1//===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements routines for translating from LLVM IR into SelectionDAG IR.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
14#define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
15
16#include "StatepointLowering.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/CodeGen/ISDOpcodes.h"
23#include "llvm/CodeGen/SelectionDAGNodes.h"
24#include "llvm/CodeGen/SwitchLoweringUtils.h"
25#include "llvm/CodeGen/TargetLowering.h"
26#include "llvm/CodeGen/ValueTypes.h"
27#include "llvm/IR/DebugLoc.h"
28#include "llvm/IR/Instruction.h"
29#include "llvm/IR/Statepoint.h"
30#include "llvm/Support/BranchProbability.h"
31#include "llvm/Support/CodeGen.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MachineValueType.h"
34#include <algorithm>
35#include <cassert>
36#include <cstdint>
37#include <utility>
38#include <vector>
39
40namespace llvm {
41
42class AllocaInst;
43class AtomicCmpXchgInst;
44class AtomicRMWInst;
45class BasicBlock;
46class BranchInst;
47class CallInst;
48class CallBrInst;
49class CatchPadInst;
50class CatchReturnInst;
51class CatchSwitchInst;
52class CleanupPadInst;
53class CleanupReturnInst;
54class Constant;
55class ConstrainedFPIntrinsic;
56class DbgValueInst;
57class DataLayout;
58class DIExpression;
59class DILocalVariable;
60class DILocation;
61class FenceInst;
62class FunctionLoweringInfo;
63class GCFunctionInfo;
64class GCRelocateInst;
65class GCResultInst;
66class IndirectBrInst;
67class InvokeInst;
68class LandingPadInst;
69class LLVMContext;
70class LoadInst;
71class MachineBasicBlock;
72class PHINode;
73class ResumeInst;
74class ReturnInst;
75class SDDbgValue;
76class SelectionDAG;
77class StoreInst;
78class SwiftErrorValueTracking;
79class SwitchInst;
80class TargetLibraryInfo;
81class TargetMachine;
82class Type;
83class VAArgInst;
84class UnreachableInst;
85class Use;
86class User;
87class Value;
88
89//===----------------------------------------------------------------------===//
90/// SelectionDAGBuilder - This is the common target-independent lowering
91/// implementation that is parameterized by a TargetLowering object.
92///
93class SelectionDAGBuilder {
94  /// The current instruction being visited.
95  const Instruction *CurInst = nullptr;
96
97  DenseMap<const Value*, SDValue> NodeMap;
98
99  /// Maps argument value for unused arguments. This is used
100  /// to preserve debug information for incoming arguments.
101  DenseMap<const Value*, SDValue> UnusedArgNodeMap;
102
103  /// Helper type for DanglingDebugInfoMap.
104  class DanglingDebugInfo {
105    const DbgValueInst* DI = nullptr;
106    DebugLoc dl;
107    unsigned SDNodeOrder = 0;
108
109  public:
110    DanglingDebugInfo() = default;
111    DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO)
112        : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {}
113
114    const DbgValueInst* getDI() { return DI; }
115    DebugLoc getdl() { return dl; }
116    unsigned getSDNodeOrder() { return SDNodeOrder; }
117  };
118
119  /// Helper type for DanglingDebugInfoMap.
120  typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector;
121
122  /// Keeps track of dbg_values for which we have not yet seen the referent.
123  /// We defer handling these until we do see it.
124  MapVector<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap;
125
126public:
127  /// Loads are not emitted to the program immediately.  We bunch them up and
128  /// then emit token factor nodes when possible.  This allows us to get simple
129  /// disambiguation between loads without worrying about alias analysis.
130  SmallVector<SDValue, 8> PendingLoads;
131
132  /// State used while lowering a statepoint sequence (gc_statepoint,
133  /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
134  StatepointLoweringState StatepointLowering;
135
136private:
137  /// CopyToReg nodes that copy values to virtual registers for export to other
138  /// blocks need to be emitted before any terminator instruction, but they have
139  /// no other ordering requirements. We bunch them up and the emit a single
140  /// tokenfactor for them just before terminator instructions.
141  SmallVector<SDValue, 8> PendingExports;
142
143  /// Similar to loads, nodes corresponding to constrained FP intrinsics are
144  /// bunched up and emitted when necessary.  These can be moved across each
145  /// other and any (normal) memory operation (load or store), but not across
146  /// calls or instructions having unspecified side effects.  As a special
147  /// case, constrained FP intrinsics using fpexcept.strict may not be deleted
148  /// even if otherwise unused, so they need to be chained before any
149  /// terminator instruction (like PendingExports).  We track the latter
150  /// set of nodes in a separate list.
151  SmallVector<SDValue, 8> PendingConstrainedFP;
152  SmallVector<SDValue, 8> PendingConstrainedFPStrict;
153
154  /// Update root to include all chains from the Pending list.
155  SDValue updateRoot(SmallVectorImpl<SDValue> &Pending);
156
157  /// A unique monotonically increasing number used to order the SDNodes we
158  /// create.
159  unsigned SDNodeOrder;
160
161  /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
162  /// than each cluster in the range, its rank is 0.
163  unsigned caseClusterRank(const SwitchCG::CaseCluster &CC,
164                           SwitchCG::CaseClusterIt First,
165                           SwitchCG::CaseClusterIt Last);
166
167  /// Emit comparison and split W into two subtrees.
168  void splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
169                     const SwitchCG::SwitchWorkListItem &W, Value *Cond,
170                     MachineBasicBlock *SwitchMBB);
171
172  /// Lower W.
173  void lowerWorkItem(SwitchCG::SwitchWorkListItem W, Value *Cond,
174                     MachineBasicBlock *SwitchMBB,
175                     MachineBasicBlock *DefaultMBB);
176
177  /// Peel the top probability case if it exceeds the threshold
178  MachineBasicBlock *
179  peelDominantCaseCluster(const SwitchInst &SI,
180                          SwitchCG::CaseClusterVector &Clusters,
181                          BranchProbability &PeeledCaseProb);
182
183  /// A class which encapsulates all of the information needed to generate a
184  /// stack protector check and signals to isel via its state being initialized
185  /// that a stack protector needs to be generated.
186  ///
187  /// *NOTE* The following is a high level documentation of SelectionDAG Stack
188  /// Protector Generation. The reason that it is placed here is for a lack of
189  /// other good places to stick it.
190  ///
191  /// High Level Overview of SelectionDAG Stack Protector Generation:
192  ///
193  /// Previously, generation of stack protectors was done exclusively in the
194  /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
195  /// splitting basic blocks at the IR level to create the success/failure basic
196  /// blocks in the tail of the basic block in question. As a result of this,
197  /// calls that would have qualified for the sibling call optimization were no
198  /// longer eligible for optimization since said calls were no longer right in
199  /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
200  /// instruction).
201  ///
202  /// Then it was noticed that since the sibling call optimization causes the
203  /// callee to reuse the caller's stack, if we could delay the generation of
204  /// the stack protector check until later in CodeGen after the sibling call
205  /// decision was made, we get both the tail call optimization and the stack
206  /// protector check!
207  ///
208  /// A few goals in solving this problem were:
209  ///
210  ///   1. Preserve the architecture independence of stack protector generation.
211  ///
212  ///   2. Preserve the normal IR level stack protector check for platforms like
213  ///      OpenBSD for which we support platform-specific stack protector
214  ///      generation.
215  ///
216  /// The main problem that guided the present solution is that one can not
217  /// solve this problem in an architecture independent manner at the IR level
218  /// only. This is because:
219  ///
220  ///   1. The decision on whether or not to perform a sibling call on certain
221  ///      platforms (for instance i386) requires lower level information
222  ///      related to available registers that can not be known at the IR level.
223  ///
224  ///   2. Even if the previous point were not true, the decision on whether to
225  ///      perform a tail call is done in LowerCallTo in SelectionDAG which
226  ///      occurs after the Stack Protector Pass. As a result, one would need to
227  ///      put the relevant callinst into the stack protector check success
228  ///      basic block (where the return inst is placed) and then move it back
229  ///      later at SelectionDAG/MI time before the stack protector check if the
230  ///      tail call optimization failed. The MI level option was nixed
231  ///      immediately since it would require platform-specific pattern
232  ///      matching. The SelectionDAG level option was nixed because
233  ///      SelectionDAG only processes one IR level basic block at a time
234  ///      implying one could not create a DAG Combine to move the callinst.
235  ///
236  /// To get around this problem a few things were realized:
237  ///
238  ///   1. While one can not handle multiple IR level basic blocks at the
239  ///      SelectionDAG Level, one can generate multiple machine basic blocks
240  ///      for one IR level basic block. This is how we handle bit tests and
241  ///      switches.
242  ///
243  ///   2. At the MI level, tail calls are represented via a special return
244  ///      MIInst called "tcreturn". Thus if we know the basic block in which we
245  ///      wish to insert the stack protector check, we get the correct behavior
246  ///      by always inserting the stack protector check right before the return
247  ///      statement. This is a "magical transformation" since no matter where
248  ///      the stack protector check intrinsic is, we always insert the stack
249  ///      protector check code at the end of the BB.
250  ///
251  /// Given the aforementioned constraints, the following solution was devised:
252  ///
253  ///   1. On platforms that do not support SelectionDAG stack protector check
254  ///      generation, allow for the normal IR level stack protector check
255  ///      generation to continue.
256  ///
257  ///   2. On platforms that do support SelectionDAG stack protector check
258  ///      generation:
259  ///
260  ///     a. Use the IR level stack protector pass to decide if a stack
261  ///        protector is required/which BB we insert the stack protector check
262  ///        in by reusing the logic already therein. If we wish to generate a
263  ///        stack protector check in a basic block, we place a special IR
264  ///        intrinsic called llvm.stackprotectorcheck right before the BB's
265  ///        returninst or if there is a callinst that could potentially be
266  ///        sibling call optimized, before the call inst.
267  ///
268  ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
269  ///        normally via SelectBasicBlock. In said process, when we visit the
270  ///        stack protector check, we do not actually emit anything into the
271  ///        BB. Instead, we just initialize the stack protector descriptor
272  ///        class (which involves stashing information/creating the success
273  ///        mbbb and the failure mbb if we have not created one for this
274  ///        function yet) and export the guard variable that we are going to
275  ///        compare.
276  ///
277  ///     c. After we finish selecting the basic block, in FinishBasicBlock if
278  ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
279  ///        initialized, we produce the validation code with one of these
280  ///        techniques:
281  ///          1) with a call to a guard check function
282  ///          2) with inlined instrumentation
283  ///
284  ///        1) We insert a call to the check function before the terminator.
285  ///
286  ///        2) We first find a splice point in the parent basic block
287  ///        before the terminator and then splice the terminator of said basic
288  ///        block into the success basic block. Then we code-gen a new tail for
289  ///        the parent basic block consisting of the two loads, the comparison,
290  ///        and finally two branches to the success/failure basic blocks. We
291  ///        conclude by code-gening the failure basic block if we have not
292  ///        code-gened it already (all stack protector checks we generate in
293  ///        the same function, use the same failure basic block).
294  class StackProtectorDescriptor {
295  public:
296    StackProtectorDescriptor() = default;
297
298    /// Returns true if all fields of the stack protector descriptor are
299    /// initialized implying that we should/are ready to emit a stack protector.
300    bool shouldEmitStackProtector() const {
301      return ParentMBB && SuccessMBB && FailureMBB;
302    }
303
304    bool shouldEmitFunctionBasedCheckStackProtector() const {
305      return ParentMBB && !SuccessMBB && !FailureMBB;
306    }
307
308    /// Initialize the stack protector descriptor structure for a new basic
309    /// block.
310    void initialize(const BasicBlock *BB, MachineBasicBlock *MBB,
311                    bool FunctionBasedInstrumentation) {
312      // Make sure we are not initialized yet.
313      assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
314             "already initialized!");
315      ParentMBB = MBB;
316      if (!FunctionBasedInstrumentation) {
317        SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
318        FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
319      }
320    }
321
322    /// Reset state that changes when we handle different basic blocks.
323    ///
324    /// This currently includes:
325    ///
326    /// 1. The specific basic block we are generating a
327    /// stack protector for (ParentMBB).
328    ///
329    /// 2. The successor machine basic block that will contain the tail of
330    /// parent mbb after we create the stack protector check (SuccessMBB). This
331    /// BB is visited only on stack protector check success.
332    void resetPerBBState() {
333      ParentMBB = nullptr;
334      SuccessMBB = nullptr;
335    }
336
337    /// Reset state that only changes when we switch functions.
338    ///
339    /// This currently includes:
340    ///
341    /// 1. FailureMBB since we reuse the failure code path for all stack
342    /// protector checks created in an individual function.
343    ///
344    /// 2.The guard variable since the guard variable we are checking against is
345    /// always the same.
346    void resetPerFunctionState() {
347      FailureMBB = nullptr;
348    }
349
350    MachineBasicBlock *getParentMBB() { return ParentMBB; }
351    MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
352    MachineBasicBlock *getFailureMBB() { return FailureMBB; }
353
354  private:
355    /// The basic block for which we are generating the stack protector.
356    ///
357    /// As a result of stack protector generation, we will splice the
358    /// terminators of this basic block into the successor mbb SuccessMBB and
359    /// replace it with a compare/branch to the successor mbbs
360    /// SuccessMBB/FailureMBB depending on whether or not the stack protector
361    /// was violated.
362    MachineBasicBlock *ParentMBB = nullptr;
363
364    /// A basic block visited on stack protector check success that contains the
365    /// terminators of ParentMBB.
366    MachineBasicBlock *SuccessMBB = nullptr;
367
368    /// This basic block visited on stack protector check failure that will
369    /// contain a call to __stack_chk_fail().
370    MachineBasicBlock *FailureMBB = nullptr;
371
372    /// Add a successor machine basic block to ParentMBB. If the successor mbb
373    /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
374    /// block will be created. Assign a large weight if IsLikely is true.
375    MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
376                                       MachineBasicBlock *ParentMBB,
377                                       bool IsLikely,
378                                       MachineBasicBlock *SuccMBB = nullptr);
379  };
380
381private:
382  const TargetMachine &TM;
383
384public:
385  /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
386  /// nodes without a corresponding SDNode.
387  static const unsigned LowestSDNodeOrder = 1;
388
389  SelectionDAG &DAG;
390  const DataLayout *DL = nullptr;
391  AliasAnalysis *AA = nullptr;
392  const TargetLibraryInfo *LibInfo;
393
394  class SDAGSwitchLowering : public SwitchCG::SwitchLowering {
395  public:
396    SDAGSwitchLowering(SelectionDAGBuilder *sdb, FunctionLoweringInfo &funcinfo)
397        : SwitchCG::SwitchLowering(funcinfo), SDB(sdb) {}
398
399    virtual void addSuccessorWithProb(
400        MachineBasicBlock *Src, MachineBasicBlock *Dst,
401        BranchProbability Prob = BranchProbability::getUnknown()) override {
402      SDB->addSuccessorWithProb(Src, Dst, Prob);
403    }
404
405  private:
406    SelectionDAGBuilder *SDB;
407  };
408
409  // Data related to deferred switch lowerings. Used to construct additional
410  // Basic Blocks in SelectionDAGISel::FinishBasicBlock.
411  std::unique_ptr<SDAGSwitchLowering> SL;
412
413  /// A StackProtectorDescriptor structure used to communicate stack protector
414  /// information in between SelectBasicBlock and FinishBasicBlock.
415  StackProtectorDescriptor SPDescriptor;
416
417  // Emit PHI-node-operand constants only once even if used by multiple
418  // PHI nodes.
419  DenseMap<const Constant *, unsigned> ConstantsOut;
420
421  /// Information about the function as a whole.
422  FunctionLoweringInfo &FuncInfo;
423
424  /// Information about the swifterror values used throughout the function.
425  SwiftErrorValueTracking &SwiftError;
426
427  /// Garbage collection metadata for the function.
428  GCFunctionInfo *GFI;
429
430  /// Map a landing pad to the call site indexes.
431  DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap;
432
433  /// This is set to true if a call in the current block has been translated as
434  /// a tail call. In this case, no subsequent DAG nodes should be created.
435  bool HasTailCall = false;
436
437  LLVMContext *Context;
438
439  SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
440                      SwiftErrorValueTracking &swifterror, CodeGenOpt::Level ol)
441      : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag),
442        SL(std::make_unique<SDAGSwitchLowering>(this, funcinfo)), FuncInfo(funcinfo),
443        SwiftError(swifterror) {}
444
445  void init(GCFunctionInfo *gfi, AliasAnalysis *AA,
446            const TargetLibraryInfo *li);
447
448  /// Clear out the current SelectionDAG and the associated state and prepare
449  /// this SelectionDAGBuilder object to be used for a new block. This doesn't
450  /// clear out information about additional blocks that are needed to complete
451  /// switch lowering or PHI node updating; that information is cleared out as
452  /// it is consumed.
453  void clear();
454
455  /// Clear the dangling debug information map. This function is separated from
456  /// the clear so that debug information that is dangling in a basic block can
457  /// be properly resolved in a different basic block. This allows the
458  /// SelectionDAG to resolve dangling debug information attached to PHI nodes.
459  void clearDanglingDebugInfo();
460
461  /// Return the current virtual root of the Selection DAG, flushing any
462  /// PendingLoad items. This must be done before emitting a store or any other
463  /// memory node that may need to be ordered after any prior load instructions.
464  SDValue getMemoryRoot();
465
466  /// Similar to getMemoryRoot, but also flushes PendingConstrainedFP(Strict)
467  /// items. This must be done before emitting any call other any other node
468  /// that may need to be ordered after FP instructions due to other side
469  /// effects.
470  SDValue getRoot();
471
472  /// Similar to getRoot, but instead of flushing all the PendingLoad items,
473  /// flush all the PendingExports (and PendingConstrainedFPStrict) items.
474  /// It is necessary to do this before emitting a terminator instruction.
475  SDValue getControlRoot();
476
477  SDLoc getCurSDLoc() const {
478    return SDLoc(CurInst, SDNodeOrder);
479  }
480
481  DebugLoc getCurDebugLoc() const {
482    return CurInst ? CurInst->getDebugLoc() : DebugLoc();
483  }
484
485  void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
486
487  void visit(const Instruction &I);
488
489  void visit(unsigned Opcode, const User &I);
490
491  /// If there was virtual register allocated for the value V emit CopyFromReg
492  /// of the specified type Ty. Return empty SDValue() otherwise.
493  SDValue getCopyFromRegs(const Value *V, Type *Ty);
494
495  /// If we have dangling debug info that describes \p Variable, or an
496  /// overlapping part of variable considering the \p Expr, then this method
497  /// will drop that debug info as it isn't valid any longer.
498  void dropDanglingDebugInfo(const DILocalVariable *Variable,
499                             const DIExpression *Expr);
500
501  /// If we saw an earlier dbg_value referring to V, generate the debug data
502  /// structures now that we've seen its definition.
503  void resolveDanglingDebugInfo(const Value *V, SDValue Val);
504
505  /// For the given dangling debuginfo record, perform last-ditch efforts to
506  /// resolve the debuginfo to something that is represented in this DAG. If
507  /// this cannot be done, produce an Undef debug value record.
508  void salvageUnresolvedDbgValue(DanglingDebugInfo &DDI);
509
510  /// For a given Value, attempt to create and record a SDDbgValue in the
511  /// SelectionDAG.
512  bool handleDebugValue(const Value *V, DILocalVariable *Var,
513                        DIExpression *Expr, DebugLoc CurDL,
514                        DebugLoc InstDL, unsigned Order);
515
516  /// Evict any dangling debug information, attempting to salvage it first.
517  void resolveOrClearDbgInfo();
518
519  SDValue getValue(const Value *V);
520
521  /// Return the SDNode for the specified IR value if it exists.
522  SDNode *getNodeForIRValue(const Value *V) {
523    if (NodeMap.find(V) == NodeMap.end())
524      return nullptr;
525    return NodeMap[V].getNode();
526  }
527
528  SDValue getNonRegisterValue(const Value *V);
529  SDValue getValueImpl(const Value *V);
530
531  void setValue(const Value *V, SDValue NewN) {
532    SDValue &N = NodeMap[V];
533    assert(!N.getNode() && "Already set a value for this node!");
534    N = NewN;
535  }
536
537  void setUnusedArgValue(const Value *V, SDValue NewN) {
538    SDValue &N = UnusedArgNodeMap[V];
539    assert(!N.getNode() && "Already set a value for this node!");
540    N = NewN;
541  }
542
543  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
544                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
545                            MachineBasicBlock *SwitchBB,
546                            Instruction::BinaryOps Opc, BranchProbability TProb,
547                            BranchProbability FProb, bool InvertCond);
548  void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
549                                    MachineBasicBlock *FBB,
550                                    MachineBasicBlock *CurBB,
551                                    MachineBasicBlock *SwitchBB,
552                                    BranchProbability TProb, BranchProbability FProb,
553                                    bool InvertCond);
554  bool ShouldEmitAsBranches(const std::vector<SwitchCG::CaseBlock> &Cases);
555  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
556  void CopyToExportRegsIfNeeded(const Value *V);
557  void ExportFromCurrentBlock(const Value *V);
558  void LowerCallTo(const CallBase &CB, SDValue Callee, bool IsTailCall,
559                   const BasicBlock *EHPadBB = nullptr);
560
561  // Lower range metadata from 0 to N to assert zext to an integer of nearest
562  // floor power of two.
563  SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I,
564                                 SDValue Op);
565
566  void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI,
567                                const CallBase *Call, unsigned ArgIdx,
568                                unsigned NumArgs, SDValue Callee,
569                                Type *ReturnTy, bool IsPatchPoint);
570
571  std::pair<SDValue, SDValue>
572  lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
573                 const BasicBlock *EHPadBB = nullptr);
574
575  /// When an MBB was split during scheduling, update the
576  /// references that need to refer to the last resulting block.
577  void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
578
579  /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes
580  /// of lowering into a STATEPOINT node.
581  struct StatepointLoweringInfo {
582    /// Bases[i] is the base pointer for Ptrs[i].  Together they denote the set
583    /// of gc pointers this STATEPOINT has to relocate.
584    SmallVector<const Value *, 16> Bases;
585    SmallVector<const Value *, 16> Ptrs;
586
587    /// The set of gc.relocate calls associated with this gc.statepoint.
588    SmallVector<const GCRelocateInst *, 16> GCRelocates;
589
590    /// The full list of gc arguments to the gc.statepoint being lowered.
591    ArrayRef<const Use> GCArgs;
592
593    /// The gc.statepoint instruction.
594    const Instruction *StatepointInstr = nullptr;
595
596    /// The list of gc transition arguments present in the gc.statepoint being
597    /// lowered.
598    ArrayRef<const Use> GCTransitionArgs;
599
600    /// The ID that the resulting STATEPOINT instruction has to report.
601    unsigned ID = -1;
602
603    /// Information regarding the underlying call instruction.
604    TargetLowering::CallLoweringInfo CLI;
605
606    /// The deoptimization state associated with this gc.statepoint call, if
607    /// any.
608    ArrayRef<const Use> DeoptState;
609
610    /// Flags associated with the meta arguments being lowered.
611    uint64_t StatepointFlags = -1;
612
613    /// The number of patchable bytes the call needs to get lowered into.
614    unsigned NumPatchBytes = -1;
615
616    /// The exception handling unwind destination, in case this represents an
617    /// invoke of gc.statepoint.
618    const BasicBlock *EHPadBB = nullptr;
619
620    explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {}
621  };
622
623  /// Lower \p SLI into a STATEPOINT instruction.
624  SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI);
625
626  // This function is responsible for the whole statepoint lowering process.
627  // It uniformly handles invoke and call statepoints.
628  void LowerStatepoint(const GCStatepointInst &I,
629                       const BasicBlock *EHPadBB = nullptr);
630
631  void LowerCallSiteWithDeoptBundle(const CallBase *Call, SDValue Callee,
632                                    const BasicBlock *EHPadBB);
633
634  void LowerDeoptimizeCall(const CallInst *CI);
635  void LowerDeoptimizingReturn();
636
637  void LowerCallSiteWithDeoptBundleImpl(const CallBase *Call, SDValue Callee,
638                                        const BasicBlock *EHPadBB,
639                                        bool VarArgDisallowed,
640                                        bool ForceVoidReturnTy);
641
642  /// Returns the type of FrameIndex and TargetFrameIndex nodes.
643  MVT getFrameIndexTy() {
644    return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout());
645  }
646
647private:
648  // Terminator instructions.
649  void visitRet(const ReturnInst &I);
650  void visitBr(const BranchInst &I);
651  void visitSwitch(const SwitchInst &I);
652  void visitIndirectBr(const IndirectBrInst &I);
653  void visitUnreachable(const UnreachableInst &I);
654  void visitCleanupRet(const CleanupReturnInst &I);
655  void visitCatchSwitch(const CatchSwitchInst &I);
656  void visitCatchRet(const CatchReturnInst &I);
657  void visitCatchPad(const CatchPadInst &I);
658  void visitCleanupPad(const CleanupPadInst &CPI);
659
660  BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
661                                       const MachineBasicBlock *Dst) const;
662  void addSuccessorWithProb(
663      MachineBasicBlock *Src, MachineBasicBlock *Dst,
664      BranchProbability Prob = BranchProbability::getUnknown());
665
666public:
667  void visitSwitchCase(SwitchCG::CaseBlock &CB, MachineBasicBlock *SwitchBB);
668  void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
669                               MachineBasicBlock *ParentBB);
670  void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
671  void visitBitTestHeader(SwitchCG::BitTestBlock &B,
672                          MachineBasicBlock *SwitchBB);
673  void visitBitTestCase(SwitchCG::BitTestBlock &BB, MachineBasicBlock *NextMBB,
674                        BranchProbability BranchProbToNext, unsigned Reg,
675                        SwitchCG::BitTestCase &B, MachineBasicBlock *SwitchBB);
676  void visitJumpTable(SwitchCG::JumpTable &JT);
677  void visitJumpTableHeader(SwitchCG::JumpTable &JT,
678                            SwitchCG::JumpTableHeader &JTH,
679                            MachineBasicBlock *SwitchBB);
680
681private:
682  // These all get lowered before this pass.
683  void visitInvoke(const InvokeInst &I);
684  void visitCallBr(const CallBrInst &I);
685  void visitResume(const ResumeInst &I);
686
687  void visitUnary(const User &I, unsigned Opcode);
688  void visitFNeg(const User &I) { visitUnary(I, ISD::FNEG); }
689
690  void visitBinary(const User &I, unsigned Opcode);
691  void visitShift(const User &I, unsigned Opcode);
692  void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
693  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
694  void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
695  void visitFSub(const User &I);
696  void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
697  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
698  void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
699  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
700  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
701  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
702  void visitSDiv(const User &I);
703  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
704  void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
705  void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
706  void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
707  void visitShl (const User &I) { visitShift(I, ISD::SHL); }
708  void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
709  void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
710  void visitICmp(const User &I);
711  void visitFCmp(const User &I);
712  // Visit the conversion instructions
713  void visitTrunc(const User &I);
714  void visitZExt(const User &I);
715  void visitSExt(const User &I);
716  void visitFPTrunc(const User &I);
717  void visitFPExt(const User &I);
718  void visitFPToUI(const User &I);
719  void visitFPToSI(const User &I);
720  void visitUIToFP(const User &I);
721  void visitSIToFP(const User &I);
722  void visitPtrToInt(const User &I);
723  void visitIntToPtr(const User &I);
724  void visitBitCast(const User &I);
725  void visitAddrSpaceCast(const User &I);
726
727  void visitExtractElement(const User &I);
728  void visitInsertElement(const User &I);
729  void visitShuffleVector(const User &I);
730
731  void visitExtractValue(const User &I);
732  void visitInsertValue(const User &I);
733  void visitLandingPad(const LandingPadInst &LP);
734
735  void visitGetElementPtr(const User &I);
736  void visitSelect(const User &I);
737
738  void visitAlloca(const AllocaInst &I);
739  void visitLoad(const LoadInst &I);
740  void visitStore(const StoreInst &I);
741  void visitMaskedLoad(const CallInst &I, bool IsExpanding = false);
742  void visitMaskedStore(const CallInst &I, bool IsCompressing = false);
743  void visitMaskedGather(const CallInst &I);
744  void visitMaskedScatter(const CallInst &I);
745  void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
746  void visitAtomicRMW(const AtomicRMWInst &I);
747  void visitFence(const FenceInst &I);
748  void visitPHI(const PHINode &I);
749  void visitCall(const CallInst &I);
750  bool visitMemCmpCall(const CallInst &I);
751  bool visitMemPCpyCall(const CallInst &I);
752  bool visitMemChrCall(const CallInst &I);
753  bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
754  bool visitStrCmpCall(const CallInst &I);
755  bool visitStrLenCall(const CallInst &I);
756  bool visitStrNLenCall(const CallInst &I);
757  bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
758  bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
759  void visitAtomicLoad(const LoadInst &I);
760  void visitAtomicStore(const StoreInst &I);
761  void visitLoadFromSwiftError(const LoadInst &I);
762  void visitStoreToSwiftError(const StoreInst &I);
763  void visitFreeze(const FreezeInst &I);
764
765  void visitInlineAsm(const CallBase &Call);
766  void visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
767  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
768  void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI);
769
770  void visitVAStart(const CallInst &I);
771  void visitVAArg(const VAArgInst &I);
772  void visitVAEnd(const CallInst &I);
773  void visitVACopy(const CallInst &I);
774  void visitStackmap(const CallInst &I);
775  void visitPatchpoint(const CallBase &CB, const BasicBlock *EHPadBB = nullptr);
776
777  // These two are implemented in StatepointLowering.cpp
778  void visitGCRelocate(const GCRelocateInst &Relocate);
779  void visitGCResult(const GCResultInst &I);
780
781  void visitVectorReduce(const CallInst &I, unsigned Intrinsic);
782
783  void visitUserOp1(const Instruction &I) {
784    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
785  }
786  void visitUserOp2(const Instruction &I) {
787    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
788  }
789
790  void processIntegerCallValue(const Instruction &I,
791                               SDValue Value, bool IsSigned);
792
793  void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
794
795  void emitInlineAsmError(const CallBase &Call, const Twine &Message);
796
797  /// If V is an function argument then create corresponding DBG_VALUE machine
798  /// instruction for it now. At the end of instruction selection, they will be
799  /// inserted to the entry BB.
800  bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
801                                DIExpression *Expr, DILocation *DL,
802                                bool IsDbgDeclare, const SDValue &N);
803
804  /// Return the next block after MBB, or nullptr if there is none.
805  MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
806
807  /// Update the DAG and DAG builder with the relevant information after
808  /// a new root node has been created which could be a tail call.
809  void updateDAGForMaybeTailCall(SDValue MaybeTC);
810
811  /// Return the appropriate SDDbgValue based on N.
812  SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable,
813                          DIExpression *Expr, const DebugLoc &dl,
814                          unsigned DbgSDNodeOrder);
815
816  /// Lowers CallInst to an external symbol.
817  void lowerCallToExternalSymbol(const CallInst &I, const char *FunctionName);
818};
819
820/// This struct represents the registers (physical or virtual)
821/// that a particular set of values is assigned, and the type information about
822/// the value. The most common situation is to represent one value at a time,
823/// but struct or array values are handled element-wise as multiple values.  The
824/// splitting of aggregates is performed recursively, so that we never have
825/// aggregate-typed registers. The values at this point do not necessarily have
826/// legal types, so each value may require one or more registers of some legal
827/// type.
828///
829struct RegsForValue {
830  /// The value types of the values, which may not be legal, and
831  /// may need be promoted or synthesized from one or more registers.
832  SmallVector<EVT, 4> ValueVTs;
833
834  /// The value types of the registers. This is the same size as ValueVTs and it
835  /// records, for each value, what the type of the assigned register or
836  /// registers are. (Individual values are never synthesized from more than one
837  /// type of register.)
838  ///
839  /// With virtual registers, the contents of RegVTs is redundant with TLI's
840  /// getRegisterType member function, however when with physical registers
841  /// it is necessary to have a separate record of the types.
842  SmallVector<MVT, 4> RegVTs;
843
844  /// This list holds the registers assigned to the values.
845  /// Each legal or promoted value requires one register, and each
846  /// expanded value requires multiple registers.
847  SmallVector<unsigned, 4> Regs;
848
849  /// This list holds the number of registers for each value.
850  SmallVector<unsigned, 4> RegCount;
851
852  /// Records if this value needs to be treated in an ABI dependant manner,
853  /// different to normal type legalization.
854  Optional<CallingConv::ID> CallConv;
855
856  RegsForValue() = default;
857  RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt, EVT valuevt,
858               Optional<CallingConv::ID> CC = None);
859  RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
860               const DataLayout &DL, unsigned Reg, Type *Ty,
861               Optional<CallingConv::ID> CC);
862
863  bool isABIMangled() const {
864    return CallConv.hasValue();
865  }
866
867  /// Add the specified values to this one.
868  void append(const RegsForValue &RHS) {
869    ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
870    RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
871    Regs.append(RHS.Regs.begin(), RHS.Regs.end());
872    RegCount.push_back(RHS.Regs.size());
873  }
874
875  /// Emit a series of CopyFromReg nodes that copies from this value and returns
876  /// the result as a ValueVTs value. This uses Chain/Flag as the input and
877  /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no
878  /// flag is used.
879  SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
880                          const SDLoc &dl, SDValue &Chain, SDValue *Flag,
881                          const Value *V = nullptr) const;
882
883  /// Emit a series of CopyToReg nodes that copies the specified value into the
884  /// registers specified by this object. This uses Chain/Flag as the input and
885  /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no
886  /// flag is used. If V is not nullptr, then it is used in printing better
887  /// diagnostic messages on error.
888  void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl,
889                     SDValue &Chain, SDValue *Flag, const Value *V = nullptr,
890                     ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
891
892  /// Add this value to the specified inlineasm node operand list. This adds the
893  /// code marker, matching input operand index (if applicable), and includes
894  /// the number of values added into it.
895  void AddInlineAsmOperands(unsigned Code, bool HasMatching,
896                            unsigned MatchingIdx, const SDLoc &dl,
897                            SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
898
899  /// Check if the total RegCount is greater than one.
900  bool occupiesMultipleRegs() const {
901    return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1;
902  }
903
904  /// Return a list of registers and their sizes.
905  SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const;
906};
907
908} // end namespace llvm
909
910#endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
911