != Reg)
957        Kills.insert(MOReg);
958    } else if (Register::isPhysicalRegister(MOReg)) {
959      Defs.insert(MOReg);
960      if (!MO.isDead())
961        LiveDefs.insert(MOReg);
962    }
963  }
964
965  // Check if the reschedule will not break depedencies.
966  unsigned NumVisited = 0;
967  for (MachineInstr &OtherMI :
968       make_range(mi, MachineBasicBlock::iterator(KillMI))) {
969    // Debug instructions cannot be counted against the limit.
970    if (OtherMI.isDebugInstr())
971      continue;
972    if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
973      return false;
974    ++NumVisited;
975    if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
976        OtherMI.isBranch() || OtherMI.isTerminator())
977      // Don't move pass calls, etc.
978      return false;
979    SmallVector<unsigned, 2> OtherDefs;
980    for (const MachineOperand &MO : OtherMI.operands()) {
981      if (!MO.isReg())
982        continue;
983      Register MOReg = MO.getReg();
984      if (!MOReg)
985        continue;
986      if (MO.isUse()) {
987        if (Defs.count(MOReg))
988          // Moving KillMI can clobber the physical register if the def has
989          // not been seen.
990          return false;
991        if (Kills.count(MOReg))
992          // Don't want to extend other live ranges and update kills.
993          return false;
994        if (&OtherMI != MI && MOReg == Reg &&
995            !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
996          // We can't schedule across a use of the register in question.
997          return false;
998      } else {
999        OtherDefs.push_back(MOReg);
1000      }
1001    }
1002
1003    for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1004      unsigned MOReg = OtherDefs[i];
1005      if (Uses.count(MOReg))
1006        return false;
1007      if (Register::isPhysicalRegister(MOReg) && LiveDefs.count(MOReg))
1008        return false;
1009      // Physical register def is seen.
1010      Defs.erase(MOReg);
1011    }
1012  }
1013
1014  // Move the old kill above MI, don't forget to move debug info as well.
1015  MachineBasicBlock::iterator InsertPos = mi;
1016  while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1017    --InsertPos;
1018  MachineBasicBlock::iterator From = KillMI;
1019  MachineBasicBlock::iterator To = std::next(From);
1020  while (std::prev(From)->isDebugInstr())
1021    --From;
1022  MBB->splice(InsertPos, MBB, From, To);
1023
1024  nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1025  DistanceMap.erase(DI);
1026
1027  // Update live variables
1028  if (LIS) {
1029    LIS->handleMove(*KillMI);
1030  } else {
1031    LV->removeVirtualRegisterKilled(Reg, *KillMI);
1032    LV->addVirtualRegisterKilled(Reg, *MI);
1033  }
1034
1035  LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1036  return true;
1037}
1038
1039/// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1040/// given machine instruction to improve opportunities for coalescing and
1041/// elimination of a register to register copy.
1042///
1043/// 'DstOpIdx' specifies the index of MI def operand.
1044/// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1045/// operand is killed by the given instruction.
1046/// The 'Dist' arguments provides the distance of MI from the start of the
1047/// current basic block and it is used to determine if it is profitable
1048/// to commute operands in the instruction.
1049///
1050/// Returns true if the transformation happened. Otherwise, returns false.
1051bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1052                                                      unsigned DstOpIdx,
1053                                                      unsigned BaseOpIdx,
1054                                                      bool BaseOpKilled,
1055                                                      unsigned Dist) {
1056  if (!MI->isCommutable())
1057    return false;
1058
1059  bool MadeChange = false;
1060  Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
1061  Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1062  unsigned OpsNum = MI->getDesc().getNumOperands();
1063  unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1064  for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1065    // The call of findCommutedOpIndices below only checks if BaseOpIdx
1066    // and OtherOpIdx are commutable, it does not really search for
1067    // other commutable operands and does not change the values of passed
1068    // variables.
1069    if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1070        !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1071      continue;
1072
1073    Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1074    bool AggressiveCommute = false;
1075
1076    // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1077    // operands. This makes the live ranges of DstOp and OtherOp joinable.
1078    bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1079    bool DoCommute = !BaseOpKilled && OtherOpKilled;
1080
1081    if (!DoCommute &&
1082        isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1083      DoCommute = true;
1084      AggressiveCommute = true;
1085    }
1086
1087    // If it's profitable to commute, try to do so.
1088    if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1089                                        Dist)) {
1090      MadeChange = true;
1091      ++NumCommuted;
1092      if (AggressiveCommute)
1093        ++NumAggrCommuted;
1094
1095      // There might be more than two commutable operands, update BaseOp and
1096      // continue scanning.
1097      // FIXME: This assumes that the new instruction's operands are in the
1098      // same positions and were simply swapped.
1099      BaseOpReg = OtherOpReg;
1100      BaseOpKilled = OtherOpKilled;
1101      // Resamples OpsNum in case the number of operands was reduced. This
1102      // happens with X86.
1103      OpsNum = MI->getDesc().getNumOperands();
1104    }
1105  }
1106  return MadeChange;
1107}
1108
1109/// For the case where an instruction has a single pair of tied register
1110/// operands, attempt some transformations that may either eliminate the tied
1111/// operands or improve the opportunities for coalescing away the register copy.
1112/// Returns true if no copy needs to be inserted to untie mi's operands
1113/// (either because they were untied, or because mi was rescheduled, and will
1114/// be visited again later). If the shouldOnlyCommute flag is true, only
1115/// instruction commutation is attempted.
1116bool TwoAddressInstructionPass::
1117tryInstructionTransform(MachineBasicBlock::iterator &mi,
1118                        MachineBasicBlock::iterator &nmi,
1119                        unsigned SrcIdx, unsigned DstIdx,
1120                        unsigned Dist, bool shouldOnlyCommute) {
1121  if (OptLevel == CodeGenOpt::None)
1122    return false;
1123
1124  MachineInstr &MI = *mi;
1125  Register regA = MI.getOperand(DstIdx).getReg();
1126  Register regB = MI.getOperand(SrcIdx).getReg();
1127
1128  assert(Register::isVirtualRegister(regB) &&
1129         "cannot make instruction into two-address form");
1130  bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1131
1132  if (Register::isVirtualRegister(regA))
1133    scanUses(regA);
1134
1135  bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1136
1137  // If the instruction is convertible to 3 Addr, instead
1138  // of returning try 3 Addr transformation aggressively and
1139  // use this variable to check later. Because it might be better.
1140  // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1141  // instead of the following code.
1142  //   addl     %esi, %edi
1143  //   movl     %edi, %eax
1144  //   ret
1145  if (Commuted && !MI.isConvertibleTo3Addr())
1146    return false;
1147
1148  if (shouldOnlyCommute)
1149    return false;
1150
1151  // If there is one more use of regB later in the same MBB, consider
1152  // re-schedule this MI below it.
1153  if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1154    ++NumReSchedDowns;
1155    return true;
1156  }
1157
1158  // If we commuted, regB may have changed so we should re-sample it to avoid
1159  // confusing the three address conversion below.
1160  if (Commuted) {
1161    regB = MI.getOperand(SrcIdx).getReg();
1162    regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1163  }
1164
1165  if (MI.isConvertibleTo3Addr()) {
1166    // This instruction is potentially convertible to a true
1167    // three-address instruction.  Check if it is profitable.
1168    if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1169      // Try to convert it.
1170      if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1171        ++NumConvertedTo3Addr;
1172        return true; // Done with this instruction.
1173      }
1174    }
1175  }
1176
1177  // Return if it is commuted but 3 addr conversion is failed.
1178  if (Commuted)
1179    return false;
1180
1181  // If there is one more use of regB later in the same MBB, consider
1182  // re-schedule it before this MI if it's legal.
1183  if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1184    ++NumReSchedUps;
1185    return true;
1186  }
1187
1188  // If this is an instruction with a load folded into it, try unfolding
1189  // the load, e.g. avoid this:
1190  //   movq %rdx, %rcx
1191  //   addq (%rax), %rcx
1192  // in favor of this:
1193  //   movq (%rax), %rcx
1194  //   addq %rdx, %rcx
1195  // because it's preferable to schedule a load than a register copy.
1196  if (MI.mayLoad() && !regBKilled) {
1197    // Determine if a load can be unfolded.
1198    unsigned LoadRegIndex;
1199    unsigned NewOpc =
1200      TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1201                                      /*UnfoldLoad=*/true,
1202                                      /*UnfoldStore=*/false,
1203                                      &LoadRegIndex);
1204    if (NewOpc != 0) {
1205      const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1206      if (UnfoldMCID.getNumDefs() == 1) {
1207        // Unfold the load.
1208        LLVM_DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1209        const TargetRegisterClass *RC =
1210          TRI->getAllocatableClass(
1211            TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1212        Register Reg = MRI->createVirtualRegister(RC);
1213        SmallVector<MachineInstr *, 2> NewMIs;
1214        if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1215                                      /*UnfoldLoad=*/true,
1216                                      /*UnfoldStore=*/false, NewMIs)) {
1217          LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1218          return false;
1219        }
1220        assert(NewMIs.size() == 2 &&
1221               "Unfolded a load into multiple instructions!");
1222        // The load was previously folded, so this is the only use.
1223        NewMIs[1]->addRegisterKilled(Reg, TRI);
1224
1225        // Tentatively insert the instructions into the block so that they
1226        // look "normal" to the transformation logic.
1227        MBB->insert(mi, NewMIs[0]);
1228        MBB->insert(mi, NewMIs[1]);
1229
1230        LLVM_DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1231                          << "2addr:    NEW INST: " << *NewMIs[1]);
1232
1233        // Transform the instruction, now that it no longer has a load.
1234        unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1235        unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1236        MachineBasicBlock::iterator NewMI = NewMIs[1];
1237        bool TransformResult =
1238          tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1239        (void)TransformResult;
1240        assert(!TransformResult &&
1241               "tryInstructionTransform() should return false.");
1242        if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1243          // Success, or at least we made an improvement. Keep the unfolded
1244          // instructions and discard the original.
1245          if (LV) {
1246            for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1247              MachineOperand &MO = MI.getOperand(i);
1248              if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
1249                if (MO.isUse()) {
1250                  if (MO.isKill()) {
1251                    if (NewMIs[0]->killsRegister(MO.getReg()))
1252                      LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1253                    else {
1254                      assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1255                             "Kill missing after load unfold!");
1256                      LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1257                    }
1258                  }
1259                } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1260                  if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1261                    LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1262                  else {
1263                    assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1264                           "Dead flag missing after load unfold!");
1265                    LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1266                  }
1267                }
1268              }
1269            }
1270            LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1271          }
1272
1273          SmallVector<Register, 4> OrigRegs;
1274          if (LIS) {
1275            for (const MachineOperand &MO : MI.operands()) {
1276              if (MO.isReg())
1277                OrigRegs.push_back(MO.getReg());
1278            }
1279          }
1280
1281          MI.eraseFromParent();
1282
1283          // Update LiveIntervals.
1284          if (LIS) {
1285            MachineBasicBlock::iterator Begin(NewMIs[0]);
1286            MachineBasicBlock::iterator End(NewMIs[1]);
1287            LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1288          }
1289
1290          mi = NewMIs[1];
1291        } else {
1292          // Transforming didn't eliminate the tie and didn't lead to an
1293          // improvement. Clean up the unfolded instructions and keep the
1294          // original.
1295          LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1296          NewMIs[0]->eraseFromParent();
1297          NewMIs[1]->eraseFromParent();
1298        }
1299      }
1300    }
1301  }
1302
1303  return false;
1304}
1305
1306// Collect tied operands of MI that need to be handled.
1307// Rewrite trivial cases immediately.
1308// Return true if any tied operands where found, including the trivial ones.
1309bool TwoAddressInstructionPass::
1310collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1311  const MCInstrDesc &MCID = MI->getDesc();
1312  bool AnyOps = false;
1313  unsigned NumOps = MI->getNumOperands();
1314
1315  for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1316    unsigned DstIdx = 0;
1317    if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1318      continue;
1319    AnyOps = true;
1320    MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1321    MachineOperand &DstMO = MI->getOperand(DstIdx);
1322    Register SrcReg = SrcMO.getReg();
1323    Register DstReg = DstMO.getReg();
1324    // Tied constraint already satisfied?
1325    if (SrcReg == DstReg)
1326      continue;
1327
1328    assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1329
1330    // Deal with undef uses immediately - simply rewrite the src operand.
1331    if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1332      // Constrain the DstReg register class if required.
1333      if (Register::isVirtualRegister(DstReg))
1334        if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1335                                                             TRI, *MF))
1336          MRI->constrainRegClass(DstReg, RC);
1337      SrcMO.setReg(DstReg);
1338      SrcMO.setSubReg(0);
1339      LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1340      continue;
1341    }
1342    TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1343  }
1344  return AnyOps;
1345}
1346
1347// Process a list of tied MI operands that all use the same source register.
1348// The tied pairs are of the form (SrcIdx, DstIdx).
1349void
1350TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1351                                            TiedPairList &TiedPairs,
1352                                            unsigned &Dist) {
1353  bool IsEarlyClobber = false;
1354  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1355    const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1356    IsEarlyClobber |= DstMO.isEarlyClobber();
1357  }
1358
1359  bool RemovedKillFlag = false;
1360  bool AllUsesCopied = true;
1361  unsigned LastCopiedReg = 0;
1362  SlotIndex LastCopyIdx;
1363  unsigned RegB = 0;
1364  unsigned SubRegB = 0;
1365  for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1366    unsigned SrcIdx = TiedPairs[tpi].first;
1367    unsigned DstIdx = TiedPairs[tpi].second;
1368
1369    const MachineOperand &DstMO = MI->getOperand(DstIdx);
1370    Register RegA = DstMO.getReg();
1371
1372    // Grab RegB from the instruction because it may have changed if the
1373    // instruction was commuted.
1374    RegB = MI->getOperand(SrcIdx).getReg();
1375    SubRegB = MI->getOperand(SrcIdx).getSubReg();
1376
1377    if (RegA == RegB) {
1378      // The register is tied to multiple destinations (or else we would
1379      // not have continued this far), but this use of the register
1380      // already matches the tied destination.  Leave it.
1381      AllUsesCopied = false;
1382      continue;
1383    }
1384    LastCopiedReg = RegA;
1385
1386    assert(Register::isVirtualRegister(RegB) &&
1387           "cannot make instruction into two-address form");
1388
1389#ifndef NDEBUG
1390    // First, verify that we don't have a use of "a" in the instruction
1391    // (a = b + a for example) because our transformation will not
1392    // work. This should never occur because we are in SSA form.
1393    for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1394      assert(i == DstIdx ||
1395             !MI->getOperand(i).isReg() ||
1396             MI->getOperand(i).getReg() != RegA);
1397#endif
1398
1399    // Emit a copy.
1400    MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1401                                      TII->get(TargetOpcode::COPY), RegA);
1402    // If this operand is folding a truncation, the truncation now moves to the
1403    // copy so that the register classes remain valid for the operands.
1404    MIB.addReg(RegB, 0, SubRegB);
1405    const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1406    if (SubRegB) {
1407      if (Register::isVirtualRegister(RegA)) {
1408        assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1409                                             SubRegB) &&
1410               "tied subregister must be a truncation");
1411        // The superreg class will not be used to constrain the subreg class.
1412        RC = nullptr;
1413      } else {
1414        assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1415               && "tied subregister must be a truncation");
1416      }
1417    }
1418
1419    // Update DistanceMap.
1420    MachineBasicBlock::iterator PrevMI = MI;
1421    --PrevMI;
1422    DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1423    DistanceMap[MI] = ++Dist;
1424
1425    if (LIS) {
1426      LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1427
1428      if (Register::isVirtualRegister(RegA)) {
1429        LiveInterval &LI = LIS->getInterval(RegA);
1430        VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1431        SlotIndex endIdx =
1432            LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1433        LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1434      }
1435    }
1436
1437    LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1438
1439    MachineOperand &MO = MI->getOperand(SrcIdx);
1440    assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1441           "inconsistent operand info for 2-reg pass");
1442    if (MO.isKill()) {
1443      MO.setIsKill(false);
1444      RemovedKillFlag = true;
1445    }
1446
1447    // Make sure regA is a legal regclass for the SrcIdx operand.
1448    if (Register::isVirtualRegister(RegA) && Register::isVirtualRegister(RegB))
1449      MRI->constrainRegClass(RegA, RC);
1450    MO.setReg(RegA);
1451    // The getMatchingSuper asserts guarantee that the register class projected
1452    // by SubRegB is compatible with RegA with no subregister. So regardless of
1453    // whether the dest oper writes a subreg, the source oper should not.
1454    MO.setSubReg(0);
1455
1456    // Propagate SrcRegMap.
1457    SrcRegMap[RegA] = RegB;
1458  }
1459
1460  if (AllUsesCopied) {
1461    bool ReplacedAllUntiedUses = true;
1462    if (!IsEarlyClobber) {
1463      // Replace other (un-tied) uses of regB with LastCopiedReg.
1464      for (MachineOperand &MO : MI->operands()) {
1465        if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1466          if (MO.getSubReg() == SubRegB) {
1467            if (MO.isKill()) {
1468              MO.setIsKill(false);
1469              RemovedKillFlag = true;
1470            }
1471            MO.setReg(LastCopiedReg);
1472            MO.setSubReg(0);
1473          } else {
1474            ReplacedAllUntiedUses = false;
1475          }
1476        }
1477      }
1478    }
1479
1480    // Update live variables for regB.
1481    if (RemovedKillFlag && ReplacedAllUntiedUses &&
1482        LV && LV->getVarInfo(RegB).removeKill(*MI)) {
1483      MachineBasicBlock::iterator PrevMI = MI;
1484      --PrevMI;
1485      LV->addVirtualRegisterKilled(RegB, *PrevMI);
1486    }
1487
1488    // Update LiveIntervals.
1489    if (LIS) {
1490      LiveInterval &LI = LIS->getInterval(RegB);
1491      SlotIndex MIIdx = LIS->getInstructionIndex(*MI);
1492      LiveInterval::const_iterator I = LI.find(MIIdx);
1493      assert(I != LI.end() && "RegB must be live-in to use.");
1494
1495      SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1496      if (I->end == UseIdx)
1497        LI.removeSegment(LastCopyIdx, UseIdx);
1498    }
1499  } else if (RemovedKillFlag) {
1500    // Some tied uses of regB matched their destination registers, so
1501    // regB is still used in this instruction, but a kill flag was
1502    // removed from a different tied use of regB, so now we need to add
1503    // a kill flag to one of the remaining uses of regB.
1504    for (MachineOperand &MO : MI->operands()) {
1505      if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1506        MO.setIsKill(true);
1507        break;
1508      }
1509    }
1510  }
1511}
1512
1513/// Reduce two-address instructions to two operands.
1514bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1515  MF = &Func;
1516  const TargetMachine &TM = MF->getTarget();
1517  MRI = &MF->getRegInfo();
1518  TII = MF->getSubtarget().getInstrInfo();
1519  TRI = MF->getSubtarget().getRegisterInfo();
1520  InstrItins = MF->getSubtarget().getInstrItineraryData();
1521  LV = getAnalysisIfAvailable<LiveVariables>();
1522  LIS = getAnalysisIfAvailable<LiveIntervals>();
1523  if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1524    AA = &AAPass->getAAResults();
1525  else
1526    AA = nullptr;
1527  OptLevel = TM.getOptLevel();
1528  // Disable optimizations if requested. We cannot skip the whole pass as some
1529  // fixups are necessary for correctness.
1530  if (skipFunction(Func.getFunction()))
1531    OptLevel = CodeGenOpt::None;
1532
1533  bool MadeChange = false;
1534
1535  LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1536  LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1537
1538  // This pass takes the function out of SSA form.
1539  MRI->leaveSSA();
1540
1541  // This pass will rewrite the tied-def to meet the RegConstraint.
1542  MF->getProperties()
1543      .set(MachineFunctionProperties::Property::TiedOpsRewritten);
1544
1545  TiedOperandMap TiedOperands;
1546  for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1547       MBBI != MBBE; ++MBBI) {
1548    MBB = &*MBBI;
1549    unsigned Dist = 0;
1550    DistanceMap.clear();
1551    SrcRegMap.clear();
1552    DstRegMap.clear();
1553    Processed.clear();
1554    for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1555         mi != me; ) {
1556      MachineBasicBlock::iterator nmi = std::next(mi);
1557      // Skip debug instructions.
1558      if (mi->isDebugInstr()) {
1559        mi = nmi;
1560        continue;
1561      }
1562
1563      // Expand REG_SEQUENCE instructions. This will position mi at the first
1564      // expanded instruction.
1565      if (mi->isRegSequence())
1566        eliminateRegSequence(mi);
1567
1568      DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1569
1570      processCopy(&*mi);
1571
1572      // First scan through all the tied register uses in this instruction
1573      // and record a list of pairs of tied operands for each register.
1574      if (!collectTiedOperands(&*mi, TiedOperands)) {
1575        mi = nmi;
1576        continue;
1577      }
1578
1579      ++NumTwoAddressInstrs;
1580      MadeChange = true;
1581      LLVM_DEBUG(dbgs() << '\t' << *mi);
1582
1583      // If the instruction has a single pair of tied operands, try some
1584      // transformations that may either eliminate the tied operands or
1585      // improve the opportunities for coalescing away the register copy.
1586      if (TiedOperands.size() == 1) {
1587        SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1588          = TiedOperands.begin()->second;
1589        if (TiedPairs.size() == 1) {
1590          unsigned SrcIdx = TiedPairs[0].first;
1591          unsigned DstIdx = TiedPairs[0].second;
1592          Register SrcReg = mi->getOperand(SrcIdx).getReg();
1593          Register DstReg = mi->getOperand(DstIdx).getReg();
1594          if (SrcReg != DstReg &&
1595              tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1596            // The tied operands have been eliminated or shifted further down
1597            // the block to ease elimination. Continue processing with 'nmi'.
1598            TiedOperands.clear();
1599            mi = nmi;
1600            continue;
1601          }
1602        }
1603      }
1604
1605      // Now iterate over the information collected above.
1606      for (auto &TO : TiedOperands) {
1607        processTiedPairs(&*mi, TO.second, Dist);
1608        LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1609      }
1610
1611      // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1612      if (mi->isInsertSubreg()) {
1613        // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1614        // To   %reg:subidx = COPY %subreg
1615        unsigned SubIdx = mi->getOperand(3).getImm();
1616        mi->RemoveOperand(3);
1617        assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1618        mi->getOperand(0).setSubReg(SubIdx);
1619        mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1620        mi->RemoveOperand(1);
1621        mi->setDesc(TII->get(TargetOpcode::COPY));
1622        LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1623      }
1624
1625      // Clear TiedOperands here instead of at the top of the loop
1626      // since most instructions do not have tied operands.
1627      TiedOperands.clear();
1628      mi = nmi;
1629    }
1630  }
1631
1632  if (LIS)
1633    MF->verify(this, "After two-address instruction pass");
1634
1635  return MadeChange;
1636}
1637
1638/// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1639///
1640/// The instruction is turned into a sequence of sub-register copies:
1641///
1642///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1643///
1644/// Becomes:
1645///
1646///   undef %dst:ssub0 = COPY %v1
1647///   %dst:ssub1 = COPY %v2
1648void TwoAddressInstructionPass::
1649eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1650  MachineInstr &MI = *MBBI;
1651  Register DstReg = MI.getOperand(0).getReg();
1652  if (MI.getOperand(0).getSubReg() || Register::isPhysicalRegister(DstReg) ||
1653      !(MI.getNumOperands() & 1)) {
1654    LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
1655    llvm_unreachable(nullptr);
1656  }
1657
1658  SmallVector<Register, 4> OrigRegs;
1659  if (LIS) {
1660    OrigRegs.push_back(MI.getOperand(0).getReg());
1661    for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1662      OrigRegs.push_back(MI.getOperand(i).getReg());
1663  }
1664
1665  bool DefEmitted = false;
1666  for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1667    MachineOperand &UseMO = MI.getOperand(i);
1668    Register SrcReg = UseMO.getReg();
1669    unsigned SubIdx = MI.getOperand(i+1).getImm();
1670    // Nothing needs to be inserted for undef operands.
1671    if (UseMO.isUndef())
1672      continue;
1673
1674    // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1675    // might insert a COPY that uses SrcReg after is was killed.
1676    bool isKill = UseMO.isKill();
1677    if (isKill)
1678      for (unsigned j = i + 2; j < e; j += 2)
1679        if (MI.getOperand(j).getReg() == SrcReg) {
1680          MI.getOperand(j).setIsKill();
1681          UseMO.setIsKill(false);
1682          isKill = false;
1683          break;
1684        }
1685
1686    // Insert the sub-register copy.
1687    MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1688                                   TII->get(TargetOpcode::COPY))
1689                               .addReg(DstReg, RegState::Define, SubIdx)
1690                               .add(UseMO);
1691
1692    // The first def needs an undef flag because there is no live register
1693    // before it.
1694    if (!DefEmitted) {
1695      CopyMI->getOperand(0).setIsUndef(true);
1696      // Return an iterator pointing to the first inserted instr.
1697      MBBI = CopyMI;
1698    }
1699    DefEmitted = true;
1700
1701    // Update LiveVariables' kill info.
1702    if (LV && isKill && !Register::isPhysicalRegister(SrcReg))
1703      LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1704
1705    LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1706  }
1707
1708  MachineBasicBlock::iterator EndMBBI =
1709      std::next(MachineBasicBlock::iterator(MI));
1710
1711  if (!DefEmitted) {
1712    LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1713    MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1714    for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1715      MI.RemoveOperand(j);
1716  } else {
1717    LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1718    MI.eraseFromParent();
1719  }
1720
1721  // Udpate LiveIntervals.
1722  if (LIS)
1723    LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1724}
1725