1//===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass inserts stack protectors into functions which need them. A variable
10// with a random value in it is stored onto the stack before the local variables
11// are allocated. Upon exiting the block, the stored value is checked. If it's
12// changed, then there was some sort of violation and the program aborts.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/StackProtector.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/BranchProbabilityInfo.h"
20#include "llvm/Analysis/EHPersonalities.h"
21#include "llvm/Analysis/MemoryLocation.h"
22#include "llvm/Analysis/OptimizationRemarkEmitter.h"
23#include "llvm/CodeGen/Passes.h"
24#include "llvm/CodeGen/TargetLowering.h"
25#include "llvm/CodeGen/TargetPassConfig.h"
26#include "llvm/CodeGen/TargetSubtargetInfo.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DebugInfo.h"
32#include "llvm/IR/DebugLoc.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Dominators.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/IRBuilder.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/MDBuilder.h"
42#include "llvm/IR/Module.h"
43#include "llvm/IR/Type.h"
44#include "llvm/IR/User.h"
45#include "llvm/InitializePasses.h"
46#include "llvm/Pass.h"
47#include "llvm/Support/Casting.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Target/TargetMachine.h"
50#include "llvm/Target/TargetOptions.h"
51#include <utility>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "stack-protector"
56
57STATISTIC(NumFunProtected, "Number of functions protected");
58STATISTIC(NumAddrTaken, "Number of local variables that have their address"
59                        " taken.");
60
61static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
62                                          cl::init(true), cl::Hidden);
63
64char StackProtector::ID = 0;
65
66StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
67  initializeStackProtectorPass(*PassRegistry::getPassRegistry());
68}
69
70INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
71                      "Insert stack protectors", false, true)
72INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
73INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
74                    "Insert stack protectors", false, true)
75
76FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
77
78void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
79  AU.addRequired<TargetPassConfig>();
80  AU.addPreserved<DominatorTreeWrapperPass>();
81}
82
83bool StackProtector::runOnFunction(Function &Fn) {
84  F = &Fn;
85  M = F->getParent();
86  DominatorTreeWrapperPass *DTWP =
87      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
88  DT = DTWP ? &DTWP->getDomTree() : nullptr;
89  TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
90  Trip = TM->getTargetTriple();
91  TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
92  HasPrologue = false;
93  HasIRCheck = false;
94
95  Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
96  if (Attr.isStringAttribute() &&
97      Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
98    return false; // Invalid integer string
99
100  if (!RequiresStackProtector())
101    return false;
102
103  // TODO(etienneb): Functions with funclets are not correctly supported now.
104  // Do nothing if this is funclet-based personality.
105  if (Fn.hasPersonalityFn()) {
106    EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
107    if (isFuncletEHPersonality(Personality))
108      return false;
109  }
110
111  ++NumFunProtected;
112  return InsertStackProtectors();
113}
114
115/// \param [out] IsLarge is set to true if a protectable array is found and
116/// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
117/// multiple arrays, this gets set if any of them is large.
118bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
119                                              bool Strong,
120                                              bool InStruct) const {
121  if (!Ty)
122    return false;
123  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
124    if (!AT->getElementType()->isIntegerTy(8)) {
125      // If we're on a non-Darwin platform or we're inside of a structure, don't
126      // add stack protectors unless the array is a character array.
127      // However, in strong mode any array, regardless of type and size,
128      // triggers a protector.
129      if (!Strong && (InStruct || !Trip.isOSDarwin()))
130        return false;
131    }
132
133    // If an array has more than SSPBufferSize bytes of allocated space, then we
134    // emit stack protectors.
135    if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
136      IsLarge = true;
137      return true;
138    }
139
140    if (Strong)
141      // Require a protector for all arrays in strong mode
142      return true;
143  }
144
145  const StructType *ST = dyn_cast<StructType>(Ty);
146  if (!ST)
147    return false;
148
149  bool NeedsProtector = false;
150  for (StructType::element_iterator I = ST->element_begin(),
151                                    E = ST->element_end();
152       I != E; ++I)
153    if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
154      // If the element is a protectable array and is large (>= SSPBufferSize)
155      // then we are done.  If the protectable array is not large, then
156      // keep looking in case a subsequent element is a large array.
157      if (IsLarge)
158        return true;
159      NeedsProtector = true;
160    }
161
162  return NeedsProtector;
163}
164
165bool StackProtector::HasAddressTaken(const Instruction *AI,
166                                     uint64_t AllocSize) {
167  const DataLayout &DL = M->getDataLayout();
168  for (const User *U : AI->users()) {
169    const auto *I = cast<Instruction>(U);
170    // If this instruction accesses memory make sure it doesn't access beyond
171    // the bounds of the allocated object.
172    Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
173    if (MemLoc.hasValue() && MemLoc->Size.getValue() > AllocSize)
174      return true;
175    switch (I->getOpcode()) {
176    case Instruction::Store:
177      if (AI == cast<StoreInst>(I)->getValueOperand())
178        return true;
179      break;
180    case Instruction::AtomicCmpXchg:
181      // cmpxchg conceptually includes both a load and store from the same
182      // location. So, like store, the value being stored is what matters.
183      if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
184        return true;
185      break;
186    case Instruction::PtrToInt:
187      if (AI == cast<PtrToIntInst>(I)->getOperand(0))
188        return true;
189      break;
190    case Instruction::Call: {
191      // Ignore intrinsics that do not become real instructions.
192      // TODO: Narrow this to intrinsics that have store-like effects.
193      const auto *CI = cast<CallInst>(I);
194      if (!isa<DbgInfoIntrinsic>(CI) && !CI->isLifetimeStartOrEnd())
195        return true;
196      break;
197    }
198    case Instruction::Invoke:
199      return true;
200    case Instruction::GetElementPtr: {
201      // If the GEP offset is out-of-bounds, or is non-constant and so has to be
202      // assumed to be potentially out-of-bounds, then any memory access that
203      // would use it could also be out-of-bounds meaning stack protection is
204      // required.
205      const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
206      unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType());
207      APInt Offset(TypeSize, 0);
208      APInt MaxOffset(TypeSize, AllocSize);
209      if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset))
210        return true;
211      // Adjust AllocSize to be the space remaining after this offset.
212      if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue()))
213        return true;
214      break;
215    }
216    case Instruction::BitCast:
217    case Instruction::Select:
218    case Instruction::AddrSpaceCast:
219      if (HasAddressTaken(I, AllocSize))
220        return true;
221      break;
222    case Instruction::PHI: {
223      // Keep track of what PHI nodes we have already visited to ensure
224      // they are only visited once.
225      const auto *PN = cast<PHINode>(I);
226      if (VisitedPHIs.insert(PN).second)
227        if (HasAddressTaken(PN, AllocSize))
228          return true;
229      break;
230    }
231    case Instruction::Load:
232    case Instruction::AtomicRMW:
233    case Instruction::Ret:
234      // These instructions take an address operand, but have load-like or
235      // other innocuous behavior that should not trigger a stack protector.
236      // atomicrmw conceptually has both load and store semantics, but the
237      // value being stored must be integer; so if a pointer is being stored,
238      // we'll catch it in the PtrToInt case above.
239      break;
240    default:
241      // Conservatively return true for any instruction that takes an address
242      // operand, but is not handled above.
243      return true;
244    }
245  }
246  return false;
247}
248
249/// Search for the first call to the llvm.stackprotector intrinsic and return it
250/// if present.
251static const CallInst *findStackProtectorIntrinsic(Function &F) {
252  for (const BasicBlock &BB : F)
253    for (const Instruction &I : BB)
254      if (const CallInst *CI = dyn_cast<CallInst>(&I))
255        if (CI->getCalledFunction() ==
256            Intrinsic::getDeclaration(F.getParent(), Intrinsic::stackprotector))
257          return CI;
258  return nullptr;
259}
260
261/// Check whether or not this function needs a stack protector based
262/// upon the stack protector level.
263///
264/// We use two heuristics: a standard (ssp) and strong (sspstrong).
265/// The standard heuristic which will add a guard variable to functions that
266/// call alloca with a either a variable size or a size >= SSPBufferSize,
267/// functions with character buffers larger than SSPBufferSize, and functions
268/// with aggregates containing character buffers larger than SSPBufferSize. The
269/// strong heuristic will add a guard variables to functions that call alloca
270/// regardless of size, functions with any buffer regardless of type and size,
271/// functions with aggregates that contain any buffer regardless of type and
272/// size, and functions that contain stack-based variables that have had their
273/// address taken.
274bool StackProtector::RequiresStackProtector() {
275  bool Strong = false;
276  bool NeedsProtector = false;
277  HasPrologue = findStackProtectorIntrinsic(*F);
278
279  if (F->hasFnAttribute(Attribute::SafeStack))
280    return false;
281
282  // We are constructing the OptimizationRemarkEmitter on the fly rather than
283  // using the analysis pass to avoid building DominatorTree and LoopInfo which
284  // are not available this late in the IR pipeline.
285  OptimizationRemarkEmitter ORE(F);
286
287  if (F->hasFnAttribute(Attribute::StackProtectReq)) {
288    ORE.emit([&]() {
289      return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
290             << "Stack protection applied to function "
291             << ore::NV("Function", F)
292             << " due to a function attribute or command-line switch";
293    });
294    NeedsProtector = true;
295    Strong = true; // Use the same heuristic as strong to determine SSPLayout
296  } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
297    Strong = true;
298  else if (HasPrologue)
299    NeedsProtector = true;
300  else if (!F->hasFnAttribute(Attribute::StackProtect))
301    return false;
302
303  for (const BasicBlock &BB : *F) {
304    for (const Instruction &I : BB) {
305      if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
306        if (AI->isArrayAllocation()) {
307          auto RemarkBuilder = [&]() {
308            return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
309                                      &I)
310                   << "Stack protection applied to function "
311                   << ore::NV("Function", F)
312                   << " due to a call to alloca or use of a variable length "
313                      "array";
314          };
315          if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
316            if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
317              // A call to alloca with size >= SSPBufferSize requires
318              // stack protectors.
319              Layout.insert(std::make_pair(AI,
320                                           MachineFrameInfo::SSPLK_LargeArray));
321              ORE.emit(RemarkBuilder);
322              NeedsProtector = true;
323            } else if (Strong) {
324              // Require protectors for all alloca calls in strong mode.
325              Layout.insert(std::make_pair(AI,
326                                           MachineFrameInfo::SSPLK_SmallArray));
327              ORE.emit(RemarkBuilder);
328              NeedsProtector = true;
329            }
330          } else {
331            // A call to alloca with a variable size requires protectors.
332            Layout.insert(std::make_pair(AI,
333                                         MachineFrameInfo::SSPLK_LargeArray));
334            ORE.emit(RemarkBuilder);
335            NeedsProtector = true;
336          }
337          continue;
338        }
339
340        bool IsLarge = false;
341        if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
342          Layout.insert(std::make_pair(AI, IsLarge
343                                       ? MachineFrameInfo::SSPLK_LargeArray
344                                       : MachineFrameInfo::SSPLK_SmallArray));
345          ORE.emit([&]() {
346            return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
347                   << "Stack protection applied to function "
348                   << ore::NV("Function", F)
349                   << " due to a stack allocated buffer or struct containing a "
350                      "buffer";
351          });
352          NeedsProtector = true;
353          continue;
354        }
355
356        if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
357                                              AI->getAllocatedType()))) {
358          ++NumAddrTaken;
359          Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
360          ORE.emit([&]() {
361            return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
362                                      &I)
363                   << "Stack protection applied to function "
364                   << ore::NV("Function", F)
365                   << " due to the address of a local variable being taken";
366          });
367          NeedsProtector = true;
368        }
369        // Clear any PHIs that we visited, to make sure we examine all uses of
370        // any subsequent allocas that we look at.
371        VisitedPHIs.clear();
372      }
373    }
374  }
375
376  return NeedsProtector;
377}
378
379/// Create a stack guard loading and populate whether SelectionDAG SSP is
380/// supported.
381static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
382                            IRBuilder<> &B,
383                            bool *SupportsSelectionDAGSP = nullptr) {
384  if (Value *Guard = TLI->getIRStackGuard(B))
385    return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
386
387  // Use SelectionDAG SSP handling, since there isn't an IR guard.
388  //
389  // This is more or less weird, since we optionally output whether we
390  // should perform a SelectionDAG SP here. The reason is that it's strictly
391  // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
392  // mutating. There is no way to get this bit without mutating the IR, so
393  // getting this bit has to happen in this right time.
394  //
395  // We could have define a new function TLI::supportsSelectionDAGSP(), but that
396  // will put more burden on the backends' overriding work, especially when it
397  // actually conveys the same information getIRStackGuard() already gives.
398  if (SupportsSelectionDAGSP)
399    *SupportsSelectionDAGSP = true;
400  TLI->insertSSPDeclarations(*M);
401  return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
402}
403
404/// Insert code into the entry block that stores the stack guard
405/// variable onto the stack:
406///
407///   entry:
408///     StackGuardSlot = alloca i8*
409///     StackGuard = <stack guard>
410///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
411///
412/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
413/// node.
414static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
415                           const TargetLoweringBase *TLI, AllocaInst *&AI) {
416  bool SupportsSelectionDAGSP = false;
417  IRBuilder<> B(&F->getEntryBlock().front());
418  PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
419  AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
420
421  Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
422  B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
423               {GuardSlot, AI});
424  return SupportsSelectionDAGSP;
425}
426
427/// InsertStackProtectors - Insert code into the prologue and epilogue of the
428/// function.
429///
430///  - The prologue code loads and stores the stack guard onto the stack.
431///  - The epilogue checks the value stored in the prologue against the original
432///    value. It calls __stack_chk_fail if they differ.
433bool StackProtector::InsertStackProtectors() {
434  // If the target wants to XOR the frame pointer into the guard value, it's
435  // impossible to emit the check in IR, so the target *must* support stack
436  // protection in SDAG.
437  bool SupportsSelectionDAGSP =
438      TLI->useStackGuardXorFP() ||
439      (EnableSelectionDAGSP && !TM->Options.EnableFastISel &&
440       !TM->Options.EnableGlobalISel);
441  AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.
442
443  for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
444    BasicBlock *BB = &*I++;
445    ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
446    if (!RI)
447      continue;
448
449    // Generate prologue instrumentation if not already generated.
450    if (!HasPrologue) {
451      HasPrologue = true;
452      SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
453    }
454
455    // SelectionDAG based code generation. Nothing else needs to be done here.
456    // The epilogue instrumentation is postponed to SelectionDAG.
457    if (SupportsSelectionDAGSP)
458      break;
459
460    // Find the stack guard slot if the prologue was not created by this pass
461    // itself via a previous call to CreatePrologue().
462    if (!AI) {
463      const CallInst *SPCall = findStackProtectorIntrinsic(*F);
464      assert(SPCall && "Call to llvm.stackprotector is missing");
465      AI = cast<AllocaInst>(SPCall->getArgOperand(1));
466    }
467
468    // Set HasIRCheck to true, so that SelectionDAG will not generate its own
469    // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
470    // instrumentation has already been generated.
471    HasIRCheck = true;
472
473    // Generate epilogue instrumentation. The epilogue intrumentation can be
474    // function-based or inlined depending on which mechanism the target is
475    // providing.
476    if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
477      // Generate the function-based epilogue instrumentation.
478      // The target provides a guard check function, generate a call to it.
479      IRBuilder<> B(RI);
480      LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
481      CallInst *Call = B.CreateCall(GuardCheck, {Guard});
482      Call->setAttributes(GuardCheck->getAttributes());
483      Call->setCallingConv(GuardCheck->getCallingConv());
484    } else {
485      // Generate the epilogue with inline instrumentation.
486      // If we do not support SelectionDAG based tail calls, generate IR level
487      // tail calls.
488      //
489      // For each block with a return instruction, convert this:
490      //
491      //   return:
492      //     ...
493      //     ret ...
494      //
495      // into this:
496      //
497      //   return:
498      //     ...
499      //     %1 = <stack guard>
500      //     %2 = load StackGuardSlot
501      //     %3 = cmp i1 %1, %2
502      //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
503      //
504      //   SP_return:
505      //     ret ...
506      //
507      //   CallStackCheckFailBlk:
508      //     call void @__stack_chk_fail()
509      //     unreachable
510
511      // Create the FailBB. We duplicate the BB every time since the MI tail
512      // merge pass will merge together all of the various BB into one including
513      // fail BB generated by the stack protector pseudo instruction.
514      BasicBlock *FailBB = CreateFailBB();
515
516      // Split the basic block before the return instruction.
517      BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
518
519      // Update the dominator tree if we need to.
520      if (DT && DT->isReachableFromEntry(BB)) {
521        DT->addNewBlock(NewBB, BB);
522        DT->addNewBlock(FailBB, BB);
523      }
524
525      // Remove default branch instruction to the new BB.
526      BB->getTerminator()->eraseFromParent();
527
528      // Move the newly created basic block to the point right after the old
529      // basic block so that it's in the "fall through" position.
530      NewBB->moveAfter(BB);
531
532      // Generate the stack protector instructions in the old basic block.
533      IRBuilder<> B(BB);
534      Value *Guard = getStackGuard(TLI, M, B);
535      LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
536      Value *Cmp = B.CreateICmpEQ(Guard, LI2);
537      auto SuccessProb =
538          BranchProbabilityInfo::getBranchProbStackProtector(true);
539      auto FailureProb =
540          BranchProbabilityInfo::getBranchProbStackProtector(false);
541      MDNode *Weights = MDBuilder(F->getContext())
542                            .createBranchWeights(SuccessProb.getNumerator(),
543                                                 FailureProb.getNumerator());
544      B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
545    }
546  }
547
548  // Return if we didn't modify any basic blocks. i.e., there are no return
549  // statements in the function.
550  return HasPrologue;
551}
552
553/// CreateFailBB - Create a basic block to jump to when the stack protector
554/// check fails.
555BasicBlock *StackProtector::CreateFailBB() {
556  LLVMContext &Context = F->getContext();
557  BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
558  IRBuilder<> B(FailBB);
559  B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram()));
560  if (Trip.isOSOpenBSD()) {
561    FunctionCallee StackChkFail = M->getOrInsertFunction(
562        "__stack_smash_handler", Type::getVoidTy(Context),
563        Type::getInt8PtrTy(Context));
564
565    B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
566  } else {
567    FunctionCallee StackChkFail =
568        M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
569
570    B.CreateCall(StackChkFail, {});
571  }
572  B.CreateUnreachable();
573  return FailBB;
574}
575
576bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
577  return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
578}
579
580void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
581  if (Layout.empty())
582    return;
583
584  for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
585    if (MFI.isDeadObjectIndex(I))
586      continue;
587
588    const AllocaInst *AI = MFI.getObjectAllocation(I);
589    if (!AI)
590      continue;
591
592    SSPLayoutMap::const_iterator LI = Layout.find(AI);
593    if (LI == Layout.end())
594      continue;
595
596    MFI.setObjectSSPLayout(I, LI->second);
597  }
598}
599