1//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAGISel class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/SelectionDAGISel.h"
14#include "ScheduleDAGSDNodes.h"
15#include "SelectionDAGBuilder.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/PostOrderIterator.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/Analysis/AliasAnalysis.h"
27#include "llvm/Analysis/BranchProbabilityInfo.h"
28#include "llvm/Analysis/CFG.h"
29#include "llvm/Analysis/EHPersonalities.h"
30#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
31#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32#include "llvm/Analysis/OptimizationRemarkEmitter.h"
33#include "llvm/Analysis/ProfileSummaryInfo.h"
34#include "llvm/Analysis/TargetLibraryInfo.h"
35#include "llvm/Analysis/TargetTransformInfo.h"
36#include "llvm/CodeGen/FastISel.h"
37#include "llvm/CodeGen/FunctionLoweringInfo.h"
38#include "llvm/CodeGen/GCMetadata.h"
39#include "llvm/CodeGen/ISDOpcodes.h"
40#include "llvm/CodeGen/MachineBasicBlock.h"
41#include "llvm/CodeGen/MachineFrameInfo.h"
42#include "llvm/CodeGen/MachineFunction.h"
43#include "llvm/CodeGen/MachineFunctionPass.h"
44#include "llvm/CodeGen/MachineInstr.h"
45#include "llvm/CodeGen/MachineInstrBuilder.h"
46#include "llvm/CodeGen/MachineMemOperand.h"
47#include "llvm/CodeGen/MachineModuleInfo.h"
48#include "llvm/CodeGen/MachineOperand.h"
49#include "llvm/CodeGen/MachinePassRegistry.h"
50#include "llvm/CodeGen/MachineRegisterInfo.h"
51#include "llvm/CodeGen/SchedulerRegistry.h"
52#include "llvm/CodeGen/SelectionDAG.h"
53#include "llvm/CodeGen/SelectionDAGNodes.h"
54#include "llvm/CodeGen/StackProtector.h"
55#include "llvm/CodeGen/SwiftErrorValueTracking.h"
56#include "llvm/CodeGen/TargetInstrInfo.h"
57#include "llvm/CodeGen/TargetLowering.h"
58#include "llvm/CodeGen/TargetRegisterInfo.h"
59#include "llvm/CodeGen/TargetSubtargetInfo.h"
60#include "llvm/CodeGen/ValueTypes.h"
61#include "llvm/IR/BasicBlock.h"
62#include "llvm/IR/Constants.h"
63#include "llvm/IR/DataLayout.h"
64#include "llvm/IR/DebugInfoMetadata.h"
65#include "llvm/IR/DebugLoc.h"
66#include "llvm/IR/DiagnosticInfo.h"
67#include "llvm/IR/Dominators.h"
68#include "llvm/IR/Function.h"
69#include "llvm/IR/InlineAsm.h"
70#include "llvm/IR/InstIterator.h"
71#include "llvm/IR/InstrTypes.h"
72#include "llvm/IR/Instruction.h"
73#include "llvm/IR/Instructions.h"
74#include "llvm/IR/IntrinsicInst.h"
75#include "llvm/IR/Intrinsics.h"
76#include "llvm/IR/IntrinsicsWebAssembly.h"
77#include "llvm/IR/Metadata.h"
78#include "llvm/IR/Type.h"
79#include "llvm/IR/User.h"
80#include "llvm/IR/Value.h"
81#include "llvm/InitializePasses.h"
82#include "llvm/MC/MCInstrDesc.h"
83#include "llvm/MC/MCRegisterInfo.h"
84#include "llvm/Pass.h"
85#include "llvm/Support/BranchProbability.h"
86#include "llvm/Support/Casting.h"
87#include "llvm/Support/CodeGen.h"
88#include "llvm/Support/CommandLine.h"
89#include "llvm/Support/Compiler.h"
90#include "llvm/Support/Debug.h"
91#include "llvm/Support/ErrorHandling.h"
92#include "llvm/Support/KnownBits.h"
93#include "llvm/Support/MachineValueType.h"
94#include "llvm/Support/Timer.h"
95#include "llvm/Support/raw_ostream.h"
96#include "llvm/Target/TargetIntrinsicInfo.h"
97#include "llvm/Target/TargetMachine.h"
98#include "llvm/Target/TargetOptions.h"
99#include "llvm/Transforms/Utils/BasicBlockUtils.h"
100#include <algorithm>
101#include <cassert>
102#include <cstdint>
103#include <iterator>
104#include <limits>
105#include <memory>
106#include <string>
107#include <utility>
108#include <vector>
109
110using namespace llvm;
111
112#define DEBUG_TYPE "isel"
113
114STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
115STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
116STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
117STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
118STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
119STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
120STATISTIC(NumFastIselFailLowerArguments,
121          "Number of entry blocks where fast isel failed to lower arguments");
122
123static cl::opt<int> EnableFastISelAbort(
124    "fast-isel-abort", cl::Hidden,
125    cl::desc("Enable abort calls when \"fast\" instruction selection "
126             "fails to lower an instruction: 0 disable the abort, 1 will "
127             "abort but for args, calls and terminators, 2 will also "
128             "abort for argument lowering, and 3 will never fallback "
129             "to SelectionDAG."));
130
131static cl::opt<bool> EnableFastISelFallbackReport(
132    "fast-isel-report-on-fallback", cl::Hidden,
133    cl::desc("Emit a diagnostic when \"fast\" instruction selection "
134             "falls back to SelectionDAG."));
135
136static cl::opt<bool>
137UseMBPI("use-mbpi",
138        cl::desc("use Machine Branch Probability Info"),
139        cl::init(true), cl::Hidden);
140
141#ifndef NDEBUG
142static cl::opt<std::string>
143FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
144                        cl::desc("Only display the basic block whose name "
145                                 "matches this for all view-*-dags options"));
146static cl::opt<bool>
147ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
148          cl::desc("Pop up a window to show dags before the first "
149                   "dag combine pass"));
150static cl::opt<bool>
151ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
152          cl::desc("Pop up a window to show dags before legalize types"));
153static cl::opt<bool>
154    ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
155                     cl::desc("Pop up a window to show dags before the post "
156                              "legalize types dag combine pass"));
157static cl::opt<bool>
158    ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
159                     cl::desc("Pop up a window to show dags before legalize"));
160static cl::opt<bool>
161ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
162          cl::desc("Pop up a window to show dags before the second "
163                   "dag combine pass"));
164static cl::opt<bool>
165ViewISelDAGs("view-isel-dags", cl::Hidden,
166          cl::desc("Pop up a window to show isel dags as they are selected"));
167static cl::opt<bool>
168ViewSchedDAGs("view-sched-dags", cl::Hidden,
169          cl::desc("Pop up a window to show sched dags as they are processed"));
170static cl::opt<bool>
171ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
172      cl::desc("Pop up a window to show SUnit dags after they are processed"));
173#else
174static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false,
175                  ViewDAGCombineLT = false, ViewLegalizeDAGs = false,
176                  ViewDAGCombine2 = false, ViewISelDAGs = false,
177                  ViewSchedDAGs = false, ViewSUnitDAGs = false;
178#endif
179
180//===---------------------------------------------------------------------===//
181///
182/// RegisterScheduler class - Track the registration of instruction schedulers.
183///
184//===---------------------------------------------------------------------===//
185MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
186    RegisterScheduler::Registry;
187
188//===---------------------------------------------------------------------===//
189///
190/// ISHeuristic command line option for instruction schedulers.
191///
192//===---------------------------------------------------------------------===//
193static cl::opt<RegisterScheduler::FunctionPassCtor, false,
194               RegisterPassParser<RegisterScheduler>>
195ISHeuristic("pre-RA-sched",
196            cl::init(&createDefaultScheduler), cl::Hidden,
197            cl::desc("Instruction schedulers available (before register"
198                     " allocation):"));
199
200static RegisterScheduler
201defaultListDAGScheduler("default", "Best scheduler for the target",
202                        createDefaultScheduler);
203
204namespace llvm {
205
206  //===--------------------------------------------------------------------===//
207  /// This class is used by SelectionDAGISel to temporarily override
208  /// the optimization level on a per-function basis.
209  class OptLevelChanger {
210    SelectionDAGISel &IS;
211    CodeGenOpt::Level SavedOptLevel;
212    bool SavedFastISel;
213
214  public:
215    OptLevelChanger(SelectionDAGISel &ISel,
216                    CodeGenOpt::Level NewOptLevel) : IS(ISel) {
217      SavedOptLevel = IS.OptLevel;
218      SavedFastISel = IS.TM.Options.EnableFastISel;
219      if (NewOptLevel == SavedOptLevel)
220        return;
221      IS.OptLevel = NewOptLevel;
222      IS.TM.setOptLevel(NewOptLevel);
223      LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
224                        << IS.MF->getFunction().getName() << "\n");
225      LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
226                        << NewOptLevel << "\n");
227      if (NewOptLevel == CodeGenOpt::None) {
228        IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
229        LLVM_DEBUG(
230            dbgs() << "\tFastISel is "
231                   << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
232                   << "\n");
233      }
234    }
235
236    ~OptLevelChanger() {
237      if (IS.OptLevel == SavedOptLevel)
238        return;
239      LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
240                        << IS.MF->getFunction().getName() << "\n");
241      LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
242                        << SavedOptLevel << "\n");
243      IS.OptLevel = SavedOptLevel;
244      IS.TM.setOptLevel(SavedOptLevel);
245      IS.TM.setFastISel(SavedFastISel);
246    }
247  };
248
249  //===--------------------------------------------------------------------===//
250  /// createDefaultScheduler - This creates an instruction scheduler appropriate
251  /// for the target.
252  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
253                                             CodeGenOpt::Level OptLevel) {
254    const TargetLowering *TLI = IS->TLI;
255    const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
256
257    // Try first to see if the Target has its own way of selecting a scheduler
258    if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
259      return SchedulerCtor(IS, OptLevel);
260    }
261
262    if (OptLevel == CodeGenOpt::None ||
263        (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
264        TLI->getSchedulingPreference() == Sched::Source)
265      return createSourceListDAGScheduler(IS, OptLevel);
266    if (TLI->getSchedulingPreference() == Sched::RegPressure)
267      return createBURRListDAGScheduler(IS, OptLevel);
268    if (TLI->getSchedulingPreference() == Sched::Hybrid)
269      return createHybridListDAGScheduler(IS, OptLevel);
270    if (TLI->getSchedulingPreference() == Sched::VLIW)
271      return createVLIWDAGScheduler(IS, OptLevel);
272    assert(TLI->getSchedulingPreference() == Sched::ILP &&
273           "Unknown sched type!");
274    return createILPListDAGScheduler(IS, OptLevel);
275  }
276
277} // end namespace llvm
278
279// EmitInstrWithCustomInserter - This method should be implemented by targets
280// that mark instructions with the 'usesCustomInserter' flag.  These
281// instructions are special in various ways, which require special support to
282// insert.  The specified MachineInstr is created but not inserted into any
283// basic blocks, and this method is called to expand it into a sequence of
284// instructions, potentially also creating new basic blocks and control flow.
285// When new basic blocks are inserted and the edges from MBB to its successors
286// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
287// DenseMap.
288MachineBasicBlock *
289TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
290                                            MachineBasicBlock *MBB) const {
291#ifndef NDEBUG
292  dbgs() << "If a target marks an instruction with "
293          "'usesCustomInserter', it must implement "
294          "TargetLowering::EmitInstrWithCustomInserter!";
295#endif
296  llvm_unreachable(nullptr);
297}
298
299void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
300                                                   SDNode *Node) const {
301  assert(!MI.hasPostISelHook() &&
302         "If a target marks an instruction with 'hasPostISelHook', "
303         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
304}
305
306//===----------------------------------------------------------------------===//
307// SelectionDAGISel code
308//===----------------------------------------------------------------------===//
309
310SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL)
311    : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()),
312      SwiftError(new SwiftErrorValueTracking()),
313      CurDAG(new SelectionDAG(tm, OL)),
314      SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError,
315                                                OL)),
316      AA(), GFI(), OptLevel(OL), DAGSize(0) {
317  initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
318  initializeBranchProbabilityInfoWrapperPassPass(
319      *PassRegistry::getPassRegistry());
320  initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
321  initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
322}
323
324SelectionDAGISel::~SelectionDAGISel() {
325  delete CurDAG;
326  delete SwiftError;
327}
328
329void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
330  if (OptLevel != CodeGenOpt::None)
331    AU.addRequired<AAResultsWrapperPass>();
332  AU.addRequired<GCModuleInfo>();
333  AU.addRequired<StackProtector>();
334  AU.addPreserved<GCModuleInfo>();
335  AU.addRequired<TargetLibraryInfoWrapperPass>();
336  AU.addRequired<TargetTransformInfoWrapperPass>();
337  if (UseMBPI && OptLevel != CodeGenOpt::None)
338    AU.addRequired<BranchProbabilityInfoWrapperPass>();
339  AU.addRequired<ProfileSummaryInfoWrapperPass>();
340  if (OptLevel != CodeGenOpt::None)
341    LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
342  MachineFunctionPass::getAnalysisUsage(AU);
343}
344
345/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
346/// may trap on it.  In this case we have to split the edge so that the path
347/// through the predecessor block that doesn't go to the phi block doesn't
348/// execute the possibly trapping instruction. If available, we pass domtree
349/// and loop info to be updated when we split critical edges. This is because
350/// SelectionDAGISel preserves these analyses.
351/// This is required for correctness, so it must be done at -O0.
352///
353static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
354                                         LoopInfo *LI) {
355  // Loop for blocks with phi nodes.
356  for (BasicBlock &BB : Fn) {
357    PHINode *PN = dyn_cast<PHINode>(BB.begin());
358    if (!PN) continue;
359
360  ReprocessBlock:
361    // For each block with a PHI node, check to see if any of the input values
362    // are potentially trapping constant expressions.  Constant expressions are
363    // the only potentially trapping value that can occur as the argument to a
364    // PHI.
365    for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
366      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
367        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
368        if (!CE || !CE->canTrap()) continue;
369
370        // The only case we have to worry about is when the edge is critical.
371        // Since this block has a PHI Node, we assume it has multiple input
372        // edges: check to see if the pred has multiple successors.
373        BasicBlock *Pred = PN->getIncomingBlock(i);
374        if (Pred->getTerminator()->getNumSuccessors() == 1)
375          continue;
376
377        // Okay, we have to split this edge.
378        SplitCriticalEdge(
379            Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
380            CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
381        goto ReprocessBlock;
382      }
383  }
384}
385
386static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
387                                         MachineModuleInfo &MMI) {
388  // Only needed for MSVC
389  if (!TT.isWindowsMSVCEnvironment())
390    return;
391
392  // If it's already set, nothing to do.
393  if (MMI.usesMSVCFloatingPoint())
394    return;
395
396  for (const Instruction &I : instructions(F)) {
397    if (I.getType()->isFPOrFPVectorTy()) {
398      MMI.setUsesMSVCFloatingPoint(true);
399      return;
400    }
401    for (const auto &Op : I.operands()) {
402      if (Op->getType()->isFPOrFPVectorTy()) {
403        MMI.setUsesMSVCFloatingPoint(true);
404        return;
405      }
406    }
407  }
408}
409
410bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
411  // If we already selected that function, we do not need to run SDISel.
412  if (mf.getProperties().hasProperty(
413          MachineFunctionProperties::Property::Selected))
414    return false;
415  // Do some sanity-checking on the command-line options.
416  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
417         "-fast-isel-abort > 0 requires -fast-isel");
418
419  const Function &Fn = mf.getFunction();
420  MF = &mf;
421
422  // Reset the target options before resetting the optimization
423  // level below.
424  // FIXME: This is a horrible hack and should be processed via
425  // codegen looking at the optimization level explicitly when
426  // it wants to look at it.
427  TM.resetTargetOptions(Fn);
428  // Reset OptLevel to None for optnone functions.
429  CodeGenOpt::Level NewOptLevel = OptLevel;
430  if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
431    NewOptLevel = CodeGenOpt::None;
432  OptLevelChanger OLC(*this, NewOptLevel);
433
434  TII = MF->getSubtarget().getInstrInfo();
435  TLI = MF->getSubtarget().getTargetLowering();
436  RegInfo = &MF->getRegInfo();
437  LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn);
438  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
439  ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn);
440  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
441  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
442  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
443  LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
444  auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
445  BlockFrequencyInfo *BFI = nullptr;
446  if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None)
447    BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI();
448
449  LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
450
451  SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
452
453  CurDAG->init(*MF, *ORE, this, LibInfo,
454               getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI);
455  FuncInfo->set(Fn, *MF, CurDAG);
456  SwiftError->setFunction(*MF);
457
458  // Now get the optional analyzes if we want to.
459  // This is based on the possibly changed OptLevel (after optnone is taken
460  // into account).  That's unfortunate but OK because it just means we won't
461  // ask for passes that have been required anyway.
462
463  if (UseMBPI && OptLevel != CodeGenOpt::None)
464    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
465  else
466    FuncInfo->BPI = nullptr;
467
468  if (OptLevel != CodeGenOpt::None)
469    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
470  else
471    AA = nullptr;
472
473  SDB->init(GFI, AA, LibInfo);
474
475  MF->setHasInlineAsm(false);
476
477  FuncInfo->SplitCSR = false;
478
479  // We split CSR if the target supports it for the given function
480  // and the function has only return exits.
481  if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
482    FuncInfo->SplitCSR = true;
483
484    // Collect all the return blocks.
485    for (const BasicBlock &BB : Fn) {
486      if (!succ_empty(&BB))
487        continue;
488
489      const Instruction *Term = BB.getTerminator();
490      if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
491        continue;
492
493      // Bail out if the exit block is not Return nor Unreachable.
494      FuncInfo->SplitCSR = false;
495      break;
496    }
497  }
498
499  MachineBasicBlock *EntryMBB = &MF->front();
500  if (FuncInfo->SplitCSR)
501    // This performs initialization so lowering for SplitCSR will be correct.
502    TLI->initializeSplitCSR(EntryMBB);
503
504  SelectAllBasicBlocks(Fn);
505  if (FastISelFailed && EnableFastISelFallbackReport) {
506    DiagnosticInfoISelFallback DiagFallback(Fn);
507    Fn.getContext().diagnose(DiagFallback);
508  }
509
510  // Replace forward-declared registers with the registers containing
511  // the desired value.
512  // Note: it is important that this happens **before** the call to
513  // EmitLiveInCopies, since implementations can skip copies of unused
514  // registers. If we don't apply the reg fixups before, some registers may
515  // appear as unused and will be skipped, resulting in bad MI.
516  MachineRegisterInfo &MRI = MF->getRegInfo();
517  for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(),
518                                              E = FuncInfo->RegFixups.end();
519       I != E; ++I) {
520    Register From = I->first;
521    Register To = I->second;
522    // If To is also scheduled to be replaced, find what its ultimate
523    // replacement is.
524    while (true) {
525      DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To);
526      if (J == E)
527        break;
528      To = J->second;
529    }
530    // Make sure the new register has a sufficiently constrained register class.
531    if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To))
532      MRI.constrainRegClass(To, MRI.getRegClass(From));
533    // Replace it.
534
535    // Replacing one register with another won't touch the kill flags.
536    // We need to conservatively clear the kill flags as a kill on the old
537    // register might dominate existing uses of the new register.
538    if (!MRI.use_empty(To))
539      MRI.clearKillFlags(From);
540    MRI.replaceRegWith(From, To);
541  }
542
543  // If the first basic block in the function has live ins that need to be
544  // copied into vregs, emit the copies into the top of the block before
545  // emitting the code for the block.
546  const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
547  RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
548
549  // Insert copies in the entry block and the return blocks.
550  if (FuncInfo->SplitCSR) {
551    SmallVector<MachineBasicBlock*, 4> Returns;
552    // Collect all the return blocks.
553    for (MachineBasicBlock &MBB : mf) {
554      if (!MBB.succ_empty())
555        continue;
556
557      MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
558      if (Term != MBB.end() && Term->isReturn()) {
559        Returns.push_back(&MBB);
560        continue;
561      }
562    }
563    TLI->insertCopiesSplitCSR(EntryMBB, Returns);
564  }
565
566  DenseMap<unsigned, unsigned> LiveInMap;
567  if (!FuncInfo->ArgDbgValues.empty())
568    for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
569      if (LI.second)
570        LiveInMap.insert(LI);
571
572  // Insert DBG_VALUE instructions for function arguments to the entry block.
573  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
574    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
575    bool hasFI = MI->getOperand(0).isFI();
576    Register Reg =
577        hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
578    if (Register::isPhysicalRegister(Reg))
579      EntryMBB->insert(EntryMBB->begin(), MI);
580    else {
581      MachineInstr *Def = RegInfo->getVRegDef(Reg);
582      if (Def) {
583        MachineBasicBlock::iterator InsertPos = Def;
584        // FIXME: VR def may not be in entry block.
585        Def->getParent()->insert(std::next(InsertPos), MI);
586      } else
587        LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
588                          << Register::virtReg2Index(Reg) << "\n");
589    }
590
591    // If Reg is live-in then update debug info to track its copy in a vreg.
592    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
593    if (LDI != LiveInMap.end()) {
594      assert(!hasFI && "There's no handling of frame pointer updating here yet "
595                       "- add if needed");
596      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
597      MachineBasicBlock::iterator InsertPos = Def;
598      const MDNode *Variable = MI->getDebugVariable();
599      const MDNode *Expr = MI->getDebugExpression();
600      DebugLoc DL = MI->getDebugLoc();
601      bool IsIndirect = MI->isIndirectDebugValue();
602      if (IsIndirect)
603        assert(MI->getOperand(1).getImm() == 0 &&
604               "DBG_VALUE with nonzero offset");
605      assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
606             "Expected inlined-at fields to agree");
607      // Def is never a terminator here, so it is ok to increment InsertPos.
608      BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
609              IsIndirect, LDI->second, Variable, Expr);
610
611      // If this vreg is directly copied into an exported register then
612      // that COPY instructions also need DBG_VALUE, if it is the only
613      // user of LDI->second.
614      MachineInstr *CopyUseMI = nullptr;
615      for (MachineRegisterInfo::use_instr_iterator
616           UI = RegInfo->use_instr_begin(LDI->second),
617           E = RegInfo->use_instr_end(); UI != E; ) {
618        MachineInstr *UseMI = &*(UI++);
619        if (UseMI->isDebugValue()) continue;
620        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
621          CopyUseMI = UseMI; continue;
622        }
623        // Otherwise this is another use or second copy use.
624        CopyUseMI = nullptr; break;
625      }
626      if (CopyUseMI &&
627          TRI.getRegSizeInBits(LDI->second, MRI) ==
628              TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) {
629        // Use MI's debug location, which describes where Variable was
630        // declared, rather than whatever is attached to CopyUseMI.
631        MachineInstr *NewMI =
632            BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
633                    CopyUseMI->getOperand(0).getReg(), Variable, Expr);
634        MachineBasicBlock::iterator Pos = CopyUseMI;
635        EntryMBB->insertAfter(Pos, NewMI);
636      }
637    }
638  }
639
640  // Determine if there are any calls in this machine function.
641  MachineFrameInfo &MFI = MF->getFrameInfo();
642  for (const auto &MBB : *MF) {
643    if (MFI.hasCalls() && MF->hasInlineAsm())
644      break;
645
646    for (const auto &MI : MBB) {
647      const MCInstrDesc &MCID = TII->get(MI.getOpcode());
648      if ((MCID.isCall() && !MCID.isReturn()) ||
649          MI.isStackAligningInlineAsm()) {
650        MFI.setHasCalls(true);
651      }
652      if (MI.isInlineAsm()) {
653        MF->setHasInlineAsm(true);
654      }
655    }
656  }
657
658  // Determine if there is a call to setjmp in the machine function.
659  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
660
661  // Determine if floating point is used for msvc
662  computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
663
664  // Release function-specific state. SDB and CurDAG are already cleared
665  // at this point.
666  FuncInfo->clear();
667
668  LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
669  LLVM_DEBUG(MF->print(dbgs()));
670
671  return true;
672}
673
674static void reportFastISelFailure(MachineFunction &MF,
675                                  OptimizationRemarkEmitter &ORE,
676                                  OptimizationRemarkMissed &R,
677                                  bool ShouldAbort) {
678  // Print the function name explicitly if we don't have a debug location (which
679  // makes the diagnostic less useful) or if we're going to emit a raw error.
680  if (!R.getLocation().isValid() || ShouldAbort)
681    R << (" (in function: " + MF.getName() + ")").str();
682
683  if (ShouldAbort)
684    report_fatal_error(R.getMsg());
685
686  ORE.emit(R);
687}
688
689void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
690                                        BasicBlock::const_iterator End,
691                                        bool &HadTailCall) {
692  // Allow creating illegal types during DAG building for the basic block.
693  CurDAG->NewNodesMustHaveLegalTypes = false;
694
695  // Lower the instructions. If a call is emitted as a tail call, cease emitting
696  // nodes for this block.
697  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
698    if (!ElidedArgCopyInstrs.count(&*I))
699      SDB->visit(*I);
700  }
701
702  // Make sure the root of the DAG is up-to-date.
703  CurDAG->setRoot(SDB->getControlRoot());
704  HadTailCall = SDB->HasTailCall;
705  SDB->resolveOrClearDbgInfo();
706  SDB->clear();
707
708  // Final step, emit the lowered DAG as machine code.
709  CodeGenAndEmitDAG();
710}
711
712void SelectionDAGISel::ComputeLiveOutVRegInfo() {
713  SmallPtrSet<SDNode *, 16> Added;
714  SmallVector<SDNode*, 128> Worklist;
715
716  Worklist.push_back(CurDAG->getRoot().getNode());
717  Added.insert(CurDAG->getRoot().getNode());
718
719  KnownBits Known;
720
721  do {
722    SDNode *N = Worklist.pop_back_val();
723
724    // Otherwise, add all chain operands to the worklist.
725    for (const SDValue &Op : N->op_values())
726      if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second)
727        Worklist.push_back(Op.getNode());
728
729    // If this is a CopyToReg with a vreg dest, process it.
730    if (N->getOpcode() != ISD::CopyToReg)
731      continue;
732
733    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
734    if (!Register::isVirtualRegister(DestReg))
735      continue;
736
737    // Ignore non-integer values.
738    SDValue Src = N->getOperand(2);
739    EVT SrcVT = Src.getValueType();
740    if (!SrcVT.isInteger())
741      continue;
742
743    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
744    Known = CurDAG->computeKnownBits(Src);
745    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
746  } while (!Worklist.empty());
747}
748
749void SelectionDAGISel::CodeGenAndEmitDAG() {
750  StringRef GroupName = "sdag";
751  StringRef GroupDescription = "Instruction Selection and Scheduling";
752  std::string BlockName;
753  bool MatchFilterBB = false; (void)MatchFilterBB;
754#ifndef NDEBUG
755  TargetTransformInfo &TTI =
756      getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
757#endif
758
759  // Pre-type legalization allow creation of any node types.
760  CurDAG->NewNodesMustHaveLegalTypes = false;
761
762#ifndef NDEBUG
763  MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
764                   FilterDAGBasicBlockName ==
765                       FuncInfo->MBB->getBasicBlock()->getName());
766#endif
767#ifdef NDEBUG
768  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT ||
769      ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs ||
770      ViewSUnitDAGs)
771#endif
772  {
773    BlockName =
774        (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
775  }
776  LLVM_DEBUG(dbgs() << "Initial selection DAG: "
777                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
778                    << "'\n";
779             CurDAG->dump());
780
781  if (ViewDAGCombine1 && MatchFilterBB)
782    CurDAG->viewGraph("dag-combine1 input for " + BlockName);
783
784  // Run the DAG combiner in pre-legalize mode.
785  {
786    NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
787                       GroupDescription, TimePassesIsEnabled);
788    CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
789  }
790
791#ifndef NDEBUG
792  if (TTI.hasBranchDivergence())
793    CurDAG->VerifyDAGDiverence();
794#endif
795
796  LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
797                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
798                    << "'\n";
799             CurDAG->dump());
800
801  // Second step, hack on the DAG until it only uses operations and types that
802  // the target supports.
803  if (ViewLegalizeTypesDAGs && MatchFilterBB)
804    CurDAG->viewGraph("legalize-types input for " + BlockName);
805
806  bool Changed;
807  {
808    NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
809                       GroupDescription, TimePassesIsEnabled);
810    Changed = CurDAG->LegalizeTypes();
811  }
812
813#ifndef NDEBUG
814  if (TTI.hasBranchDivergence())
815    CurDAG->VerifyDAGDiverence();
816#endif
817
818  LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
819                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
820                    << "'\n";
821             CurDAG->dump());
822
823  // Only allow creation of legal node types.
824  CurDAG->NewNodesMustHaveLegalTypes = true;
825
826  if (Changed) {
827    if (ViewDAGCombineLT && MatchFilterBB)
828      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
829
830    // Run the DAG combiner in post-type-legalize mode.
831    {
832      NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
833                         GroupName, GroupDescription, TimePassesIsEnabled);
834      CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
835    }
836
837#ifndef NDEBUG
838    if (TTI.hasBranchDivergence())
839      CurDAG->VerifyDAGDiverence();
840#endif
841
842    LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
843                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
844                      << "'\n";
845               CurDAG->dump());
846  }
847
848  {
849    NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
850                       GroupDescription, TimePassesIsEnabled);
851    Changed = CurDAG->LegalizeVectors();
852  }
853
854  if (Changed) {
855    LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
856                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
857                      << "'\n";
858               CurDAG->dump());
859
860    {
861      NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
862                         GroupDescription, TimePassesIsEnabled);
863      CurDAG->LegalizeTypes();
864    }
865
866    LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
867                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
868                      << "'\n";
869               CurDAG->dump());
870
871    if (ViewDAGCombineLT && MatchFilterBB)
872      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
873
874    // Run the DAG combiner in post-type-legalize mode.
875    {
876      NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
877                         GroupName, GroupDescription, TimePassesIsEnabled);
878      CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
879    }
880
881    LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
882                      << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
883                      << "'\n";
884               CurDAG->dump());
885
886#ifndef NDEBUG
887    if (TTI.hasBranchDivergence())
888      CurDAG->VerifyDAGDiverence();
889#endif
890  }
891
892  if (ViewLegalizeDAGs && MatchFilterBB)
893    CurDAG->viewGraph("legalize input for " + BlockName);
894
895  {
896    NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
897                       GroupDescription, TimePassesIsEnabled);
898    CurDAG->Legalize();
899  }
900
901#ifndef NDEBUG
902  if (TTI.hasBranchDivergence())
903    CurDAG->VerifyDAGDiverence();
904#endif
905
906  LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
907                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
908                    << "'\n";
909             CurDAG->dump());
910
911  if (ViewDAGCombine2 && MatchFilterBB)
912    CurDAG->viewGraph("dag-combine2 input for " + BlockName);
913
914  // Run the DAG combiner in post-legalize mode.
915  {
916    NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
917                       GroupDescription, TimePassesIsEnabled);
918    CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
919  }
920
921#ifndef NDEBUG
922  if (TTI.hasBranchDivergence())
923    CurDAG->VerifyDAGDiverence();
924#endif
925
926  LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
927                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
928                    << "'\n";
929             CurDAG->dump());
930
931  if (OptLevel != CodeGenOpt::None)
932    ComputeLiveOutVRegInfo();
933
934  if (ViewISelDAGs && MatchFilterBB)
935    CurDAG->viewGraph("isel input for " + BlockName);
936
937  // Third, instruction select all of the operations to machine code, adding the
938  // code to the MachineBasicBlock.
939  {
940    NamedRegionTimer T("isel", "Instruction Selection", GroupName,
941                       GroupDescription, TimePassesIsEnabled);
942    DoInstructionSelection();
943  }
944
945  LLVM_DEBUG(dbgs() << "Selected selection DAG: "
946                    << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
947                    << "'\n";
948             CurDAG->dump());
949
950  if (ViewSchedDAGs && MatchFilterBB)
951    CurDAG->viewGraph("scheduler input for " + BlockName);
952
953  // Schedule machine code.
954  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
955  {
956    NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
957                       GroupDescription, TimePassesIsEnabled);
958    Scheduler->Run(CurDAG, FuncInfo->MBB);
959  }
960
961  if (ViewSUnitDAGs && MatchFilterBB)
962    Scheduler->viewGraph();
963
964  // Emit machine code to BB.  This can change 'BB' to the last block being
965  // inserted into.
966  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
967  {
968    NamedRegionTimer T("emit", "Instruction Creation", GroupName,
969                       GroupDescription, TimePassesIsEnabled);
970
971    // FuncInfo->InsertPt is passed by reference and set to the end of the
972    // scheduled instructions.
973    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
974  }
975
976  // If the block was split, make sure we update any references that are used to
977  // update PHI nodes later on.
978  if (FirstMBB != LastMBB)
979    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
980
981  // Free the scheduler state.
982  {
983    NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
984                       GroupDescription, TimePassesIsEnabled);
985    delete Scheduler;
986  }
987
988  // Free the SelectionDAG state, now that we're finished with it.
989  CurDAG->clear();
990}
991
992namespace {
993
994/// ISelUpdater - helper class to handle updates of the instruction selection
995/// graph.
996class ISelUpdater : public SelectionDAG::DAGUpdateListener {
997  SelectionDAG::allnodes_iterator &ISelPosition;
998
999public:
1000  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
1001    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
1002
1003  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
1004  /// deleted is the current ISelPosition node, update ISelPosition.
1005  ///
1006  void NodeDeleted(SDNode *N, SDNode *E) override {
1007    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
1008      ++ISelPosition;
1009  }
1010};
1011
1012} // end anonymous namespace
1013
1014// This function is used to enforce the topological node id property
1015// property leveraged during Instruction selection. Before selection all
1016// nodes are given a non-negative id such that all nodes have a larger id than
1017// their operands. As this holds transitively we can prune checks that a node N
1018// is a predecessor of M another by not recursively checking through M's
1019// operands if N's ID is larger than M's ID. This is significantly improves
1020// performance of for various legality checks (e.g. IsLegalToFold /
1021// UpdateChains).
1022
1023// However, when we fuse multiple nodes into a single node
1024// during selection we may induce a predecessor relationship between inputs and
1025// outputs of distinct nodes being merged violating the topological property.
1026// Should a fused node have a successor which has yet to be selected, our
1027// legality checks would be incorrect. To avoid this we mark all unselected
1028// sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
1029// (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
1030// We use bit-negation to more clearly enforce that node id -1 can only be
1031// achieved by selected nodes). As the conversion is reversable the original Id,
1032// topological pruning can still be leveraged when looking for unselected nodes.
1033// This method is call internally in all ISel replacement calls.
1034void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
1035  SmallVector<SDNode *, 4> Nodes;
1036  Nodes.push_back(Node);
1037
1038  while (!Nodes.empty()) {
1039    SDNode *N = Nodes.pop_back_val();
1040    for (auto *U : N->uses()) {
1041      auto UId = U->getNodeId();
1042      if (UId > 0) {
1043        InvalidateNodeId(U);
1044        Nodes.push_back(U);
1045      }
1046    }
1047  }
1048}
1049
1050// InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
1051// NodeId with the equivalent node id which is invalid for topological
1052// pruning.
1053void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
1054  int InvalidId = -(N->getNodeId() + 1);
1055  N->setNodeId(InvalidId);
1056}
1057
1058// getUninvalidatedNodeId - get original uninvalidated node id.
1059int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
1060  int Id = N->getNodeId();
1061  if (Id < -1)
1062    return -(Id + 1);
1063  return Id;
1064}
1065
1066void SelectionDAGISel::DoInstructionSelection() {
1067  LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
1068                    << printMBBReference(*FuncInfo->MBB) << " '"
1069                    << FuncInfo->MBB->getName() << "'\n");
1070
1071  PreprocessISelDAG();
1072
1073  // Select target instructions for the DAG.
1074  {
1075    // Number all nodes with a topological order and set DAGSize.
1076    DAGSize = CurDAG->AssignTopologicalOrder();
1077
1078    // Create a dummy node (which is not added to allnodes), that adds
1079    // a reference to the root node, preventing it from being deleted,
1080    // and tracking any changes of the root.
1081    HandleSDNode Dummy(CurDAG->getRoot());
1082    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
1083    ++ISelPosition;
1084
1085    // Make sure that ISelPosition gets properly updated when nodes are deleted
1086    // in calls made from this function.
1087    ISelUpdater ISU(*CurDAG, ISelPosition);
1088
1089    // The AllNodes list is now topological-sorted. Visit the
1090    // nodes by starting at the end of the list (the root of the
1091    // graph) and preceding back toward the beginning (the entry
1092    // node).
1093    while (ISelPosition != CurDAG->allnodes_begin()) {
1094      SDNode *Node = &*--ISelPosition;
1095      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
1096      // but there are currently some corner cases that it misses. Also, this
1097      // makes it theoretically possible to disable the DAGCombiner.
1098      if (Node->use_empty())
1099        continue;
1100
1101#ifndef NDEBUG
1102      SmallVector<SDNode *, 4> Nodes;
1103      Nodes.push_back(Node);
1104
1105      while (!Nodes.empty()) {
1106        auto N = Nodes.pop_back_val();
1107        if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
1108          continue;
1109        for (const SDValue &Op : N->op_values()) {
1110          if (Op->getOpcode() == ISD::TokenFactor)
1111            Nodes.push_back(Op.getNode());
1112          else {
1113            // We rely on topological ordering of node ids for checking for
1114            // cycles when fusing nodes during selection. All unselected nodes
1115            // successors of an already selected node should have a negative id.
1116            // This assertion will catch such cases. If this assertion triggers
1117            // it is likely you using DAG-level Value/Node replacement functions
1118            // (versus equivalent ISEL replacement) in backend-specific
1119            // selections. See comment in EnforceNodeIdInvariant for more
1120            // details.
1121            assert(Op->getNodeId() != -1 &&
1122                   "Node has already selected predecessor node");
1123          }
1124        }
1125      }
1126#endif
1127
1128      // When we are using non-default rounding modes or FP exception behavior
1129      // FP operations are represented by StrictFP pseudo-operations.  For
1130      // targets that do not (yet) understand strict FP operations directly,
1131      // we convert them to normal FP opcodes instead at this point.  This
1132      // will allow them to be handled by existing target-specific instruction
1133      // selectors.
1134      if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) {
1135        // For some opcodes, we need to call TLI->getOperationAction using
1136        // the first operand type instead of the result type.  Note that this
1137        // must match what SelectionDAGLegalize::LegalizeOp is doing.
1138        EVT ActionVT;
1139        switch (Node->getOpcode()) {
1140        case ISD::STRICT_SINT_TO_FP:
1141        case ISD::STRICT_UINT_TO_FP:
1142        case ISD::STRICT_LRINT:
1143        case ISD::STRICT_LLRINT:
1144        case ISD::STRICT_LROUND:
1145        case ISD::STRICT_LLROUND:
1146        case ISD::STRICT_FSETCC:
1147        case ISD::STRICT_FSETCCS:
1148          ActionVT = Node->getOperand(1).getValueType();
1149          break;
1150        default:
1151          ActionVT = Node->getValueType(0);
1152          break;
1153        }
1154        if (TLI->getOperationAction(Node->getOpcode(), ActionVT)
1155            == TargetLowering::Expand)
1156          Node = CurDAG->mutateStrictFPToFP(Node);
1157      }
1158
1159      LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
1160                 Node->dump(CurDAG));
1161
1162      Select(Node);
1163    }
1164
1165    CurDAG->setRoot(Dummy.getValue());
1166  }
1167
1168  LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
1169
1170  PostprocessISelDAG();
1171}
1172
1173static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
1174  for (const User *U : CPI->users()) {
1175    if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
1176      Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
1177      if (IID == Intrinsic::eh_exceptionpointer ||
1178          IID == Intrinsic::eh_exceptioncode)
1179        return true;
1180    }
1181  }
1182  return false;
1183}
1184
1185// wasm.landingpad.index intrinsic is for associating a landing pad index number
1186// with a catchpad instruction. Retrieve the landing pad index in the intrinsic
1187// and store the mapping in the function.
1188static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
1189                                   const CatchPadInst *CPI) {
1190  MachineFunction *MF = MBB->getParent();
1191  // In case of single catch (...), we don't emit LSDA, so we don't need
1192  // this information.
1193  bool IsSingleCatchAllClause =
1194      CPI->getNumArgOperands() == 1 &&
1195      cast<Constant>(CPI->getArgOperand(0))->isNullValue();
1196  if (!IsSingleCatchAllClause) {
1197    // Create a mapping from landing pad label to landing pad index.
1198    bool IntrFound = false;
1199    for (const User *U : CPI->users()) {
1200      if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
1201        Intrinsic::ID IID = Call->getIntrinsicID();
1202        if (IID == Intrinsic::wasm_landingpad_index) {
1203          Value *IndexArg = Call->getArgOperand(1);
1204          int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
1205          MF->setWasmLandingPadIndex(MBB, Index);
1206          IntrFound = true;
1207          break;
1208        }
1209      }
1210    }
1211    assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
1212    (void)IntrFound;
1213  }
1214}
1215
1216/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
1217/// do other setup for EH landing-pad blocks.
1218bool SelectionDAGISel::PrepareEHLandingPad() {
1219  MachineBasicBlock *MBB = FuncInfo->MBB;
1220  const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
1221  const BasicBlock *LLVMBB = MBB->getBasicBlock();
1222  const TargetRegisterClass *PtrRC =
1223      TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
1224
1225  auto Pers = classifyEHPersonality(PersonalityFn);
1226
1227  // Catchpads have one live-in register, which typically holds the exception
1228  // pointer or code.
1229  if (isFuncletEHPersonality(Pers)) {
1230    if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
1231      if (hasExceptionPointerOrCodeUser(CPI)) {
1232        // Get or create the virtual register to hold the pointer or code.  Mark
1233        // the live in physreg and copy into the vreg.
1234        MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
1235        assert(EHPhysReg && "target lacks exception pointer register");
1236        MBB->addLiveIn(EHPhysReg);
1237        unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
1238        BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
1239                TII->get(TargetOpcode::COPY), VReg)
1240            .addReg(EHPhysReg, RegState::Kill);
1241      }
1242    }
1243    return true;
1244  }
1245
1246  // Add a label to mark the beginning of the landing pad.  Deletion of the
1247  // landing pad can thus be detected via the MachineModuleInfo.
1248  MCSymbol *Label = MF->addLandingPad(MBB);
1249
1250  const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
1251  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
1252    .addSym(Label);
1253
1254  if (Pers == EHPersonality::Wasm_CXX) {
1255    if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
1256      mapWasmLandingPadIndex(MBB, CPI);
1257  } else {
1258    // Assign the call site to the landing pad's begin label.
1259    MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
1260    // Mark exception register as live in.
1261    if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
1262      FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
1263    // Mark exception selector register as live in.
1264    if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
1265      FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
1266  }
1267
1268  return true;
1269}
1270
1271/// isFoldedOrDeadInstruction - Return true if the specified instruction is
1272/// side-effect free and is either dead or folded into a generated instruction.
1273/// Return false if it needs to be emitted.
1274static bool isFoldedOrDeadInstruction(const Instruction *I,
1275                                      const FunctionLoweringInfo &FuncInfo) {
1276  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
1277         !I->isTerminator() &&     // Terminators aren't folded.
1278         !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
1279         !I->isEHPad() &&             // EH pad instructions aren't folded.
1280         !FuncInfo.isExportedInst(I); // Exported instrs must be computed.
1281}
1282
1283/// Collect llvm.dbg.declare information. This is done after argument lowering
1284/// in case the declarations refer to arguments.
1285static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) {
1286  MachineFunction *MF = FuncInfo.MF;
1287  const DataLayout &DL = MF->getDataLayout();
1288  for (const BasicBlock &BB : *FuncInfo.Fn) {
1289    for (const Instruction &I : BB) {
1290      const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
1291      if (!DI)
1292        continue;
1293
1294      assert(DI->getVariable() && "Missing variable");
1295      assert(DI->getDebugLoc() && "Missing location");
1296      const Value *Address = DI->getAddress();
1297      if (!Address) {
1298        LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI
1299                          << " (bad address)\n");
1300        continue;
1301      }
1302
1303      // Look through casts and constant offset GEPs. These mostly come from
1304      // inalloca.
1305      APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
1306      Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
1307
1308      // Check if the variable is a static alloca or a byval or inalloca
1309      // argument passed in memory. If it is not, then we will ignore this
1310      // intrinsic and handle this during isel like dbg.value.
1311      int FI = std::numeric_limits<int>::max();
1312      if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
1313        auto SI = FuncInfo.StaticAllocaMap.find(AI);
1314        if (SI != FuncInfo.StaticAllocaMap.end())
1315          FI = SI->second;
1316      } else if (const auto *Arg = dyn_cast<Argument>(Address))
1317        FI = FuncInfo.getArgumentFrameIndex(Arg);
1318
1319      if (FI == std::numeric_limits<int>::max())
1320        continue;
1321
1322      DIExpression *Expr = DI->getExpression();
1323      if (Offset.getBoolValue())
1324        Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
1325                                     Offset.getZExtValue());
1326      LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI
1327                        << ", " << *DI << "\n");
1328      MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
1329    }
1330  }
1331}
1332
1333void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
1334  FastISelFailed = false;
1335  // Initialize the Fast-ISel state, if needed.
1336  FastISel *FastIS = nullptr;
1337  if (TM.Options.EnableFastISel) {
1338    LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
1339    FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
1340  }
1341
1342  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1343
1344  // Lower arguments up front. An RPO iteration always visits the entry block
1345  // first.
1346  assert(*RPOT.begin() == &Fn.getEntryBlock());
1347  ++NumEntryBlocks;
1348
1349  // Set up FuncInfo for ISel. Entry blocks never have PHIs.
1350  FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
1351  FuncInfo->InsertPt = FuncInfo->MBB->begin();
1352
1353  CurDAG->setFunctionLoweringInfo(FuncInfo.get());
1354
1355  if (!FastIS) {
1356    LowerArguments(Fn);
1357  } else {
1358    // See if fast isel can lower the arguments.
1359    FastIS->startNewBlock();
1360    if (!FastIS->lowerArguments()) {
1361      FastISelFailed = true;
1362      // Fast isel failed to lower these arguments
1363      ++NumFastIselFailLowerArguments;
1364
1365      OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1366                                 Fn.getSubprogram(),
1367                                 &Fn.getEntryBlock());
1368      R << "FastISel didn't lower all arguments: "
1369        << ore::NV("Prototype", Fn.getType());
1370      reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
1371
1372      // Use SelectionDAG argument lowering
1373      LowerArguments(Fn);
1374      CurDAG->setRoot(SDB->getControlRoot());
1375      SDB->clear();
1376      CodeGenAndEmitDAG();
1377    }
1378
1379    // If we inserted any instructions at the beginning, make a note of
1380    // where they are, so we can be sure to emit subsequent instructions
1381    // after them.
1382    if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1383      FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1384    else
1385      FastIS->setLastLocalValue(nullptr);
1386  }
1387
1388  bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
1389
1390  if (FastIS && Inserted)
1391    FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
1392
1393  processDbgDeclares(*FuncInfo);
1394
1395  // Iterate over all basic blocks in the function.
1396  StackProtector &SP = getAnalysis<StackProtector>();
1397  for (const BasicBlock *LLVMBB : RPOT) {
1398    if (OptLevel != CodeGenOpt::None) {
1399      bool AllPredsVisited = true;
1400      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1401           PI != PE; ++PI) {
1402        if (!FuncInfo->VisitedBBs.count(*PI)) {
1403          AllPredsVisited = false;
1404          break;
1405        }
1406      }
1407
1408      if (AllPredsVisited) {
1409        for (const PHINode &PN : LLVMBB->phis())
1410          FuncInfo->ComputePHILiveOutRegInfo(&PN);
1411      } else {
1412        for (const PHINode &PN : LLVMBB->phis())
1413          FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
1414      }
1415
1416      FuncInfo->VisitedBBs.insert(LLVMBB);
1417    }
1418
1419    BasicBlock::const_iterator const Begin =
1420        LLVMBB->getFirstNonPHI()->getIterator();
1421    BasicBlock::const_iterator const End = LLVMBB->end();
1422    BasicBlock::const_iterator BI = End;
1423
1424    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1425    if (!FuncInfo->MBB)
1426      continue; // Some blocks like catchpads have no code or MBB.
1427
1428    // Insert new instructions after any phi or argument setup code.
1429    FuncInfo->InsertPt = FuncInfo->MBB->end();
1430
1431    // Setup an EH landing-pad block.
1432    FuncInfo->ExceptionPointerVirtReg = 0;
1433    FuncInfo->ExceptionSelectorVirtReg = 0;
1434    if (LLVMBB->isEHPad())
1435      if (!PrepareEHLandingPad())
1436        continue;
1437
1438    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1439    if (FastIS) {
1440      if (LLVMBB != &Fn.getEntryBlock())
1441        FastIS->startNewBlock();
1442
1443      unsigned NumFastIselRemaining = std::distance(Begin, End);
1444
1445      // Pre-assign swifterror vregs.
1446      SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
1447
1448      // Do FastISel on as many instructions as possible.
1449      for (; BI != Begin; --BI) {
1450        const Instruction *Inst = &*std::prev(BI);
1451
1452        // If we no longer require this instruction, skip it.
1453        if (isFoldedOrDeadInstruction(Inst, *FuncInfo) ||
1454            ElidedArgCopyInstrs.count(Inst)) {
1455          --NumFastIselRemaining;
1456          continue;
1457        }
1458
1459        // Bottom-up: reset the insert pos at the top, after any local-value
1460        // instructions.
1461        FastIS->recomputeInsertPt();
1462
1463        // Try to select the instruction with FastISel.
1464        if (FastIS->selectInstruction(Inst)) {
1465          --NumFastIselRemaining;
1466          ++NumFastIselSuccess;
1467          // If fast isel succeeded, skip over all the folded instructions, and
1468          // then see if there is a load right before the selected instructions.
1469          // Try to fold the load if so.
1470          const Instruction *BeforeInst = Inst;
1471          while (BeforeInst != &*Begin) {
1472            BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
1473            if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo))
1474              break;
1475          }
1476          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1477              BeforeInst->hasOneUse() &&
1478              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1479            // If we succeeded, don't re-select the load.
1480            BI = std::next(BasicBlock::const_iterator(BeforeInst));
1481            --NumFastIselRemaining;
1482            ++NumFastIselSuccess;
1483          }
1484          continue;
1485        }
1486
1487        FastISelFailed = true;
1488
1489        // Then handle certain instructions as single-LLVM-Instruction blocks.
1490        // We cannot separate out GCrelocates to their own blocks since we need
1491        // to keep track of gc-relocates for a particular gc-statepoint. This is
1492        // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
1493        // visitGCRelocate.
1494        if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) &&
1495            !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) {
1496          OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1497                                     Inst->getDebugLoc(), LLVMBB);
1498
1499          R << "FastISel missed call";
1500
1501          if (R.isEnabled() || EnableFastISelAbort) {
1502            std::string InstStrStorage;
1503            raw_string_ostream InstStr(InstStrStorage);
1504            InstStr << *Inst;
1505
1506            R << ": " << InstStr.str();
1507          }
1508
1509          reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
1510
1511          if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
1512              !Inst->use_empty()) {
1513            Register &R = FuncInfo->ValueMap[Inst];
1514            if (!R)
1515              R = FuncInfo->CreateRegs(Inst);
1516          }
1517
1518          bool HadTailCall = false;
1519          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1520          SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
1521
1522          // If the call was emitted as a tail call, we're done with the block.
1523          // We also need to delete any previously emitted instructions.
1524          if (HadTailCall) {
1525            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1526            --BI;
1527            break;
1528          }
1529
1530          // Recompute NumFastIselRemaining as Selection DAG instruction
1531          // selection may have handled the call, input args, etc.
1532          unsigned RemainingNow = std::distance(Begin, BI);
1533          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1534          NumFastIselRemaining = RemainingNow;
1535          continue;
1536        }
1537
1538        OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
1539                                   Inst->getDebugLoc(), LLVMBB);
1540
1541        bool ShouldAbort = EnableFastISelAbort;
1542        if (Inst->isTerminator()) {
1543          // Use a different message for terminator misses.
1544          R << "FastISel missed terminator";
1545          // Don't abort for terminator unless the level is really high
1546          ShouldAbort = (EnableFastISelAbort > 2);
1547        } else {
1548          R << "FastISel missed";
1549        }
1550
1551        if (R.isEnabled() || EnableFastISelAbort) {
1552          std::string InstStrStorage;
1553          raw_string_ostream InstStr(InstStrStorage);
1554          InstStr << *Inst;
1555          R << ": " << InstStr.str();
1556        }
1557
1558        reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
1559
1560        NumFastIselFailures += NumFastIselRemaining;
1561        break;
1562      }
1563
1564      FastIS->recomputeInsertPt();
1565    }
1566
1567    if (SP.shouldEmitSDCheck(*LLVMBB)) {
1568      bool FunctionBasedInstrumentation =
1569          TLI->getSSPStackGuardCheck(*Fn.getParent());
1570      SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
1571                                   FunctionBasedInstrumentation);
1572    }
1573
1574    if (Begin != BI)
1575      ++NumDAGBlocks;
1576    else
1577      ++NumFastIselBlocks;
1578
1579    if (Begin != BI) {
1580      // Run SelectionDAG instruction selection on the remainder of the block
1581      // not handled by FastISel. If FastISel is not run, this is the entire
1582      // block.
1583      bool HadTailCall;
1584      SelectBasicBlock(Begin, BI, HadTailCall);
1585
1586      // But if FastISel was run, we already selected some of the block.
1587      // If we emitted a tail-call, we need to delete any previously emitted
1588      // instruction that follows it.
1589      if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
1590        FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
1591    }
1592
1593    if (FastIS)
1594      FastIS->finishBasicBlock();
1595    FinishBasicBlock();
1596    FuncInfo->PHINodesToUpdate.clear();
1597    ElidedArgCopyInstrs.clear();
1598  }
1599
1600  SP.copyToMachineFrameInfo(MF->getFrameInfo());
1601
1602  SwiftError->propagateVRegs();
1603
1604  delete FastIS;
1605  SDB->clearDanglingDebugInfo();
1606  SDB->SPDescriptor.resetPerFunctionState();
1607}
1608
1609/// Given that the input MI is before a partial terminator sequence TSeq, return
1610/// true if M + TSeq also a partial terminator sequence.
1611///
1612/// A Terminator sequence is a sequence of MachineInstrs which at this point in
1613/// lowering copy vregs into physical registers, which are then passed into
1614/// terminator instructors so we can satisfy ABI constraints. A partial
1615/// terminator sequence is an improper subset of a terminator sequence (i.e. it
1616/// may be the whole terminator sequence).
1617static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
1618  // If we do not have a copy or an implicit def, we return true if and only if
1619  // MI is a debug value.
1620  if (!MI.isCopy() && !MI.isImplicitDef())
1621    // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
1622    // physical registers if there is debug info associated with the terminator
1623    // of our mbb. We want to include said debug info in our terminator
1624    // sequence, so we return true in that case.
1625    return MI.isDebugValue();
1626
1627  // We have left the terminator sequence if we are not doing one of the
1628  // following:
1629  //
1630  // 1. Copying a vreg into a physical register.
1631  // 2. Copying a vreg into a vreg.
1632  // 3. Defining a register via an implicit def.
1633
1634  // OPI should always be a register definition...
1635  MachineInstr::const_mop_iterator OPI = MI.operands_begin();
1636  if (!OPI->isReg() || !OPI->isDef())
1637    return false;
1638
1639  // Defining any register via an implicit def is always ok.
1640  if (MI.isImplicitDef())
1641    return true;
1642
1643  // Grab the copy source...
1644  MachineInstr::const_mop_iterator OPI2 = OPI;
1645  ++OPI2;
1646  assert(OPI2 != MI.operands_end()
1647         && "Should have a copy implying we should have 2 arguments.");
1648
1649  // Make sure that the copy dest is not a vreg when the copy source is a
1650  // physical register.
1651  if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) &&
1652                         Register::isPhysicalRegister(OPI2->getReg())))
1653    return false;
1654
1655  return true;
1656}
1657
1658/// Find the split point at which to splice the end of BB into its success stack
1659/// protector check machine basic block.
1660///
1661/// On many platforms, due to ABI constraints, terminators, even before register
1662/// allocation, use physical registers. This creates an issue for us since
1663/// physical registers at this point can not travel across basic
1664/// blocks. Luckily, selectiondag always moves physical registers into vregs
1665/// when they enter functions and moves them through a sequence of copies back
1666/// into the physical registers right before the terminator creating a
1667/// ``Terminator Sequence''. This function is searching for the beginning of the
1668/// terminator sequence so that we can ensure that we splice off not just the
1669/// terminator, but additionally the copies that move the vregs into the
1670/// physical registers.
1671static MachineBasicBlock::iterator
1672FindSplitPointForStackProtector(MachineBasicBlock *BB) {
1673  MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
1674  //
1675  if (SplitPoint == BB->begin())
1676    return SplitPoint;
1677
1678  MachineBasicBlock::iterator Start = BB->begin();
1679  MachineBasicBlock::iterator Previous = SplitPoint;
1680  --Previous;
1681
1682  while (MIIsInTerminatorSequence(*Previous)) {
1683    SplitPoint = Previous;
1684    if (Previous == Start)
1685      break;
1686    --Previous;
1687  }
1688
1689  return SplitPoint;
1690}
1691
1692void
1693SelectionDAGISel::FinishBasicBlock() {
1694  LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
1695                    << FuncInfo->PHINodesToUpdate.size() << "\n";
1696             for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
1697                  ++i) dbgs()
1698             << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
1699             << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1700
1701  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1702  // PHI nodes in successors.
1703  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1704    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1705    assert(PHI->isPHI() &&
1706           "This is not a machine PHI node that we are updating!");
1707    if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1708      continue;
1709    PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1710  }
1711
1712  // Handle stack protector.
1713  if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
1714    // The target provides a guard check function. There is no need to
1715    // generate error handling code or to split current basic block.
1716    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1717
1718    // Add load and check to the basicblock.
1719    FuncInfo->MBB = ParentMBB;
1720    FuncInfo->InsertPt =
1721        FindSplitPointForStackProtector(ParentMBB);
1722    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1723    CurDAG->setRoot(SDB->getRoot());
1724    SDB->clear();
1725    CodeGenAndEmitDAG();
1726
1727    // Clear the Per-BB State.
1728    SDB->SPDescriptor.resetPerBBState();
1729  } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
1730    MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
1731    MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
1732
1733    // Find the split point to split the parent mbb. At the same time copy all
1734    // physical registers used in the tail of parent mbb into virtual registers
1735    // before the split point and back into physical registers after the split
1736    // point. This prevents us needing to deal with Live-ins and many other
1737    // register allocation issues caused by us splitting the parent mbb. The
1738    // register allocator will clean up said virtual copies later on.
1739    MachineBasicBlock::iterator SplitPoint =
1740        FindSplitPointForStackProtector(ParentMBB);
1741
1742    // Splice the terminator of ParentMBB into SuccessMBB.
1743    SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
1744                       SplitPoint,
1745                       ParentMBB->end());
1746
1747    // Add compare/jump on neq/jump to the parent BB.
1748    FuncInfo->MBB = ParentMBB;
1749    FuncInfo->InsertPt = ParentMBB->end();
1750    SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
1751    CurDAG->setRoot(SDB->getRoot());
1752    SDB->clear();
1753    CodeGenAndEmitDAG();
1754
1755    // CodeGen Failure MBB if we have not codegened it yet.
1756    MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
1757    if (FailureMBB->empty()) {
1758      FuncInfo->MBB = FailureMBB;
1759      FuncInfo->InsertPt = FailureMBB->end();
1760      SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
1761      CurDAG->setRoot(SDB->getRoot());
1762      SDB->clear();
1763      CodeGenAndEmitDAG();
1764    }
1765
1766    // Clear the Per-BB State.
1767    SDB->SPDescriptor.resetPerBBState();
1768  }
1769
1770  // Lower each BitTestBlock.
1771  for (auto &BTB : SDB->SL->BitTestCases) {
1772    // Lower header first, if it wasn't already lowered
1773    if (!BTB.Emitted) {
1774      // Set the current basic block to the mbb we wish to insert the code into
1775      FuncInfo->MBB = BTB.Parent;
1776      FuncInfo->InsertPt = FuncInfo->MBB->end();
1777      // Emit the code
1778      SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
1779      CurDAG->setRoot(SDB->getRoot());
1780      SDB->clear();
1781      CodeGenAndEmitDAG();
1782    }
1783
1784    BranchProbability UnhandledProb = BTB.Prob;
1785    for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
1786      UnhandledProb -= BTB.Cases[j].ExtraProb;
1787      // Set the current basic block to the mbb we wish to insert the code into
1788      FuncInfo->MBB = BTB.Cases[j].ThisBB;
1789      FuncInfo->InsertPt = FuncInfo->MBB->end();
1790      // Emit the code
1791
1792      // If all cases cover a contiguous range, it is not necessary to jump to
1793      // the default block after the last bit test fails. This is because the
1794      // range check during bit test header creation has guaranteed that every
1795      // case here doesn't go outside the range. In this case, there is no need
1796      // to perform the last bit test, as it will always be true. Instead, make
1797      // the second-to-last bit-test fall through to the target of the last bit
1798      // test, and delete the last bit test.
1799
1800      MachineBasicBlock *NextMBB;
1801      if (BTB.ContiguousRange && j + 2 == ej) {
1802        // Second-to-last bit-test with contiguous range: fall through to the
1803        // target of the final bit test.
1804        NextMBB = BTB.Cases[j + 1].TargetBB;
1805      } else if (j + 1 == ej) {
1806        // For the last bit test, fall through to Default.
1807        NextMBB = BTB.Default;
1808      } else {
1809        // Otherwise, fall through to the next bit test.
1810        NextMBB = BTB.Cases[j + 1].ThisBB;
1811      }
1812
1813      SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
1814                            FuncInfo->MBB);
1815
1816      CurDAG->setRoot(SDB->getRoot());
1817      SDB->clear();
1818      CodeGenAndEmitDAG();
1819
1820      if (BTB.ContiguousRange && j + 2 == ej) {
1821        // Since we're not going to use the final bit test, remove it.
1822        BTB.Cases.pop_back();
1823        break;
1824      }
1825    }
1826
1827    // Update PHI Nodes
1828    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1829         pi != pe; ++pi) {
1830      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1831      MachineBasicBlock *PHIBB = PHI->getParent();
1832      assert(PHI->isPHI() &&
1833             "This is not a machine PHI node that we are updating!");
1834      // This is "default" BB. We have two jumps to it. From "header" BB and
1835      // from last "case" BB, unless the latter was skipped.
1836      if (PHIBB == BTB.Default) {
1837        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
1838        if (!BTB.ContiguousRange) {
1839          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1840              .addMBB(BTB.Cases.back().ThisBB);
1841         }
1842      }
1843      // One of "cases" BB.
1844      for (unsigned j = 0, ej = BTB.Cases.size();
1845           j != ej; ++j) {
1846        MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
1847        if (cBB->isSuccessor(PHIBB))
1848          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1849      }
1850    }
1851  }
1852  SDB->SL->BitTestCases.clear();
1853
1854  // If the JumpTable record is filled in, then we need to emit a jump table.
1855  // Updating the PHI nodes is tricky in this case, since we need to determine
1856  // whether the PHI is a successor of the range check MBB or the jump table MBB
1857  for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
1858    // Lower header first, if it wasn't already lowered
1859    if (!SDB->SL->JTCases[i].first.Emitted) {
1860      // Set the current basic block to the mbb we wish to insert the code into
1861      FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
1862      FuncInfo->InsertPt = FuncInfo->MBB->end();
1863      // Emit the code
1864      SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
1865                                SDB->SL->JTCases[i].first, FuncInfo->MBB);
1866      CurDAG->setRoot(SDB->getRoot());
1867      SDB->clear();
1868      CodeGenAndEmitDAG();
1869    }
1870
1871    // Set the current basic block to the mbb we wish to insert the code into
1872    FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
1873    FuncInfo->InsertPt = FuncInfo->MBB->end();
1874    // Emit the code
1875    SDB->visitJumpTable(SDB->SL->JTCases[i].second);
1876    CurDAG->setRoot(SDB->getRoot());
1877    SDB->clear();
1878    CodeGenAndEmitDAG();
1879
1880    // Update PHI Nodes
1881    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1882         pi != pe; ++pi) {
1883      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1884      MachineBasicBlock *PHIBB = PHI->getParent();
1885      assert(PHI->isPHI() &&
1886             "This is not a machine PHI node that we are updating!");
1887      // "default" BB. We can go there only from header BB.
1888      if (PHIBB == SDB->SL->JTCases[i].second.Default)
1889        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1890           .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
1891      // JT BB. Just iterate over successors here
1892      if (FuncInfo->MBB->isSuccessor(PHIBB))
1893        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1894    }
1895  }
1896  SDB->SL->JTCases.clear();
1897
1898  // If we generated any switch lowering information, build and codegen any
1899  // additional DAGs necessary.
1900  for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
1901    // Set the current basic block to the mbb we wish to insert the code into
1902    FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
1903    FuncInfo->InsertPt = FuncInfo->MBB->end();
1904
1905    // Determine the unique successors.
1906    SmallVector<MachineBasicBlock *, 2> Succs;
1907    Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
1908    if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
1909      Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
1910
1911    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1912    SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
1913    CurDAG->setRoot(SDB->getRoot());
1914    SDB->clear();
1915    CodeGenAndEmitDAG();
1916
1917    // Remember the last block, now that any splitting is done, for use in
1918    // populating PHI nodes in successors.
1919    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1920
1921    // Handle any PHI nodes in successors of this chunk, as if we were coming
1922    // from the original BB before switch expansion.  Note that PHI nodes can
1923    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1924    // handle them the right number of times.
1925    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1926      FuncInfo->MBB = Succs[i];
1927      FuncInfo->InsertPt = FuncInfo->MBB->end();
1928      // FuncInfo->MBB may have been removed from the CFG if a branch was
1929      // constant folded.
1930      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1931        for (MachineBasicBlock::iterator
1932             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1933             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1934          MachineInstrBuilder PHI(*MF, MBBI);
1935          // This value for this PHI node is recorded in PHINodesToUpdate.
1936          for (unsigned pn = 0; ; ++pn) {
1937            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1938                   "Didn't find PHI entry!");
1939            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1940              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1941              break;
1942            }
1943          }
1944        }
1945      }
1946    }
1947  }
1948  SDB->SL->SwitchCases.clear();
1949}
1950
1951/// Create the scheduler. If a specific scheduler was specified
1952/// via the SchedulerRegistry, use it, otherwise select the
1953/// one preferred by the target.
1954///
1955ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1956  return ISHeuristic(this, OptLevel);
1957}
1958
1959//===----------------------------------------------------------------------===//
1960// Helper functions used by the generated instruction selector.
1961//===----------------------------------------------------------------------===//
1962// Calls to these methods are generated by tblgen.
1963
1964/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1965/// the dag combiner simplified the 255, we still want to match.  RHS is the
1966/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1967/// specified in the .td file (e.g. 255).
1968bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1969                                    int64_t DesiredMaskS) const {
1970  const APInt &ActualMask = RHS->getAPIntValue();
1971  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1972
1973  // If the actual mask exactly matches, success!
1974  if (ActualMask == DesiredMask)
1975    return true;
1976
1977  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1978  if (!ActualMask.isSubsetOf(DesiredMask))
1979    return false;
1980
1981  // Otherwise, the DAG Combiner may have proven that the value coming in is
1982  // either already zero or is not demanded.  Check for known zero input bits.
1983  APInt NeededMask = DesiredMask & ~ActualMask;
1984  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1985    return true;
1986
1987  // TODO: check to see if missing bits are just not demanded.
1988
1989  // Otherwise, this pattern doesn't match.
1990  return false;
1991}
1992
1993/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1994/// the dag combiner simplified the 255, we still want to match.  RHS is the
1995/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1996/// specified in the .td file (e.g. 255).
1997bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1998                                   int64_t DesiredMaskS) const {
1999  const APInt &ActualMask = RHS->getAPIntValue();
2000  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
2001
2002  // If the actual mask exactly matches, success!
2003  if (ActualMask == DesiredMask)
2004    return true;
2005
2006  // If the actual AND mask is allowing unallowed bits, this doesn't match.
2007  if (!ActualMask.isSubsetOf(DesiredMask))
2008    return false;
2009
2010  // Otherwise, the DAG Combiner may have proven that the value coming in is
2011  // either already zero or is not demanded.  Check for known zero input bits.
2012  APInt NeededMask = DesiredMask & ~ActualMask;
2013  KnownBits Known = CurDAG->computeKnownBits(LHS);
2014
2015  // If all the missing bits in the or are already known to be set, match!
2016  if (NeededMask.isSubsetOf(Known.One))
2017    return true;
2018
2019  // TODO: check to see if missing bits are just not demanded.
2020
2021  // Otherwise, this pattern doesn't match.
2022  return false;
2023}
2024
2025/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2026/// by tblgen.  Others should not call it.
2027void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
2028                                                     const SDLoc &DL) {
2029  std::vector<SDValue> InOps;
2030  std::swap(InOps, Ops);
2031
2032  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
2033  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
2034  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
2035  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
2036
2037  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
2038  if (InOps[e-1].getValueType() == MVT::Glue)
2039    --e;  // Don't process a glue operand if it is here.
2040
2041  while (i != e) {
2042    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
2043    if (!InlineAsm::isMemKind(Flags)) {
2044      // Just skip over this operand, copying the operands verbatim.
2045      Ops.insert(Ops.end(), InOps.begin()+i,
2046                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
2047      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
2048    } else {
2049      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
2050             "Memory operand with multiple values?");
2051
2052      unsigned TiedToOperand;
2053      if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
2054        // We need the constraint ID from the operand this is tied to.
2055        unsigned CurOp = InlineAsm::Op_FirstOperand;
2056        Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2057        for (; TiedToOperand; --TiedToOperand) {
2058          CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
2059          Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
2060        }
2061      }
2062
2063      // Otherwise, this is a memory operand.  Ask the target to select it.
2064      std::vector<SDValue> SelOps;
2065      unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
2066      if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
2067        report_fatal_error("Could not match memory address.  Inline asm"
2068                           " failure!");
2069
2070      // Add this to the output node.
2071      unsigned NewFlags =
2072        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
2073      NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
2074      Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
2075      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2076      i += 2;
2077    }
2078  }
2079
2080  // Add the glue input back if present.
2081  if (e != InOps.size())
2082    Ops.push_back(InOps.back());
2083}
2084
2085/// findGlueUse - Return use of MVT::Glue value produced by the specified
2086/// SDNode.
2087///
2088static SDNode *findGlueUse(SDNode *N) {
2089  unsigned FlagResNo = N->getNumValues()-1;
2090  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2091    SDUse &Use = I.getUse();
2092    if (Use.getResNo() == FlagResNo)
2093      return Use.getUser();
2094  }
2095  return nullptr;
2096}
2097
2098/// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
2099/// beyond "ImmedUse".  We may ignore chains as they are checked separately.
2100static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
2101                          bool IgnoreChains) {
2102  SmallPtrSet<const SDNode *, 16> Visited;
2103  SmallVector<const SDNode *, 16> WorkList;
2104  // Only check if we have non-immediate uses of Def.
2105  if (ImmedUse->isOnlyUserOf(Def))
2106    return false;
2107
2108  // We don't care about paths to Def that go through ImmedUse so mark it
2109  // visited and mark non-def operands as used.
2110  Visited.insert(ImmedUse);
2111  for (const SDValue &Op : ImmedUse->op_values()) {
2112    SDNode *N = Op.getNode();
2113    // Ignore chain deps (they are validated by
2114    // HandleMergeInputChains) and immediate uses
2115    if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2116      continue;
2117    if (!Visited.insert(N).second)
2118      continue;
2119    WorkList.push_back(N);
2120  }
2121
2122  // Initialize worklist to operands of Root.
2123  if (Root != ImmedUse) {
2124    for (const SDValue &Op : Root->op_values()) {
2125      SDNode *N = Op.getNode();
2126      // Ignore chains (they are validated by HandleMergeInputChains)
2127      if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
2128        continue;
2129      if (!Visited.insert(N).second)
2130        continue;
2131      WorkList.push_back(N);
2132    }
2133  }
2134
2135  return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
2136}
2137
2138/// IsProfitableToFold - Returns true if it's profitable to fold the specific
2139/// operand node N of U during instruction selection that starts at Root.
2140bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
2141                                          SDNode *Root) const {
2142  if (OptLevel == CodeGenOpt::None) return false;
2143  return N.hasOneUse();
2144}
2145
2146/// IsLegalToFold - Returns true if the specific operand node N of
2147/// U can be folded during instruction selection that starts at Root.
2148bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
2149                                     CodeGenOpt::Level OptLevel,
2150                                     bool IgnoreChains) {
2151  if (OptLevel == CodeGenOpt::None) return false;
2152
2153  // If Root use can somehow reach N through a path that that doesn't contain
2154  // U then folding N would create a cycle. e.g. In the following
2155  // diagram, Root can reach N through X. If N is folded into Root, then
2156  // X is both a predecessor and a successor of U.
2157  //
2158  //          [N*]           //
2159  //         ^   ^           //
2160  //        /     \          //
2161  //      [U*]    [X]?       //
2162  //        ^     ^          //
2163  //         \   /           //
2164  //          \ /            //
2165  //         [Root*]         //
2166  //
2167  // * indicates nodes to be folded together.
2168  //
2169  // If Root produces glue, then it gets (even more) interesting. Since it
2170  // will be "glued" together with its glue use in the scheduler, we need to
2171  // check if it might reach N.
2172  //
2173  //          [N*]           //
2174  //         ^   ^           //
2175  //        /     \          //
2176  //      [U*]    [X]?       //
2177  //        ^       ^        //
2178  //         \       \       //
2179  //          \      |       //
2180  //         [Root*] |       //
2181  //          ^      |       //
2182  //          f      |       //
2183  //          |      /       //
2184  //         [Y]    /        //
2185  //           ^   /         //
2186  //           f  /          //
2187  //           | /           //
2188  //          [GU]           //
2189  //
2190  // If GU (glue use) indirectly reaches N (the load), and Root folds N
2191  // (call it Fold), then X is a predecessor of GU and a successor of
2192  // Fold. But since Fold and GU are glued together, this will create
2193  // a cycle in the scheduling graph.
2194
2195  // If the node has glue, walk down the graph to the "lowest" node in the
2196  // glueged set.
2197  EVT VT = Root->getValueType(Root->getNumValues()-1);
2198  while (VT == MVT::Glue) {
2199    SDNode *GU = findGlueUse(Root);
2200    if (!GU)
2201      break;
2202    Root = GU;
2203    VT = Root->getValueType(Root->getNumValues()-1);
2204
2205    // If our query node has a glue result with a use, we've walked up it.  If
2206    // the user (which has already been selected) has a chain or indirectly uses
2207    // the chain, HandleMergeInputChains will not consider it.  Because of
2208    // this, we cannot ignore chains in this predicate.
2209    IgnoreChains = false;
2210  }
2211
2212  return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
2213}
2214
2215void SelectionDAGISel::Select_INLINEASM(SDNode *N) {
2216  SDLoc DL(N);
2217
2218  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
2219  SelectInlineAsmMemoryOperands(Ops, DL);
2220
2221  const EVT VTs[] = {MVT::Other, MVT::Glue};
2222  SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops);
2223  New->setNodeId(-1);
2224  ReplaceUses(N, New.getNode());
2225  CurDAG->RemoveDeadNode(N);
2226}
2227
2228void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
2229  SDLoc dl(Op);
2230  MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2231  const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2232
2233  EVT VT = Op->getValueType(0);
2234  LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2235  Register Reg =
2236      TLI->getRegisterByName(RegStr->getString().data(), Ty,
2237                             CurDAG->getMachineFunction());
2238  SDValue New = CurDAG->getCopyFromReg(
2239                        Op->getOperand(0), dl, Reg, Op->getValueType(0));
2240  New->setNodeId(-1);
2241  ReplaceUses(Op, New.getNode());
2242  CurDAG->RemoveDeadNode(Op);
2243}
2244
2245void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
2246  SDLoc dl(Op);
2247  MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1));
2248  const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0));
2249
2250  EVT VT = Op->getOperand(2).getValueType();
2251  LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT();
2252
2253  Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty,
2254                                        CurDAG->getMachineFunction());
2255  SDValue New = CurDAG->getCopyToReg(
2256                        Op->getOperand(0), dl, Reg, Op->getOperand(2));
2257  New->setNodeId(-1);
2258  ReplaceUses(Op, New.getNode());
2259  CurDAG->RemoveDeadNode(Op);
2260}
2261
2262void SelectionDAGISel::Select_UNDEF(SDNode *N) {
2263  CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
2264}
2265
2266void SelectionDAGISel::Select_FREEZE(SDNode *N) {
2267  // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now.
2268  // If FREEZE instruction is added later, the code below must be changed as
2269  // well.
2270  CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0),
2271                       N->getOperand(0));
2272}
2273
2274/// GetVBR - decode a vbr encoding whose top bit is set.
2275LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
2276GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
2277  assert(Val >= 128 && "Not a VBR");
2278  Val &= 127;  // Remove first vbr bit.
2279
2280  unsigned Shift = 7;
2281  uint64_t NextBits;
2282  do {
2283    NextBits = MatcherTable[Idx++];
2284    Val |= (NextBits&127) << Shift;
2285    Shift += 7;
2286  } while (NextBits & 128);
2287
2288  return Val;
2289}
2290
2291/// When a match is complete, this method updates uses of interior chain results
2292/// to use the new results.
2293void SelectionDAGISel::UpdateChains(
2294    SDNode *NodeToMatch, SDValue InputChain,
2295    SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
2296  SmallVector<SDNode*, 4> NowDeadNodes;
2297
2298  // Now that all the normal results are replaced, we replace the chain and
2299  // glue results if present.
2300  if (!ChainNodesMatched.empty()) {
2301    assert(InputChain.getNode() &&
2302           "Matched input chains but didn't produce a chain");
2303    // Loop over all of the nodes we matched that produced a chain result.
2304    // Replace all the chain results with the final chain we ended up with.
2305    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
2306      SDNode *ChainNode = ChainNodesMatched[i];
2307      // If ChainNode is null, it's because we replaced it on a previous
2308      // iteration and we cleared it out of the map. Just skip it.
2309      if (!ChainNode)
2310        continue;
2311
2312      assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
2313             "Deleted node left in chain");
2314
2315      // Don't replace the results of the root node if we're doing a
2316      // MorphNodeTo.
2317      if (ChainNode == NodeToMatch && isMorphNodeTo)
2318        continue;
2319
2320      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
2321      if (ChainVal.getValueType() == MVT::Glue)
2322        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
2323      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
2324      SelectionDAG::DAGNodeDeletedListener NDL(
2325          *CurDAG, [&](SDNode *N, SDNode *E) {
2326            std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
2327                         static_cast<SDNode *>(nullptr));
2328          });
2329      if (ChainNode->getOpcode() != ISD::TokenFactor)
2330        ReplaceUses(ChainVal, InputChain);
2331
2332      // If the node became dead and we haven't already seen it, delete it.
2333      if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
2334          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
2335        NowDeadNodes.push_back(ChainNode);
2336    }
2337  }
2338
2339  if (!NowDeadNodes.empty())
2340    CurDAG->RemoveDeadNodes(NowDeadNodes);
2341
2342  LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
2343}
2344
2345/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
2346/// operation for when the pattern matched at least one node with a chains.  The
2347/// input vector contains a list of all of the chained nodes that we match.  We
2348/// must determine if this is a valid thing to cover (i.e. matching it won't
2349/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
2350/// be used as the input node chain for the generated nodes.
2351static SDValue
2352HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
2353                       SelectionDAG *CurDAG) {
2354
2355  SmallPtrSet<const SDNode *, 16> Visited;
2356  SmallVector<const SDNode *, 8> Worklist;
2357  SmallVector<SDValue, 3> InputChains;
2358  unsigned int Max = 8192;
2359
2360  // Quick exit on trivial merge.
2361  if (ChainNodesMatched.size() == 1)
2362    return ChainNodesMatched[0]->getOperand(0);
2363
2364  // Add chains that aren't already added (internal). Peek through
2365  // token factors.
2366  std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
2367    if (V.getValueType() != MVT::Other)
2368      return;
2369    if (V->getOpcode() == ISD::EntryToken)
2370      return;
2371    if (!Visited.insert(V.getNode()).second)
2372      return;
2373    if (V->getOpcode() == ISD::TokenFactor) {
2374      for (const SDValue &Op : V->op_values())
2375        AddChains(Op);
2376    } else
2377      InputChains.push_back(V);
2378  };
2379
2380  for (auto *N : ChainNodesMatched) {
2381    Worklist.push_back(N);
2382    Visited.insert(N);
2383  }
2384
2385  while (!Worklist.empty())
2386    AddChains(Worklist.pop_back_val()->getOperand(0));
2387
2388  // Skip the search if there are no chain dependencies.
2389  if (InputChains.size() == 0)
2390    return CurDAG->getEntryNode();
2391
2392  // If one of these chains is a successor of input, we must have a
2393  // node that is both the predecessor and successor of the
2394  // to-be-merged nodes. Fail.
2395  Visited.clear();
2396  for (SDValue V : InputChains)
2397    Worklist.push_back(V.getNode());
2398
2399  for (auto *N : ChainNodesMatched)
2400    if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
2401      return SDValue();
2402
2403  // Return merged chain.
2404  if (InputChains.size() == 1)
2405    return InputChains[0];
2406  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
2407                         MVT::Other, InputChains);
2408}
2409
2410/// MorphNode - Handle morphing a node in place for the selector.
2411SDNode *SelectionDAGISel::
2412MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
2413          ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
2414  // It is possible we're using MorphNodeTo to replace a node with no
2415  // normal results with one that has a normal result (or we could be
2416  // adding a chain) and the input could have glue and chains as well.
2417  // In this case we need to shift the operands down.
2418  // FIXME: This is a horrible hack and broken in obscure cases, no worse
2419  // than the old isel though.
2420  int OldGlueResultNo = -1, OldChainResultNo = -1;
2421
2422  unsigned NTMNumResults = Node->getNumValues();
2423  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
2424    OldGlueResultNo = NTMNumResults-1;
2425    if (NTMNumResults != 1 &&
2426        Node->getValueType(NTMNumResults-2) == MVT::Other)
2427      OldChainResultNo = NTMNumResults-2;
2428  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
2429    OldChainResultNo = NTMNumResults-1;
2430
2431  // Call the underlying SelectionDAG routine to do the transmogrification. Note
2432  // that this deletes operands of the old node that become dead.
2433  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
2434
2435  // MorphNodeTo can operate in two ways: if an existing node with the
2436  // specified operands exists, it can just return it.  Otherwise, it
2437  // updates the node in place to have the requested operands.
2438  if (Res == Node) {
2439    // If we updated the node in place, reset the node ID.  To the isel,
2440    // this should be just like a newly allocated machine node.
2441    Res->setNodeId(-1);
2442  }
2443
2444  unsigned ResNumResults = Res->getNumValues();
2445  // Move the glue if needed.
2446  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
2447      (unsigned)OldGlueResultNo != ResNumResults-1)
2448    ReplaceUses(SDValue(Node, OldGlueResultNo),
2449                SDValue(Res, ResNumResults - 1));
2450
2451  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
2452    --ResNumResults;
2453
2454  // Move the chain reference if needed.
2455  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2456      (unsigned)OldChainResultNo != ResNumResults-1)
2457    ReplaceUses(SDValue(Node, OldChainResultNo),
2458                SDValue(Res, ResNumResults - 1));
2459
2460  // Otherwise, no replacement happened because the node already exists. Replace
2461  // Uses of the old node with the new one.
2462  if (Res != Node) {
2463    ReplaceNode(Node, Res);
2464  } else {
2465    EnforceNodeIdInvariant(Res);
2466  }
2467
2468  return Res;
2469}
2470
2471/// CheckSame - Implements OP_CheckSame.
2472LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2473CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2474          SDValue N,
2475          const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2476  // Accept if it is exactly the same as a previously recorded node.
2477  unsigned RecNo = MatcherTable[MatcherIndex++];
2478  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2479  return N == RecordedNodes[RecNo].first;
2480}
2481
2482/// CheckChildSame - Implements OP_CheckChildXSame.
2483LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2484CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2485              SDValue N,
2486              const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
2487              unsigned ChildNo) {
2488  if (ChildNo >= N.getNumOperands())
2489    return false;  // Match fails if out of range child #.
2490  return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
2491                     RecordedNodes);
2492}
2493
2494/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2495LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2496CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2497                      const SelectionDAGISel &SDISel) {
2498  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2499}
2500
2501/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2502LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2503CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2504                   const SelectionDAGISel &SDISel, SDNode *N) {
2505  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2506}
2507
2508LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2509CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2510            SDNode *N) {
2511  uint16_t Opc = MatcherTable[MatcherIndex++];
2512  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2513  return N->getOpcode() == Opc;
2514}
2515
2516LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2517CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
2518          const TargetLowering *TLI, const DataLayout &DL) {
2519  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2520  if (N.getValueType() == VT) return true;
2521
2522  // Handle the case when VT is iPTR.
2523  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
2524}
2525
2526LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2527CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2528               SDValue N, const TargetLowering *TLI, const DataLayout &DL,
2529               unsigned ChildNo) {
2530  if (ChildNo >= N.getNumOperands())
2531    return false;  // Match fails if out of range child #.
2532  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
2533                     DL);
2534}
2535
2536LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2537CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2538              SDValue N) {
2539  return cast<CondCodeSDNode>(N)->get() ==
2540      (ISD::CondCode)MatcherTable[MatcherIndex++];
2541}
2542
2543LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2544CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2545                    SDValue N) {
2546  if (2 >= N.getNumOperands())
2547    return false;
2548  return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
2549}
2550
2551LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2552CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2553               SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
2554  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2555  if (cast<VTSDNode>(N)->getVT() == VT)
2556    return true;
2557
2558  // Handle the case when VT is iPTR.
2559  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
2560}
2561
2562LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2563CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2564             SDValue N) {
2565  int64_t Val = MatcherTable[MatcherIndex++];
2566  if (Val & 128)
2567    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2568
2569  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2570  return C && C->getSExtValue() == Val;
2571}
2572
2573LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2574CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2575                  SDValue N, unsigned ChildNo) {
2576  if (ChildNo >= N.getNumOperands())
2577    return false;  // Match fails if out of range child #.
2578  return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
2579}
2580
2581LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2582CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2583            SDValue N, const SelectionDAGISel &SDISel) {
2584  int64_t Val = MatcherTable[MatcherIndex++];
2585  if (Val & 128)
2586    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2587
2588  if (N->getOpcode() != ISD::AND) return false;
2589
2590  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2591  return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2592}
2593
2594LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
2595CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2596           SDValue N, const SelectionDAGISel &SDISel) {
2597  int64_t Val = MatcherTable[MatcherIndex++];
2598  if (Val & 128)
2599    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2600
2601  if (N->getOpcode() != ISD::OR) return false;
2602
2603  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2604  return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2605}
2606
2607/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2608/// scope, evaluate the current node.  If the current predicate is known to
2609/// fail, set Result=true and return anything.  If the current predicate is
2610/// known to pass, set Result=false and return the MatcherIndex to continue
2611/// with.  If the current predicate is unknown, set Result=false and return the
2612/// MatcherIndex to continue with.
2613static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2614                                       unsigned Index, SDValue N,
2615                                       bool &Result,
2616                                       const SelectionDAGISel &SDISel,
2617                  SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
2618  switch (Table[Index++]) {
2619  default:
2620    Result = false;
2621    return Index-1;  // Could not evaluate this predicate.
2622  case SelectionDAGISel::OPC_CheckSame:
2623    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2624    return Index;
2625  case SelectionDAGISel::OPC_CheckChild0Same:
2626  case SelectionDAGISel::OPC_CheckChild1Same:
2627  case SelectionDAGISel::OPC_CheckChild2Same:
2628  case SelectionDAGISel::OPC_CheckChild3Same:
2629    Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
2630                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
2631    return Index;
2632  case SelectionDAGISel::OPC_CheckPatternPredicate:
2633    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2634    return Index;
2635  case SelectionDAGISel::OPC_CheckPredicate:
2636    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2637    return Index;
2638  case SelectionDAGISel::OPC_CheckOpcode:
2639    Result = !::CheckOpcode(Table, Index, N.getNode());
2640    return Index;
2641  case SelectionDAGISel::OPC_CheckType:
2642    Result = !::CheckType(Table, Index, N, SDISel.TLI,
2643                          SDISel.CurDAG->getDataLayout());
2644    return Index;
2645  case SelectionDAGISel::OPC_CheckTypeRes: {
2646    unsigned Res = Table[Index++];
2647    Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
2648                          SDISel.CurDAG->getDataLayout());
2649    return Index;
2650  }
2651  case SelectionDAGISel::OPC_CheckChild0Type:
2652  case SelectionDAGISel::OPC_CheckChild1Type:
2653  case SelectionDAGISel::OPC_CheckChild2Type:
2654  case SelectionDAGISel::OPC_CheckChild3Type:
2655  case SelectionDAGISel::OPC_CheckChild4Type:
2656  case SelectionDAGISel::OPC_CheckChild5Type:
2657  case SelectionDAGISel::OPC_CheckChild6Type:
2658  case SelectionDAGISel::OPC_CheckChild7Type:
2659    Result = !::CheckChildType(
2660                 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
2661                 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
2662    return Index;
2663  case SelectionDAGISel::OPC_CheckCondCode:
2664    Result = !::CheckCondCode(Table, Index, N);
2665    return Index;
2666  case SelectionDAGISel::OPC_CheckChild2CondCode:
2667    Result = !::CheckChild2CondCode(Table, Index, N);
2668    return Index;
2669  case SelectionDAGISel::OPC_CheckValueType:
2670    Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
2671                               SDISel.CurDAG->getDataLayout());
2672    return Index;
2673  case SelectionDAGISel::OPC_CheckInteger:
2674    Result = !::CheckInteger(Table, Index, N);
2675    return Index;
2676  case SelectionDAGISel::OPC_CheckChild0Integer:
2677  case SelectionDAGISel::OPC_CheckChild1Integer:
2678  case SelectionDAGISel::OPC_CheckChild2Integer:
2679  case SelectionDAGISel::OPC_CheckChild3Integer:
2680  case SelectionDAGISel::OPC_CheckChild4Integer:
2681    Result = !::CheckChildInteger(Table, Index, N,
2682                     Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
2683    return Index;
2684  case SelectionDAGISel::OPC_CheckAndImm:
2685    Result = !::CheckAndImm(Table, Index, N, SDISel);
2686    return Index;
2687  case SelectionDAGISel::OPC_CheckOrImm:
2688    Result = !::CheckOrImm(Table, Index, N, SDISel);
2689    return Index;
2690  }
2691}
2692
2693namespace {
2694
2695struct MatchScope {
2696  /// FailIndex - If this match fails, this is the index to continue with.
2697  unsigned FailIndex;
2698
2699  /// NodeStack - The node stack when the scope was formed.
2700  SmallVector<SDValue, 4> NodeStack;
2701
2702  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2703  unsigned NumRecordedNodes;
2704
2705  /// NumMatchedMemRefs - The number of matched memref entries.
2706  unsigned NumMatchedMemRefs;
2707
2708  /// InputChain/InputGlue - The current chain/glue
2709  SDValue InputChain, InputGlue;
2710
2711  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2712  bool HasChainNodesMatched;
2713};
2714
2715/// \A DAG update listener to keep the matching state
2716/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
2717/// change the DAG while matching.  X86 addressing mode matcher is an example
2718/// for this.
2719class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
2720{
2721  SDNode **NodeToMatch;
2722  SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
2723  SmallVectorImpl<MatchScope> &MatchScopes;
2724
2725public:
2726  MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
2727                    SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
2728                    SmallVectorImpl<MatchScope> &MS)
2729      : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
2730        RecordedNodes(RN), MatchScopes(MS) {}
2731
2732  void NodeDeleted(SDNode *N, SDNode *E) override {
2733    // Some early-returns here to avoid the search if we deleted the node or
2734    // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
2735    // do, so it's unnecessary to update matching state at that point).
2736    // Neither of these can occur currently because we only install this
2737    // update listener during matching a complex patterns.
2738    if (!E || E->isMachineOpcode())
2739      return;
2740    // Check if NodeToMatch was updated.
2741    if (N == *NodeToMatch)
2742      *NodeToMatch = E;
2743    // Performing linear search here does not matter because we almost never
2744    // run this code.  You'd have to have a CSE during complex pattern
2745    // matching.
2746    for (auto &I : RecordedNodes)
2747      if (I.first.getNode() == N)
2748        I.first.setNode(E);
2749
2750    for (auto &I : MatchScopes)
2751      for (auto &J : I.NodeStack)
2752        if (J.getNode() == N)
2753          J.setNode(E);
2754  }
2755};
2756
2757} // end anonymous namespace
2758
2759void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
2760                                        const unsigned char *MatcherTable,
2761                                        unsigned TableSize) {
2762  // FIXME: Should these even be selected?  Handle these cases in the caller?
2763  switch (NodeToMatch->getOpcode()) {
2764  default:
2765    break;
2766  case ISD::EntryToken:       // These nodes remain the same.
2767  case ISD::BasicBlock:
2768  case ISD::Register:
2769  case ISD::RegisterMask:
2770  case ISD::HANDLENODE:
2771  case ISD::MDNODE_SDNODE:
2772  case ISD::TargetConstant:
2773  case ISD::TargetConstantFP:
2774  case ISD::TargetConstantPool:
2775  case ISD::TargetFrameIndex:
2776  case ISD::TargetExternalSymbol:
2777  case ISD::MCSymbol:
2778  case ISD::TargetBlockAddress:
2779  case ISD::TargetJumpTable:
2780  case ISD::TargetGlobalTLSAddress:
2781  case ISD::TargetGlobalAddress:
2782  case ISD::TokenFactor:
2783  case ISD::CopyFromReg:
2784  case ISD::CopyToReg:
2785  case ISD::EH_LABEL:
2786  case ISD::ANNOTATION_LABEL:
2787  case ISD::LIFETIME_START:
2788  case ISD::LIFETIME_END:
2789    NodeToMatch->setNodeId(-1); // Mark selected.
2790    return;
2791  case ISD::AssertSext:
2792  case ISD::AssertZext:
2793  case ISD::AssertAlign:
2794    ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
2795    CurDAG->RemoveDeadNode(NodeToMatch);
2796    return;
2797  case ISD::INLINEASM:
2798  case ISD::INLINEASM_BR:
2799    Select_INLINEASM(NodeToMatch);
2800    return;
2801  case ISD::READ_REGISTER:
2802    Select_READ_REGISTER(NodeToMatch);
2803    return;
2804  case ISD::WRITE_REGISTER:
2805    Select_WRITE_REGISTER(NodeToMatch);
2806    return;
2807  case ISD::UNDEF:
2808    Select_UNDEF(NodeToMatch);
2809    return;
2810  case ISD::FREEZE:
2811    Select_FREEZE(NodeToMatch);
2812    return;
2813  }
2814
2815  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2816
2817  // Set up the node stack with NodeToMatch as the only node on the stack.
2818  SmallVector<SDValue, 8> NodeStack;
2819  SDValue N = SDValue(NodeToMatch, 0);
2820  NodeStack.push_back(N);
2821
2822  // MatchScopes - Scopes used when matching, if a match failure happens, this
2823  // indicates where to continue checking.
2824  SmallVector<MatchScope, 8> MatchScopes;
2825
2826  // RecordedNodes - This is the set of nodes that have been recorded by the
2827  // state machine.  The second value is the parent of the node, or null if the
2828  // root is recorded.
2829  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2830
2831  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2832  // pattern.
2833  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2834
2835  // These are the current input chain and glue for use when generating nodes.
2836  // Various Emit operations change these.  For example, emitting a copytoreg
2837  // uses and updates these.
2838  SDValue InputChain, InputGlue;
2839
2840  // ChainNodesMatched - If a pattern matches nodes that have input/output
2841  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2842  // which ones they are.  The result is captured into this list so that we can
2843  // update the chain results when the pattern is complete.
2844  SmallVector<SDNode*, 3> ChainNodesMatched;
2845
2846  LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
2847
2848  // Determine where to start the interpreter.  Normally we start at opcode #0,
2849  // but if the state machine starts with an OPC_SwitchOpcode, then we
2850  // accelerate the first lookup (which is guaranteed to be hot) with the
2851  // OpcodeOffset table.
2852  unsigned MatcherIndex = 0;
2853
2854  if (!OpcodeOffset.empty()) {
2855    // Already computed the OpcodeOffset table, just index into it.
2856    if (N.getOpcode() < OpcodeOffset.size())
2857      MatcherIndex = OpcodeOffset[N.getOpcode()];
2858    LLVM_DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2859
2860  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2861    // Otherwise, the table isn't computed, but the state machine does start
2862    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2863    // is the first time we're selecting an instruction.
2864    unsigned Idx = 1;
2865    while (true) {
2866      // Get the size of this case.
2867      unsigned CaseSize = MatcherTable[Idx++];
2868      if (CaseSize & 128)
2869        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2870      if (CaseSize == 0) break;
2871
2872      // Get the opcode, add the index to the table.
2873      uint16_t Opc = MatcherTable[Idx++];
2874      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2875      if (Opc >= OpcodeOffset.size())
2876        OpcodeOffset.resize((Opc+1)*2);
2877      OpcodeOffset[Opc] = Idx;
2878      Idx += CaseSize;
2879    }
2880
2881    // Okay, do the lookup for the first opcode.
2882    if (N.getOpcode() < OpcodeOffset.size())
2883      MatcherIndex = OpcodeOffset[N.getOpcode()];
2884  }
2885
2886  while (true) {
2887    assert(MatcherIndex < TableSize && "Invalid index");
2888#ifndef NDEBUG
2889    unsigned CurrentOpcodeIndex = MatcherIndex;
2890#endif
2891    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2892    switch (Opcode) {
2893    case OPC_Scope: {
2894      // Okay, the semantics of this operation are that we should push a scope
2895      // then evaluate the first child.  However, pushing a scope only to have
2896      // the first check fail (which then pops it) is inefficient.  If we can
2897      // determine immediately that the first check (or first several) will
2898      // immediately fail, don't even bother pushing a scope for them.
2899      unsigned FailIndex;
2900
2901      while (true) {
2902        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2903        if (NumToSkip & 128)
2904          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2905        // Found the end of the scope with no match.
2906        if (NumToSkip == 0) {
2907          FailIndex = 0;
2908          break;
2909        }
2910
2911        FailIndex = MatcherIndex+NumToSkip;
2912
2913        unsigned MatcherIndexOfPredicate = MatcherIndex;
2914        (void)MatcherIndexOfPredicate; // silence warning.
2915
2916        // If we can't evaluate this predicate without pushing a scope (e.g. if
2917        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2918        // push the scope and evaluate the full predicate chain.
2919        bool Result;
2920        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2921                                              Result, *this, RecordedNodes);
2922        if (!Result)
2923          break;
2924
2925        LLVM_DEBUG(
2926            dbgs() << "  Skipped scope entry (due to false predicate) at "
2927                   << "index " << MatcherIndexOfPredicate << ", continuing at "
2928                   << FailIndex << "\n");
2929        ++NumDAGIselRetries;
2930
2931        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2932        // move to the next case.
2933        MatcherIndex = FailIndex;
2934      }
2935
2936      // If the whole scope failed to match, bail.
2937      if (FailIndex == 0) break;
2938
2939      // Push a MatchScope which indicates where to go if the first child fails
2940      // to match.
2941      MatchScope NewEntry;
2942      NewEntry.FailIndex = FailIndex;
2943      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2944      NewEntry.NumRecordedNodes = RecordedNodes.size();
2945      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2946      NewEntry.InputChain = InputChain;
2947      NewEntry.InputGlue = InputGlue;
2948      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2949      MatchScopes.push_back(NewEntry);
2950      continue;
2951    }
2952    case OPC_RecordNode: {
2953      // Remember this node, it may end up being an operand in the pattern.
2954      SDNode *Parent = nullptr;
2955      if (NodeStack.size() > 1)
2956        Parent = NodeStack[NodeStack.size()-2].getNode();
2957      RecordedNodes.push_back(std::make_pair(N, Parent));
2958      continue;
2959    }
2960
2961    case OPC_RecordChild0: case OPC_RecordChild1:
2962    case OPC_RecordChild2: case OPC_RecordChild3:
2963    case OPC_RecordChild4: case OPC_RecordChild5:
2964    case OPC_RecordChild6: case OPC_RecordChild7: {
2965      unsigned ChildNo = Opcode-OPC_RecordChild0;
2966      if (ChildNo >= N.getNumOperands())
2967        break;  // Match fails if out of range child #.
2968
2969      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2970                                             N.getNode()));
2971      continue;
2972    }
2973    case OPC_RecordMemRef:
2974      if (auto *MN = dyn_cast<MemSDNode>(N))
2975        MatchedMemRefs.push_back(MN->getMemOperand());
2976      else {
2977        LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
2978                   dbgs() << '\n');
2979      }
2980
2981      continue;
2982
2983    case OPC_CaptureGlueInput:
2984      // If the current node has an input glue, capture it in InputGlue.
2985      if (N->getNumOperands() != 0 &&
2986          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2987        InputGlue = N->getOperand(N->getNumOperands()-1);
2988      continue;
2989
2990    case OPC_MoveChild: {
2991      unsigned ChildNo = MatcherTable[MatcherIndex++];
2992      if (ChildNo >= N.getNumOperands())
2993        break;  // Match fails if out of range child #.
2994      N = N.getOperand(ChildNo);
2995      NodeStack.push_back(N);
2996      continue;
2997    }
2998
2999    case OPC_MoveChild0: case OPC_MoveChild1:
3000    case OPC_MoveChild2: case OPC_MoveChild3:
3001    case OPC_MoveChild4: case OPC_MoveChild5:
3002    case OPC_MoveChild6: case OPC_MoveChild7: {
3003      unsigned ChildNo = Opcode-OPC_MoveChild0;
3004      if (ChildNo >= N.getNumOperands())
3005        break;  // Match fails if out of range child #.
3006      N = N.getOperand(ChildNo);
3007      NodeStack.push_back(N);
3008      continue;
3009    }
3010
3011    case OPC_MoveParent:
3012      // Pop the current node off the NodeStack.
3013      NodeStack.pop_back();
3014      assert(!NodeStack.empty() && "Node stack imbalance!");
3015      N = NodeStack.back();
3016      continue;
3017
3018    case OPC_CheckSame:
3019      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
3020      continue;
3021
3022    case OPC_CheckChild0Same: case OPC_CheckChild1Same:
3023    case OPC_CheckChild2Same: case OPC_CheckChild3Same:
3024      if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
3025                            Opcode-OPC_CheckChild0Same))
3026        break;
3027      continue;
3028
3029    case OPC_CheckPatternPredicate:
3030      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
3031      continue;
3032    case OPC_CheckPredicate:
3033      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
3034                                N.getNode()))
3035        break;
3036      continue;
3037    case OPC_CheckPredicateWithOperands: {
3038      unsigned OpNum = MatcherTable[MatcherIndex++];
3039      SmallVector<SDValue, 8> Operands;
3040
3041      for (unsigned i = 0; i < OpNum; ++i)
3042        Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
3043
3044      unsigned PredNo = MatcherTable[MatcherIndex++];
3045      if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
3046        break;
3047      continue;
3048    }
3049    case OPC_CheckComplexPat: {
3050      unsigned CPNum = MatcherTable[MatcherIndex++];
3051      unsigned RecNo = MatcherTable[MatcherIndex++];
3052      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
3053
3054      // If target can modify DAG during matching, keep the matching state
3055      // consistent.
3056      std::unique_ptr<MatchStateUpdater> MSU;
3057      if (ComplexPatternFuncMutatesDAG())
3058        MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
3059                                        MatchScopes));
3060
3061      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
3062                               RecordedNodes[RecNo].first, CPNum,
3063                               RecordedNodes))
3064        break;
3065      continue;
3066    }
3067    case OPC_CheckOpcode:
3068      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
3069      continue;
3070
3071    case OPC_CheckType:
3072      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
3073                       CurDAG->getDataLayout()))
3074        break;
3075      continue;
3076
3077    case OPC_CheckTypeRes: {
3078      unsigned Res = MatcherTable[MatcherIndex++];
3079      if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
3080                       CurDAG->getDataLayout()))
3081        break;
3082      continue;
3083    }
3084
3085    case OPC_SwitchOpcode: {
3086      unsigned CurNodeOpcode = N.getOpcode();
3087      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3088      unsigned CaseSize;
3089      while (true) {
3090        // Get the size of this case.
3091        CaseSize = MatcherTable[MatcherIndex++];
3092        if (CaseSize & 128)
3093          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3094        if (CaseSize == 0) break;
3095
3096        uint16_t Opc = MatcherTable[MatcherIndex++];
3097        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3098
3099        // If the opcode matches, then we will execute this case.
3100        if (CurNodeOpcode == Opc)
3101          break;
3102
3103        // Otherwise, skip over this case.
3104        MatcherIndex += CaseSize;
3105      }
3106
3107      // If no cases matched, bail out.
3108      if (CaseSize == 0) break;
3109
3110      // Otherwise, execute the case we found.
3111      LLVM_DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart << " to "
3112                        << MatcherIndex << "\n");
3113      continue;
3114    }
3115
3116    case OPC_SwitchType: {
3117      MVT CurNodeVT = N.getSimpleValueType();
3118      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
3119      unsigned CaseSize;
3120      while (true) {
3121        // Get the size of this case.
3122        CaseSize = MatcherTable[MatcherIndex++];
3123        if (CaseSize & 128)
3124          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
3125        if (CaseSize == 0) break;
3126
3127        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3128        if (CaseVT == MVT::iPTR)
3129          CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
3130
3131        // If the VT matches, then we will execute this case.
3132        if (CurNodeVT == CaseVT)
3133          break;
3134
3135        // Otherwise, skip over this case.
3136        MatcherIndex += CaseSize;
3137      }
3138
3139      // If no cases matched, bail out.
3140      if (CaseSize == 0) break;
3141
3142      // Otherwise, execute the case we found.
3143      LLVM_DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
3144                        << "] from " << SwitchStart << " to " << MatcherIndex
3145                        << '\n');
3146      continue;
3147    }
3148    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
3149    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
3150    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
3151    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
3152      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
3153                            CurDAG->getDataLayout(),
3154                            Opcode - OPC_CheckChild0Type))
3155        break;
3156      continue;
3157    case OPC_CheckCondCode:
3158      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
3159      continue;
3160    case OPC_CheckChild2CondCode:
3161      if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
3162      continue;
3163    case OPC_CheckValueType:
3164      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
3165                            CurDAG->getDataLayout()))
3166        break;
3167      continue;
3168    case OPC_CheckInteger:
3169      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
3170      continue;
3171    case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
3172    case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
3173    case OPC_CheckChild4Integer:
3174      if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
3175                               Opcode-OPC_CheckChild0Integer)) break;
3176      continue;
3177    case OPC_CheckAndImm:
3178      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
3179      continue;
3180    case OPC_CheckOrImm:
3181      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
3182      continue;
3183    case OPC_CheckImmAllOnesV:
3184      if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
3185      continue;
3186    case OPC_CheckImmAllZerosV:
3187      if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
3188      continue;
3189
3190    case OPC_CheckFoldableChainNode: {
3191      assert(NodeStack.size() != 1 && "No parent node");
3192      // Verify that all intermediate nodes between the root and this one have
3193      // a single use (ignoring chains, which are handled in UpdateChains).
3194      bool HasMultipleUses = false;
3195      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) {
3196        unsigned NNonChainUses = 0;
3197        SDNode *NS = NodeStack[i].getNode();
3198        for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI)
3199          if (UI.getUse().getValueType() != MVT::Other)
3200            if (++NNonChainUses > 1) {
3201              HasMultipleUses = true;
3202              break;
3203            }
3204        if (HasMultipleUses) break;
3205      }
3206      if (HasMultipleUses) break;
3207
3208      // Check to see that the target thinks this is profitable to fold and that
3209      // we can fold it without inducing cycles in the graph.
3210      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3211                              NodeToMatch) ||
3212          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
3213                         NodeToMatch, OptLevel,
3214                         true/*We validate our own chains*/))
3215        break;
3216
3217      continue;
3218    }
3219    case OPC_EmitInteger: {
3220      MVT::SimpleValueType VT =
3221        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3222      int64_t Val = MatcherTable[MatcherIndex++];
3223      if (Val & 128)
3224        Val = GetVBR(Val, MatcherTable, MatcherIndex);
3225      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3226                              CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
3227                                                        VT), nullptr));
3228      continue;
3229    }
3230    case OPC_EmitRegister: {
3231      MVT::SimpleValueType VT =
3232        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3233      unsigned RegNo = MatcherTable[MatcherIndex++];
3234      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3235                              CurDAG->getRegister(RegNo, VT), nullptr));
3236      continue;
3237    }
3238    case OPC_EmitRegister2: {
3239      // For targets w/ more than 256 register names, the register enum
3240      // values are stored in two bytes in the matcher table (just like
3241      // opcodes).
3242      MVT::SimpleValueType VT =
3243        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3244      unsigned RegNo = MatcherTable[MatcherIndex++];
3245      RegNo |= MatcherTable[MatcherIndex++] << 8;
3246      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
3247                              CurDAG->getRegister(RegNo, VT), nullptr));
3248      continue;
3249    }
3250
3251    case OPC_EmitConvertToTarget:  {
3252      // Convert from IMM/FPIMM to target version.
3253      unsigned RecNo = MatcherTable[MatcherIndex++];
3254      assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
3255      SDValue Imm = RecordedNodes[RecNo].first;
3256
3257      if (Imm->getOpcode() == ISD::Constant) {
3258        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
3259        Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
3260                                        Imm.getValueType());
3261      } else if (Imm->getOpcode() == ISD::ConstantFP) {
3262        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
3263        Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
3264                                          Imm.getValueType());
3265      }
3266
3267      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
3268      continue;
3269    }
3270
3271    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
3272    case OPC_EmitMergeInputChains1_1:    // OPC_EmitMergeInputChains, 1, 1
3273    case OPC_EmitMergeInputChains1_2: {  // OPC_EmitMergeInputChains, 1, 2
3274      // These are space-optimized forms of OPC_EmitMergeInputChains.
3275      assert(!InputChain.getNode() &&
3276             "EmitMergeInputChains should be the first chain producing node");
3277      assert(ChainNodesMatched.empty() &&
3278             "Should only have one EmitMergeInputChains per match");
3279
3280      // Read all of the chained nodes.
3281      unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
3282      assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3283      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3284
3285      // FIXME: What if other value results of the node have uses not matched
3286      // by this pattern?
3287      if (ChainNodesMatched.back() != NodeToMatch &&
3288          !RecordedNodes[RecNo].first.hasOneUse()) {
3289        ChainNodesMatched.clear();
3290        break;
3291      }
3292
3293      // Merge the input chains if they are not intra-pattern references.
3294      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3295
3296      if (!InputChain.getNode())
3297        break;  // Failed to merge.
3298      continue;
3299    }
3300
3301    case OPC_EmitMergeInputChains: {
3302      assert(!InputChain.getNode() &&
3303             "EmitMergeInputChains should be the first chain producing node");
3304      // This node gets a list of nodes we matched in the input that have
3305      // chains.  We want to token factor all of the input chains to these nodes
3306      // together.  However, if any of the input chains is actually one of the
3307      // nodes matched in this pattern, then we have an intra-match reference.
3308      // Ignore these because the newly token factored chain should not refer to
3309      // the old nodes.
3310      unsigned NumChains = MatcherTable[MatcherIndex++];
3311      assert(NumChains != 0 && "Can't TF zero chains");
3312
3313      assert(ChainNodesMatched.empty() &&
3314             "Should only have one EmitMergeInputChains per match");
3315
3316      // Read all of the chained nodes.
3317      for (unsigned i = 0; i != NumChains; ++i) {
3318        unsigned RecNo = MatcherTable[MatcherIndex++];
3319        assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
3320        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
3321
3322        // FIXME: What if other value results of the node have uses not matched
3323        // by this pattern?
3324        if (ChainNodesMatched.back() != NodeToMatch &&
3325            !RecordedNodes[RecNo].first.hasOneUse()) {
3326          ChainNodesMatched.clear();
3327          break;
3328        }
3329      }
3330
3331      // If the inner loop broke out, the match fails.
3332      if (ChainNodesMatched.empty())
3333        break;
3334
3335      // Merge the input chains if they are not intra-pattern references.
3336      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
3337
3338      if (!InputChain.getNode())
3339        break;  // Failed to merge.
3340
3341      continue;
3342    }
3343
3344    case OPC_EmitCopyToReg:
3345    case OPC_EmitCopyToReg2: {
3346      unsigned RecNo = MatcherTable[MatcherIndex++];
3347      assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
3348      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
3349      if (Opcode == OPC_EmitCopyToReg2)
3350        DestPhysReg |= MatcherTable[MatcherIndex++] << 8;
3351
3352      if (!InputChain.getNode())
3353        InputChain = CurDAG->getEntryNode();
3354
3355      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
3356                                        DestPhysReg, RecordedNodes[RecNo].first,
3357                                        InputGlue);
3358
3359      InputGlue = InputChain.getValue(1);
3360      continue;
3361    }
3362
3363    case OPC_EmitNodeXForm: {
3364      unsigned XFormNo = MatcherTable[MatcherIndex++];
3365      unsigned RecNo = MatcherTable[MatcherIndex++];
3366      assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
3367      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
3368      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
3369      continue;
3370    }
3371    case OPC_Coverage: {
3372      // This is emitted right before MorphNode/EmitNode.
3373      // So it should be safe to assume that this node has been selected
3374      unsigned index = MatcherTable[MatcherIndex++];
3375      index |= (MatcherTable[MatcherIndex++] << 8);
3376      dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
3377      dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
3378      continue;
3379    }
3380
3381    case OPC_EmitNode:     case OPC_MorphNodeTo:
3382    case OPC_EmitNode0:    case OPC_EmitNode1:    case OPC_EmitNode2:
3383    case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
3384      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
3385      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
3386      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
3387      // Get the result VT list.
3388      unsigned NumVTs;
3389      // If this is one of the compressed forms, get the number of VTs based
3390      // on the Opcode. Otherwise read the next byte from the table.
3391      if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
3392        NumVTs = Opcode - OPC_MorphNodeTo0;
3393      else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
3394        NumVTs = Opcode - OPC_EmitNode0;
3395      else
3396        NumVTs = MatcherTable[MatcherIndex++];
3397      SmallVector<EVT, 4> VTs;
3398      for (unsigned i = 0; i != NumVTs; ++i) {
3399        MVT::SimpleValueType VT =
3400          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
3401        if (VT == MVT::iPTR)
3402          VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
3403        VTs.push_back(VT);
3404      }
3405
3406      if (EmitNodeInfo & OPFL_Chain)
3407        VTs.push_back(MVT::Other);
3408      if (EmitNodeInfo & OPFL_GlueOutput)
3409        VTs.push_back(MVT::Glue);
3410
3411      // This is hot code, so optimize the two most common cases of 1 and 2
3412      // results.
3413      SDVTList VTList;
3414      if (VTs.size() == 1)
3415        VTList = CurDAG->getVTList(VTs[0]);
3416      else if (VTs.size() == 2)
3417        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
3418      else
3419        VTList = CurDAG->getVTList(VTs);
3420
3421      // Get the operand list.
3422      unsigned NumOps = MatcherTable[MatcherIndex++];
3423      SmallVector<SDValue, 8> Ops;
3424      for (unsigned i = 0; i != NumOps; ++i) {
3425        unsigned RecNo = MatcherTable[MatcherIndex++];
3426        if (RecNo & 128)
3427          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
3428
3429        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
3430        Ops.push_back(RecordedNodes[RecNo].first);
3431      }
3432
3433      // If there are variadic operands to add, handle them now.
3434      if (EmitNodeInfo & OPFL_VariadicInfo) {
3435        // Determine the start index to copy from.
3436        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
3437        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
3438        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
3439               "Invalid variadic node");
3440        // Copy all of the variadic operands, not including a potential glue
3441        // input.
3442        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
3443             i != e; ++i) {
3444          SDValue V = NodeToMatch->getOperand(i);
3445          if (V.getValueType() == MVT::Glue) break;
3446          Ops.push_back(V);
3447        }
3448      }
3449
3450      // If this has chain/glue inputs, add them.
3451      if (EmitNodeInfo & OPFL_Chain)
3452        Ops.push_back(InputChain);
3453      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
3454        Ops.push_back(InputGlue);
3455
3456      // Check whether any matched node could raise an FP exception.  Since all
3457      // such nodes must have a chain, it suffices to check ChainNodesMatched.
3458      // We need to perform this check before potentially modifying one of the
3459      // nodes via MorphNode.
3460      bool MayRaiseFPException = false;
3461      for (auto *N : ChainNodesMatched)
3462        if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) {
3463          MayRaiseFPException = true;
3464          break;
3465        }
3466
3467      // Create the node.
3468      MachineSDNode *Res = nullptr;
3469      bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
3470                     (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
3471      if (!IsMorphNodeTo) {
3472        // If this is a normal EmitNode command, just create the new node and
3473        // add the results to the RecordedNodes list.
3474        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
3475                                     VTList, Ops);
3476
3477        // Add all the non-glue/non-chain results to the RecordedNodes list.
3478        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
3479          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
3480          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
3481                                                             nullptr));
3482        }
3483      } else {
3484        assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
3485               "NodeToMatch was removed partway through selection");
3486        SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
3487                                                              SDNode *E) {
3488          CurDAG->salvageDebugInfo(*N);
3489          auto &Chain = ChainNodesMatched;
3490          assert((!E || !is_contained(Chain, N)) &&
3491                 "Chain node replaced during MorphNode");
3492          Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
3493        });
3494        Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
3495                                            Ops, EmitNodeInfo));
3496      }
3497
3498      // Set the NoFPExcept flag when no original matched node could
3499      // raise an FP exception, but the new node potentially might.
3500      if (!MayRaiseFPException && mayRaiseFPException(Res)) {
3501        SDNodeFlags Flags = Res->getFlags();
3502        Flags.setNoFPExcept(true);
3503        Res->setFlags(Flags);
3504      }
3505
3506      // If the node had chain/glue results, update our notion of the current
3507      // chain and glue.
3508      if (EmitNodeInfo & OPFL_GlueOutput) {
3509        InputGlue = SDValue(Res, VTs.size()-1);
3510        if (EmitNodeInfo & OPFL_Chain)
3511          InputChain = SDValue(Res, VTs.size()-2);
3512      } else if (EmitNodeInfo & OPFL_Chain)
3513        InputChain = SDValue(Res, VTs.size()-1);
3514
3515      // If the OPFL_MemRefs glue is set on this node, slap all of the
3516      // accumulated memrefs onto it.
3517      //
3518      // FIXME: This is vastly incorrect for patterns with multiple outputs
3519      // instructions that access memory and for ComplexPatterns that match
3520      // loads.
3521      if (EmitNodeInfo & OPFL_MemRefs) {
3522        // Only attach load or store memory operands if the generated
3523        // instruction may load or store.
3524        const MCInstrDesc &MCID = TII->get(TargetOpc);
3525        bool mayLoad = MCID.mayLoad();
3526        bool mayStore = MCID.mayStore();
3527
3528        // We expect to have relatively few of these so just filter them into a
3529        // temporary buffer so that we can easily add them to the instruction.
3530        SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
3531        for (MachineMemOperand *MMO : MatchedMemRefs) {
3532          if (MMO->isLoad()) {
3533            if (mayLoad)
3534              FilteredMemRefs.push_back(MMO);
3535          } else if (MMO->isStore()) {
3536            if (mayStore)
3537              FilteredMemRefs.push_back(MMO);
3538          } else {
3539            FilteredMemRefs.push_back(MMO);
3540          }
3541        }
3542
3543        CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
3544      }
3545
3546      LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
3547                     << "  Dropping mem operands\n";
3548                 dbgs() << "  " << (IsMorphNodeTo ? "Morphed" : "Created")
3549                        << " node: ";
3550                 Res->dump(CurDAG););
3551
3552      // If this was a MorphNodeTo then we're completely done!
3553      if (IsMorphNodeTo) {
3554        // Update chain uses.
3555        UpdateChains(Res, InputChain, ChainNodesMatched, true);
3556        return;
3557      }
3558      continue;
3559    }
3560
3561    case OPC_CompleteMatch: {
3562      // The match has been completed, and any new nodes (if any) have been
3563      // created.  Patch up references to the matched dag to use the newly
3564      // created nodes.
3565      unsigned NumResults = MatcherTable[MatcherIndex++];
3566
3567      for (unsigned i = 0; i != NumResults; ++i) {
3568        unsigned ResSlot = MatcherTable[MatcherIndex++];
3569        if (ResSlot & 128)
3570          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
3571
3572        assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
3573        SDValue Res = RecordedNodes[ResSlot].first;
3574
3575        assert(i < NodeToMatch->getNumValues() &&
3576               NodeToMatch->getValueType(i) != MVT::Other &&
3577               NodeToMatch->getValueType(i) != MVT::Glue &&
3578               "Invalid number of results to complete!");
3579        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
3580                NodeToMatch->getValueType(i) == MVT::iPTR ||
3581                Res.getValueType() == MVT::iPTR ||
3582                NodeToMatch->getValueType(i).getSizeInBits() ==
3583                    Res.getValueSizeInBits()) &&
3584               "invalid replacement");
3585        ReplaceUses(SDValue(NodeToMatch, i), Res);
3586      }
3587
3588      // Update chain uses.
3589      UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
3590
3591      // If the root node defines glue, we need to update it to the glue result.
3592      // TODO: This never happens in our tests and I think it can be removed /
3593      // replaced with an assert, but if we do it this the way the change is
3594      // NFC.
3595      if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
3596              MVT::Glue &&
3597          InputGlue.getNode())
3598        ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
3599                    InputGlue);
3600
3601      assert(NodeToMatch->use_empty() &&
3602             "Didn't replace all uses of the node?");
3603      CurDAG->RemoveDeadNode(NodeToMatch);
3604
3605      return;
3606    }
3607    }
3608
3609    // If the code reached this point, then the match failed.  See if there is
3610    // another child to try in the current 'Scope', otherwise pop it until we
3611    // find a case to check.
3612    LLVM_DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex
3613                      << "\n");
3614    ++NumDAGIselRetries;
3615    while (true) {
3616      if (MatchScopes.empty()) {
3617        CannotYetSelect(NodeToMatch);
3618        return;
3619      }
3620
3621      // Restore the interpreter state back to the point where the scope was
3622      // formed.
3623      MatchScope &LastScope = MatchScopes.back();
3624      RecordedNodes.resize(LastScope.NumRecordedNodes);
3625      NodeStack.clear();
3626      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
3627      N = NodeStack.back();
3628
3629      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
3630        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
3631      MatcherIndex = LastScope.FailIndex;
3632
3633      LLVM_DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
3634
3635      InputChain = LastScope.InputChain;
3636      InputGlue = LastScope.InputGlue;
3637      if (!LastScope.HasChainNodesMatched)
3638        ChainNodesMatched.clear();
3639
3640      // Check to see what the offset is at the new MatcherIndex.  If it is zero
3641      // we have reached the end of this scope, otherwise we have another child
3642      // in the current scope to try.
3643      unsigned NumToSkip = MatcherTable[MatcherIndex++];
3644      if (NumToSkip & 128)
3645        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
3646
3647      // If we have another child in this scope to match, update FailIndex and
3648      // try it.
3649      if (NumToSkip != 0) {
3650        LastScope.FailIndex = MatcherIndex+NumToSkip;
3651        break;
3652      }
3653
3654      // End of this scope, pop it and try the next child in the containing
3655      // scope.
3656      MatchScopes.pop_back();
3657    }
3658  }
3659}
3660
3661/// Return whether the node may raise an FP exception.
3662bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const {
3663  // For machine opcodes, consult the MCID flag.
3664  if (N->isMachineOpcode()) {
3665    const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
3666    return MCID.mayRaiseFPException();
3667  }
3668
3669  // For ISD opcodes, only StrictFP opcodes may raise an FP
3670  // exception.
3671  if (N->isTargetOpcode())
3672    return N->isTargetStrictFPOpcode();
3673  return N->isStrictFPOpcode();
3674}
3675
3676bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
3677  assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
3678  auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3679  if (!C)
3680    return false;
3681
3682  // Detect when "or" is used to add an offset to a stack object.
3683  if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
3684    MachineFrameInfo &MFI = MF->getFrameInfo();
3685    Align A = MFI.getObjectAlign(FN->getIndex());
3686    int32_t Off = C->getSExtValue();
3687    // If the alleged offset fits in the zero bits guaranteed by
3688    // the alignment, then this or is really an add.
3689    return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off));
3690  }
3691  return false;
3692}
3693
3694void SelectionDAGISel::CannotYetSelect(SDNode *N) {
3695  std::string msg;
3696  raw_string_ostream Msg(msg);
3697  Msg << "Cannot select: ";
3698
3699  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
3700      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
3701      N->getOpcode() != ISD::INTRINSIC_VOID) {
3702    N->printrFull(Msg, CurDAG);
3703    Msg << "\nIn function: " << MF->getName();
3704  } else {
3705    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
3706    unsigned iid =
3707      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3708    if (iid < Intrinsic::num_intrinsics)
3709      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
3710    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3711      Msg << "target intrinsic %" << TII->getName(iid);
3712    else
3713      Msg << "unknown intrinsic #" << iid;
3714  }
3715  report_fatal_error(Msg.str());
3716}
3717
3718char SelectionDAGISel::ID = 0;
3719