1//===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SelectionDAG::Legalize method.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/ADT/APFloat.h"
14#include "llvm/ADT/APInt.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/Analysis/TargetLibraryInfo.h"
21#include "llvm/CodeGen/ISDOpcodes.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineJumpTableInfo.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/RuntimeLibcalls.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SelectionDAGNodes.h"
28#include "llvm/CodeGen/TargetFrameLowering.h"
29#include "llvm/CodeGen/TargetLowering.h"
30#include "llvm/CodeGen/TargetSubtargetInfo.h"
31#include "llvm/CodeGen/ValueTypes.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/Metadata.h"
38#include "llvm/IR/Type.h"
39#include "llvm/Support/Casting.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/MachineValueType.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include <algorithm>
49#include <cassert>
50#include <cstdint>
51#include <tuple>
52#include <utility>
53
54using namespace llvm;
55
56#define DEBUG_TYPE "legalizedag"
57
58namespace {
59
60/// Keeps track of state when getting the sign of a floating-point value as an
61/// integer.
62struct FloatSignAsInt {
63  EVT FloatVT;
64  SDValue Chain;
65  SDValue FloatPtr;
66  SDValue IntPtr;
67  MachinePointerInfo IntPointerInfo;
68  MachinePointerInfo FloatPointerInfo;
69  SDValue IntValue;
70  APInt SignMask;
71  uint8_t SignBit;
72};
73
74//===----------------------------------------------------------------------===//
75/// This takes an arbitrary SelectionDAG as input and
76/// hacks on it until the target machine can handle it.  This involves
77/// eliminating value sizes the machine cannot handle (promoting small sizes to
78/// large sizes or splitting up large values into small values) as well as
79/// eliminating operations the machine cannot handle.
80///
81/// This code also does a small amount of optimization and recognition of idioms
82/// as part of its processing.  For example, if a target does not support a
83/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84/// will attempt merge setcc and brc instructions into brcc's.
85class SelectionDAGLegalize {
86  const TargetMachine &TM;
87  const TargetLowering &TLI;
88  SelectionDAG &DAG;
89
90  /// The set of nodes which have already been legalized. We hold a
91  /// reference to it in order to update as necessary on node deletion.
92  SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93
94  /// A set of all the nodes updated during legalization.
95  SmallSetVector<SDNode *, 16> *UpdatedNodes;
96
97  EVT getSetCCResultType(EVT VT) const {
98    return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99  }
100
101  // Libcall insertion helpers.
102
103public:
104  SelectionDAGLegalize(SelectionDAG &DAG,
105                       SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106                       SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107      : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108        LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109
110  /// Legalizes the given operation.
111  void LegalizeOp(SDNode *Node);
112
113private:
114  SDValue OptimizeFloatStore(StoreSDNode *ST);
115
116  void LegalizeLoadOps(SDNode *Node);
117  void LegalizeStoreOps(SDNode *Node);
118
119  /// Some targets cannot handle a variable
120  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
121  /// is necessary to spill the vector being inserted into to memory, perform
122  /// the insert there, and then read the result back.
123  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124                                         const SDLoc &dl);
125  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126                                  const SDLoc &dl);
127
128  /// Return a vector shuffle operation which
129  /// performs the same shuffe in terms of order or result bytes, but on a type
130  /// whose vector element type is narrower than the original shuffle type.
131  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133                                     SDValue N1, SDValue N2,
134                                     ArrayRef<int> Mask) const;
135
136  bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137                             bool &NeedInvert, const SDLoc &dl, SDValue &Chain,
138                             bool IsSignaling = false);
139
140  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
141
142  void ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143                       RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144                       RTLIB::Libcall Call_F128,
145                       RTLIB::Libcall Call_PPCF128,
146                       SmallVectorImpl<SDValue> &Results);
147  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
148                           RTLIB::Libcall Call_I8,
149                           RTLIB::Libcall Call_I16,
150                           RTLIB::Libcall Call_I32,
151                           RTLIB::Libcall Call_I64,
152                           RTLIB::Libcall Call_I128);
153  void ExpandArgFPLibCall(SDNode *Node,
154                          RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
155                          RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
156                          RTLIB::Libcall Call_PPCF128,
157                          SmallVectorImpl<SDValue> &Results);
158  void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159  void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
160
161  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162                           const SDLoc &dl);
163  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
164                           const SDLoc &dl, SDValue ChainIn);
165  SDValue ExpandBUILD_VECTOR(SDNode *Node);
166  SDValue ExpandSPLAT_VECTOR(SDNode *Node);
167  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
168  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
169                                SmallVectorImpl<SDValue> &Results);
170  void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
171                         SDValue Value) const;
172  SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
173                          SDValue NewIntValue) const;
174  SDValue ExpandFCOPYSIGN(SDNode *Node) const;
175  SDValue ExpandFABS(SDNode *Node) const;
176  SDValue ExpandLegalINT_TO_FP(SDNode *Node, SDValue &Chain);
177  void PromoteLegalINT_TO_FP(SDNode *N, const SDLoc &dl,
178                             SmallVectorImpl<SDValue> &Results);
179  void PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
180                             SmallVectorImpl<SDValue> &Results);
181
182  SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
183  SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
184
185  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
186  SDValue ExpandInsertToVectorThroughStack(SDValue Op);
187  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
188
189  SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
190  SDValue ExpandConstant(ConstantSDNode *CP);
191
192  // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
193  bool ExpandNode(SDNode *Node);
194  void ConvertNodeToLibcall(SDNode *Node);
195  void PromoteNode(SDNode *Node);
196
197public:
198  // Node replacement helpers
199
200  void ReplacedNode(SDNode *N) {
201    LegalizedNodes.erase(N);
202    if (UpdatedNodes)
203      UpdatedNodes->insert(N);
204  }
205
206  void ReplaceNode(SDNode *Old, SDNode *New) {
207    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
208               dbgs() << "     with:      "; New->dump(&DAG));
209
210    assert(Old->getNumValues() == New->getNumValues() &&
211           "Replacing one node with another that produces a different number "
212           "of values!");
213    DAG.ReplaceAllUsesWith(Old, New);
214    if (UpdatedNodes)
215      UpdatedNodes->insert(New);
216    ReplacedNode(Old);
217  }
218
219  void ReplaceNode(SDValue Old, SDValue New) {
220    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
221               dbgs() << "     with:      "; New->dump(&DAG));
222
223    DAG.ReplaceAllUsesWith(Old, New);
224    if (UpdatedNodes)
225      UpdatedNodes->insert(New.getNode());
226    ReplacedNode(Old.getNode());
227  }
228
229  void ReplaceNode(SDNode *Old, const SDValue *New) {
230    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
231
232    DAG.ReplaceAllUsesWith(Old, New);
233    for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
234      LLVM_DEBUG(dbgs() << (i == 0 ? "     with:      " : "      and:      ");
235                 New[i]->dump(&DAG));
236      if (UpdatedNodes)
237        UpdatedNodes->insert(New[i].getNode());
238    }
239    ReplacedNode(Old);
240  }
241
242  void ReplaceNodeWithValue(SDValue Old, SDValue New) {
243    LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
244               dbgs() << "     with:      "; New->dump(&DAG));
245
246    DAG.ReplaceAllUsesOfValueWith(Old, New);
247    if (UpdatedNodes)
248      UpdatedNodes->insert(New.getNode());
249    ReplacedNode(Old.getNode());
250  }
251};
252
253} // end anonymous namespace
254
255/// Return a vector shuffle operation which
256/// performs the same shuffle in terms of order or result bytes, but on a type
257/// whose vector element type is narrower than the original shuffle type.
258/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
259SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
260    EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
261    ArrayRef<int> Mask) const {
262  unsigned NumMaskElts = VT.getVectorNumElements();
263  unsigned NumDestElts = NVT.getVectorNumElements();
264  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
265
266  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
267
268  if (NumEltsGrowth == 1)
269    return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
270
271  SmallVector<int, 8> NewMask;
272  for (unsigned i = 0; i != NumMaskElts; ++i) {
273    int Idx = Mask[i];
274    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
275      if (Idx < 0)
276        NewMask.push_back(-1);
277      else
278        NewMask.push_back(Idx * NumEltsGrowth + j);
279    }
280  }
281  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
282  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
283  return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
284}
285
286/// Expands the ConstantFP node to an integer constant or
287/// a load from the constant pool.
288SDValue
289SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
290  bool Extend = false;
291  SDLoc dl(CFP);
292
293  // If a FP immediate is precise when represented as a float and if the
294  // target can do an extending load from float to double, we put it into
295  // the constant pool as a float, even if it's is statically typed as a
296  // double.  This shrinks FP constants and canonicalizes them for targets where
297  // an FP extending load is the same cost as a normal load (such as on the x87
298  // fp stack or PPC FP unit).
299  EVT VT = CFP->getValueType(0);
300  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
301  if (!UseCP) {
302    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
303    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
304                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
305  }
306
307  APFloat APF = CFP->getValueAPF();
308  EVT OrigVT = VT;
309  EVT SVT = VT;
310
311  // We don't want to shrink SNaNs. Converting the SNaN back to its real type
312  // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
313  if (!APF.isSignaling()) {
314    while (SVT != MVT::f32 && SVT != MVT::f16) {
315      SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
316      if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
317          // Only do this if the target has a native EXTLOAD instruction from
318          // smaller type.
319          TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
320          TLI.ShouldShrinkFPConstant(OrigVT)) {
321        Type *SType = SVT.getTypeForEVT(*DAG.getContext());
322        LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
323        VT = SVT;
324        Extend = true;
325      }
326    }
327  }
328
329  SDValue CPIdx =
330      DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
331  Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
332  if (Extend) {
333    SDValue Result = DAG.getExtLoad(
334        ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
335        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
336        Alignment);
337    return Result;
338  }
339  SDValue Result = DAG.getLoad(
340      OrigVT, dl, DAG.getEntryNode(), CPIdx,
341      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
342  return Result;
343}
344
345/// Expands the Constant node to a load from the constant pool.
346SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
347  SDLoc dl(CP);
348  EVT VT = CP->getValueType(0);
349  SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
350                                      TLI.getPointerTy(DAG.getDataLayout()));
351  Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
352  SDValue Result = DAG.getLoad(
353      VT, dl, DAG.getEntryNode(), CPIdx,
354      MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
355  return Result;
356}
357
358/// Some target cannot handle a variable insertion index for the
359/// INSERT_VECTOR_ELT instruction.  In this case, it
360/// is necessary to spill the vector being inserted into to memory, perform
361/// the insert there, and then read the result back.
362SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
363                                                             SDValue Val,
364                                                             SDValue Idx,
365                                                             const SDLoc &dl) {
366  SDValue Tmp1 = Vec;
367  SDValue Tmp2 = Val;
368  SDValue Tmp3 = Idx;
369
370  // If the target doesn't support this, we have to spill the input vector
371  // to a temporary stack slot, update the element, then reload it.  This is
372  // badness.  We could also load the value into a vector register (either
373  // with a "move to register" or "extload into register" instruction, then
374  // permute it into place, if the idx is a constant and if the idx is
375  // supported by the target.
376  EVT VT    = Tmp1.getValueType();
377  EVT EltVT = VT.getVectorElementType();
378  SDValue StackPtr = DAG.CreateStackTemporary(VT);
379
380  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
381
382  // Store the vector.
383  SDValue Ch = DAG.getStore(
384      DAG.getEntryNode(), dl, Tmp1, StackPtr,
385      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
386
387  SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
388
389  // Store the scalar value.
390  Ch = DAG.getTruncStore(
391      Ch, dl, Tmp2, StackPtr2,
392      MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), EltVT);
393  // Load the updated vector.
394  return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
395                                               DAG.getMachineFunction(), SPFI));
396}
397
398SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
399                                                      SDValue Idx,
400                                                      const SDLoc &dl) {
401  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
402    // SCALAR_TO_VECTOR requires that the type of the value being inserted
403    // match the element type of the vector being created, except for
404    // integers in which case the inserted value can be over width.
405    EVT EltVT = Vec.getValueType().getVectorElementType();
406    if (Val.getValueType() == EltVT ||
407        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
408      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
409                                  Vec.getValueType(), Val);
410
411      unsigned NumElts = Vec.getValueType().getVectorNumElements();
412      // We generate a shuffle of InVec and ScVec, so the shuffle mask
413      // should be 0,1,2,3,4,5... with the appropriate element replaced with
414      // elt 0 of the RHS.
415      SmallVector<int, 8> ShufOps;
416      for (unsigned i = 0; i != NumElts; ++i)
417        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
418
419      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
420    }
421  }
422  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
423}
424
425SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
426  if (!ISD::isNormalStore(ST))
427    return SDValue();
428
429  LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
430  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
431  // FIXME: We shouldn't do this for TargetConstantFP's.
432  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
433  // to phase ordering between legalized code and the dag combiner.  This
434  // probably means that we need to integrate dag combiner and legalizer
435  // together.
436  // We generally can't do this one for long doubles.
437  SDValue Chain = ST->getChain();
438  SDValue Ptr = ST->getBasePtr();
439  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
440  AAMDNodes AAInfo = ST->getAAInfo();
441  SDLoc dl(ST);
442  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
443    if (CFP->getValueType(0) == MVT::f32 &&
444        TLI.isTypeLegal(MVT::i32)) {
445      SDValue Con = DAG.getConstant(CFP->getValueAPF().
446                                      bitcastToAPInt().zextOrTrunc(32),
447                                    SDLoc(CFP), MVT::i32);
448      return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
449                          ST->getOriginalAlign(), MMOFlags, AAInfo);
450    }
451
452    if (CFP->getValueType(0) == MVT::f64) {
453      // If this target supports 64-bit registers, do a single 64-bit store.
454      if (TLI.isTypeLegal(MVT::i64)) {
455        SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
456                                      zextOrTrunc(64), SDLoc(CFP), MVT::i64);
457        return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
458                            ST->getOriginalAlign(), MMOFlags, AAInfo);
459      }
460
461      if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
462        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
463        // stores.  If the target supports neither 32- nor 64-bits, this
464        // xform is certainly not worth it.
465        const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
466        SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
467        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
468        if (DAG.getDataLayout().isBigEndian())
469          std::swap(Lo, Hi);
470
471        Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(),
472                          ST->getOriginalAlign(), MMOFlags, AAInfo);
473        Ptr = DAG.getMemBasePlusOffset(Ptr, 4, dl);
474        Hi = DAG.getStore(Chain, dl, Hi, Ptr,
475                          ST->getPointerInfo().getWithOffset(4),
476                          ST->getOriginalAlign(), MMOFlags, AAInfo);
477
478        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
479      }
480    }
481  }
482  return SDValue(nullptr, 0);
483}
484
485void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
486  StoreSDNode *ST = cast<StoreSDNode>(Node);
487  SDValue Chain = ST->getChain();
488  SDValue Ptr = ST->getBasePtr();
489  SDLoc dl(Node);
490
491  MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
492  AAMDNodes AAInfo = ST->getAAInfo();
493
494  if (!ST->isTruncatingStore()) {
495    LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
496    if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
497      ReplaceNode(ST, OptStore);
498      return;
499    }
500
501    SDValue Value = ST->getValue();
502    MVT VT = Value.getSimpleValueType();
503    switch (TLI.getOperationAction(ISD::STORE, VT)) {
504    default: llvm_unreachable("This action is not supported yet!");
505    case TargetLowering::Legal: {
506      // If this is an unaligned store and the target doesn't support it,
507      // expand it.
508      EVT MemVT = ST->getMemoryVT();
509      const DataLayout &DL = DAG.getDataLayout();
510      if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
511                                              *ST->getMemOperand())) {
512        LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
513        SDValue Result = TLI.expandUnalignedStore(ST, DAG);
514        ReplaceNode(SDValue(ST, 0), Result);
515      } else
516        LLVM_DEBUG(dbgs() << "Legal store\n");
517      break;
518    }
519    case TargetLowering::Custom: {
520      LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
521      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
522      if (Res && Res != SDValue(Node, 0))
523        ReplaceNode(SDValue(Node, 0), Res);
524      return;
525    }
526    case TargetLowering::Promote: {
527      MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
528      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
529             "Can only promote stores to same size type");
530      Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
531      SDValue Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
532                                    ST->getOriginalAlign(), MMOFlags, AAInfo);
533      ReplaceNode(SDValue(Node, 0), Result);
534      break;
535    }
536    }
537    return;
538  }
539
540  LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
541  SDValue Value = ST->getValue();
542  EVT StVT = ST->getMemoryVT();
543  unsigned StWidth = StVT.getSizeInBits();
544  auto &DL = DAG.getDataLayout();
545
546  if (StWidth != StVT.getStoreSizeInBits()) {
547    // Promote to a byte-sized store with upper bits zero if not
548    // storing an integral number of bytes.  For example, promote
549    // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
550    EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
551                                StVT.getStoreSizeInBits());
552    Value = DAG.getZeroExtendInReg(Value, dl, StVT);
553    SDValue Result =
554        DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
555                          ST->getOriginalAlign(), MMOFlags, AAInfo);
556    ReplaceNode(SDValue(Node, 0), Result);
557  } else if (StWidth & (StWidth - 1)) {
558    // If not storing a power-of-2 number of bits, expand as two stores.
559    assert(!StVT.isVector() && "Unsupported truncstore!");
560    unsigned LogStWidth = Log2_32(StWidth);
561    assert(LogStWidth < 32);
562    unsigned RoundWidth = 1 << LogStWidth;
563    assert(RoundWidth < StWidth);
564    unsigned ExtraWidth = StWidth - RoundWidth;
565    assert(ExtraWidth < RoundWidth);
566    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
567           "Store size not an integral number of bytes!");
568    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
569    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
570    SDValue Lo, Hi;
571    unsigned IncrementSize;
572
573    if (DL.isLittleEndian()) {
574      // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
575      // Store the bottom RoundWidth bits.
576      Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
577                             RoundVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
578
579      // Store the remaining ExtraWidth bits.
580      IncrementSize = RoundWidth / 8;
581      Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
582      Hi = DAG.getNode(
583          ISD::SRL, dl, Value.getValueType(), Value,
584          DAG.getConstant(RoundWidth, dl,
585                          TLI.getShiftAmountTy(Value.getValueType(), DL)));
586      Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr,
587                             ST->getPointerInfo().getWithOffset(IncrementSize),
588                             ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
589    } else {
590      // Big endian - avoid unaligned stores.
591      // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
592      // Store the top RoundWidth bits.
593      Hi = DAG.getNode(
594          ISD::SRL, dl, Value.getValueType(), Value,
595          DAG.getConstant(ExtraWidth, dl,
596                          TLI.getShiftAmountTy(Value.getValueType(), DL)));
597      Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), RoundVT,
598                             ST->getOriginalAlign(), MMOFlags, AAInfo);
599
600      // Store the remaining ExtraWidth bits.
601      IncrementSize = RoundWidth / 8;
602      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
603                        DAG.getConstant(IncrementSize, dl,
604                                        Ptr.getValueType()));
605      Lo = DAG.getTruncStore(Chain, dl, Value, Ptr,
606                             ST->getPointerInfo().getWithOffset(IncrementSize),
607                             ExtraVT, ST->getOriginalAlign(), MMOFlags, AAInfo);
608    }
609
610    // The order of the stores doesn't matter.
611    SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
612    ReplaceNode(SDValue(Node, 0), Result);
613  } else {
614    switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
615    default: llvm_unreachable("This action is not supported yet!");
616    case TargetLowering::Legal: {
617      EVT MemVT = ST->getMemoryVT();
618      // If this is an unaligned store and the target doesn't support it,
619      // expand it.
620      if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
621                                              *ST->getMemOperand())) {
622        SDValue Result = TLI.expandUnalignedStore(ST, DAG);
623        ReplaceNode(SDValue(ST, 0), Result);
624      }
625      break;
626    }
627    case TargetLowering::Custom: {
628      SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
629      if (Res && Res != SDValue(Node, 0))
630        ReplaceNode(SDValue(Node, 0), Res);
631      return;
632    }
633    case TargetLowering::Expand:
634      assert(!StVT.isVector() &&
635             "Vector Stores are handled in LegalizeVectorOps");
636
637      SDValue Result;
638
639      // TRUNCSTORE:i16 i32 -> STORE i16
640      if (TLI.isTypeLegal(StVT)) {
641        Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
642        Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
643                              ST->getOriginalAlign(), MMOFlags, AAInfo);
644      } else {
645        // The in-memory type isn't legal. Truncate to the type it would promote
646        // to, and then do a truncstore.
647        Value = DAG.getNode(ISD::TRUNCATE, dl,
648                            TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
649                            Value);
650        Result =
651            DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), StVT,
652                              ST->getOriginalAlign(), MMOFlags, AAInfo);
653      }
654
655      ReplaceNode(SDValue(Node, 0), Result);
656      break;
657    }
658  }
659}
660
661void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
662  LoadSDNode *LD = cast<LoadSDNode>(Node);
663  SDValue Chain = LD->getChain();  // The chain.
664  SDValue Ptr = LD->getBasePtr();  // The base pointer.
665  SDValue Value;                   // The value returned by the load op.
666  SDLoc dl(Node);
667
668  ISD::LoadExtType ExtType = LD->getExtensionType();
669  if (ExtType == ISD::NON_EXTLOAD) {
670    LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
671    MVT VT = Node->getSimpleValueType(0);
672    SDValue RVal = SDValue(Node, 0);
673    SDValue RChain = SDValue(Node, 1);
674
675    switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
676    default: llvm_unreachable("This action is not supported yet!");
677    case TargetLowering::Legal: {
678      EVT MemVT = LD->getMemoryVT();
679      const DataLayout &DL = DAG.getDataLayout();
680      // If this is an unaligned load and the target doesn't support it,
681      // expand it.
682      if (!TLI.allowsMemoryAccessForAlignment(*DAG.getContext(), DL, MemVT,
683                                              *LD->getMemOperand())) {
684        std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
685      }
686      break;
687    }
688    case TargetLowering::Custom:
689      if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
690        RVal = Res;
691        RChain = Res.getValue(1);
692      }
693      break;
694
695    case TargetLowering::Promote: {
696      MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
697      assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
698             "Can only promote loads to same size type");
699
700      SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
701      RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
702      RChain = Res.getValue(1);
703      break;
704    }
705    }
706    if (RChain.getNode() != Node) {
707      assert(RVal.getNode() != Node && "Load must be completely replaced");
708      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
709      DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
710      if (UpdatedNodes) {
711        UpdatedNodes->insert(RVal.getNode());
712        UpdatedNodes->insert(RChain.getNode());
713      }
714      ReplacedNode(Node);
715    }
716    return;
717  }
718
719  LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
720  EVT SrcVT = LD->getMemoryVT();
721  unsigned SrcWidth = SrcVT.getSizeInBits();
722  MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
723  AAMDNodes AAInfo = LD->getAAInfo();
724
725  if (SrcWidth != SrcVT.getStoreSizeInBits() &&
726      // Some targets pretend to have an i1 loading operation, and actually
727      // load an i8.  This trick is correct for ZEXTLOAD because the top 7
728      // bits are guaranteed to be zero; it helps the optimizers understand
729      // that these bits are zero.  It is also useful for EXTLOAD, since it
730      // tells the optimizers that those bits are undefined.  It would be
731      // nice to have an effective generic way of getting these benefits...
732      // Until such a way is found, don't insist on promoting i1 here.
733      (SrcVT != MVT::i1 ||
734       TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
735         TargetLowering::Promote)) {
736    // Promote to a byte-sized load if not loading an integral number of
737    // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
738    unsigned NewWidth = SrcVT.getStoreSizeInBits();
739    EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
740    SDValue Ch;
741
742    // The extra bits are guaranteed to be zero, since we stored them that
743    // way.  A zext load from NVT thus automatically gives zext from SrcVT.
744
745    ISD::LoadExtType NewExtType =
746      ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
747
748    SDValue Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
749                                    Chain, Ptr, LD->getPointerInfo(), NVT,
750                                    LD->getOriginalAlign(), MMOFlags, AAInfo);
751
752    Ch = Result.getValue(1); // The chain.
753
754    if (ExtType == ISD::SEXTLOAD)
755      // Having the top bits zero doesn't help when sign extending.
756      Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
757                           Result.getValueType(),
758                           Result, DAG.getValueType(SrcVT));
759    else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
760      // All the top bits are guaranteed to be zero - inform the optimizers.
761      Result = DAG.getNode(ISD::AssertZext, dl,
762                           Result.getValueType(), Result,
763                           DAG.getValueType(SrcVT));
764
765    Value = Result;
766    Chain = Ch;
767  } else if (SrcWidth & (SrcWidth - 1)) {
768    // If not loading a power-of-2 number of bits, expand as two loads.
769    assert(!SrcVT.isVector() && "Unsupported extload!");
770    unsigned LogSrcWidth = Log2_32(SrcWidth);
771    assert(LogSrcWidth < 32);
772    unsigned RoundWidth = 1 << LogSrcWidth;
773    assert(RoundWidth < SrcWidth);
774    unsigned ExtraWidth = SrcWidth - RoundWidth;
775    assert(ExtraWidth < RoundWidth);
776    assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
777           "Load size not an integral number of bytes!");
778    EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
779    EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
780    SDValue Lo, Hi, Ch;
781    unsigned IncrementSize;
782    auto &DL = DAG.getDataLayout();
783
784    if (DL.isLittleEndian()) {
785      // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
786      // Load the bottom RoundWidth bits.
787      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
788                          LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
789                          MMOFlags, AAInfo);
790
791      // Load the remaining ExtraWidth bits.
792      IncrementSize = RoundWidth / 8;
793      Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
794      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
795                          LD->getPointerInfo().getWithOffset(IncrementSize),
796                          ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
797
798      // Build a factor node to remember that this load is independent of
799      // the other one.
800      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
801                       Hi.getValue(1));
802
803      // Move the top bits to the right place.
804      Hi = DAG.getNode(
805          ISD::SHL, dl, Hi.getValueType(), Hi,
806          DAG.getConstant(RoundWidth, dl,
807                          TLI.getShiftAmountTy(Hi.getValueType(), DL)));
808
809      // Join the hi and lo parts.
810      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
811    } else {
812      // Big endian - avoid unaligned loads.
813      // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
814      // Load the top RoundWidth bits.
815      Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
816                          LD->getPointerInfo(), RoundVT, LD->getOriginalAlign(),
817                          MMOFlags, AAInfo);
818
819      // Load the remaining ExtraWidth bits.
820      IncrementSize = RoundWidth / 8;
821      Ptr = DAG.getMemBasePlusOffset(Ptr, IncrementSize, dl);
822      Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
823                          LD->getPointerInfo().getWithOffset(IncrementSize),
824                          ExtraVT, LD->getOriginalAlign(), MMOFlags, AAInfo);
825
826      // Build a factor node to remember that this load is independent of
827      // the other one.
828      Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
829                       Hi.getValue(1));
830
831      // Move the top bits to the right place.
832      Hi = DAG.getNode(
833          ISD::SHL, dl, Hi.getValueType(), Hi,
834          DAG.getConstant(ExtraWidth, dl,
835                          TLI.getShiftAmountTy(Hi.getValueType(), DL)));
836
837      // Join the hi and lo parts.
838      Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
839    }
840
841    Chain = Ch;
842  } else {
843    bool isCustom = false;
844    switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
845                                 SrcVT.getSimpleVT())) {
846    default: llvm_unreachable("This action is not supported yet!");
847    case TargetLowering::Custom:
848      isCustom = true;
849      LLVM_FALLTHROUGH;
850    case TargetLowering::Legal:
851      Value = SDValue(Node, 0);
852      Chain = SDValue(Node, 1);
853
854      if (isCustom) {
855        if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
856          Value = Res;
857          Chain = Res.getValue(1);
858        }
859      } else {
860        // If this is an unaligned load and the target doesn't support it,
861        // expand it.
862        EVT MemVT = LD->getMemoryVT();
863        const DataLayout &DL = DAG.getDataLayout();
864        if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
865                                    *LD->getMemOperand())) {
866          std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
867        }
868      }
869      break;
870
871    case TargetLowering::Expand: {
872      EVT DestVT = Node->getValueType(0);
873      if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
874        // If the source type is not legal, see if there is a legal extload to
875        // an intermediate type that we can then extend further.
876        EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
877        if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
878            TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
879          // If we are loading a legal type, this is a non-extload followed by a
880          // full extend.
881          ISD::LoadExtType MidExtType =
882              (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
883
884          SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
885                                        SrcVT, LD->getMemOperand());
886          unsigned ExtendOp =
887              ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
888          Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
889          Chain = Load.getValue(1);
890          break;
891        }
892
893        // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
894        // normal undefined upper bits behavior to allow using an in-reg extend
895        // with the illegal FP type, so load as an integer and do the
896        // from-integer conversion.
897        if (SrcVT.getScalarType() == MVT::f16) {
898          EVT ISrcVT = SrcVT.changeTypeToInteger();
899          EVT IDestVT = DestVT.changeTypeToInteger();
900          EVT ILoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
901
902          SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, ILoadVT, Chain,
903                                          Ptr, ISrcVT, LD->getMemOperand());
904          Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
905          Chain = Result.getValue(1);
906          break;
907        }
908      }
909
910      assert(!SrcVT.isVector() &&
911             "Vector Loads are handled in LegalizeVectorOps");
912
913      // FIXME: This does not work for vectors on most targets.  Sign-
914      // and zero-extend operations are currently folded into extending
915      // loads, whether they are legal or not, and then we end up here
916      // without any support for legalizing them.
917      assert(ExtType != ISD::EXTLOAD &&
918             "EXTLOAD should always be supported!");
919      // Turn the unsupported load into an EXTLOAD followed by an
920      // explicit zero/sign extend inreg.
921      SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
922                                      Node->getValueType(0),
923                                      Chain, Ptr, SrcVT,
924                                      LD->getMemOperand());
925      SDValue ValRes;
926      if (ExtType == ISD::SEXTLOAD)
927        ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
928                             Result.getValueType(),
929                             Result, DAG.getValueType(SrcVT));
930      else
931        ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
932      Value = ValRes;
933      Chain = Result.getValue(1);
934      break;
935    }
936    }
937  }
938
939  // Since loads produce two values, make sure to remember that we legalized
940  // both of them.
941  if (Chain.getNode() != Node) {
942    assert(Value.getNode() != Node && "Load must be completely replaced");
943    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
944    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
945    if (UpdatedNodes) {
946      UpdatedNodes->insert(Value.getNode());
947      UpdatedNodes->insert(Chain.getNode());
948    }
949    ReplacedNode(Node);
950  }
951}
952
953/// Return a legal replacement for the given operation, with all legal operands.
954void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
955  LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
956
957  // Allow illegal target nodes and illegal registers.
958  if (Node->getOpcode() == ISD::TargetConstant ||
959      Node->getOpcode() == ISD::Register)
960    return;
961
962#ifndef NDEBUG
963  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
964    assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
965             TargetLowering::TypeLegal &&
966           "Unexpected illegal type!");
967
968  for (const SDValue &Op : Node->op_values())
969    assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
970              TargetLowering::TypeLegal ||
971            Op.getOpcode() == ISD::TargetConstant ||
972            Op.getOpcode() == ISD::Register) &&
973            "Unexpected illegal type!");
974#endif
975
976  // Figure out the correct action; the way to query this varies by opcode
977  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
978  bool SimpleFinishLegalizing = true;
979  switch (Node->getOpcode()) {
980  case ISD::INTRINSIC_W_CHAIN:
981  case ISD::INTRINSIC_WO_CHAIN:
982  case ISD::INTRINSIC_VOID:
983  case ISD::STACKSAVE:
984    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
985    break;
986  case ISD::GET_DYNAMIC_AREA_OFFSET:
987    Action = TLI.getOperationAction(Node->getOpcode(),
988                                    Node->getValueType(0));
989    break;
990  case ISD::VAARG:
991    Action = TLI.getOperationAction(Node->getOpcode(),
992                                    Node->getValueType(0));
993    if (Action != TargetLowering::Promote)
994      Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
995    break;
996  case ISD::FP_TO_FP16:
997  case ISD::SINT_TO_FP:
998  case ISD::UINT_TO_FP:
999  case ISD::EXTRACT_VECTOR_ELT:
1000  case ISD::LROUND:
1001  case ISD::LLROUND:
1002  case ISD::LRINT:
1003  case ISD::LLRINT:
1004    Action = TLI.getOperationAction(Node->getOpcode(),
1005                                    Node->getOperand(0).getValueType());
1006    break;
1007  case ISD::STRICT_FP_TO_FP16:
1008  case ISD::STRICT_SINT_TO_FP:
1009  case ISD::STRICT_UINT_TO_FP:
1010  case ISD::STRICT_LRINT:
1011  case ISD::STRICT_LLRINT:
1012  case ISD::STRICT_LROUND:
1013  case ISD::STRICT_LLROUND:
1014    // These pseudo-ops are the same as the other STRICT_ ops except
1015    // they are registered with setOperationAction() using the input type
1016    // instead of the output type.
1017    Action = TLI.getOperationAction(Node->getOpcode(),
1018                                    Node->getOperand(1).getValueType());
1019    break;
1020  case ISD::SIGN_EXTEND_INREG: {
1021    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1022    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1023    break;
1024  }
1025  case ISD::ATOMIC_STORE:
1026    Action = TLI.getOperationAction(Node->getOpcode(),
1027                                    Node->getOperand(2).getValueType());
1028    break;
1029  case ISD::SELECT_CC:
1030  case ISD::STRICT_FSETCC:
1031  case ISD::STRICT_FSETCCS:
1032  case ISD::SETCC:
1033  case ISD::BR_CC: {
1034    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1035                         Node->getOpcode() == ISD::STRICT_FSETCC ? 3 :
1036                         Node->getOpcode() == ISD::STRICT_FSETCCS ? 3 :
1037                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
1038    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 :
1039                              Node->getOpcode() == ISD::STRICT_FSETCC ? 1 :
1040                              Node->getOpcode() == ISD::STRICT_FSETCCS ? 1 : 0;
1041    MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1042    ISD::CondCode CCCode =
1043        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1044    Action = TLI.getCondCodeAction(CCCode, OpVT);
1045    if (Action == TargetLowering::Legal) {
1046      if (Node->getOpcode() == ISD::SELECT_CC)
1047        Action = TLI.getOperationAction(Node->getOpcode(),
1048                                        Node->getValueType(0));
1049      else
1050        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1051    }
1052    break;
1053  }
1054  case ISD::LOAD:
1055  case ISD::STORE:
1056    // FIXME: Model these properly.  LOAD and STORE are complicated, and
1057    // STORE expects the unlegalized operand in some cases.
1058    SimpleFinishLegalizing = false;
1059    break;
1060  case ISD::CALLSEQ_START:
1061  case ISD::CALLSEQ_END:
1062    // FIXME: This shouldn't be necessary.  These nodes have special properties
1063    // dealing with the recursive nature of legalization.  Removing this
1064    // special case should be done as part of making LegalizeDAG non-recursive.
1065    SimpleFinishLegalizing = false;
1066    break;
1067  case ISD::EXTRACT_ELEMENT:
1068  case ISD::FLT_ROUNDS_:
1069  case ISD::MERGE_VALUES:
1070  case ISD::EH_RETURN:
1071  case ISD::FRAME_TO_ARGS_OFFSET:
1072  case ISD::EH_DWARF_CFA:
1073  case ISD::EH_SJLJ_SETJMP:
1074  case ISD::EH_SJLJ_LONGJMP:
1075  case ISD::EH_SJLJ_SETUP_DISPATCH:
1076    // These operations lie about being legal: when they claim to be legal,
1077    // they should actually be expanded.
1078    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1079    if (Action == TargetLowering::Legal)
1080      Action = TargetLowering::Expand;
1081    break;
1082  case ISD::INIT_TRAMPOLINE:
1083  case ISD::ADJUST_TRAMPOLINE:
1084  case ISD::FRAMEADDR:
1085  case ISD::RETURNADDR:
1086  case ISD::ADDROFRETURNADDR:
1087  case ISD::SPONENTRY:
1088    // These operations lie about being legal: when they claim to be legal,
1089    // they should actually be custom-lowered.
1090    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1091    if (Action == TargetLowering::Legal)
1092      Action = TargetLowering::Custom;
1093    break;
1094  case ISD::READCYCLECOUNTER:
1095    // READCYCLECOUNTER returns an i64, even if type legalization might have
1096    // expanded that to several smaller types.
1097    Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1098    break;
1099  case ISD::READ_REGISTER:
1100  case ISD::WRITE_REGISTER:
1101    // Named register is legal in the DAG, but blocked by register name
1102    // selection if not implemented by target (to chose the correct register)
1103    // They'll be converted to Copy(To/From)Reg.
1104    Action = TargetLowering::Legal;
1105    break;
1106  case ISD::DEBUGTRAP:
1107    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1108    if (Action == TargetLowering::Expand) {
1109      // replace ISD::DEBUGTRAP with ISD::TRAP
1110      SDValue NewVal;
1111      NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1112                           Node->getOperand(0));
1113      ReplaceNode(Node, NewVal.getNode());
1114      LegalizeOp(NewVal.getNode());
1115      return;
1116    }
1117    break;
1118  case ISD::SADDSAT:
1119  case ISD::UADDSAT:
1120  case ISD::SSUBSAT:
1121  case ISD::USUBSAT: {
1122    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1123    break;
1124  }
1125  case ISD::SMULFIX:
1126  case ISD::SMULFIXSAT:
1127  case ISD::UMULFIX:
1128  case ISD::UMULFIXSAT:
1129  case ISD::SDIVFIX:
1130  case ISD::SDIVFIXSAT:
1131  case ISD::UDIVFIX:
1132  case ISD::UDIVFIXSAT: {
1133    unsigned Scale = Node->getConstantOperandVal(2);
1134    Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1135                                              Node->getValueType(0), Scale);
1136    break;
1137  }
1138  case ISD::MSCATTER:
1139    Action = TLI.getOperationAction(Node->getOpcode(),
1140                    cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1141    break;
1142  case ISD::MSTORE:
1143    Action = TLI.getOperationAction(Node->getOpcode(),
1144                    cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1145    break;
1146  case ISD::VECREDUCE_FADD:
1147  case ISD::VECREDUCE_FMUL:
1148  case ISD::VECREDUCE_ADD:
1149  case ISD::VECREDUCE_MUL:
1150  case ISD::VECREDUCE_AND:
1151  case ISD::VECREDUCE_OR:
1152  case ISD::VECREDUCE_XOR:
1153  case ISD::VECREDUCE_SMAX:
1154  case ISD::VECREDUCE_SMIN:
1155  case ISD::VECREDUCE_UMAX:
1156  case ISD::VECREDUCE_UMIN:
1157  case ISD::VECREDUCE_FMAX:
1158  case ISD::VECREDUCE_FMIN:
1159    Action = TLI.getOperationAction(
1160        Node->getOpcode(), Node->getOperand(0).getValueType());
1161    break;
1162  default:
1163    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1164      Action = TargetLowering::Legal;
1165    } else {
1166      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1167    }
1168    break;
1169  }
1170
1171  if (SimpleFinishLegalizing) {
1172    SDNode *NewNode = Node;
1173    switch (Node->getOpcode()) {
1174    default: break;
1175    case ISD::SHL:
1176    case ISD::SRL:
1177    case ISD::SRA:
1178    case ISD::ROTL:
1179    case ISD::ROTR: {
1180      // Legalizing shifts/rotates requires adjusting the shift amount
1181      // to the appropriate width.
1182      SDValue Op0 = Node->getOperand(0);
1183      SDValue Op1 = Node->getOperand(1);
1184      if (!Op1.getValueType().isVector()) {
1185        SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1186        // The getShiftAmountOperand() may create a new operand node or
1187        // return the existing one. If new operand is created we need
1188        // to update the parent node.
1189        // Do not try to legalize SAO here! It will be automatically legalized
1190        // in the next round.
1191        if (SAO != Op1)
1192          NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1193      }
1194    }
1195    break;
1196    case ISD::FSHL:
1197    case ISD::FSHR:
1198    case ISD::SRL_PARTS:
1199    case ISD::SRA_PARTS:
1200    case ISD::SHL_PARTS: {
1201      // Legalizing shifts/rotates requires adjusting the shift amount
1202      // to the appropriate width.
1203      SDValue Op0 = Node->getOperand(0);
1204      SDValue Op1 = Node->getOperand(1);
1205      SDValue Op2 = Node->getOperand(2);
1206      if (!Op2.getValueType().isVector()) {
1207        SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1208        // The getShiftAmountOperand() may create a new operand node or
1209        // return the existing one. If new operand is created we need
1210        // to update the parent node.
1211        if (SAO != Op2)
1212          NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1213      }
1214      break;
1215    }
1216    }
1217
1218    if (NewNode != Node) {
1219      ReplaceNode(Node, NewNode);
1220      Node = NewNode;
1221    }
1222    switch (Action) {
1223    case TargetLowering::Legal:
1224      LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1225      return;
1226    case TargetLowering::Custom:
1227      LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1228      // FIXME: The handling for custom lowering with multiple results is
1229      // a complete mess.
1230      if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1231        if (!(Res.getNode() != Node || Res.getResNo() != 0))
1232          return;
1233
1234        if (Node->getNumValues() == 1) {
1235          LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1236          // We can just directly replace this node with the lowered value.
1237          ReplaceNode(SDValue(Node, 0), Res);
1238          return;
1239        }
1240
1241        SmallVector<SDValue, 8> ResultVals;
1242        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1243          ResultVals.push_back(Res.getValue(i));
1244        LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1245        ReplaceNode(Node, ResultVals.data());
1246        return;
1247      }
1248      LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1249      LLVM_FALLTHROUGH;
1250    case TargetLowering::Expand:
1251      if (ExpandNode(Node))
1252        return;
1253      LLVM_FALLTHROUGH;
1254    case TargetLowering::LibCall:
1255      ConvertNodeToLibcall(Node);
1256      return;
1257    case TargetLowering::Promote:
1258      PromoteNode(Node);
1259      return;
1260    }
1261  }
1262
1263  switch (Node->getOpcode()) {
1264  default:
1265#ifndef NDEBUG
1266    dbgs() << "NODE: ";
1267    Node->dump( &DAG);
1268    dbgs() << "\n";
1269#endif
1270    llvm_unreachable("Do not know how to legalize this operator!");
1271
1272  case ISD::CALLSEQ_START:
1273  case ISD::CALLSEQ_END:
1274    break;
1275  case ISD::LOAD:
1276    return LegalizeLoadOps(Node);
1277  case ISD::STORE:
1278    return LegalizeStoreOps(Node);
1279  }
1280}
1281
1282SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1283  SDValue Vec = Op.getOperand(0);
1284  SDValue Idx = Op.getOperand(1);
1285  SDLoc dl(Op);
1286
1287  // Before we generate a new store to a temporary stack slot, see if there is
1288  // already one that we can use. There often is because when we scalarize
1289  // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1290  // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1291  // the vector. If all are expanded here, we don't want one store per vector
1292  // element.
1293
1294  // Caches for hasPredecessorHelper
1295  SmallPtrSet<const SDNode *, 32> Visited;
1296  SmallVector<const SDNode *, 16> Worklist;
1297  Visited.insert(Op.getNode());
1298  Worklist.push_back(Idx.getNode());
1299  SDValue StackPtr, Ch;
1300  for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1301       UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1302    SDNode *User = *UI;
1303    if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1304      if (ST->isIndexed() || ST->isTruncatingStore() ||
1305          ST->getValue() != Vec)
1306        continue;
1307
1308      // Make sure that nothing else could have stored into the destination of
1309      // this store.
1310      if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1311        continue;
1312
1313      // If the index is dependent on the store we will introduce a cycle when
1314      // creating the load (the load uses the index, and by replacing the chain
1315      // we will make the index dependent on the load). Also, the store might be
1316      // dependent on the extractelement and introduce a cycle when creating
1317      // the load.
1318      if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1319          ST->hasPredecessor(Op.getNode()))
1320        continue;
1321
1322      StackPtr = ST->getBasePtr();
1323      Ch = SDValue(ST, 0);
1324      break;
1325    }
1326  }
1327
1328  EVT VecVT = Vec.getValueType();
1329
1330  if (!Ch.getNode()) {
1331    // Store the value to a temporary stack slot, then LOAD the returned part.
1332    StackPtr = DAG.CreateStackTemporary(VecVT);
1333    Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1334                      MachinePointerInfo());
1335  }
1336
1337  StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1338
1339  SDValue NewLoad;
1340
1341  if (Op.getValueType().isVector())
1342    NewLoad =
1343        DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1344  else
1345    NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1346                             MachinePointerInfo(),
1347                             VecVT.getVectorElementType());
1348
1349  // Replace the chain going out of the store, by the one out of the load.
1350  DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1351
1352  // We introduced a cycle though, so update the loads operands, making sure
1353  // to use the original store's chain as an incoming chain.
1354  SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1355                                          NewLoad->op_end());
1356  NewLoadOperands[0] = Ch;
1357  NewLoad =
1358      SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1359  return NewLoad;
1360}
1361
1362SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1363  assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1364
1365  SDValue Vec  = Op.getOperand(0);
1366  SDValue Part = Op.getOperand(1);
1367  SDValue Idx  = Op.getOperand(2);
1368  SDLoc dl(Op);
1369
1370  // Store the value to a temporary stack slot, then LOAD the returned part.
1371  EVT VecVT = Vec.getValueType();
1372  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1373  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1374  MachinePointerInfo PtrInfo =
1375      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1376
1377  // First store the whole vector.
1378  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1379
1380  // Then store the inserted part.
1381  SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1382
1383  // Store the subvector.
1384  Ch = DAG.getStore(
1385      Ch, dl, Part, SubStackPtr,
1386      MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1387
1388  // Finally, load the updated vector.
1389  return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1390}
1391
1392SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1393  assert((Node->getOpcode() == ISD::BUILD_VECTOR ||
1394          Node->getOpcode() == ISD::CONCAT_VECTORS) &&
1395         "Unexpected opcode!");
1396
1397  // We can't handle this case efficiently.  Allocate a sufficiently
1398  // aligned object on the stack, store each operand into it, then load
1399  // the result as a vector.
1400  // Create the stack frame object.
1401  EVT VT = Node->getValueType(0);
1402  EVT MemVT = isa<BuildVectorSDNode>(Node) ? VT.getVectorElementType()
1403                                           : Node->getOperand(0).getValueType();
1404  SDLoc dl(Node);
1405  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1406  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1407  MachinePointerInfo PtrInfo =
1408      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1409
1410  // Emit a store of each element to the stack slot.
1411  SmallVector<SDValue, 8> Stores;
1412  unsigned TypeByteSize = MemVT.getSizeInBits() / 8;
1413  assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1414  // Store (in the right endianness) the elements to memory.
1415  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1416    // Ignore undef elements.
1417    if (Node->getOperand(i).isUndef()) continue;
1418
1419    unsigned Offset = TypeByteSize*i;
1420
1421    SDValue Idx = DAG.getMemBasePlusOffset(FIPtr, Offset, dl);
1422
1423    // If the destination vector element type is narrower than the source
1424    // element type, only store the bits necessary.
1425    if (MemVT.bitsLT(Node->getOperand(i).getValueType()))
1426      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1427                                         Node->getOperand(i), Idx,
1428                                         PtrInfo.getWithOffset(Offset), MemVT));
1429    else
1430      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1431                                    Idx, PtrInfo.getWithOffset(Offset)));
1432  }
1433
1434  SDValue StoreChain;
1435  if (!Stores.empty())    // Not all undef elements?
1436    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1437  else
1438    StoreChain = DAG.getEntryNode();
1439
1440  // Result is a load from the stack slot.
1441  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1442}
1443
1444/// Bitcast a floating-point value to an integer value. Only bitcast the part
1445/// containing the sign bit if the target has no integer value capable of
1446/// holding all bits of the floating-point value.
1447void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1448                                             const SDLoc &DL,
1449                                             SDValue Value) const {
1450  EVT FloatVT = Value.getValueType();
1451  unsigned NumBits = FloatVT.getSizeInBits();
1452  State.FloatVT = FloatVT;
1453  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1454  // Convert to an integer of the same size.
1455  if (TLI.isTypeLegal(IVT)) {
1456    State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1457    State.SignMask = APInt::getSignMask(NumBits);
1458    State.SignBit = NumBits - 1;
1459    return;
1460  }
1461
1462  auto &DataLayout = DAG.getDataLayout();
1463  // Store the float to memory, then load the sign part out as an integer.
1464  MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1465  // First create a temporary that is aligned for both the load and store.
1466  SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1467  int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1468  // Then store the float to it.
1469  State.FloatPtr = StackPtr;
1470  MachineFunction &MF = DAG.getMachineFunction();
1471  State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1472  State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1473                             State.FloatPointerInfo);
1474
1475  SDValue IntPtr;
1476  if (DataLayout.isBigEndian()) {
1477    assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1478    // Load out a legal integer with the same sign bit as the float.
1479    IntPtr = StackPtr;
1480    State.IntPointerInfo = State.FloatPointerInfo;
1481  } else {
1482    // Advance the pointer so that the loaded byte will contain the sign bit.
1483    unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1484    IntPtr = DAG.getMemBasePlusOffset(StackPtr, ByteOffset, DL);
1485    State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1486                                                             ByteOffset);
1487  }
1488
1489  State.IntPtr = IntPtr;
1490  State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1491                                  State.IntPointerInfo, MVT::i8);
1492  State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1493  State.SignBit = 7;
1494}
1495
1496/// Replace the integer value produced by getSignAsIntValue() with a new value
1497/// and cast the result back to a floating-point type.
1498SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1499                                              const SDLoc &DL,
1500                                              SDValue NewIntValue) const {
1501  if (!State.Chain)
1502    return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1503
1504  // Override the part containing the sign bit in the value stored on the stack.
1505  SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1506                                    State.IntPointerInfo, MVT::i8);
1507  return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1508                     State.FloatPointerInfo);
1509}
1510
1511SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1512  SDLoc DL(Node);
1513  SDValue Mag = Node->getOperand(0);
1514  SDValue Sign = Node->getOperand(1);
1515
1516  // Get sign bit into an integer value.
1517  FloatSignAsInt SignAsInt;
1518  getSignAsIntValue(SignAsInt, DL, Sign);
1519
1520  EVT IntVT = SignAsInt.IntValue.getValueType();
1521  SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1522  SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1523                                SignMask);
1524
1525  // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1526  EVT FloatVT = Mag.getValueType();
1527  if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1528      TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1529    SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1530    SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1531    SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1532                                DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1533    return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1534  }
1535
1536  // Transform Mag value to integer, and clear the sign bit.
1537  FloatSignAsInt MagAsInt;
1538  getSignAsIntValue(MagAsInt, DL, Mag);
1539  EVT MagVT = MagAsInt.IntValue.getValueType();
1540  SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1541  SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1542                                    ClearSignMask);
1543
1544  // Get the signbit at the right position for MagAsInt.
1545  int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1546  EVT ShiftVT = IntVT;
1547  if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1548    SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1549    ShiftVT = MagVT;
1550  }
1551  if (ShiftAmount > 0) {
1552    SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1553    SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1554  } else if (ShiftAmount < 0) {
1555    SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1556    SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1557  }
1558  if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1559    SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1560  }
1561
1562  // Store the part with the modified sign and convert back to float.
1563  SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1564  return modifySignAsInt(MagAsInt, DL, CopiedSign);
1565}
1566
1567SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1568  SDLoc DL(Node);
1569  SDValue Value = Node->getOperand(0);
1570
1571  // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1572  EVT FloatVT = Value.getValueType();
1573  if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1574    SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1575    return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1576  }
1577
1578  // Transform value to integer, clear the sign bit and transform back.
1579  FloatSignAsInt ValueAsInt;
1580  getSignAsIntValue(ValueAsInt, DL, Value);
1581  EVT IntVT = ValueAsInt.IntValue.getValueType();
1582  SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1583  SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1584                                    ClearSignMask);
1585  return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1586}
1587
1588void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1589                                           SmallVectorImpl<SDValue> &Results) {
1590  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1591  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1592          " not tell us which reg is the stack pointer!");
1593  SDLoc dl(Node);
1594  EVT VT = Node->getValueType(0);
1595  SDValue Tmp1 = SDValue(Node, 0);
1596  SDValue Tmp2 = SDValue(Node, 1);
1597  SDValue Tmp3 = Node->getOperand(2);
1598  SDValue Chain = Tmp1.getOperand(0);
1599
1600  // Chain the dynamic stack allocation so that it doesn't modify the stack
1601  // pointer when other instructions are using the stack.
1602  Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1603
1604  SDValue Size  = Tmp2.getOperand(1);
1605  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1606  Chain = SP.getValue(1);
1607  Align Alignment = cast<ConstantSDNode>(Tmp3)->getAlignValue();
1608  const TargetFrameLowering *TFL = DAG.getSubtarget().getFrameLowering();
1609  unsigned Opc =
1610    TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
1611    ISD::ADD : ISD::SUB;
1612
1613  Align StackAlign = TFL->getStackAlign();
1614  Tmp1 = DAG.getNode(Opc, dl, VT, SP, Size);       // Value
1615  if (Alignment > StackAlign)
1616    Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1617                       DAG.getConstant(-Alignment.value(), dl, VT));
1618  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1619
1620  Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1621                            DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1622
1623  Results.push_back(Tmp1);
1624  Results.push_back(Tmp2);
1625}
1626
1627/// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1628/// target.
1629///
1630/// If the SETCC has been legalized using AND / OR, then the legalized node
1631/// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1632/// will be set to false.
1633///
1634/// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1635/// then the values of LHS and RHS will be swapped, CC will be set to the
1636/// new condition, and NeedInvert will be set to false.
1637///
1638/// If the SETCC has been legalized using the inverse condcode, then LHS and
1639/// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1640/// will be set to true. The caller must invert the result of the SETCC with
1641/// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1642/// of a true/false result.
1643///
1644/// \returns true if the SetCC has been legalized, false if it hasn't.
1645bool SelectionDAGLegalize::LegalizeSetCCCondCode(
1646    EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, bool &NeedInvert,
1647    const SDLoc &dl, SDValue &Chain, bool IsSignaling) {
1648  MVT OpVT = LHS.getSimpleValueType();
1649  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1650  NeedInvert = false;
1651  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1652  default: llvm_unreachable("Unknown condition code action!");
1653  case TargetLowering::Legal:
1654    // Nothing to do.
1655    break;
1656  case TargetLowering::Expand: {
1657    ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1658    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1659      std::swap(LHS, RHS);
1660      CC = DAG.getCondCode(InvCC);
1661      return true;
1662    }
1663    // Swapping operands didn't work. Try inverting the condition.
1664    bool NeedSwap = false;
1665    InvCC = getSetCCInverse(CCCode, OpVT);
1666    if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1667      // If inverting the condition is not enough, try swapping operands
1668      // on top of it.
1669      InvCC = ISD::getSetCCSwappedOperands(InvCC);
1670      NeedSwap = true;
1671    }
1672    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1673      CC = DAG.getCondCode(InvCC);
1674      NeedInvert = true;
1675      if (NeedSwap)
1676        std::swap(LHS, RHS);
1677      return true;
1678    }
1679
1680    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1681    unsigned Opc = 0;
1682    switch (CCCode) {
1683    default: llvm_unreachable("Don't know how to expand this condition!");
1684    case ISD::SETO:
1685        assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1686            && "If SETO is expanded, SETOEQ must be legal!");
1687        CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1688    case ISD::SETUO:
1689        assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1690            && "If SETUO is expanded, SETUNE must be legal!");
1691        CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR;  break;
1692    case ISD::SETOEQ:
1693    case ISD::SETOGT:
1694    case ISD::SETOGE:
1695    case ISD::SETOLT:
1696    case ISD::SETOLE:
1697    case ISD::SETONE:
1698    case ISD::SETUEQ:
1699    case ISD::SETUNE:
1700    case ISD::SETUGT:
1701    case ISD::SETUGE:
1702    case ISD::SETULT:
1703    case ISD::SETULE:
1704        // If we are floating point, assign and break, otherwise fall through.
1705        if (!OpVT.isInteger()) {
1706          // We can use the 4th bit to tell if we are the unordered
1707          // or ordered version of the opcode.
1708          CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1709          Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1710          CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1711          break;
1712        }
1713        // Fallthrough if we are unsigned integer.
1714        LLVM_FALLTHROUGH;
1715    case ISD::SETLE:
1716    case ISD::SETGT:
1717    case ISD::SETGE:
1718    case ISD::SETLT:
1719    case ISD::SETNE:
1720    case ISD::SETEQ:
1721      // If all combinations of inverting the condition and swapping operands
1722      // didn't work then we have no means to expand the condition.
1723      llvm_unreachable("Don't know how to expand this condition!");
1724    }
1725
1726    SDValue SetCC1, SetCC2;
1727    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1728      // If we aren't the ordered or unorder operation,
1729      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1730      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
1731      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
1732    } else {
1733      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1734      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
1735      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
1736    }
1737    if (Chain)
1738      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
1739                          SetCC2.getValue(1));
1740    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1741    RHS = SDValue();
1742    CC  = SDValue();
1743    return true;
1744  }
1745  }
1746  return false;
1747}
1748
1749/// Emit a store/load combination to the stack.  This stores
1750/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1751/// a load from the stack slot to DestVT, extending it if needed.
1752/// The resultant code need not be legal.
1753SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1754                                               EVT DestVT, const SDLoc &dl) {
1755  return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1756}
1757
1758SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1759                                               EVT DestVT, const SDLoc &dl,
1760                                               SDValue Chain) {
1761  // Create the stack frame object.
1762  unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1763      SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1764  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1765
1766  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1767  int SPFI = StackPtrFI->getIndex();
1768  MachinePointerInfo PtrInfo =
1769      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1770
1771  unsigned SrcSize = SrcOp.getValueSizeInBits();
1772  unsigned SlotSize = SlotVT.getSizeInBits();
1773  unsigned DestSize = DestVT.getSizeInBits();
1774  Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1775  unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1776
1777  // Emit a store to the stack slot.  Use a truncstore if the input value is
1778  // later than DestVT.
1779  SDValue Store;
1780
1781  if (SrcSize > SlotSize)
1782    Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1783                              SlotVT, SrcAlign);
1784  else {
1785    assert(SrcSize == SlotSize && "Invalid store");
1786    Store =
1787        DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1788  }
1789
1790  // Result is a load from the stack slot.
1791  if (SlotSize == DestSize)
1792    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1793
1794  assert(SlotSize < DestSize && "Unknown extension!");
1795  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1796                        DestAlign);
1797}
1798
1799SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1800  SDLoc dl(Node);
1801  // Create a vector sized/aligned stack slot, store the value to element #0,
1802  // then load the whole vector back out.
1803  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1804
1805  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1806  int SPFI = StackPtrFI->getIndex();
1807
1808  SDValue Ch = DAG.getTruncStore(
1809      DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1810      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1811      Node->getValueType(0).getVectorElementType());
1812  return DAG.getLoad(
1813      Node->getValueType(0), dl, Ch, StackPtr,
1814      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1815}
1816
1817static bool
1818ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1819                     const TargetLowering &TLI, SDValue &Res) {
1820  unsigned NumElems = Node->getNumOperands();
1821  SDLoc dl(Node);
1822  EVT VT = Node->getValueType(0);
1823
1824  // Try to group the scalars into pairs, shuffle the pairs together, then
1825  // shuffle the pairs of pairs together, etc. until the vector has
1826  // been built. This will work only if all of the necessary shuffle masks
1827  // are legal.
1828
1829  // We do this in two phases; first to check the legality of the shuffles,
1830  // and next, assuming that all shuffles are legal, to create the new nodes.
1831  for (int Phase = 0; Phase < 2; ++Phase) {
1832    SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1833                                                              NewIntermedVals;
1834    for (unsigned i = 0; i < NumElems; ++i) {
1835      SDValue V = Node->getOperand(i);
1836      if (V.isUndef())
1837        continue;
1838
1839      SDValue Vec;
1840      if (Phase)
1841        Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1842      IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1843    }
1844
1845    while (IntermedVals.size() > 2) {
1846      NewIntermedVals.clear();
1847      for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1848        // This vector and the next vector are shuffled together (simply to
1849        // append the one to the other).
1850        SmallVector<int, 16> ShuffleVec(NumElems, -1);
1851
1852        SmallVector<int, 16> FinalIndices;
1853        FinalIndices.reserve(IntermedVals[i].second.size() +
1854                             IntermedVals[i+1].second.size());
1855
1856        int k = 0;
1857        for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1858             ++j, ++k) {
1859          ShuffleVec[k] = j;
1860          FinalIndices.push_back(IntermedVals[i].second[j]);
1861        }
1862        for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1863             ++j, ++k) {
1864          ShuffleVec[k] = NumElems + j;
1865          FinalIndices.push_back(IntermedVals[i+1].second[j]);
1866        }
1867
1868        SDValue Shuffle;
1869        if (Phase)
1870          Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1871                                         IntermedVals[i+1].first,
1872                                         ShuffleVec);
1873        else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1874          return false;
1875        NewIntermedVals.push_back(
1876            std::make_pair(Shuffle, std::move(FinalIndices)));
1877      }
1878
1879      // If we had an odd number of defined values, then append the last
1880      // element to the array of new vectors.
1881      if ((IntermedVals.size() & 1) != 0)
1882        NewIntermedVals.push_back(IntermedVals.back());
1883
1884      IntermedVals.swap(NewIntermedVals);
1885    }
1886
1887    assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1888           "Invalid number of intermediate vectors");
1889    SDValue Vec1 = IntermedVals[0].first;
1890    SDValue Vec2;
1891    if (IntermedVals.size() > 1)
1892      Vec2 = IntermedVals[1].first;
1893    else if (Phase)
1894      Vec2 = DAG.getUNDEF(VT);
1895
1896    SmallVector<int, 16> ShuffleVec(NumElems, -1);
1897    for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1898      ShuffleVec[IntermedVals[0].second[i]] = i;
1899    for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1900      ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1901
1902    if (Phase)
1903      Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1904    else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1905      return false;
1906  }
1907
1908  return true;
1909}
1910
1911/// Expand a BUILD_VECTOR node on targets that don't
1912/// support the operation, but do support the resultant vector type.
1913SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1914  unsigned NumElems = Node->getNumOperands();
1915  SDValue Value1, Value2;
1916  SDLoc dl(Node);
1917  EVT VT = Node->getValueType(0);
1918  EVT OpVT = Node->getOperand(0).getValueType();
1919  EVT EltVT = VT.getVectorElementType();
1920
1921  // If the only non-undef value is the low element, turn this into a
1922  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1923  bool isOnlyLowElement = true;
1924  bool MoreThanTwoValues = false;
1925  bool isConstant = true;
1926  for (unsigned i = 0; i < NumElems; ++i) {
1927    SDValue V = Node->getOperand(i);
1928    if (V.isUndef())
1929      continue;
1930    if (i > 0)
1931      isOnlyLowElement = false;
1932    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1933      isConstant = false;
1934
1935    if (!Value1.getNode()) {
1936      Value1 = V;
1937    } else if (!Value2.getNode()) {
1938      if (V != Value1)
1939        Value2 = V;
1940    } else if (V != Value1 && V != Value2) {
1941      MoreThanTwoValues = true;
1942    }
1943  }
1944
1945  if (!Value1.getNode())
1946    return DAG.getUNDEF(VT);
1947
1948  if (isOnlyLowElement)
1949    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1950
1951  // If all elements are constants, create a load from the constant pool.
1952  if (isConstant) {
1953    SmallVector<Constant*, 16> CV;
1954    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1955      if (ConstantFPSDNode *V =
1956          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1957        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1958      } else if (ConstantSDNode *V =
1959                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1960        if (OpVT==EltVT)
1961          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1962        else {
1963          // If OpVT and EltVT don't match, EltVT is not legal and the
1964          // element values have been promoted/truncated earlier.  Undo this;
1965          // we don't want a v16i8 to become a v16i32 for example.
1966          const ConstantInt *CI = V->getConstantIntValue();
1967          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1968                                        CI->getZExtValue()));
1969        }
1970      } else {
1971        assert(Node->getOperand(i).isUndef());
1972        Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1973        CV.push_back(UndefValue::get(OpNTy));
1974      }
1975    }
1976    Constant *CP = ConstantVector::get(CV);
1977    SDValue CPIdx =
1978        DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1979    Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
1980    return DAG.getLoad(
1981        VT, dl, DAG.getEntryNode(), CPIdx,
1982        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1983        Alignment);
1984  }
1985
1986  SmallSet<SDValue, 16> DefinedValues;
1987  for (unsigned i = 0; i < NumElems; ++i) {
1988    if (Node->getOperand(i).isUndef())
1989      continue;
1990    DefinedValues.insert(Node->getOperand(i));
1991  }
1992
1993  if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1994    if (!MoreThanTwoValues) {
1995      SmallVector<int, 8> ShuffleVec(NumElems, -1);
1996      for (unsigned i = 0; i < NumElems; ++i) {
1997        SDValue V = Node->getOperand(i);
1998        if (V.isUndef())
1999          continue;
2000        ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2001      }
2002      if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2003        // Get the splatted value into the low element of a vector register.
2004        SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2005        SDValue Vec2;
2006        if (Value2.getNode())
2007          Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2008        else
2009          Vec2 = DAG.getUNDEF(VT);
2010
2011        // Return shuffle(LowValVec, undef, <0,0,0,0>)
2012        return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2013      }
2014    } else {
2015      SDValue Res;
2016      if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2017        return Res;
2018    }
2019  }
2020
2021  // Otherwise, we can't handle this case efficiently.
2022  return ExpandVectorBuildThroughStack(Node);
2023}
2024
2025SDValue SelectionDAGLegalize::ExpandSPLAT_VECTOR(SDNode *Node) {
2026  SDLoc DL(Node);
2027  EVT VT = Node->getValueType(0);
2028  SDValue SplatVal = Node->getOperand(0);
2029
2030  return DAG.getSplatBuildVector(VT, DL, SplatVal);
2031}
2032
2033// Expand a node into a call to a libcall.  If the result value
2034// does not fit into a register, return the lo part and set the hi part to the
2035// by-reg argument.  If it does fit into a single register, return the result
2036// and leave the Hi part unset.
2037SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2038                                            bool isSigned) {
2039  TargetLowering::ArgListTy Args;
2040  TargetLowering::ArgListEntry Entry;
2041  for (const SDValue &Op : Node->op_values()) {
2042    EVT ArgVT = Op.getValueType();
2043    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2044    Entry.Node = Op;
2045    Entry.Ty = ArgTy;
2046    Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2047    Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2048    Args.push_back(Entry);
2049  }
2050  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2051                                         TLI.getPointerTy(DAG.getDataLayout()));
2052
2053  EVT RetVT = Node->getValueType(0);
2054  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2055
2056  // By default, the input chain to this libcall is the entry node of the
2057  // function. If the libcall is going to be emitted as a tail call then
2058  // TLI.isUsedByReturnOnly will change it to the right chain if the return
2059  // node which is being folded has a non-entry input chain.
2060  SDValue InChain = DAG.getEntryNode();
2061
2062  // isTailCall may be true since the callee does not reference caller stack
2063  // frame. Check if it's in the right position and that the return types match.
2064  SDValue TCChain = InChain;
2065  const Function &F = DAG.getMachineFunction().getFunction();
2066  bool isTailCall =
2067      TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2068      (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2069  if (isTailCall)
2070    InChain = TCChain;
2071
2072  TargetLowering::CallLoweringInfo CLI(DAG);
2073  bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2074  CLI.setDebugLoc(SDLoc(Node))
2075      .setChain(InChain)
2076      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2077                    std::move(Args))
2078      .setTailCall(isTailCall)
2079      .setSExtResult(signExtend)
2080      .setZExtResult(!signExtend)
2081      .setIsPostTypeLegalization(true);
2082
2083  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2084
2085  if (!CallInfo.second.getNode()) {
2086    LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump(&DAG));
2087    // It's a tailcall, return the chain (which is the DAG root).
2088    return DAG.getRoot();
2089  }
2090
2091  LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump(&DAG));
2092  return CallInfo.first;
2093}
2094
2095void SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2096                                           RTLIB::Libcall Call_F32,
2097                                           RTLIB::Libcall Call_F64,
2098                                           RTLIB::Libcall Call_F80,
2099                                           RTLIB::Libcall Call_F128,
2100                                           RTLIB::Libcall Call_PPCF128,
2101                                           SmallVectorImpl<SDValue> &Results) {
2102  RTLIB::Libcall LC;
2103  switch (Node->getSimpleValueType(0).SimpleTy) {
2104  default: llvm_unreachable("Unexpected request for libcall!");
2105  case MVT::f32: LC = Call_F32; break;
2106  case MVT::f64: LC = Call_F64; break;
2107  case MVT::f80: LC = Call_F80; break;
2108  case MVT::f128: LC = Call_F128; break;
2109  case MVT::ppcf128: LC = Call_PPCF128; break;
2110  }
2111
2112  if (Node->isStrictFPOpcode()) {
2113    EVT RetVT = Node->getValueType(0);
2114    SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2115    TargetLowering::MakeLibCallOptions CallOptions;
2116    // FIXME: This doesn't support tail calls.
2117    std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2118                                                      Ops, CallOptions,
2119                                                      SDLoc(Node),
2120                                                      Node->getOperand(0));
2121    Results.push_back(Tmp.first);
2122    Results.push_back(Tmp.second);
2123  } else {
2124    SDValue Tmp = ExpandLibCall(LC, Node, false);
2125    Results.push_back(Tmp);
2126  }
2127}
2128
2129SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2130                                               RTLIB::Libcall Call_I8,
2131                                               RTLIB::Libcall Call_I16,
2132                                               RTLIB::Libcall Call_I32,
2133                                               RTLIB::Libcall Call_I64,
2134                                               RTLIB::Libcall Call_I128) {
2135  RTLIB::Libcall LC;
2136  switch (Node->getSimpleValueType(0).SimpleTy) {
2137  default: llvm_unreachable("Unexpected request for libcall!");
2138  case MVT::i8:   LC = Call_I8; break;
2139  case MVT::i16:  LC = Call_I16; break;
2140  case MVT::i32:  LC = Call_I32; break;
2141  case MVT::i64:  LC = Call_I64; break;
2142  case MVT::i128: LC = Call_I128; break;
2143  }
2144  return ExpandLibCall(LC, Node, isSigned);
2145}
2146
2147/// Expand the node to a libcall based on first argument type (for instance
2148/// lround and its variant).
2149void SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2150                                            RTLIB::Libcall Call_F32,
2151                                            RTLIB::Libcall Call_F64,
2152                                            RTLIB::Libcall Call_F80,
2153                                            RTLIB::Libcall Call_F128,
2154                                            RTLIB::Libcall Call_PPCF128,
2155                                            SmallVectorImpl<SDValue> &Results) {
2156  EVT InVT = Node->getOperand(Node->isStrictFPOpcode() ? 1 : 0).getValueType();
2157
2158  RTLIB::Libcall LC;
2159  switch (InVT.getSimpleVT().SimpleTy) {
2160  default: llvm_unreachable("Unexpected request for libcall!");
2161  case MVT::f32:     LC = Call_F32; break;
2162  case MVT::f64:     LC = Call_F64; break;
2163  case MVT::f80:     LC = Call_F80; break;
2164  case MVT::f128:    LC = Call_F128; break;
2165  case MVT::ppcf128: LC = Call_PPCF128; break;
2166  }
2167
2168  if (Node->isStrictFPOpcode()) {
2169    EVT RetVT = Node->getValueType(0);
2170    SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
2171    TargetLowering::MakeLibCallOptions CallOptions;
2172    // FIXME: This doesn't support tail calls.
2173    std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
2174                                                      Ops, CallOptions,
2175                                                      SDLoc(Node),
2176                                                      Node->getOperand(0));
2177    Results.push_back(Tmp.first);
2178    Results.push_back(Tmp.second);
2179  } else {
2180    SDValue Tmp = ExpandLibCall(LC, Node, false);
2181    Results.push_back(Tmp);
2182  }
2183}
2184
2185/// Issue libcalls to __{u}divmod to compute div / rem pairs.
2186void
2187SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2188                                          SmallVectorImpl<SDValue> &Results) {
2189  unsigned Opcode = Node->getOpcode();
2190  bool isSigned = Opcode == ISD::SDIVREM;
2191
2192  RTLIB::Libcall LC;
2193  switch (Node->getSimpleValueType(0).SimpleTy) {
2194  default: llvm_unreachable("Unexpected request for libcall!");
2195  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2196  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2197  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2198  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2199  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2200  }
2201
2202  // The input chain to this libcall is the entry node of the function.
2203  // Legalizing the call will automatically add the previous call to the
2204  // dependence.
2205  SDValue InChain = DAG.getEntryNode();
2206
2207  EVT RetVT = Node->getValueType(0);
2208  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2209
2210  TargetLowering::ArgListTy Args;
2211  TargetLowering::ArgListEntry Entry;
2212  for (const SDValue &Op : Node->op_values()) {
2213    EVT ArgVT = Op.getValueType();
2214    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2215    Entry.Node = Op;
2216    Entry.Ty = ArgTy;
2217    Entry.IsSExt = isSigned;
2218    Entry.IsZExt = !isSigned;
2219    Args.push_back(Entry);
2220  }
2221
2222  // Also pass the return address of the remainder.
2223  SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2224  Entry.Node = FIPtr;
2225  Entry.Ty = RetTy->getPointerTo();
2226  Entry.IsSExt = isSigned;
2227  Entry.IsZExt = !isSigned;
2228  Args.push_back(Entry);
2229
2230  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2231                                         TLI.getPointerTy(DAG.getDataLayout()));
2232
2233  SDLoc dl(Node);
2234  TargetLowering::CallLoweringInfo CLI(DAG);
2235  CLI.setDebugLoc(dl)
2236      .setChain(InChain)
2237      .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2238                    std::move(Args))
2239      .setSExtResult(isSigned)
2240      .setZExtResult(!isSigned);
2241
2242  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2243
2244  // Remainder is loaded back from the stack frame.
2245  SDValue Rem =
2246      DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2247  Results.push_back(CallInfo.first);
2248  Results.push_back(Rem);
2249}
2250
2251/// Return true if sincos libcall is available.
2252static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2253  RTLIB::Libcall LC;
2254  switch (Node->getSimpleValueType(0).SimpleTy) {
2255  default: llvm_unreachable("Unexpected request for libcall!");
2256  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2257  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2258  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2259  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2260  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2261  }
2262  return TLI.getLibcallName(LC) != nullptr;
2263}
2264
2265/// Only issue sincos libcall if both sin and cos are needed.
2266static bool useSinCos(SDNode *Node) {
2267  unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2268    ? ISD::FCOS : ISD::FSIN;
2269
2270  SDValue Op0 = Node->getOperand(0);
2271  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2272       UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2273    SDNode *User = *UI;
2274    if (User == Node)
2275      continue;
2276    // The other user might have been turned into sincos already.
2277    if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2278      return true;
2279  }
2280  return false;
2281}
2282
2283/// Issue libcalls to sincos to compute sin / cos pairs.
2284void
2285SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2286                                          SmallVectorImpl<SDValue> &Results) {
2287  RTLIB::Libcall LC;
2288  switch (Node->getSimpleValueType(0).SimpleTy) {
2289  default: llvm_unreachable("Unexpected request for libcall!");
2290  case MVT::f32:     LC = RTLIB::SINCOS_F32; break;
2291  case MVT::f64:     LC = RTLIB::SINCOS_F64; break;
2292  case MVT::f80:     LC = RTLIB::SINCOS_F80; break;
2293  case MVT::f128:    LC = RTLIB::SINCOS_F128; break;
2294  case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2295  }
2296
2297  // The input chain to this libcall is the entry node of the function.
2298  // Legalizing the call will automatically add the previous call to the
2299  // dependence.
2300  SDValue InChain = DAG.getEntryNode();
2301
2302  EVT RetVT = Node->getValueType(0);
2303  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2304
2305  TargetLowering::ArgListTy Args;
2306  TargetLowering::ArgListEntry Entry;
2307
2308  // Pass the argument.
2309  Entry.Node = Node->getOperand(0);
2310  Entry.Ty = RetTy;
2311  Entry.IsSExt = false;
2312  Entry.IsZExt = false;
2313  Args.push_back(Entry);
2314
2315  // Pass the return address of sin.
2316  SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2317  Entry.Node = SinPtr;
2318  Entry.Ty = RetTy->getPointerTo();
2319  Entry.IsSExt = false;
2320  Entry.IsZExt = false;
2321  Args.push_back(Entry);
2322
2323  // Also pass the return address of the cos.
2324  SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2325  Entry.Node = CosPtr;
2326  Entry.Ty = RetTy->getPointerTo();
2327  Entry.IsSExt = false;
2328  Entry.IsZExt = false;
2329  Args.push_back(Entry);
2330
2331  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2332                                         TLI.getPointerTy(DAG.getDataLayout()));
2333
2334  SDLoc dl(Node);
2335  TargetLowering::CallLoweringInfo CLI(DAG);
2336  CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2337      TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2338      std::move(Args));
2339
2340  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2341
2342  Results.push_back(
2343      DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2344  Results.push_back(
2345      DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2346}
2347
2348/// This function is responsible for legalizing a
2349/// INT_TO_FP operation of the specified operand when the target requests that
2350/// we expand it.  At this point, we know that the result and operand types are
2351/// legal for the target.
2352SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(SDNode *Node,
2353                                                   SDValue &Chain) {
2354  bool isSigned = (Node->getOpcode() == ISD::STRICT_SINT_TO_FP ||
2355                   Node->getOpcode() == ISD::SINT_TO_FP);
2356  EVT DestVT = Node->getValueType(0);
2357  SDLoc dl(Node);
2358  unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
2359  SDValue Op0 = Node->getOperand(OpNo);
2360  EVT SrcVT = Op0.getValueType();
2361
2362  // TODO: Should any fast-math-flags be set for the created nodes?
2363  LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2364  if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2365    LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2366                         "expansion\n");
2367
2368    // Get the stack frame index of a 8 byte buffer.
2369    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2370
2371    SDValue Lo = Op0;
2372    // if signed map to unsigned space
2373    if (isSigned) {
2374      // Invert sign bit (signed to unsigned mapping).
2375      Lo = DAG.getNode(ISD::XOR, dl, MVT::i32, Lo,
2376                       DAG.getConstant(0x80000000u, dl, MVT::i32));
2377    }
2378    // Initial hi portion of constructed double.
2379    SDValue Hi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2380
2381    // If this a big endian target, swap the lo and high data.
2382    if (DAG.getDataLayout().isBigEndian())
2383      std::swap(Lo, Hi);
2384
2385    SDValue MemChain = DAG.getEntryNode();
2386
2387    // Store the lo of the constructed double.
2388    SDValue Store1 = DAG.getStore(MemChain, dl, Lo, StackSlot,
2389                                  MachinePointerInfo());
2390    // Store the hi of the constructed double.
2391    SDValue HiPtr = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
2392    SDValue Store2 =
2393        DAG.getStore(MemChain, dl, Hi, HiPtr, MachinePointerInfo());
2394    MemChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
2395
2396    // load the constructed double
2397    SDValue Load =
2398        DAG.getLoad(MVT::f64, dl, MemChain, StackSlot, MachinePointerInfo());
2399    // FP constant to bias correct the final result
2400    SDValue Bias = DAG.getConstantFP(isSigned ?
2401                                     BitsToDouble(0x4330000080000000ULL) :
2402                                     BitsToDouble(0x4330000000000000ULL),
2403                                     dl, MVT::f64);
2404    // Subtract the bias and get the final result.
2405    SDValue Sub;
2406    SDValue Result;
2407    if (Node->isStrictFPOpcode()) {
2408      Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
2409                        {Node->getOperand(0), Load, Bias});
2410      Chain = Sub.getValue(1);
2411      if (DestVT != Sub.getValueType()) {
2412        std::pair<SDValue, SDValue> ResultPair;
2413        ResultPair =
2414            DAG.getStrictFPExtendOrRound(Sub, Chain, dl, DestVT);
2415        Result = ResultPair.first;
2416        Chain = ResultPair.second;
2417      }
2418      else
2419        Result = Sub;
2420    } else {
2421      Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2422      Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2423    }
2424    return Result;
2425  }
2426  // Code below here assumes !isSigned without checking again.
2427  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2428
2429  // TODO: Generalize this for use with other types.
2430  if ((SrcVT == MVT::i32 || SrcVT == MVT::i64) && DestVT == MVT::f32) {
2431    LLVM_DEBUG(dbgs() << "Converting unsigned i32/i64 to f32\n");
2432    // For unsigned conversions, convert them to signed conversions using the
2433    // algorithm from the x86_64 __floatundisf in compiler_rt. That method
2434    // should be valid for i32->f32 as well.
2435
2436    // TODO: This really should be implemented using a branch rather than a
2437    // select.  We happen to get lucky and machinesink does the right
2438    // thing most of the time.  This would be a good candidate for a
2439    // pseudo-op, or, even better, for whole-function isel.
2440    EVT SetCCVT = getSetCCResultType(SrcVT);
2441
2442    SDValue SignBitTest = DAG.getSetCC(
2443        dl, SetCCVT, Op0, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2444
2445    EVT ShiftVT = TLI.getShiftAmountTy(SrcVT, DAG.getDataLayout());
2446    SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
2447    SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Op0, ShiftConst);
2448    SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
2449    SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Op0, AndConst);
2450    SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
2451
2452    SDValue Slow, Fast;
2453    if (Node->isStrictFPOpcode()) {
2454      // In strict mode, we must avoid spurious exceptions, and therefore
2455      // must make sure to only emit a single STRICT_SINT_TO_FP.
2456      SDValue InCvt = DAG.getSelect(dl, SrcVT, SignBitTest, Or, Op0);
2457      Fast = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2458                         { Node->getOperand(0), InCvt });
2459      Slow = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2460                         { Fast.getValue(1), Fast, Fast });
2461      Chain = Slow.getValue(1);
2462      // The STRICT_SINT_TO_FP inherits the exception mode from the
2463      // incoming STRICT_UINT_TO_FP node; the STRICT_FADD node can
2464      // never raise any exception.
2465      SDNodeFlags Flags;
2466      Flags.setNoFPExcept(Node->getFlags().hasNoFPExcept());
2467      Fast->setFlags(Flags);
2468      Flags.setNoFPExcept(true);
2469      Slow->setFlags(Flags);
2470    } else {
2471      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Or);
2472      Slow = DAG.getNode(ISD::FADD, dl, DestVT, SignCvt, SignCvt);
2473      Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2474    }
2475
2476    return DAG.getSelect(dl, DestVT, SignBitTest, Slow, Fast);
2477  }
2478
2479  // The following optimization is valid only if every value in SrcVT (when
2480  // treated as signed) is representable in DestVT.  Check that the mantissa
2481  // size of DestVT is >= than the number of bits in SrcVT -1.
2482  assert(APFloat::semanticsPrecision(DAG.EVTToAPFloatSemantics(DestVT)) >=
2483             SrcVT.getSizeInBits() - 1 &&
2484         "Cannot perform lossless SINT_TO_FP!");
2485
2486  SDValue Tmp1;
2487  if (Node->isStrictFPOpcode()) {
2488    Tmp1 = DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, { DestVT, MVT::Other },
2489                       { Node->getOperand(0), Op0 });
2490  } else
2491    Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2492
2493  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2494                                 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2495  SDValue Zero = DAG.getIntPtrConstant(0, dl),
2496          Four = DAG.getIntPtrConstant(4, dl);
2497  SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2498                                    SignSet, Four, Zero);
2499
2500  // If the sign bit of the integer is set, the large number will be treated
2501  // as a negative number.  To counteract this, the dynamic code adds an
2502  // offset depending on the data type.
2503  uint64_t FF;
2504  switch (SrcVT.getSimpleVT().SimpleTy) {
2505  default: llvm_unreachable("Unsupported integer type!");
2506  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2507  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2508  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2509  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2510  }
2511  if (DAG.getDataLayout().isLittleEndian())
2512    FF <<= 32;
2513  Constant *FudgeFactor = ConstantInt::get(
2514                                       Type::getInt64Ty(*DAG.getContext()), FF);
2515
2516  SDValue CPIdx =
2517      DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2518  Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
2519  CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2520  Alignment = commonAlignment(Alignment, 4);
2521  SDValue FudgeInReg;
2522  if (DestVT == MVT::f32)
2523    FudgeInReg = DAG.getLoad(
2524        MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2525        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2526        Alignment);
2527  else {
2528    SDValue Load = DAG.getExtLoad(
2529        ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2530        MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2531        Alignment);
2532    HandleSDNode Handle(Load);
2533    LegalizeOp(Load.getNode());
2534    FudgeInReg = Handle.getValue();
2535  }
2536
2537  if (Node->isStrictFPOpcode()) {
2538    SDValue Result = DAG.getNode(ISD::STRICT_FADD, dl, { DestVT, MVT::Other },
2539                                 { Tmp1.getValue(1), Tmp1, FudgeInReg });
2540    Chain = Result.getValue(1);
2541    return Result;
2542  }
2543
2544  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2545}
2546
2547/// This function is responsible for legalizing a
2548/// *INT_TO_FP operation of the specified operand when the target requests that
2549/// we promote it.  At this point, we know that the result and operand types are
2550/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2551/// operation that takes a larger input.
2552void SelectionDAGLegalize::PromoteLegalINT_TO_FP(
2553    SDNode *N, const SDLoc &dl, SmallVectorImpl<SDValue> &Results) {
2554  bool IsStrict = N->isStrictFPOpcode();
2555  bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
2556                  N->getOpcode() == ISD::STRICT_SINT_TO_FP;
2557  EVT DestVT = N->getValueType(0);
2558  SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2559  unsigned UIntOp = IsStrict ? ISD::STRICT_UINT_TO_FP : ISD::UINT_TO_FP;
2560  unsigned SIntOp = IsStrict ? ISD::STRICT_SINT_TO_FP : ISD::SINT_TO_FP;
2561
2562  // First step, figure out the appropriate *INT_TO_FP operation to use.
2563  EVT NewInTy = LegalOp.getValueType();
2564
2565  unsigned OpToUse = 0;
2566
2567  // Scan for the appropriate larger type to use.
2568  while (true) {
2569    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2570    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2571
2572    // If the target supports SINT_TO_FP of this type, use it.
2573    if (TLI.isOperationLegalOrCustom(SIntOp, NewInTy)) {
2574      OpToUse = SIntOp;
2575      break;
2576    }
2577    if (IsSigned)
2578      continue;
2579
2580    // If the target supports UINT_TO_FP of this type, use it.
2581    if (TLI.isOperationLegalOrCustom(UIntOp, NewInTy)) {
2582      OpToUse = UIntOp;
2583      break;
2584    }
2585
2586    // Otherwise, try a larger type.
2587  }
2588
2589  // Okay, we found the operation and type to use.  Zero extend our input to the
2590  // desired type then run the operation on it.
2591  if (IsStrict) {
2592    SDValue Res =
2593        DAG.getNode(OpToUse, dl, {DestVT, MVT::Other},
2594                    {N->getOperand(0),
2595                     DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2596                                 dl, NewInTy, LegalOp)});
2597    Results.push_back(Res);
2598    Results.push_back(Res.getValue(1));
2599    return;
2600  }
2601
2602  Results.push_back(
2603      DAG.getNode(OpToUse, dl, DestVT,
2604                  DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2605                              dl, NewInTy, LegalOp)));
2606}
2607
2608/// This function is responsible for legalizing a
2609/// FP_TO_*INT operation of the specified operand when the target requests that
2610/// we promote it.  At this point, we know that the result and operand types are
2611/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2612/// operation that returns a larger result.
2613void SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDNode *N, const SDLoc &dl,
2614                                                 SmallVectorImpl<SDValue> &Results) {
2615  bool IsStrict = N->isStrictFPOpcode();
2616  bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
2617                  N->getOpcode() == ISD::STRICT_FP_TO_SINT;
2618  EVT DestVT = N->getValueType(0);
2619  SDValue LegalOp = N->getOperand(IsStrict ? 1 : 0);
2620  // First step, figure out the appropriate FP_TO*INT operation to use.
2621  EVT NewOutTy = DestVT;
2622
2623  unsigned OpToUse = 0;
2624
2625  // Scan for the appropriate larger type to use.
2626  while (true) {
2627    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2628    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2629
2630    // A larger signed type can hold all unsigned values of the requested type,
2631    // so using FP_TO_SINT is valid
2632    OpToUse = IsStrict ? ISD::STRICT_FP_TO_SINT : ISD::FP_TO_SINT;
2633    if (TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2634      break;
2635
2636    // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2637    OpToUse = IsStrict ? ISD::STRICT_FP_TO_UINT : ISD::FP_TO_UINT;
2638    if (!IsSigned && TLI.isOperationLegalOrCustom(OpToUse, NewOutTy))
2639      break;
2640
2641    // Otherwise, try a larger type.
2642  }
2643
2644  // Okay, we found the operation and type to use.
2645  SDValue Operation;
2646  if (IsStrict) {
2647    SDVTList VTs = DAG.getVTList(NewOutTy, MVT::Other);
2648    Operation = DAG.getNode(OpToUse, dl, VTs, N->getOperand(0), LegalOp);
2649  } else
2650    Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2651
2652  // Truncate the result of the extended FP_TO_*INT operation to the desired
2653  // size.
2654  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2655  Results.push_back(Trunc);
2656  if (IsStrict)
2657    Results.push_back(Operation.getValue(1));
2658}
2659
2660/// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2661SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2662  EVT VT = Op.getValueType();
2663  EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2664  unsigned Sz = VT.getScalarSizeInBits();
2665
2666  SDValue Tmp, Tmp2, Tmp3;
2667
2668  // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2669  // and finally the i1 pairs.
2670  // TODO: We can easily support i4/i2 legal types if any target ever does.
2671  if (Sz >= 8 && isPowerOf2_32(Sz)) {
2672    // Create the masks - repeating the pattern every byte.
2673    APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2674    APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2675    APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2676    APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2677    APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2678    APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2679
2680    // BSWAP if the type is wider than a single byte.
2681    Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2682
2683    // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2684    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2685    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2686    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2687    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2688    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2689
2690    // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2691    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2692    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2693    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2694    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2695    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2696
2697    // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2698    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2699    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2700    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2701    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2702    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2703    return Tmp;
2704  }
2705
2706  Tmp = DAG.getConstant(0, dl, VT);
2707  for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2708    if (I < J)
2709      Tmp2 =
2710          DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2711    else
2712      Tmp2 =
2713          DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2714
2715    APInt Shift(Sz, 1);
2716    Shift <<= J;
2717    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2718    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2719  }
2720
2721  return Tmp;
2722}
2723
2724/// Open code the operations for BSWAP of the specified operation.
2725SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2726  EVT VT = Op.getValueType();
2727  EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2728  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2729  switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2730  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2731  case MVT::i16:
2732    // Use a rotate by 8. This can be further expanded if necessary.
2733    return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2734  case MVT::i32:
2735    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2736    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2737    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2738    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2739    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2740                       DAG.getConstant(0xFF0000, dl, VT));
2741    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2742    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2743    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2744    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2745  case MVT::i64:
2746    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2747    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2748    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2749    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2750    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2751    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2752    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2753    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2754    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2755                       DAG.getConstant(255ULL<<48, dl, VT));
2756    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2757                       DAG.getConstant(255ULL<<40, dl, VT));
2758    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2759                       DAG.getConstant(255ULL<<32, dl, VT));
2760    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2761                       DAG.getConstant(255ULL<<24, dl, VT));
2762    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2763                       DAG.getConstant(255ULL<<16, dl, VT));
2764    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2765                       DAG.getConstant(255ULL<<8 , dl, VT));
2766    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2767    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2768    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2769    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2770    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2771    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2772    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2773  }
2774}
2775
2776bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2777  LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2778  SmallVector<SDValue, 8> Results;
2779  SDLoc dl(Node);
2780  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2781  bool NeedInvert;
2782  switch (Node->getOpcode()) {
2783  case ISD::ABS:
2784    if (TLI.expandABS(Node, Tmp1, DAG))
2785      Results.push_back(Tmp1);
2786    break;
2787  case ISD::CTPOP:
2788    if (TLI.expandCTPOP(Node, Tmp1, DAG))
2789      Results.push_back(Tmp1);
2790    break;
2791  case ISD::CTLZ:
2792  case ISD::CTLZ_ZERO_UNDEF:
2793    if (TLI.expandCTLZ(Node, Tmp1, DAG))
2794      Results.push_back(Tmp1);
2795    break;
2796  case ISD::CTTZ:
2797  case ISD::CTTZ_ZERO_UNDEF:
2798    if (TLI.expandCTTZ(Node, Tmp1, DAG))
2799      Results.push_back(Tmp1);
2800    break;
2801  case ISD::BITREVERSE:
2802    Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2803    break;
2804  case ISD::BSWAP:
2805    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2806    break;
2807  case ISD::FRAMEADDR:
2808  case ISD::RETURNADDR:
2809  case ISD::FRAME_TO_ARGS_OFFSET:
2810    Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2811    break;
2812  case ISD::EH_DWARF_CFA: {
2813    SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2814                                        TLI.getPointerTy(DAG.getDataLayout()));
2815    SDValue Offset = DAG.getNode(ISD::ADD, dl,
2816                                 CfaArg.getValueType(),
2817                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2818                                             CfaArg.getValueType()),
2819                                 CfaArg);
2820    SDValue FA = DAG.getNode(
2821        ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2822        DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2823    Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2824                                  FA, Offset));
2825    break;
2826  }
2827  case ISD::FLT_ROUNDS_:
2828    Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2829    Results.push_back(Node->getOperand(0));
2830    break;
2831  case ISD::EH_RETURN:
2832  case ISD::EH_LABEL:
2833  case ISD::PREFETCH:
2834  case ISD::VAEND:
2835  case ISD::EH_SJLJ_LONGJMP:
2836    // If the target didn't expand these, there's nothing to do, so just
2837    // preserve the chain and be done.
2838    Results.push_back(Node->getOperand(0));
2839    break;
2840  case ISD::READCYCLECOUNTER:
2841    // If the target didn't expand this, just return 'zero' and preserve the
2842    // chain.
2843    Results.append(Node->getNumValues() - 1,
2844                   DAG.getConstant(0, dl, Node->getValueType(0)));
2845    Results.push_back(Node->getOperand(0));
2846    break;
2847  case ISD::EH_SJLJ_SETJMP:
2848    // If the target didn't expand this, just return 'zero' and preserve the
2849    // chain.
2850    Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2851    Results.push_back(Node->getOperand(0));
2852    break;
2853  case ISD::ATOMIC_LOAD: {
2854    // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2855    SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2856    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2857    SDValue Swap = DAG.getAtomicCmpSwap(
2858        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2859        Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2860        cast<AtomicSDNode>(Node)->getMemOperand());
2861    Results.push_back(Swap.getValue(0));
2862    Results.push_back(Swap.getValue(1));
2863    break;
2864  }
2865  case ISD::ATOMIC_STORE: {
2866    // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2867    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2868                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
2869                                 Node->getOperand(0),
2870                                 Node->getOperand(1), Node->getOperand(2),
2871                                 cast<AtomicSDNode>(Node)->getMemOperand());
2872    Results.push_back(Swap.getValue(1));
2873    break;
2874  }
2875  case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2876    // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2877    // splits out the success value as a comparison. Expanding the resulting
2878    // ATOMIC_CMP_SWAP will produce a libcall.
2879    SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2880    SDValue Res = DAG.getAtomicCmpSwap(
2881        ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2882        Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2883        Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2884
2885    SDValue ExtRes = Res;
2886    SDValue LHS = Res;
2887    SDValue RHS = Node->getOperand(1);
2888
2889    EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2890    EVT OuterType = Node->getValueType(0);
2891    switch (TLI.getExtendForAtomicOps()) {
2892    case ISD::SIGN_EXTEND:
2893      LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2894                        DAG.getValueType(AtomicType));
2895      RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2896                        Node->getOperand(2), DAG.getValueType(AtomicType));
2897      ExtRes = LHS;
2898      break;
2899    case ISD::ZERO_EXTEND:
2900      LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2901                        DAG.getValueType(AtomicType));
2902      RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2903      ExtRes = LHS;
2904      break;
2905    case ISD::ANY_EXTEND:
2906      LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2907      RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2908      break;
2909    default:
2910      llvm_unreachable("Invalid atomic op extension");
2911    }
2912
2913    SDValue Success =
2914        DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2915
2916    Results.push_back(ExtRes.getValue(0));
2917    Results.push_back(Success);
2918    Results.push_back(Res.getValue(1));
2919    break;
2920  }
2921  case ISD::DYNAMIC_STACKALLOC:
2922    ExpandDYNAMIC_STACKALLOC(Node, Results);
2923    break;
2924  case ISD::MERGE_VALUES:
2925    for (unsigned i = 0; i < Node->getNumValues(); i++)
2926      Results.push_back(Node->getOperand(i));
2927    break;
2928  case ISD::UNDEF: {
2929    EVT VT = Node->getValueType(0);
2930    if (VT.isInteger())
2931      Results.push_back(DAG.getConstant(0, dl, VT));
2932    else {
2933      assert(VT.isFloatingPoint() && "Unknown value type!");
2934      Results.push_back(DAG.getConstantFP(0, dl, VT));
2935    }
2936    break;
2937  }
2938  case ISD::STRICT_FP_ROUND:
2939    // When strict mode is enforced we can't do expansion because it
2940    // does not honor the "strict" properties. Only libcall is allowed.
2941    if (TLI.isStrictFPEnabled())
2942      break;
2943    // We might as well mutate to FP_ROUND when FP_ROUND operation is legal
2944    // since this operation is more efficient than stack operation.
2945    if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2946                                       Node->getValueType(0))
2947        == TargetLowering::Legal)
2948      break;
2949    // We fall back to use stack operation when the FP_ROUND operation
2950    // isn't available.
2951    Tmp1 = EmitStackConvert(Node->getOperand(1),
2952                            Node->getValueType(0),
2953                            Node->getValueType(0), dl, Node->getOperand(0));
2954    ReplaceNode(Node, Tmp1.getNode());
2955    LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2956    return true;
2957  case ISD::FP_ROUND:
2958  case ISD::BITCAST:
2959    Tmp1 = EmitStackConvert(Node->getOperand(0),
2960                            Node->getValueType(0),
2961                            Node->getValueType(0), dl);
2962    Results.push_back(Tmp1);
2963    break;
2964  case ISD::STRICT_FP_EXTEND:
2965    // When strict mode is enforced we can't do expansion because it
2966    // does not honor the "strict" properties. Only libcall is allowed.
2967    if (TLI.isStrictFPEnabled())
2968      break;
2969    // We might as well mutate to FP_EXTEND when FP_EXTEND operation is legal
2970    // since this operation is more efficient than stack operation.
2971    if (TLI.getStrictFPOperationAction(Node->getOpcode(),
2972                                       Node->getValueType(0))
2973        == TargetLowering::Legal)
2974      break;
2975    // We fall back to use stack operation when the FP_EXTEND operation
2976    // isn't available.
2977    Tmp1 = EmitStackConvert(Node->getOperand(1),
2978                            Node->getOperand(1).getValueType(),
2979                            Node->getValueType(0), dl, Node->getOperand(0));
2980    ReplaceNode(Node, Tmp1.getNode());
2981    LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2982    return true;
2983  case ISD::FP_EXTEND:
2984    Tmp1 = EmitStackConvert(Node->getOperand(0),
2985                            Node->getOperand(0).getValueType(),
2986                            Node->getValueType(0), dl);
2987    Results.push_back(Tmp1);
2988    break;
2989  case ISD::SIGN_EXTEND_INREG: {
2990    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2991    EVT VT = Node->getValueType(0);
2992
2993    // An in-register sign-extend of a boolean is a negation:
2994    // 'true' (1) sign-extended is -1.
2995    // 'false' (0) sign-extended is 0.
2996    // However, we must mask the high bits of the source operand because the
2997    // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2998
2999    // TODO: Do this for vectors too?
3000    if (ExtraVT.getSizeInBits() == 1) {
3001      SDValue One = DAG.getConstant(1, dl, VT);
3002      SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
3003      SDValue Zero = DAG.getConstant(0, dl, VT);
3004      SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
3005      Results.push_back(Neg);
3006      break;
3007    }
3008
3009    // NOTE: we could fall back on load/store here too for targets without
3010    // SRA.  However, it is doubtful that any exist.
3011    EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3012    unsigned BitsDiff = VT.getScalarSizeInBits() -
3013                        ExtraVT.getScalarSizeInBits();
3014    SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
3015    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
3016                       Node->getOperand(0), ShiftCst);
3017    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
3018    Results.push_back(Tmp1);
3019    break;
3020  }
3021  case ISD::UINT_TO_FP:
3022  case ISD::STRICT_UINT_TO_FP:
3023    if (TLI.expandUINT_TO_FP(Node, Tmp1, Tmp2, DAG)) {
3024      Results.push_back(Tmp1);
3025      if (Node->isStrictFPOpcode())
3026        Results.push_back(Tmp2);
3027      break;
3028    }
3029    LLVM_FALLTHROUGH;
3030  case ISD::SINT_TO_FP:
3031  case ISD::STRICT_SINT_TO_FP:
3032    Tmp1 = ExpandLegalINT_TO_FP(Node, Tmp2);
3033    Results.push_back(Tmp1);
3034    if (Node->isStrictFPOpcode())
3035      Results.push_back(Tmp2);
3036    break;
3037  case ISD::FP_TO_SINT:
3038    if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
3039      Results.push_back(Tmp1);
3040    break;
3041  case ISD::STRICT_FP_TO_SINT:
3042    if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) {
3043      ReplaceNode(Node, Tmp1.getNode());
3044      LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_SINT node\n");
3045      return true;
3046    }
3047    break;
3048  case ISD::FP_TO_UINT:
3049    if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG))
3050      Results.push_back(Tmp1);
3051    break;
3052  case ISD::STRICT_FP_TO_UINT:
3053    if (TLI.expandFP_TO_UINT(Node, Tmp1, Tmp2, DAG)) {
3054      // Relink the chain.
3055      DAG.ReplaceAllUsesOfValueWith(SDValue(Node,1), Tmp2);
3056      // Replace the new UINT result.
3057      ReplaceNodeWithValue(SDValue(Node, 0), Tmp1);
3058      LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_TO_UINT node\n");
3059      return true;
3060    }
3061    break;
3062  case ISD::VAARG:
3063    Results.push_back(DAG.expandVAArg(Node));
3064    Results.push_back(Results[0].getValue(1));
3065    break;
3066  case ISD::VACOPY:
3067    Results.push_back(DAG.expandVACopy(Node));
3068    break;
3069  case ISD::EXTRACT_VECTOR_ELT:
3070    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
3071      // This must be an access of the only element.  Return it.
3072      Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
3073                         Node->getOperand(0));
3074    else
3075      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
3076    Results.push_back(Tmp1);
3077    break;
3078  case ISD::EXTRACT_SUBVECTOR:
3079    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
3080    break;
3081  case ISD::INSERT_SUBVECTOR:
3082    Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
3083    break;
3084  case ISD::CONCAT_VECTORS:
3085    Results.push_back(ExpandVectorBuildThroughStack(Node));
3086    break;
3087  case ISD::SCALAR_TO_VECTOR:
3088    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
3089    break;
3090  case ISD::INSERT_VECTOR_ELT:
3091    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
3092                                              Node->getOperand(1),
3093                                              Node->getOperand(2), dl));
3094    break;
3095  case ISD::VECTOR_SHUFFLE: {
3096    SmallVector<int, 32> NewMask;
3097    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3098
3099    EVT VT = Node->getValueType(0);
3100    EVT EltVT = VT.getVectorElementType();
3101    SDValue Op0 = Node->getOperand(0);
3102    SDValue Op1 = Node->getOperand(1);
3103    if (!TLI.isTypeLegal(EltVT)) {
3104      EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
3105
3106      // BUILD_VECTOR operands are allowed to be wider than the element type.
3107      // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
3108      // it.
3109      if (NewEltVT.bitsLT(EltVT)) {
3110        // Convert shuffle node.
3111        // If original node was v4i64 and the new EltVT is i32,
3112        // cast operands to v8i32 and re-build the mask.
3113
3114        // Calculate new VT, the size of the new VT should be equal to original.
3115        EVT NewVT =
3116            EVT::getVectorVT(*DAG.getContext(), NewEltVT,
3117                             VT.getSizeInBits() / NewEltVT.getSizeInBits());
3118        assert(NewVT.bitsEq(VT));
3119
3120        // cast operands to new VT
3121        Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
3122        Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
3123
3124        // Convert the shuffle mask
3125        unsigned int factor =
3126                         NewVT.getVectorNumElements()/VT.getVectorNumElements();
3127
3128        // EltVT gets smaller
3129        assert(factor > 0);
3130
3131        for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3132          if (Mask[i] < 0) {
3133            for (unsigned fi = 0; fi < factor; ++fi)
3134              NewMask.push_back(Mask[i]);
3135          }
3136          else {
3137            for (unsigned fi = 0; fi < factor; ++fi)
3138              NewMask.push_back(Mask[i]*factor+fi);
3139          }
3140        }
3141        Mask = NewMask;
3142        VT = NewVT;
3143      }
3144      EltVT = NewEltVT;
3145    }
3146    unsigned NumElems = VT.getVectorNumElements();
3147    SmallVector<SDValue, 16> Ops;
3148    for (unsigned i = 0; i != NumElems; ++i) {
3149      if (Mask[i] < 0) {
3150        Ops.push_back(DAG.getUNDEF(EltVT));
3151        continue;
3152      }
3153      unsigned Idx = Mask[i];
3154      if (Idx < NumElems)
3155        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3156                                  DAG.getVectorIdxConstant(Idx, dl)));
3157      else
3158        Ops.push_back(
3159            DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3160                        DAG.getVectorIdxConstant(Idx - NumElems, dl)));
3161    }
3162
3163    Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3164    // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3165    Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3166    Results.push_back(Tmp1);
3167    break;
3168  }
3169  case ISD::EXTRACT_ELEMENT: {
3170    EVT OpTy = Node->getOperand(0).getValueType();
3171    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3172      // 1 -> Hi
3173      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3174                         DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3175                                         TLI.getShiftAmountTy(
3176                                             Node->getOperand(0).getValueType(),
3177                                             DAG.getDataLayout())));
3178      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3179    } else {
3180      // 0 -> Lo
3181      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3182                         Node->getOperand(0));
3183    }
3184    Results.push_back(Tmp1);
3185    break;
3186  }
3187  case ISD::STACKSAVE:
3188    // Expand to CopyFromReg if the target set
3189    // StackPointerRegisterToSaveRestore.
3190    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3191      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3192                                           Node->getValueType(0)));
3193      Results.push_back(Results[0].getValue(1));
3194    } else {
3195      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3196      Results.push_back(Node->getOperand(0));
3197    }
3198    break;
3199  case ISD::STACKRESTORE:
3200    // Expand to CopyToReg if the target set
3201    // StackPointerRegisterToSaveRestore.
3202    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3203      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3204                                         Node->getOperand(1)));
3205    } else {
3206      Results.push_back(Node->getOperand(0));
3207    }
3208    break;
3209  case ISD::GET_DYNAMIC_AREA_OFFSET:
3210    Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3211    Results.push_back(Results[0].getValue(0));
3212    break;
3213  case ISD::FCOPYSIGN:
3214    Results.push_back(ExpandFCOPYSIGN(Node));
3215    break;
3216  case ISD::FNEG:
3217    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
3218    Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3219    // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3220    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3221                       Node->getOperand(0));
3222    Results.push_back(Tmp1);
3223    break;
3224  case ISD::FABS:
3225    Results.push_back(ExpandFABS(Node));
3226    break;
3227  case ISD::SMIN:
3228  case ISD::SMAX:
3229  case ISD::UMIN:
3230  case ISD::UMAX: {
3231    // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3232    ISD::CondCode Pred;
3233    switch (Node->getOpcode()) {
3234    default: llvm_unreachable("How did we get here?");
3235    case ISD::SMAX: Pred = ISD::SETGT; break;
3236    case ISD::SMIN: Pred = ISD::SETLT; break;
3237    case ISD::UMAX: Pred = ISD::SETUGT; break;
3238    case ISD::UMIN: Pred = ISD::SETULT; break;
3239    }
3240    Tmp1 = Node->getOperand(0);
3241    Tmp2 = Node->getOperand(1);
3242    Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3243    Results.push_back(Tmp1);
3244    break;
3245  }
3246  case ISD::FMINNUM:
3247  case ISD::FMAXNUM: {
3248    if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3249      Results.push_back(Expanded);
3250    break;
3251  }
3252  case ISD::FSIN:
3253  case ISD::FCOS: {
3254    EVT VT = Node->getValueType(0);
3255    // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3256    // fcos which share the same operand and both are used.
3257    if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3258         isSinCosLibcallAvailable(Node, TLI))
3259        && useSinCos(Node)) {
3260      SDVTList VTs = DAG.getVTList(VT, VT);
3261      Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3262      if (Node->getOpcode() == ISD::FCOS)
3263        Tmp1 = Tmp1.getValue(1);
3264      Results.push_back(Tmp1);
3265    }
3266    break;
3267  }
3268  case ISD::FMAD:
3269    llvm_unreachable("Illegal fmad should never be formed");
3270
3271  case ISD::FP16_TO_FP:
3272    if (Node->getValueType(0) != MVT::f32) {
3273      // We can extend to types bigger than f32 in two steps without changing
3274      // the result. Since "f16 -> f32" is much more commonly available, give
3275      // CodeGen the option of emitting that before resorting to a libcall.
3276      SDValue Res =
3277          DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3278      Results.push_back(
3279          DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3280    }
3281    break;
3282  case ISD::STRICT_FP16_TO_FP:
3283    if (Node->getValueType(0) != MVT::f32) {
3284      // We can extend to types bigger than f32 in two steps without changing
3285      // the result. Since "f16 -> f32" is much more commonly available, give
3286      // CodeGen the option of emitting that before resorting to a libcall.
3287      SDValue Res =
3288          DAG.getNode(ISD::STRICT_FP16_TO_FP, dl, {MVT::f32, MVT::Other},
3289                      {Node->getOperand(0), Node->getOperand(1)});
3290      Res = DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
3291                        {Node->getValueType(0), MVT::Other},
3292                        {Res.getValue(1), Res});
3293      Results.push_back(Res);
3294      Results.push_back(Res.getValue(1));
3295    }
3296    break;
3297  case ISD::FP_TO_FP16:
3298    LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3299    if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3300      SDValue Op = Node->getOperand(0);
3301      MVT SVT = Op.getSimpleValueType();
3302      if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3303          TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3304        // Under fastmath, we can expand this node into a fround followed by
3305        // a float-half conversion.
3306        SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3307                                       DAG.getIntPtrConstant(0, dl));
3308        Results.push_back(
3309            DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3310      }
3311    }
3312    break;
3313  case ISD::ConstantFP: {
3314    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3315    // Check to see if this FP immediate is already legal.
3316    // If this is a legal constant, turn it into a TargetConstantFP node.
3317    if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3318                          DAG.getMachineFunction().getFunction().hasOptSize()))
3319      Results.push_back(ExpandConstantFP(CFP, true));
3320    break;
3321  }
3322  case ISD::Constant: {
3323    ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3324    Results.push_back(ExpandConstant(CP));
3325    break;
3326  }
3327  case ISD::FSUB: {
3328    EVT VT = Node->getValueType(0);
3329    if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3330        TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3331      const SDNodeFlags Flags = Node->getFlags();
3332      Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3333      Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3334      Results.push_back(Tmp1);
3335    }
3336    break;
3337  }
3338  case ISD::SUB: {
3339    EVT VT = Node->getValueType(0);
3340    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3341           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3342           "Don't know how to expand this subtraction!");
3343    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3344               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3345                               VT));
3346    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3347    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3348    break;
3349  }
3350  case ISD::UREM:
3351  case ISD::SREM:
3352    if (TLI.expandREM(Node, Tmp1, DAG))
3353      Results.push_back(Tmp1);
3354    break;
3355  case ISD::UDIV:
3356  case ISD::SDIV: {
3357    bool isSigned = Node->getOpcode() == ISD::SDIV;
3358    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3359    EVT VT = Node->getValueType(0);
3360    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3361      SDVTList VTs = DAG.getVTList(VT, VT);
3362      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3363                         Node->getOperand(1));
3364      Results.push_back(Tmp1);
3365    }
3366    break;
3367  }
3368  case ISD::MULHU:
3369  case ISD::MULHS: {
3370    unsigned ExpandOpcode =
3371        Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3372    EVT VT = Node->getValueType(0);
3373    SDVTList VTs = DAG.getVTList(VT, VT);
3374
3375    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3376                       Node->getOperand(1));
3377    Results.push_back(Tmp1.getValue(1));
3378    break;
3379  }
3380  case ISD::UMUL_LOHI:
3381  case ISD::SMUL_LOHI: {
3382    SDValue LHS = Node->getOperand(0);
3383    SDValue RHS = Node->getOperand(1);
3384    MVT VT = LHS.getSimpleValueType();
3385    unsigned MULHOpcode =
3386        Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3387
3388    if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3389      Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3390      Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3391      break;
3392    }
3393
3394    SmallVector<SDValue, 4> Halves;
3395    EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3396    assert(TLI.isTypeLegal(HalfType));
3397    if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3398                           HalfType, DAG,
3399                           TargetLowering::MulExpansionKind::Always)) {
3400      for (unsigned i = 0; i < 2; ++i) {
3401        SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3402        SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3403        SDValue Shift = DAG.getConstant(
3404            HalfType.getScalarSizeInBits(), dl,
3405            TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3406        Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3407        Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3408      }
3409      break;
3410    }
3411    break;
3412  }
3413  case ISD::MUL: {
3414    EVT VT = Node->getValueType(0);
3415    SDVTList VTs = DAG.getVTList(VT, VT);
3416    // See if multiply or divide can be lowered using two-result operations.
3417    // We just need the low half of the multiply; try both the signed
3418    // and unsigned forms. If the target supports both SMUL_LOHI and
3419    // UMUL_LOHI, form a preference by checking which forms of plain
3420    // MULH it supports.
3421    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3422    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3423    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3424    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3425    unsigned OpToUse = 0;
3426    if (HasSMUL_LOHI && !HasMULHS) {
3427      OpToUse = ISD::SMUL_LOHI;
3428    } else if (HasUMUL_LOHI && !HasMULHU) {
3429      OpToUse = ISD::UMUL_LOHI;
3430    } else if (HasSMUL_LOHI) {
3431      OpToUse = ISD::SMUL_LOHI;
3432    } else if (HasUMUL_LOHI) {
3433      OpToUse = ISD::UMUL_LOHI;
3434    }
3435    if (OpToUse) {
3436      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3437                                    Node->getOperand(1)));
3438      break;
3439    }
3440
3441    SDValue Lo, Hi;
3442    EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3443    if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3444        TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3445        TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3446        TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3447        TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3448                      TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3449      Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3450      Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3451      SDValue Shift =
3452          DAG.getConstant(HalfType.getSizeInBits(), dl,
3453                          TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3454      Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3455      Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3456    }
3457    break;
3458  }
3459  case ISD::FSHL:
3460  case ISD::FSHR:
3461    if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3462      Results.push_back(Tmp1);
3463    break;
3464  case ISD::ROTL:
3465  case ISD::ROTR:
3466    if (TLI.expandROT(Node, Tmp1, DAG))
3467      Results.push_back(Tmp1);
3468    break;
3469  case ISD::SADDSAT:
3470  case ISD::UADDSAT:
3471  case ISD::SSUBSAT:
3472  case ISD::USUBSAT:
3473    Results.push_back(TLI.expandAddSubSat(Node, DAG));
3474    break;
3475  case ISD::SMULFIX:
3476  case ISD::SMULFIXSAT:
3477  case ISD::UMULFIX:
3478  case ISD::UMULFIXSAT:
3479    Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3480    break;
3481  case ISD::SDIVFIX:
3482  case ISD::SDIVFIXSAT:
3483  case ISD::UDIVFIX:
3484  case ISD::UDIVFIXSAT:
3485    if (SDValue V = TLI.expandFixedPointDiv(Node->getOpcode(), SDLoc(Node),
3486                                            Node->getOperand(0),
3487                                            Node->getOperand(1),
3488                                            Node->getConstantOperandVal(2),
3489                                            DAG)) {
3490      Results.push_back(V);
3491      break;
3492    }
3493    // FIXME: We might want to retry here with a wider type if we fail, if that
3494    // type is legal.
3495    // FIXME: Technically, so long as we only have sdivfixes where BW+Scale is
3496    // <= 128 (which is the case for all of the default Embedded-C types),
3497    // we will only get here with types and scales that we could always expand
3498    // if we were allowed to generate libcalls to division functions of illegal
3499    // type. But we cannot do that.
3500    llvm_unreachable("Cannot expand DIVFIX!");
3501  case ISD::ADDCARRY:
3502  case ISD::SUBCARRY: {
3503    SDValue LHS = Node->getOperand(0);
3504    SDValue RHS = Node->getOperand(1);
3505    SDValue Carry = Node->getOperand(2);
3506
3507    bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3508
3509    // Initial add of the 2 operands.
3510    unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3511    EVT VT = LHS.getValueType();
3512    SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3513
3514    // Initial check for overflow.
3515    EVT CarryType = Node->getValueType(1);
3516    EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3517    ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3518    SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3519
3520    // Add of the sum and the carry.
3521    SDValue One = DAG.getConstant(1, dl, VT);
3522    SDValue CarryExt =
3523        DAG.getNode(ISD::AND, dl, VT, DAG.getZExtOrTrunc(Carry, dl, VT), One);
3524    SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3525
3526    // Second check for overflow. If we are adding, we can only overflow if the
3527    // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3528    // If we are subtracting, we can only overflow if the initial sum is 0 and
3529    // the carry is set, resulting in a new sum of all 1s.
3530    SDValue Zero = DAG.getConstant(0, dl, VT);
3531    SDValue Overflow2 =
3532        IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3533              : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3534    Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3535                            DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3536
3537    SDValue ResultCarry =
3538        DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3539
3540    Results.push_back(Sum2);
3541    Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3542    break;
3543  }
3544  case ISD::SADDO:
3545  case ISD::SSUBO: {
3546    SDValue Result, Overflow;
3547    TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3548    Results.push_back(Result);
3549    Results.push_back(Overflow);
3550    break;
3551  }
3552  case ISD::UADDO:
3553  case ISD::USUBO: {
3554    SDValue Result, Overflow;
3555    TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3556    Results.push_back(Result);
3557    Results.push_back(Overflow);
3558    break;
3559  }
3560  case ISD::UMULO:
3561  case ISD::SMULO: {
3562    SDValue Result, Overflow;
3563    if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3564      Results.push_back(Result);
3565      Results.push_back(Overflow);
3566    }
3567    break;
3568  }
3569  case ISD::BUILD_PAIR: {
3570    EVT PairTy = Node->getValueType(0);
3571    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3572    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3573    Tmp2 = DAG.getNode(
3574        ISD::SHL, dl, PairTy, Tmp2,
3575        DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3576                        TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3577    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3578    break;
3579  }
3580  case ISD::SELECT:
3581    Tmp1 = Node->getOperand(0);
3582    Tmp2 = Node->getOperand(1);
3583    Tmp3 = Node->getOperand(2);
3584    if (Tmp1.getOpcode() == ISD::SETCC) {
3585      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3586                             Tmp2, Tmp3,
3587                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3588    } else {
3589      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3590                             DAG.getConstant(0, dl, Tmp1.getValueType()),
3591                             Tmp2, Tmp3, ISD::SETNE);
3592    }
3593    Tmp1->setFlags(Node->getFlags());
3594    Results.push_back(Tmp1);
3595    break;
3596  case ISD::BR_JT: {
3597    SDValue Chain = Node->getOperand(0);
3598    SDValue Table = Node->getOperand(1);
3599    SDValue Index = Node->getOperand(2);
3600
3601    const DataLayout &TD = DAG.getDataLayout();
3602    EVT PTy = TLI.getPointerTy(TD);
3603
3604    unsigned EntrySize =
3605      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3606
3607    // For power-of-two jumptable entry sizes convert multiplication to a shift.
3608    // This transformation needs to be done here since otherwise the MIPS
3609    // backend will end up emitting a three instruction multiply sequence
3610    // instead of a single shift and MSP430 will call a runtime function.
3611    if (llvm::isPowerOf2_32(EntrySize))
3612      Index = DAG.getNode(
3613          ISD::SHL, dl, Index.getValueType(), Index,
3614          DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3615    else
3616      Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3617                          DAG.getConstant(EntrySize, dl, Index.getValueType()));
3618    SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3619                               Index, Table);
3620
3621    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3622    SDValue LD = DAG.getExtLoad(
3623        ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3624        MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3625    Addr = LD;
3626    if (TLI.isJumpTableRelative()) {
3627      // For PIC, the sequence is:
3628      // BRIND(load(Jumptable + index) + RelocBase)
3629      // RelocBase can be JumpTable, GOT or some sort of global base.
3630      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3631                          TLI.getPICJumpTableRelocBase(Table, DAG));
3632    }
3633
3634    Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3635    Results.push_back(Tmp1);
3636    break;
3637  }
3638  case ISD::BRCOND:
3639    // Expand brcond's setcc into its constituent parts and create a BR_CC
3640    // Node.
3641    Tmp1 = Node->getOperand(0);
3642    Tmp2 = Node->getOperand(1);
3643    if (Tmp2.getOpcode() == ISD::SETCC) {
3644      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3645                         Tmp1, Tmp2.getOperand(2),
3646                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3647                         Node->getOperand(2));
3648    } else {
3649      // We test only the i1 bit.  Skip the AND if UNDEF or another AND.
3650      if (Tmp2.isUndef() ||
3651          (Tmp2.getOpcode() == ISD::AND &&
3652           isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3653           cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3654        Tmp3 = Tmp2;
3655      else
3656        Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3657                           DAG.getConstant(1, dl, Tmp2.getValueType()));
3658      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3659                         DAG.getCondCode(ISD::SETNE), Tmp3,
3660                         DAG.getConstant(0, dl, Tmp3.getValueType()),
3661                         Node->getOperand(2));
3662    }
3663    Results.push_back(Tmp1);
3664    break;
3665  case ISD::SETCC:
3666  case ISD::STRICT_FSETCC:
3667  case ISD::STRICT_FSETCCS: {
3668    bool IsStrict = Node->getOpcode() != ISD::SETCC;
3669    bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
3670    SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
3671    unsigned Offset = IsStrict ? 1 : 0;
3672    Tmp1 = Node->getOperand(0 + Offset);
3673    Tmp2 = Node->getOperand(1 + Offset);
3674    Tmp3 = Node->getOperand(2 + Offset);
3675    bool Legalized =
3676        LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3,
3677                              NeedInvert, dl, Chain, IsSignaling);
3678
3679    if (Legalized) {
3680      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3681      // condition code, create a new SETCC node.
3682      if (Tmp3.getNode())
3683        Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3684                           Tmp1, Tmp2, Tmp3, Node->getFlags());
3685
3686      // If we expanded the SETCC by inverting the condition code, then wrap
3687      // the existing SETCC in a NOT to restore the intended condition.
3688      if (NeedInvert)
3689        Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3690
3691      Results.push_back(Tmp1);
3692      if (IsStrict)
3693        Results.push_back(Chain);
3694
3695      break;
3696    }
3697
3698    // FIXME: It seems Legalized is false iff CCCode is Legal. I don't
3699    // understand if this code is useful for strict nodes.
3700    assert(!IsStrict && "Don't know how to expand for strict nodes.");
3701
3702    // Otherwise, SETCC for the given comparison type must be completely
3703    // illegal; expand it into a SELECT_CC.
3704    EVT VT = Node->getValueType(0);
3705    int TrueValue;
3706    switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3707    case TargetLowering::ZeroOrOneBooleanContent:
3708    case TargetLowering::UndefinedBooleanContent:
3709      TrueValue = 1;
3710      break;
3711    case TargetLowering::ZeroOrNegativeOneBooleanContent:
3712      TrueValue = -1;
3713      break;
3714    }
3715    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3716                       DAG.getConstant(TrueValue, dl, VT),
3717                       DAG.getConstant(0, dl, VT),
3718                       Tmp3);
3719    Tmp1->setFlags(Node->getFlags());
3720    Results.push_back(Tmp1);
3721    break;
3722  }
3723  case ISD::SELECT_CC: {
3724    // TODO: need to add STRICT_SELECT_CC and STRICT_SELECT_CCS
3725    Tmp1 = Node->getOperand(0);   // LHS
3726    Tmp2 = Node->getOperand(1);   // RHS
3727    Tmp3 = Node->getOperand(2);   // True
3728    Tmp4 = Node->getOperand(3);   // False
3729    EVT VT = Node->getValueType(0);
3730    SDValue Chain;
3731    SDValue CC = Node->getOperand(4);
3732    ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3733
3734    if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3735      // If the condition code is legal, then we need to expand this
3736      // node using SETCC and SELECT.
3737      EVT CmpVT = Tmp1.getValueType();
3738      assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3739             "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3740             "expanded.");
3741      EVT CCVT = getSetCCResultType(CmpVT);
3742      SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3743      Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3744      break;
3745    }
3746
3747    // SELECT_CC is legal, so the condition code must not be.
3748    bool Legalized = false;
3749    // Try to legalize by inverting the condition.  This is for targets that
3750    // might support an ordered version of a condition, but not the unordered
3751    // version (or vice versa).
3752    ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, Tmp1.getValueType());
3753    if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3754      // Use the new condition code and swap true and false
3755      Legalized = true;
3756      Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3757      Tmp1->setFlags(Node->getFlags());
3758    } else {
3759      // If The inverse is not legal, then try to swap the arguments using
3760      // the inverse condition code.
3761      ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3762      if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3763        // The swapped inverse condition is legal, so swap true and false,
3764        // lhs and rhs.
3765        Legalized = true;
3766        Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3767        Tmp1->setFlags(Node->getFlags());
3768      }
3769    }
3770
3771    if (!Legalized) {
3772      Legalized = LegalizeSetCCCondCode(getSetCCResultType(Tmp1.getValueType()),
3773                                        Tmp1, Tmp2, CC, NeedInvert, dl, Chain);
3774
3775      assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3776
3777      // If we expanded the SETCC by inverting the condition code, then swap
3778      // the True/False operands to match.
3779      if (NeedInvert)
3780        std::swap(Tmp3, Tmp4);
3781
3782      // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3783      // condition code, create a new SELECT_CC node.
3784      if (CC.getNode()) {
3785        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3786                           Tmp1, Tmp2, Tmp3, Tmp4, CC);
3787      } else {
3788        Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3789        CC = DAG.getCondCode(ISD::SETNE);
3790        Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3791                           Tmp2, Tmp3, Tmp4, CC);
3792      }
3793      Tmp1->setFlags(Node->getFlags());
3794    }
3795    Results.push_back(Tmp1);
3796    break;
3797  }
3798  case ISD::BR_CC: {
3799    // TODO: need to add STRICT_BR_CC and STRICT_BR_CCS
3800    SDValue Chain;
3801    Tmp1 = Node->getOperand(0);              // Chain
3802    Tmp2 = Node->getOperand(2);              // LHS
3803    Tmp3 = Node->getOperand(3);              // RHS
3804    Tmp4 = Node->getOperand(1);              // CC
3805
3806    bool Legalized =
3807        LegalizeSetCCCondCode(getSetCCResultType(Tmp2.getValueType()), Tmp2,
3808                              Tmp3, Tmp4, NeedInvert, dl, Chain);
3809    (void)Legalized;
3810    assert(Legalized && "Can't legalize BR_CC with legal condition!");
3811
3812    assert(!NeedInvert && "Don't know how to invert BR_CC!");
3813
3814    // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3815    // node.
3816    if (Tmp4.getNode()) {
3817      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3818                         Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3819    } else {
3820      Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3821      Tmp4 = DAG.getCondCode(ISD::SETNE);
3822      Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3823                         Tmp2, Tmp3, Node->getOperand(4));
3824    }
3825    Results.push_back(Tmp1);
3826    break;
3827  }
3828  case ISD::BUILD_VECTOR:
3829    Results.push_back(ExpandBUILD_VECTOR(Node));
3830    break;
3831  case ISD::SPLAT_VECTOR:
3832    Results.push_back(ExpandSPLAT_VECTOR(Node));
3833    break;
3834  case ISD::SRA:
3835  case ISD::SRL:
3836  case ISD::SHL: {
3837    // Scalarize vector SRA/SRL/SHL.
3838    EVT VT = Node->getValueType(0);
3839    assert(VT.isVector() && "Unable to legalize non-vector shift");
3840    assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3841    unsigned NumElem = VT.getVectorNumElements();
3842
3843    SmallVector<SDValue, 8> Scalars;
3844    for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3845      SDValue Ex =
3846          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3847                      Node->getOperand(0), DAG.getVectorIdxConstant(Idx, dl));
3848      SDValue Sh =
3849          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(),
3850                      Node->getOperand(1), DAG.getVectorIdxConstant(Idx, dl));
3851      Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3852                                    VT.getScalarType(), Ex, Sh));
3853    }
3854
3855    SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3856    Results.push_back(Result);
3857    break;
3858  }
3859  case ISD::VECREDUCE_FADD:
3860  case ISD::VECREDUCE_FMUL:
3861  case ISD::VECREDUCE_ADD:
3862  case ISD::VECREDUCE_MUL:
3863  case ISD::VECREDUCE_AND:
3864  case ISD::VECREDUCE_OR:
3865  case ISD::VECREDUCE_XOR:
3866  case ISD::VECREDUCE_SMAX:
3867  case ISD::VECREDUCE_SMIN:
3868  case ISD::VECREDUCE_UMAX:
3869  case ISD::VECREDUCE_UMIN:
3870  case ISD::VECREDUCE_FMAX:
3871  case ISD::VECREDUCE_FMIN:
3872    Results.push_back(TLI.expandVecReduce(Node, DAG));
3873    break;
3874  case ISD::GLOBAL_OFFSET_TABLE:
3875  case ISD::GlobalAddress:
3876  case ISD::GlobalTLSAddress:
3877  case ISD::ExternalSymbol:
3878  case ISD::ConstantPool:
3879  case ISD::JumpTable:
3880  case ISD::INTRINSIC_W_CHAIN:
3881  case ISD::INTRINSIC_WO_CHAIN:
3882  case ISD::INTRINSIC_VOID:
3883    // FIXME: Custom lowering for these operations shouldn't return null!
3884    // Return true so that we don't call ConvertNodeToLibcall which also won't
3885    // do anything.
3886    return true;
3887  }
3888
3889  if (!TLI.isStrictFPEnabled() && Results.empty() && Node->isStrictFPOpcode()) {
3890    // FIXME: We were asked to expand a strict floating-point operation,
3891    // but there is currently no expansion implemented that would preserve
3892    // the "strict" properties.  For now, we just fall back to the non-strict
3893    // version if that is legal on the target.  The actual mutation of the
3894    // operation will happen in SelectionDAGISel::DoInstructionSelection.
3895    switch (Node->getOpcode()) {
3896    default:
3897      if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3898                                         Node->getValueType(0))
3899          == TargetLowering::Legal)
3900        return true;
3901      break;
3902    case ISD::STRICT_LRINT:
3903    case ISD::STRICT_LLRINT:
3904    case ISD::STRICT_LROUND:
3905    case ISD::STRICT_LLROUND:
3906      // These are registered by the operand type instead of the value
3907      // type. Reflect that here.
3908      if (TLI.getStrictFPOperationAction(Node->getOpcode(),
3909                                         Node->getOperand(1).getValueType())
3910          == TargetLowering::Legal)
3911        return true;
3912      break;
3913    }
3914  }
3915
3916  // Replace the original node with the legalized result.
3917  if (Results.empty()) {
3918    LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3919    return false;
3920  }
3921
3922  LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3923  ReplaceNode(Node, Results.data());
3924  return true;
3925}
3926
3927void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3928  LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3929  SmallVector<SDValue, 8> Results;
3930  SDLoc dl(Node);
3931  // FIXME: Check flags on the node to see if we can use a finite call.
3932  unsigned Opc = Node->getOpcode();
3933  switch (Opc) {
3934  case ISD::ATOMIC_FENCE: {
3935    // If the target didn't lower this, lower it to '__sync_synchronize()' call
3936    // FIXME: handle "fence singlethread" more efficiently.
3937    TargetLowering::ArgListTy Args;
3938
3939    TargetLowering::CallLoweringInfo CLI(DAG);
3940    CLI.setDebugLoc(dl)
3941        .setChain(Node->getOperand(0))
3942        .setLibCallee(
3943            CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3944            DAG.getExternalSymbol("__sync_synchronize",
3945                                  TLI.getPointerTy(DAG.getDataLayout())),
3946            std::move(Args));
3947
3948    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3949
3950    Results.push_back(CallResult.second);
3951    break;
3952  }
3953  // By default, atomic intrinsics are marked Legal and lowered. Targets
3954  // which don't support them directly, however, may want libcalls, in which
3955  // case they mark them Expand, and we get here.
3956  case ISD::ATOMIC_SWAP:
3957  case ISD::ATOMIC_LOAD_ADD:
3958  case ISD::ATOMIC_LOAD_SUB:
3959  case ISD::ATOMIC_LOAD_AND:
3960  case ISD::ATOMIC_LOAD_CLR:
3961  case ISD::ATOMIC_LOAD_OR:
3962  case ISD::ATOMIC_LOAD_XOR:
3963  case ISD::ATOMIC_LOAD_NAND:
3964  case ISD::ATOMIC_LOAD_MIN:
3965  case ISD::ATOMIC_LOAD_MAX:
3966  case ISD::ATOMIC_LOAD_UMIN:
3967  case ISD::ATOMIC_LOAD_UMAX:
3968  case ISD::ATOMIC_CMP_SWAP: {
3969    MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3970    RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3971    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3972
3973    EVT RetVT = Node->getValueType(0);
3974    SmallVector<SDValue, 4> Ops(Node->op_begin() + 1, Node->op_end());
3975    TargetLowering::MakeLibCallOptions CallOptions;
3976    std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT,
3977                                                      Ops, CallOptions,
3978                                                      SDLoc(Node),
3979                                                      Node->getOperand(0));
3980    Results.push_back(Tmp.first);
3981    Results.push_back(Tmp.second);
3982    break;
3983  }
3984  case ISD::TRAP: {
3985    // If this operation is not supported, lower it to 'abort()' call
3986    TargetLowering::ArgListTy Args;
3987    TargetLowering::CallLoweringInfo CLI(DAG);
3988    CLI.setDebugLoc(dl)
3989        .setChain(Node->getOperand(0))
3990        .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3991                      DAG.getExternalSymbol(
3992                          "abort", TLI.getPointerTy(DAG.getDataLayout())),
3993                      std::move(Args));
3994    std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3995
3996    Results.push_back(CallResult.second);
3997    break;
3998  }
3999  case ISD::FMINNUM:
4000  case ISD::STRICT_FMINNUM:
4001    ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
4002                    RTLIB::FMIN_F80, RTLIB::FMIN_F128,
4003                    RTLIB::FMIN_PPCF128, Results);
4004    break;
4005  case ISD::FMAXNUM:
4006  case ISD::STRICT_FMAXNUM:
4007    ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
4008                    RTLIB::FMAX_F80, RTLIB::FMAX_F128,
4009                    RTLIB::FMAX_PPCF128, Results);
4010    break;
4011  case ISD::FSQRT:
4012  case ISD::STRICT_FSQRT:
4013    ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
4014                    RTLIB::SQRT_F80, RTLIB::SQRT_F128,
4015                    RTLIB::SQRT_PPCF128, Results);
4016    break;
4017  case ISD::FCBRT:
4018    ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
4019                    RTLIB::CBRT_F80, RTLIB::CBRT_F128,
4020                    RTLIB::CBRT_PPCF128, Results);
4021    break;
4022  case ISD::FSIN:
4023  case ISD::STRICT_FSIN:
4024    ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
4025                    RTLIB::SIN_F80, RTLIB::SIN_F128,
4026                    RTLIB::SIN_PPCF128, Results);
4027    break;
4028  case ISD::FCOS:
4029  case ISD::STRICT_FCOS:
4030    ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
4031                    RTLIB::COS_F80, RTLIB::COS_F128,
4032                    RTLIB::COS_PPCF128, Results);
4033    break;
4034  case ISD::FSINCOS:
4035    // Expand into sincos libcall.
4036    ExpandSinCosLibCall(Node, Results);
4037    break;
4038  case ISD::FLOG:
4039  case ISD::STRICT_FLOG:
4040    ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80,
4041                    RTLIB::LOG_F128, RTLIB::LOG_PPCF128, Results);
4042    break;
4043  case ISD::FLOG2:
4044  case ISD::STRICT_FLOG2:
4045    ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80,
4046                    RTLIB::LOG2_F128, RTLIB::LOG2_PPCF128, Results);
4047    break;
4048  case ISD::FLOG10:
4049  case ISD::STRICT_FLOG10:
4050    ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80,
4051                    RTLIB::LOG10_F128, RTLIB::LOG10_PPCF128, Results);
4052    break;
4053  case ISD::FEXP:
4054  case ISD::STRICT_FEXP:
4055    ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80,
4056                    RTLIB::EXP_F128, RTLIB::EXP_PPCF128, Results);
4057    break;
4058  case ISD::FEXP2:
4059  case ISD::STRICT_FEXP2:
4060    ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80,
4061                    RTLIB::EXP2_F128, RTLIB::EXP2_PPCF128, Results);
4062    break;
4063  case ISD::FTRUNC:
4064  case ISD::STRICT_FTRUNC:
4065    ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
4066                    RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
4067                    RTLIB::TRUNC_PPCF128, Results);
4068    break;
4069  case ISD::FFLOOR:
4070  case ISD::STRICT_FFLOOR:
4071    ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
4072                    RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
4073                    RTLIB::FLOOR_PPCF128, Results);
4074    break;
4075  case ISD::FCEIL:
4076  case ISD::STRICT_FCEIL:
4077    ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
4078                    RTLIB::CEIL_F80, RTLIB::CEIL_F128,
4079                    RTLIB::CEIL_PPCF128, Results);
4080    break;
4081  case ISD::FRINT:
4082  case ISD::STRICT_FRINT:
4083    ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
4084                    RTLIB::RINT_F80, RTLIB::RINT_F128,
4085                    RTLIB::RINT_PPCF128, Results);
4086    break;
4087  case ISD::FNEARBYINT:
4088  case ISD::STRICT_FNEARBYINT:
4089    ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
4090                    RTLIB::NEARBYINT_F64,
4091                    RTLIB::NEARBYINT_F80,
4092                    RTLIB::NEARBYINT_F128,
4093                    RTLIB::NEARBYINT_PPCF128, Results);
4094    break;
4095  case ISD::FROUND:
4096  case ISD::STRICT_FROUND:
4097    ExpandFPLibCall(Node, RTLIB::ROUND_F32,
4098                    RTLIB::ROUND_F64,
4099                    RTLIB::ROUND_F80,
4100                    RTLIB::ROUND_F128,
4101                    RTLIB::ROUND_PPCF128, Results);
4102    break;
4103  case ISD::FROUNDEVEN:
4104  case ISD::STRICT_FROUNDEVEN:
4105    ExpandFPLibCall(Node, RTLIB::ROUNDEVEN_F32,
4106                    RTLIB::ROUNDEVEN_F64,
4107                    RTLIB::ROUNDEVEN_F80,
4108                    RTLIB::ROUNDEVEN_F128,
4109                    RTLIB::ROUNDEVEN_PPCF128, Results);
4110    break;
4111  case ISD::FPOWI:
4112  case ISD::STRICT_FPOWI: {
4113    RTLIB::Libcall LC;
4114    switch (Node->getSimpleValueType(0).SimpleTy) {
4115    default: llvm_unreachable("Unexpected request for libcall!");
4116    case MVT::f32: LC = RTLIB::POWI_F32; break;
4117    case MVT::f64: LC = RTLIB::POWI_F64; break;
4118    case MVT::f80: LC = RTLIB::POWI_F80; break;
4119    case MVT::f128: LC = RTLIB::POWI_F128; break;
4120    case MVT::ppcf128: LC = RTLIB::POWI_PPCF128; break;
4121    }
4122    if (!TLI.getLibcallName(LC)) {
4123      // Some targets don't have a powi libcall; use pow instead.
4124      SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, SDLoc(Node),
4125                                     Node->getValueType(0),
4126                                     Node->getOperand(1));
4127      Results.push_back(DAG.getNode(ISD::FPOW, SDLoc(Node),
4128                                    Node->getValueType(0), Node->getOperand(0),
4129                                    Exponent));
4130      break;
4131    }
4132    ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
4133                    RTLIB::POWI_F80, RTLIB::POWI_F128,
4134                    RTLIB::POWI_PPCF128, Results);
4135    break;
4136  }
4137  case ISD::FPOW:
4138  case ISD::STRICT_FPOW:
4139    ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80,
4140                    RTLIB::POW_F128, RTLIB::POW_PPCF128, Results);
4141    break;
4142  case ISD::LROUND:
4143  case ISD::STRICT_LROUND:
4144    ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
4145                       RTLIB::LROUND_F64, RTLIB::LROUND_F80,
4146                       RTLIB::LROUND_F128,
4147                       RTLIB::LROUND_PPCF128, Results);
4148    break;
4149  case ISD::LLROUND:
4150  case ISD::STRICT_LLROUND:
4151    ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
4152                       RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
4153                       RTLIB::LLROUND_F128,
4154                       RTLIB::LLROUND_PPCF128, Results);
4155    break;
4156  case ISD::LRINT:
4157  case ISD::STRICT_LRINT:
4158    ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
4159                       RTLIB::LRINT_F64, RTLIB::LRINT_F80,
4160                       RTLIB::LRINT_F128,
4161                       RTLIB::LRINT_PPCF128, Results);
4162    break;
4163  case ISD::LLRINT:
4164  case ISD::STRICT_LLRINT:
4165    ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
4166                       RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
4167                       RTLIB::LLRINT_F128,
4168                       RTLIB::LLRINT_PPCF128, Results);
4169    break;
4170  case ISD::FDIV:
4171  case ISD::STRICT_FDIV:
4172    ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
4173                    RTLIB::DIV_F80, RTLIB::DIV_F128,
4174                    RTLIB::DIV_PPCF128, Results);
4175    break;
4176  case ISD::FREM:
4177  case ISD::STRICT_FREM:
4178    ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
4179                    RTLIB::REM_F80, RTLIB::REM_F128,
4180                    RTLIB::REM_PPCF128, Results);
4181    break;
4182  case ISD::FMA:
4183  case ISD::STRICT_FMA:
4184    ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4185                    RTLIB::FMA_F80, RTLIB::FMA_F128,
4186                    RTLIB::FMA_PPCF128, Results);
4187    break;
4188  case ISD::FADD:
4189  case ISD::STRICT_FADD:
4190    ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4191                    RTLIB::ADD_F80, RTLIB::ADD_F128,
4192                    RTLIB::ADD_PPCF128, Results);
4193    break;
4194  case ISD::FMUL:
4195  case ISD::STRICT_FMUL:
4196    ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4197                    RTLIB::MUL_F80, RTLIB::MUL_F128,
4198                    RTLIB::MUL_PPCF128, Results);
4199    break;
4200  case ISD::FP16_TO_FP:
4201    if (Node->getValueType(0) == MVT::f32) {
4202      Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4203    }
4204    break;
4205  case ISD::STRICT_FP16_TO_FP: {
4206    if (Node->getValueType(0) == MVT::f32) {
4207      TargetLowering::MakeLibCallOptions CallOptions;
4208      std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(
4209          DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Node->getOperand(1), CallOptions,
4210          SDLoc(Node), Node->getOperand(0));
4211      Results.push_back(Tmp.first);
4212      Results.push_back(Tmp.second);
4213    }
4214    break;
4215  }
4216  case ISD::FP_TO_FP16: {
4217    RTLIB::Libcall LC =
4218        RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4219    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4220    Results.push_back(ExpandLibCall(LC, Node, false));
4221    break;
4222  }
4223  case ISD::STRICT_FP_TO_FP16: {
4224    RTLIB::Libcall LC =
4225        RTLIB::getFPROUND(Node->getOperand(1).getValueType(), MVT::f16);
4226    assert(LC != RTLIB::UNKNOWN_LIBCALL &&
4227           "Unable to expand strict_fp_to_fp16");
4228    TargetLowering::MakeLibCallOptions CallOptions;
4229    std::pair<SDValue, SDValue> Tmp =
4230        TLI.makeLibCall(DAG, LC, Node->getValueType(0), Node->getOperand(1),
4231                        CallOptions, SDLoc(Node), Node->getOperand(0));
4232    Results.push_back(Tmp.first);
4233    Results.push_back(Tmp.second);
4234    break;
4235  }
4236  case ISD::FSUB:
4237  case ISD::STRICT_FSUB:
4238    ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4239                    RTLIB::SUB_F80, RTLIB::SUB_F128,
4240                    RTLIB::SUB_PPCF128, Results);
4241    break;
4242  case ISD::SREM:
4243    Results.push_back(ExpandIntLibCall(Node, true,
4244                                       RTLIB::SREM_I8,
4245                                       RTLIB::SREM_I16, RTLIB::SREM_I32,
4246                                       RTLIB::SREM_I64, RTLIB::SREM_I128));
4247    break;
4248  case ISD::UREM:
4249    Results.push_back(ExpandIntLibCall(Node, false,
4250                                       RTLIB::UREM_I8,
4251                                       RTLIB::UREM_I16, RTLIB::UREM_I32,
4252                                       RTLIB::UREM_I64, RTLIB::UREM_I128));
4253    break;
4254  case ISD::SDIV:
4255    Results.push_back(ExpandIntLibCall(Node, true,
4256                                       RTLIB::SDIV_I8,
4257                                       RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4258                                       RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4259    break;
4260  case ISD::UDIV:
4261    Results.push_back(ExpandIntLibCall(Node, false,
4262                                       RTLIB::UDIV_I8,
4263                                       RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4264                                       RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4265    break;
4266  case ISD::SDIVREM:
4267  case ISD::UDIVREM:
4268    // Expand into divrem libcall
4269    ExpandDivRemLibCall(Node, Results);
4270    break;
4271  case ISD::MUL:
4272    Results.push_back(ExpandIntLibCall(Node, false,
4273                                       RTLIB::MUL_I8,
4274                                       RTLIB::MUL_I16, RTLIB::MUL_I32,
4275                                       RTLIB::MUL_I64, RTLIB::MUL_I128));
4276    break;
4277  case ISD::CTLZ_ZERO_UNDEF:
4278    switch (Node->getSimpleValueType(0).SimpleTy) {
4279    default:
4280      llvm_unreachable("LibCall explicitly requested, but not available");
4281    case MVT::i32:
4282      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4283      break;
4284    case MVT::i64:
4285      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4286      break;
4287    case MVT::i128:
4288      Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4289      break;
4290    }
4291    break;
4292  }
4293
4294  // Replace the original node with the legalized result.
4295  if (!Results.empty()) {
4296    LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4297    ReplaceNode(Node, Results.data());
4298  } else
4299    LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4300}
4301
4302// Determine the vector type to use in place of an original scalar element when
4303// promoting equally sized vectors.
4304static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4305                                        MVT EltVT, MVT NewEltVT) {
4306  unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4307  MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4308  assert(TLI.isTypeLegal(MidVT) && "unexpected");
4309  return MidVT;
4310}
4311
4312void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4313  LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4314  SmallVector<SDValue, 8> Results;
4315  MVT OVT = Node->getSimpleValueType(0);
4316  if (Node->getOpcode() == ISD::UINT_TO_FP ||
4317      Node->getOpcode() == ISD::SINT_TO_FP ||
4318      Node->getOpcode() == ISD::SETCC ||
4319      Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4320      Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4321    OVT = Node->getOperand(0).getSimpleValueType();
4322  }
4323  if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP ||
4324      Node->getOpcode() == ISD::STRICT_SINT_TO_FP)
4325    OVT = Node->getOperand(1).getSimpleValueType();
4326  if (Node->getOpcode() == ISD::BR_CC)
4327    OVT = Node->getOperand(2).getSimpleValueType();
4328  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4329  SDLoc dl(Node);
4330  SDValue Tmp1, Tmp2, Tmp3;
4331  switch (Node->getOpcode()) {
4332  case ISD::CTTZ:
4333  case ISD::CTTZ_ZERO_UNDEF:
4334  case ISD::CTLZ:
4335  case ISD::CTLZ_ZERO_UNDEF:
4336  case ISD::CTPOP:
4337    // Zero extend the argument unless its cttz, then use any_extend.
4338    if (Node->getOpcode() == ISD::CTTZ ||
4339        Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF)
4340      Tmp1 = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Node->getOperand(0));
4341    else
4342      Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4343
4344    if (Node->getOpcode() == ISD::CTTZ) {
4345      // The count is the same in the promoted type except if the original
4346      // value was zero.  This can be handled by setting the bit just off
4347      // the top of the original type.
4348      auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4349                                        OVT.getSizeInBits());
4350      Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4351                         DAG.getConstant(TopBit, dl, NVT));
4352    }
4353    // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4354    // already the correct result.
4355    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4356    if (Node->getOpcode() == ISD::CTLZ ||
4357        Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4358      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4359      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4360                          DAG.getConstant(NVT.getSizeInBits() -
4361                                          OVT.getSizeInBits(), dl, NVT));
4362    }
4363    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4364    break;
4365  case ISD::BITREVERSE:
4366  case ISD::BSWAP: {
4367    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4368    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4369    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4370    Tmp1 = DAG.getNode(
4371        ISD::SRL, dl, NVT, Tmp1,
4372        DAG.getConstant(DiffBits, dl,
4373                        TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4374
4375    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4376    break;
4377  }
4378  case ISD::FP_TO_UINT:
4379  case ISD::STRICT_FP_TO_UINT:
4380  case ISD::FP_TO_SINT:
4381  case ISD::STRICT_FP_TO_SINT:
4382    PromoteLegalFP_TO_INT(Node, dl, Results);
4383    break;
4384  case ISD::UINT_TO_FP:
4385  case ISD::STRICT_UINT_TO_FP:
4386  case ISD::SINT_TO_FP:
4387  case ISD::STRICT_SINT_TO_FP:
4388    PromoteLegalINT_TO_FP(Node, dl, Results);
4389    break;
4390  case ISD::VAARG: {
4391    SDValue Chain = Node->getOperand(0); // Get the chain.
4392    SDValue Ptr = Node->getOperand(1); // Get the pointer.
4393
4394    unsigned TruncOp;
4395    if (OVT.isVector()) {
4396      TruncOp = ISD::BITCAST;
4397    } else {
4398      assert(OVT.isInteger()
4399        && "VAARG promotion is supported only for vectors or integer types");
4400      TruncOp = ISD::TRUNCATE;
4401    }
4402
4403    // Perform the larger operation, then convert back
4404    Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4405             Node->getConstantOperandVal(3));
4406    Chain = Tmp1.getValue(1);
4407
4408    Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4409
4410    // Modified the chain result - switch anything that used the old chain to
4411    // use the new one.
4412    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4413    DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4414    if (UpdatedNodes) {
4415      UpdatedNodes->insert(Tmp2.getNode());
4416      UpdatedNodes->insert(Chain.getNode());
4417    }
4418    ReplacedNode(Node);
4419    break;
4420  }
4421  case ISD::MUL:
4422  case ISD::SDIV:
4423  case ISD::SREM:
4424  case ISD::UDIV:
4425  case ISD::UREM:
4426  case ISD::AND:
4427  case ISD::OR:
4428  case ISD::XOR: {
4429    unsigned ExtOp, TruncOp;
4430    if (OVT.isVector()) {
4431      ExtOp   = ISD::BITCAST;
4432      TruncOp = ISD::BITCAST;
4433    } else {
4434      assert(OVT.isInteger() && "Cannot promote logic operation");
4435
4436      switch (Node->getOpcode()) {
4437      default:
4438        ExtOp = ISD::ANY_EXTEND;
4439        break;
4440      case ISD::SDIV:
4441      case ISD::SREM:
4442        ExtOp = ISD::SIGN_EXTEND;
4443        break;
4444      case ISD::UDIV:
4445      case ISD::UREM:
4446        ExtOp = ISD::ZERO_EXTEND;
4447        break;
4448      }
4449      TruncOp = ISD::TRUNCATE;
4450    }
4451    // Promote each of the values to the new type.
4452    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4453    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4454    // Perform the larger operation, then convert back
4455    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4456    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4457    break;
4458  }
4459  case ISD::UMUL_LOHI:
4460  case ISD::SMUL_LOHI: {
4461    // Promote to a multiply in a wider integer type.
4462    unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4463                                                         : ISD::SIGN_EXTEND;
4464    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4465    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4466    Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4467
4468    auto &DL = DAG.getDataLayout();
4469    unsigned OriginalSize = OVT.getScalarSizeInBits();
4470    Tmp2 = DAG.getNode(
4471        ISD::SRL, dl, NVT, Tmp1,
4472        DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4473    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4474    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4475    break;
4476  }
4477  case ISD::SELECT: {
4478    unsigned ExtOp, TruncOp;
4479    if (Node->getValueType(0).isVector() ||
4480        Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4481      ExtOp   = ISD::BITCAST;
4482      TruncOp = ISD::BITCAST;
4483    } else if (Node->getValueType(0).isInteger()) {
4484      ExtOp   = ISD::ANY_EXTEND;
4485      TruncOp = ISD::TRUNCATE;
4486    } else {
4487      ExtOp   = ISD::FP_EXTEND;
4488      TruncOp = ISD::FP_ROUND;
4489    }
4490    Tmp1 = Node->getOperand(0);
4491    // Promote each of the values to the new type.
4492    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4493    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4494    // Perform the larger operation, then round down.
4495    Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4496    Tmp1->setFlags(Node->getFlags());
4497    if (TruncOp != ISD::FP_ROUND)
4498      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4499    else
4500      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4501                         DAG.getIntPtrConstant(0, dl));
4502    Results.push_back(Tmp1);
4503    break;
4504  }
4505  case ISD::VECTOR_SHUFFLE: {
4506    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4507
4508    // Cast the two input vectors.
4509    Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4510    Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4511
4512    // Convert the shuffle mask to the right # elements.
4513    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4514    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4515    Results.push_back(Tmp1);
4516    break;
4517  }
4518  case ISD::SETCC: {
4519    unsigned ExtOp = ISD::FP_EXTEND;
4520    if (NVT.isInteger()) {
4521      ISD::CondCode CCCode =
4522        cast<CondCodeSDNode>(Node->getOperand(2))->get();
4523      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4524    }
4525    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4526    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4527    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4528                                  Tmp2, Node->getOperand(2), Node->getFlags()));
4529    break;
4530  }
4531  case ISD::BR_CC: {
4532    unsigned ExtOp = ISD::FP_EXTEND;
4533    if (NVT.isInteger()) {
4534      ISD::CondCode CCCode =
4535        cast<CondCodeSDNode>(Node->getOperand(1))->get();
4536      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4537    }
4538    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4539    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4540    Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4541                                  Node->getOperand(0), Node->getOperand(1),
4542                                  Tmp1, Tmp2, Node->getOperand(4)));
4543    break;
4544  }
4545  case ISD::FADD:
4546  case ISD::FSUB:
4547  case ISD::FMUL:
4548  case ISD::FDIV:
4549  case ISD::FREM:
4550  case ISD::FMINNUM:
4551  case ISD::FMAXNUM:
4552  case ISD::FPOW:
4553    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4554    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4555    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4556                       Node->getFlags());
4557    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4558                                  Tmp3, DAG.getIntPtrConstant(0, dl)));
4559    break;
4560  case ISD::STRICT_FREM:
4561  case ISD::STRICT_FPOW:
4562    Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4563                       {Node->getOperand(0), Node->getOperand(1)});
4564    Tmp2 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4565                       {Node->getOperand(0), Node->getOperand(2)});
4566    Tmp3 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Tmp1.getValue(1),
4567                       Tmp2.getValue(1));
4568    Tmp1 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4569                       {Tmp3, Tmp1, Tmp2});
4570    Tmp1 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4571                       {Tmp1.getValue(1), Tmp1, DAG.getIntPtrConstant(0, dl)});
4572    Results.push_back(Tmp1);
4573    Results.push_back(Tmp1.getValue(1));
4574    break;
4575  case ISD::FMA:
4576    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4577    Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4578    Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4579    Results.push_back(
4580        DAG.getNode(ISD::FP_ROUND, dl, OVT,
4581                    DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4582                    DAG.getIntPtrConstant(0, dl)));
4583    break;
4584  case ISD::FCOPYSIGN:
4585  case ISD::FPOWI: {
4586    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4587    Tmp2 = Node->getOperand(1);
4588    Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4589
4590    // fcopysign doesn't change anything but the sign bit, so
4591    //   (fp_round (fcopysign (fpext a), b))
4592    // is as precise as
4593    //   (fp_round (fpext a))
4594    // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4595    const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4596    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4597                                  Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4598    break;
4599  }
4600  case ISD::FFLOOR:
4601  case ISD::FCEIL:
4602  case ISD::FRINT:
4603  case ISD::FNEARBYINT:
4604  case ISD::FROUND:
4605  case ISD::FROUNDEVEN:
4606  case ISD::FTRUNC:
4607  case ISD::FNEG:
4608  case ISD::FSQRT:
4609  case ISD::FSIN:
4610  case ISD::FCOS:
4611  case ISD::FLOG:
4612  case ISD::FLOG2:
4613  case ISD::FLOG10:
4614  case ISD::FABS:
4615  case ISD::FEXP:
4616  case ISD::FEXP2:
4617    Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4618    Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4619    Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4620                                  Tmp2, DAG.getIntPtrConstant(0, dl)));
4621    break;
4622  case ISD::STRICT_FFLOOR:
4623  case ISD::STRICT_FCEIL:
4624  case ISD::STRICT_FSIN:
4625  case ISD::STRICT_FCOS:
4626  case ISD::STRICT_FLOG:
4627  case ISD::STRICT_FLOG10:
4628  case ISD::STRICT_FEXP:
4629    Tmp1 = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NVT, MVT::Other},
4630                       {Node->getOperand(0), Node->getOperand(1)});
4631    Tmp2 = DAG.getNode(Node->getOpcode(), dl, {NVT, MVT::Other},
4632                       {Tmp1.getValue(1), Tmp1});
4633    Tmp3 = DAG.getNode(ISD::STRICT_FP_ROUND, dl, {OVT, MVT::Other},
4634                       {Tmp2.getValue(1), Tmp2, DAG.getIntPtrConstant(0, dl)});
4635    Results.push_back(Tmp3);
4636    Results.push_back(Tmp3.getValue(1));
4637    break;
4638  case ISD::BUILD_VECTOR: {
4639    MVT EltVT = OVT.getVectorElementType();
4640    MVT NewEltVT = NVT.getVectorElementType();
4641
4642    // Handle bitcasts to a different vector type with the same total bit size
4643    //
4644    // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4645    //  =>
4646    //  v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4647
4648    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4649           "Invalid promote type for build_vector");
4650    assert(NewEltVT.bitsLT(EltVT) && "not handled");
4651
4652    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4653
4654    SmallVector<SDValue, 8> NewOps;
4655    for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4656      SDValue Op = Node->getOperand(I);
4657      NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4658    }
4659
4660    SDLoc SL(Node);
4661    SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4662    SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4663    Results.push_back(CvtVec);
4664    break;
4665  }
4666  case ISD::EXTRACT_VECTOR_ELT: {
4667    MVT EltVT = OVT.getVectorElementType();
4668    MVT NewEltVT = NVT.getVectorElementType();
4669
4670    // Handle bitcasts to a different vector type with the same total bit size.
4671    //
4672    // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4673    //  =>
4674    //  v4i32:castx = bitcast x:v2i64
4675    //
4676    // i64 = bitcast
4677    //   (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4678    //                       (i32 (extract_vector_elt castx, (2 * y + 1)))
4679    //
4680
4681    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4682           "Invalid promote type for extract_vector_elt");
4683    assert(NewEltVT.bitsLT(EltVT) && "not handled");
4684
4685    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4686    unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4687
4688    SDValue Idx = Node->getOperand(1);
4689    EVT IdxVT = Idx.getValueType();
4690    SDLoc SL(Node);
4691    SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4692    SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4693
4694    SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4695
4696    SmallVector<SDValue, 8> NewOps;
4697    for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4698      SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4699      SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4700
4701      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4702                                CastVec, TmpIdx);
4703      NewOps.push_back(Elt);
4704    }
4705
4706    SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4707    Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4708    break;
4709  }
4710  case ISD::INSERT_VECTOR_ELT: {
4711    MVT EltVT = OVT.getVectorElementType();
4712    MVT NewEltVT = NVT.getVectorElementType();
4713
4714    // Handle bitcasts to a different vector type with the same total bit size
4715    //
4716    // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4717    //  =>
4718    //  v4i32:castx = bitcast x:v2i64
4719    //  v2i32:casty = bitcast y:i64
4720    //
4721    // v2i64 = bitcast
4722    //   (v4i32 insert_vector_elt
4723    //       (v4i32 insert_vector_elt v4i32:castx,
4724    //                                (extract_vector_elt casty, 0), 2 * z),
4725    //        (extract_vector_elt casty, 1), (2 * z + 1))
4726
4727    assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4728           "Invalid promote type for insert_vector_elt");
4729    assert(NewEltVT.bitsLT(EltVT) && "not handled");
4730
4731    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4732    unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4733
4734    SDValue Val = Node->getOperand(1);
4735    SDValue Idx = Node->getOperand(2);
4736    EVT IdxVT = Idx.getValueType();
4737    SDLoc SL(Node);
4738
4739    SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4740    SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4741
4742    SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4743    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4744
4745    SDValue NewVec = CastVec;
4746    for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4747      SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4748      SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4749
4750      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4751                                CastVal, IdxOffset);
4752
4753      NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4754                           NewVec, Elt, InEltIdx);
4755    }
4756
4757    Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4758    break;
4759  }
4760  case ISD::SCALAR_TO_VECTOR: {
4761    MVT EltVT = OVT.getVectorElementType();
4762    MVT NewEltVT = NVT.getVectorElementType();
4763
4764    // Handle bitcasts to different vector type with the same total bit size.
4765    //
4766    // e.g. v2i64 = scalar_to_vector x:i64
4767    //   =>
4768    //  concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4769    //
4770
4771    MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4772    SDValue Val = Node->getOperand(0);
4773    SDLoc SL(Node);
4774
4775    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4776    SDValue Undef = DAG.getUNDEF(MidVT);
4777
4778    SmallVector<SDValue, 8> NewElts;
4779    NewElts.push_back(CastVal);
4780    for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4781      NewElts.push_back(Undef);
4782
4783    SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4784    SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4785    Results.push_back(CvtVec);
4786    break;
4787  }
4788  case ISD::ATOMIC_SWAP: {
4789    AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4790    SDLoc SL(Node);
4791    SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4792    assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4793           "unexpected promotion type");
4794    assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4795           "unexpected atomic_swap with illegal type");
4796
4797    SDValue NewAtomic
4798      = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4799                      DAG.getVTList(NVT, MVT::Other),
4800                      { AM->getChain(), AM->getBasePtr(), CastVal },
4801                      AM->getMemOperand());
4802    Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4803    Results.push_back(NewAtomic.getValue(1));
4804    break;
4805  }
4806  }
4807
4808  // Replace the original node with the legalized result.
4809  if (!Results.empty()) {
4810    LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4811    ReplaceNode(Node, Results.data());
4812  } else
4813    LLVM_DEBUG(dbgs() << "Could not promote node\n");
4814}
4815
4816/// This is the entry point for the file.
4817void SelectionDAG::Legalize() {
4818  AssignTopologicalOrder();
4819
4820  SmallPtrSet<SDNode *, 16> LegalizedNodes;
4821  // Use a delete listener to remove nodes which were deleted during
4822  // legalization from LegalizeNodes. This is needed to handle the situation
4823  // where a new node is allocated by the object pool to the same address of a
4824  // previously deleted node.
4825  DAGNodeDeletedListener DeleteListener(
4826      *this,
4827      [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4828
4829  SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4830
4831  // Visit all the nodes. We start in topological order, so that we see
4832  // nodes with their original operands intact. Legalization can produce
4833  // new nodes which may themselves need to be legalized. Iterate until all
4834  // nodes have been legalized.
4835  while (true) {
4836    bool AnyLegalized = false;
4837    for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4838      --NI;
4839
4840      SDNode *N = &*NI;
4841      if (N->use_empty() && N != getRoot().getNode()) {
4842        ++NI;
4843        DeleteNode(N);
4844        continue;
4845      }
4846
4847      if (LegalizedNodes.insert(N).second) {
4848        AnyLegalized = true;
4849        Legalizer.LegalizeOp(N);
4850
4851        if (N->use_empty() && N != getRoot().getNode()) {
4852          ++NI;
4853          DeleteNode(N);
4854        }
4855      }
4856    }
4857    if (!AnyLegalized)
4858      break;
4859
4860  }
4861
4862  // Remove dead nodes now.
4863  RemoveDeadNodes();
4864}
4865
4866bool SelectionDAG::LegalizeOp(SDNode *N,
4867                              SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4868  SmallPtrSet<SDNode *, 16> LegalizedNodes;
4869  SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4870
4871  // Directly insert the node in question, and legalize it. This will recurse
4872  // as needed through operands.
4873  LegalizedNodes.insert(N);
4874  Legalizer.LegalizeOp(N);
4875
4876  return LegalizedNodes.count(N);
4877}
4878