1//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the generic RegisterCoalescer interface which
10// is used as the common interface used by all clients and
11// implementations of register coalescing.
12//
13//===----------------------------------------------------------------------===//
14
15#include "RegisterCoalescer.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveInterval.h"
25#include "llvm/CodeGen/LiveIntervals.h"
26#include "llvm/CodeGen/LiveRangeEdit.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineLoopInfo.h"
33#include "llvm/CodeGen/MachineOperand.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/Passes.h"
36#include "llvm/CodeGen/RegisterClassInfo.h"
37#include "llvm/CodeGen/SlotIndexes.h"
38#include "llvm/CodeGen/TargetInstrInfo.h"
39#include "llvm/CodeGen/TargetOpcodes.h"
40#include "llvm/CodeGen/TargetRegisterInfo.h"
41#include "llvm/CodeGen/TargetSubtargetInfo.h"
42#include "llvm/IR/DebugLoc.h"
43#include "llvm/InitializePasses.h"
44#include "llvm/MC/LaneBitmask.h"
45#include "llvm/MC/MCInstrDesc.h"
46#include "llvm/MC/MCRegisterInfo.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/raw_ostream.h"
53#include <algorithm>
54#include <cassert>
55#include <iterator>
56#include <limits>
57#include <tuple>
58#include <utility>
59#include <vector>
60
61using namespace llvm;
62
63#define DEBUG_TYPE "regalloc"
64
65STATISTIC(numJoins    , "Number of interval joins performed");
66STATISTIC(numCrossRCs , "Number of cross class joins performed");
67STATISTIC(numCommutes , "Number of instruction commuting performed");
68STATISTIC(numExtends  , "Number of copies extended");
69STATISTIC(NumReMats   , "Number of instructions re-materialized");
70STATISTIC(NumInflated , "Number of register classes inflated");
71STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
72STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
73STATISTIC(NumShrinkToUses,  "Number of shrinkToUses called");
74
75static cl::opt<bool> EnableJoining("join-liveintervals",
76                                   cl::desc("Coalesce copies (default=true)"),
77                                   cl::init(true), cl::Hidden);
78
79static cl::opt<bool> UseTerminalRule("terminal-rule",
80                                     cl::desc("Apply the terminal rule"),
81                                     cl::init(false), cl::Hidden);
82
83/// Temporary flag to test critical edge unsplitting.
84static cl::opt<bool>
85EnableJoinSplits("join-splitedges",
86  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
87
88/// Temporary flag to test global copy optimization.
89static cl::opt<cl::boolOrDefault>
90EnableGlobalCopies("join-globalcopies",
91  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92  cl::init(cl::BOU_UNSET), cl::Hidden);
93
94static cl::opt<bool>
95VerifyCoalescing("verify-coalescing",
96         cl::desc("Verify machine instrs before and after register coalescing"),
97         cl::Hidden);
98
99static cl::opt<unsigned> LateRematUpdateThreshold(
100    "late-remat-update-threshold", cl::Hidden,
101    cl::desc("During rematerialization for a copy, if the def instruction has "
102             "many other copy uses to be rematerialized, delay the multiple "
103             "separate live interval update work and do them all at once after "
104             "all those rematerialization are done. It will save a lot of "
105             "repeated work. "),
106    cl::init(100));
107
108static cl::opt<unsigned> LargeIntervalSizeThreshold(
109    "large-interval-size-threshold", cl::Hidden,
110    cl::desc("If the valnos size of an interval is larger than the threshold, "
111             "it is regarded as a large interval. "),
112    cl::init(100));
113
114static cl::opt<unsigned> LargeIntervalFreqThreshold(
115    "large-interval-freq-threshold", cl::Hidden,
116    cl::desc("For a large interval, if it is coalesed with other live "
117             "intervals many times more than the threshold, stop its "
118             "coalescing to control the compile time. "),
119    cl::init(100));
120
121namespace {
122
123  class JoinVals;
124
125  class RegisterCoalescer : public MachineFunctionPass,
126                            private LiveRangeEdit::Delegate {
127    MachineFunction* MF = nullptr;
128    MachineRegisterInfo* MRI = nullptr;
129    const TargetRegisterInfo* TRI = nullptr;
130    const TargetInstrInfo* TII = nullptr;
131    LiveIntervals *LIS = nullptr;
132    const MachineLoopInfo* Loops = nullptr;
133    AliasAnalysis *AA = nullptr;
134    RegisterClassInfo RegClassInfo;
135
136    /// Debug variable location tracking -- for each VReg, maintain an
137    /// ordered-by-slot-index set of DBG_VALUEs, to help quick
138    /// identification of whether coalescing may change location validity.
139    using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>;
140    DenseMap<unsigned, std::vector<DbgValueLoc>> DbgVRegToValues;
141
142    /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached.
143    /// To avoid repeatedly merging sets of DbgValueLocs, instead record
144    /// which vregs have been coalesced, and where to. This map is from
145    /// vreg => {set of vregs merged in}.
146    DenseMap<unsigned, SmallVector<unsigned, 4>> DbgMergedVRegNums;
147
148    /// A LaneMask to remember on which subregister live ranges we need to call
149    /// shrinkToUses() later.
150    LaneBitmask ShrinkMask;
151
152    /// True if the main range of the currently coalesced intervals should be
153    /// checked for smaller live intervals.
154    bool ShrinkMainRange = false;
155
156    /// True if the coalescer should aggressively coalesce global copies
157    /// in favor of keeping local copies.
158    bool JoinGlobalCopies = false;
159
160    /// True if the coalescer should aggressively coalesce fall-thru
161    /// blocks exclusively containing copies.
162    bool JoinSplitEdges = false;
163
164    /// Copy instructions yet to be coalesced.
165    SmallVector<MachineInstr*, 8> WorkList;
166    SmallVector<MachineInstr*, 8> LocalWorkList;
167
168    /// Set of instruction pointers that have been erased, and
169    /// that may be present in WorkList.
170    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
171
172    /// Dead instructions that are about to be deleted.
173    SmallVector<MachineInstr*, 8> DeadDefs;
174
175    /// Virtual registers to be considered for register class inflation.
176    SmallVector<unsigned, 8> InflateRegs;
177
178    /// The collection of live intervals which should have been updated
179    /// immediately after rematerialiation but delayed until
180    /// lateLiveIntervalUpdate is called.
181    DenseSet<unsigned> ToBeUpdated;
182
183    /// Record how many times the large live interval with many valnos
184    /// has been tried to join with other live interval.
185    DenseMap<unsigned, unsigned long> LargeLIVisitCounter;
186
187    /// Recursively eliminate dead defs in DeadDefs.
188    void eliminateDeadDefs();
189
190    /// LiveRangeEdit callback for eliminateDeadDefs().
191    void LRE_WillEraseInstruction(MachineInstr *MI) override;
192
193    /// Coalesce the LocalWorkList.
194    void coalesceLocals();
195
196    /// Join compatible live intervals
197    void joinAllIntervals();
198
199    /// Coalesce copies in the specified MBB, putting
200    /// copies that cannot yet be coalesced into WorkList.
201    void copyCoalesceInMBB(MachineBasicBlock *MBB);
202
203    /// Tries to coalesce all copies in CurrList. Returns true if any progress
204    /// was made.
205    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
206
207    /// If one def has many copy like uses, and those copy uses are all
208    /// rematerialized, the live interval update needed for those
209    /// rematerializations will be delayed and done all at once instead
210    /// of being done multiple times. This is to save compile cost because
211    /// live interval update is costly.
212    void lateLiveIntervalUpdate();
213
214    /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
215    /// src/dst of the copy instruction CopyMI.  This returns true if the copy
216    /// was successfully coalesced away. If it is not currently possible to
217    /// coalesce this interval, but it may be possible if other things get
218    /// coalesced, then it returns true by reference in 'Again'.
219    bool joinCopy(MachineInstr *CopyMI, bool &Again);
220
221    /// Attempt to join these two intervals.  On failure, this
222    /// returns false.  The output "SrcInt" will not have been modified, so we
223    /// can use this information below to update aliases.
224    bool joinIntervals(CoalescerPair &CP);
225
226    /// Attempt joining two virtual registers. Return true on success.
227    bool joinVirtRegs(CoalescerPair &CP);
228
229    /// If a live interval has many valnos and is coalesced with other
230    /// live intervals many times, we regard such live interval as having
231    /// high compile time cost.
232    bool isHighCostLiveInterval(LiveInterval &LI);
233
234    /// Attempt joining with a reserved physreg.
235    bool joinReservedPhysReg(CoalescerPair &CP);
236
237    /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
238    /// Subranges in @p LI which only partially interfere with the desired
239    /// LaneMask are split as necessary. @p LaneMask are the lanes that
240    /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
241    /// lanemasks already adjusted to the coalesced register.
242    void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge,
243                           LaneBitmask LaneMask, CoalescerPair &CP,
244                           unsigned DstIdx);
245
246    /// Join the liveranges of two subregisters. Joins @p RRange into
247    /// @p LRange, @p RRange may be invalid afterwards.
248    void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
249                          LaneBitmask LaneMask, const CoalescerPair &CP);
250
251    /// We found a non-trivially-coalescable copy. If the source value number is
252    /// defined by a copy from the destination reg see if we can merge these two
253    /// destination reg valno# into a single value number, eliminating a copy.
254    /// This returns true if an interval was modified.
255    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
256
257    /// Return true if there are definitions of IntB
258    /// other than BValNo val# that can reach uses of AValno val# of IntA.
259    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
260                              VNInfo *AValNo, VNInfo *BValNo);
261
262    /// We found a non-trivially-coalescable copy.
263    /// If the source value number is defined by a commutable instruction and
264    /// its other operand is coalesced to the copy dest register, see if we
265    /// can transform the copy into a noop by commuting the definition.
266    /// This returns a pair of two flags:
267    /// - the first element is true if an interval was modified,
268    /// - the second element is true if the destination interval needs
269    ///   to be shrunk after deleting the copy.
270    std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP,
271                                                  MachineInstr *CopyMI);
272
273    /// We found a copy which can be moved to its less frequent predecessor.
274    bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI);
275
276    /// If the source of a copy is defined by a
277    /// trivial computation, replace the copy by rematerialize the definition.
278    bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI,
279                                 bool &IsDefCopy);
280
281    /// Return true if a copy involving a physreg should be joined.
282    bool canJoinPhys(const CoalescerPair &CP);
283
284    /// Replace all defs and uses of SrcReg to DstReg and update the subregister
285    /// number if it is not zero. If DstReg is a physical register and the
286    /// existing subregister number of the def / use being updated is not zero,
287    /// make sure to set it to the correct physical subregister.
288    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
289
290    /// If the given machine operand reads only undefined lanes add an undef
291    /// flag.
292    /// This can happen when undef uses were previously concealed by a copy
293    /// which we coalesced. Example:
294    ///    %0:sub0<def,read-undef> = ...
295    ///    %1 = COPY %0           <-- Coalescing COPY reveals undef
296    ///       = use %1:sub1       <-- hidden undef use
297    void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
298                      MachineOperand &MO, unsigned SubRegIdx);
299
300    /// Handle copies of undef values. If the undef value is an incoming
301    /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
302    /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
303    /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
304    MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI);
305
306    /// Check whether or not we should apply the terminal rule on the
307    /// destination (Dst) of \p Copy.
308    /// When the terminal rule applies, Copy is not profitable to
309    /// coalesce.
310    /// Dst is terminal if it has exactly one affinity (Dst, Src) and
311    /// at least one interference (Dst, Dst2). If Dst is terminal, the
312    /// terminal rule consists in checking that at least one of
313    /// interfering node, say Dst2, has an affinity of equal or greater
314    /// weight with Src.
315    /// In that case, Dst2 and Dst will not be able to be both coalesced
316    /// with Src. Since Dst2 exposes more coalescing opportunities than
317    /// Dst, we can drop \p Copy.
318    bool applyTerminalRule(const MachineInstr &Copy) const;
319
320    /// Wrapper method for \see LiveIntervals::shrinkToUses.
321    /// This method does the proper fixing of the live-ranges when the afore
322    /// mentioned method returns true.
323    void shrinkToUses(LiveInterval *LI,
324                      SmallVectorImpl<MachineInstr * > *Dead = nullptr) {
325      NumShrinkToUses++;
326      if (LIS->shrinkToUses(LI, Dead)) {
327        /// Check whether or not \p LI is composed by multiple connected
328        /// components and if that is the case, fix that.
329        SmallVector<LiveInterval*, 8> SplitLIs;
330        LIS->splitSeparateComponents(*LI, SplitLIs);
331      }
332    }
333
334    /// Wrapper Method to do all the necessary work when an Instruction is
335    /// deleted.
336    /// Optimizations should use this to make sure that deleted instructions
337    /// are always accounted for.
338    void deleteInstr(MachineInstr* MI) {
339      ErasedInstrs.insert(MI);
340      LIS->RemoveMachineInstrFromMaps(*MI);
341      MI->eraseFromParent();
342    }
343
344    /// Walk over function and initialize the DbgVRegToValues map.
345    void buildVRegToDbgValueMap(MachineFunction &MF);
346
347    /// Test whether, after merging, any DBG_VALUEs would refer to a
348    /// different value number than before merging, and whether this can
349    /// be resolved. If not, mark the DBG_VALUE as being undef.
350    void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS,
351                                      JoinVals &LHSVals, LiveRange &RHS,
352                                      JoinVals &RHSVals);
353
354    void checkMergingChangesDbgValuesImpl(unsigned Reg, LiveRange &OtherRange,
355                                          LiveRange &RegRange, JoinVals &Vals2);
356
357  public:
358    static char ID; ///< Class identification, replacement for typeinfo
359
360    RegisterCoalescer() : MachineFunctionPass(ID) {
361      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
362    }
363
364    void getAnalysisUsage(AnalysisUsage &AU) const override;
365
366    void releaseMemory() override;
367
368    /// This is the pass entry point.
369    bool runOnMachineFunction(MachineFunction&) override;
370
371    /// Implement the dump method.
372    void print(raw_ostream &O, const Module* = nullptr) const override;
373  };
374
375} // end anonymous namespace
376
377char RegisterCoalescer::ID = 0;
378
379char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
380
381INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
382                      "Simple Register Coalescing", false, false)
383INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
384INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
385INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
386INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
387INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
388                    "Simple Register Coalescing", false, false)
389
390LLVM_NODISCARD static bool isMoveInstr(const TargetRegisterInfo &tri,
391                                       const MachineInstr *MI, unsigned &Src,
392                                       unsigned &Dst, unsigned &SrcSub,
393                                       unsigned &DstSub) {
394  if (MI->isCopy()) {
395    Dst = MI->getOperand(0).getReg();
396    DstSub = MI->getOperand(0).getSubReg();
397    Src = MI->getOperand(1).getReg();
398    SrcSub = MI->getOperand(1).getSubReg();
399  } else if (MI->isSubregToReg()) {
400    Dst = MI->getOperand(0).getReg();
401    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
402                                      MI->getOperand(3).getImm());
403    Src = MI->getOperand(2).getReg();
404    SrcSub = MI->getOperand(2).getSubReg();
405  } else
406    return false;
407  return true;
408}
409
410/// Return true if this block should be vacated by the coalescer to eliminate
411/// branches. The important cases to handle in the coalescer are critical edges
412/// split during phi elimination which contain only copies. Simple blocks that
413/// contain non-branches should also be vacated, but this can be handled by an
414/// earlier pass similar to early if-conversion.
415static bool isSplitEdge(const MachineBasicBlock *MBB) {
416  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
417    return false;
418
419  for (const auto &MI : *MBB) {
420    if (!MI.isCopyLike() && !MI.isUnconditionalBranch())
421      return false;
422  }
423  return true;
424}
425
426bool CoalescerPair::setRegisters(const MachineInstr *MI) {
427  SrcReg = DstReg = 0;
428  SrcIdx = DstIdx = 0;
429  NewRC = nullptr;
430  Flipped = CrossClass = false;
431
432  unsigned Src, Dst, SrcSub, DstSub;
433  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
434    return false;
435  Partial = SrcSub || DstSub;
436
437  // If one register is a physreg, it must be Dst.
438  if (Register::isPhysicalRegister(Src)) {
439    if (Register::isPhysicalRegister(Dst))
440      return false;
441    std::swap(Src, Dst);
442    std::swap(SrcSub, DstSub);
443    Flipped = true;
444  }
445
446  const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
447
448  if (Register::isPhysicalRegister(Dst)) {
449    // Eliminate DstSub on a physreg.
450    if (DstSub) {
451      Dst = TRI.getSubReg(Dst, DstSub);
452      if (!Dst) return false;
453      DstSub = 0;
454    }
455
456    // Eliminate SrcSub by picking a corresponding Dst superregister.
457    if (SrcSub) {
458      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
459      if (!Dst) return false;
460    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
461      return false;
462    }
463  } else {
464    // Both registers are virtual.
465    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
466    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
467
468    // Both registers have subreg indices.
469    if (SrcSub && DstSub) {
470      // Copies between different sub-registers are never coalescable.
471      if (Src == Dst && SrcSub != DstSub)
472        return false;
473
474      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
475                                         SrcIdx, DstIdx);
476      if (!NewRC)
477        return false;
478    } else if (DstSub) {
479      // SrcReg will be merged with a sub-register of DstReg.
480      SrcIdx = DstSub;
481      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
482    } else if (SrcSub) {
483      // DstReg will be merged with a sub-register of SrcReg.
484      DstIdx = SrcSub;
485      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
486    } else {
487      // This is a straight copy without sub-registers.
488      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
489    }
490
491    // The combined constraint may be impossible to satisfy.
492    if (!NewRC)
493      return false;
494
495    // Prefer SrcReg to be a sub-register of DstReg.
496    // FIXME: Coalescer should support subregs symmetrically.
497    if (DstIdx && !SrcIdx) {
498      std::swap(Src, Dst);
499      std::swap(SrcIdx, DstIdx);
500      Flipped = !Flipped;
501    }
502
503    CrossClass = NewRC != DstRC || NewRC != SrcRC;
504  }
505  // Check our invariants
506  assert(Register::isVirtualRegister(Src) && "Src must be virtual");
507  assert(!(Register::isPhysicalRegister(Dst) && DstSub) &&
508         "Cannot have a physical SubIdx");
509  SrcReg = Src;
510  DstReg = Dst;
511  return true;
512}
513
514bool CoalescerPair::flip() {
515  if (Register::isPhysicalRegister(DstReg))
516    return false;
517  std::swap(SrcReg, DstReg);
518  std::swap(SrcIdx, DstIdx);
519  Flipped = !Flipped;
520  return true;
521}
522
523bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
524  if (!MI)
525    return false;
526  unsigned Src, Dst, SrcSub, DstSub;
527  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
528    return false;
529
530  // Find the virtual register that is SrcReg.
531  if (Dst == SrcReg) {
532    std::swap(Src, Dst);
533    std::swap(SrcSub, DstSub);
534  } else if (Src != SrcReg) {
535    return false;
536  }
537
538  // Now check that Dst matches DstReg.
539  if (Register::isPhysicalRegister(DstReg)) {
540    if (!Register::isPhysicalRegister(Dst))
541      return false;
542    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
543    // DstSub could be set for a physreg from INSERT_SUBREG.
544    if (DstSub)
545      Dst = TRI.getSubReg(Dst, DstSub);
546    // Full copy of Src.
547    if (!SrcSub)
548      return DstReg == Dst;
549    // This is a partial register copy. Check that the parts match.
550    return TRI.getSubReg(DstReg, SrcSub) == Dst;
551  } else {
552    // DstReg is virtual.
553    if (DstReg != Dst)
554      return false;
555    // Registers match, do the subregisters line up?
556    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
557           TRI.composeSubRegIndices(DstIdx, DstSub);
558  }
559}
560
561void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
562  AU.setPreservesCFG();
563  AU.addRequired<AAResultsWrapperPass>();
564  AU.addRequired<LiveIntervals>();
565  AU.addPreserved<LiveIntervals>();
566  AU.addPreserved<SlotIndexes>();
567  AU.addRequired<MachineLoopInfo>();
568  AU.addPreserved<MachineLoopInfo>();
569  AU.addPreservedID(MachineDominatorsID);
570  MachineFunctionPass::getAnalysisUsage(AU);
571}
572
573void RegisterCoalescer::eliminateDeadDefs() {
574  SmallVector<Register, 8> NewRegs;
575  LiveRangeEdit(nullptr, NewRegs, *MF, *LIS,
576                nullptr, this).eliminateDeadDefs(DeadDefs);
577}
578
579void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
580  // MI may be in WorkList. Make sure we don't visit it.
581  ErasedInstrs.insert(MI);
582}
583
584bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
585                                             MachineInstr *CopyMI) {
586  assert(!CP.isPartial() && "This doesn't work for partial copies.");
587  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
588
589  LiveInterval &IntA =
590    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
591  LiveInterval &IntB =
592    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
593  SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
594
595  // We have a non-trivially-coalescable copy with IntA being the source and
596  // IntB being the dest, thus this defines a value number in IntB.  If the
597  // source value number (in IntA) is defined by a copy from B, see if we can
598  // merge these two pieces of B into a single value number, eliminating a copy.
599  // For example:
600  //
601  //  A3 = B0
602  //    ...
603  //  B1 = A3      <- this copy
604  //
605  // In this case, B0 can be extended to where the B1 copy lives, allowing the
606  // B1 value number to be replaced with B0 (which simplifies the B
607  // liveinterval).
608
609  // BValNo is a value number in B that is defined by a copy from A.  'B1' in
610  // the example above.
611  LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx);
612  if (BS == IntB.end()) return false;
613  VNInfo *BValNo = BS->valno;
614
615  // Get the location that B is defined at.  Two options: either this value has
616  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
617  // can't process it.
618  if (BValNo->def != CopyIdx) return false;
619
620  // AValNo is the value number in A that defines the copy, A3 in the example.
621  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
622  LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx);
623  // The live segment might not exist after fun with physreg coalescing.
624  if (AS == IntA.end()) return false;
625  VNInfo *AValNo = AS->valno;
626
627  // If AValNo is defined as a copy from IntB, we can potentially process this.
628  // Get the instruction that defines this value number.
629  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
630  // Don't allow any partial copies, even if isCoalescable() allows them.
631  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
632    return false;
633
634  // Get the Segment in IntB that this value number starts with.
635  LiveInterval::iterator ValS =
636    IntB.FindSegmentContaining(AValNo->def.getPrevSlot());
637  if (ValS == IntB.end())
638    return false;
639
640  // Make sure that the end of the live segment is inside the same block as
641  // CopyMI.
642  MachineInstr *ValSEndInst =
643    LIS->getInstructionFromIndex(ValS->end.getPrevSlot());
644  if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent())
645    return false;
646
647  // Okay, we now know that ValS ends in the same block that the CopyMI
648  // live-range starts.  If there are no intervening live segments between them
649  // in IntB, we can merge them.
650  if (ValS+1 != BS) return false;
651
652  LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg, TRI));
653
654  SlotIndex FillerStart = ValS->end, FillerEnd = BS->start;
655  // We are about to delete CopyMI, so need to remove it as the 'instruction
656  // that defines this value #'. Update the valnum with the new defining
657  // instruction #.
658  BValNo->def = FillerStart;
659
660  // Okay, we can merge them.  We need to insert a new liverange:
661  // [ValS.end, BS.begin) of either value number, then we merge the
662  // two value numbers.
663  IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo));
664
665  // Okay, merge "B1" into the same value number as "B0".
666  if (BValNo != ValS->valno)
667    IntB.MergeValueNumberInto(BValNo, ValS->valno);
668
669  // Do the same for the subregister segments.
670  for (LiveInterval::SubRange &S : IntB.subranges()) {
671    // Check for SubRange Segments of the form [1234r,1234d:0) which can be
672    // removed to prevent creating bogus SubRange Segments.
673    LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx);
674    if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) {
675      S.removeSegment(*SS, true);
676      continue;
677    }
678    // The subrange may have ended before FillerStart. If so, extend it.
679    if (!S.getVNInfoAt(FillerStart)) {
680      SlotIndex BBStart =
681          LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart));
682      S.extendInBlock(BBStart, FillerStart);
683    }
684    VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
685    S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo));
686    VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot());
687    if (SubBValNo != SubValSNo)
688      S.MergeValueNumberInto(SubBValNo, SubValSNo);
689  }
690
691  LLVM_DEBUG(dbgs() << "   result = " << IntB << '\n');
692
693  // If the source instruction was killing the source register before the
694  // merge, unset the isKill marker given the live range has been extended.
695  int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg, true);
696  if (UIdx != -1) {
697    ValSEndInst->getOperand(UIdx).setIsKill(false);
698  }
699
700  // Rewrite the copy.
701  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
702  // If the copy instruction was killing the destination register or any
703  // subrange before the merge trim the live range.
704  bool RecomputeLiveRange = AS->end == CopyIdx;
705  if (!RecomputeLiveRange) {
706    for (LiveInterval::SubRange &S : IntA.subranges()) {
707      LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx);
708      if (SS != S.end() && SS->end == CopyIdx) {
709        RecomputeLiveRange = true;
710        break;
711      }
712    }
713  }
714  if (RecomputeLiveRange)
715    shrinkToUses(&IntA);
716
717  ++numExtends;
718  return true;
719}
720
721bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
722                                             LiveInterval &IntB,
723                                             VNInfo *AValNo,
724                                             VNInfo *BValNo) {
725  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
726  // the PHI values.
727  if (LIS->hasPHIKill(IntA, AValNo))
728    return true;
729
730  for (LiveRange::Segment &ASeg : IntA.segments) {
731    if (ASeg.valno != AValNo) continue;
732    LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start);
733    if (BI != IntB.begin())
734      --BI;
735    for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) {
736      if (BI->valno == BValNo)
737        continue;
738      if (BI->start <= ASeg.start && BI->end > ASeg.start)
739        return true;
740      if (BI->start > ASeg.start && BI->start < ASeg.end)
741        return true;
742    }
743  }
744  return false;
745}
746
747/// Copy segments with value number @p SrcValNo from liverange @p Src to live
748/// range @Dst and use value number @p DstValNo there.
749static std::pair<bool,bool>
750addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src,
751                     const VNInfo *SrcValNo) {
752  bool Changed = false;
753  bool MergedWithDead = false;
754  for (const LiveRange::Segment &S : Src.segments) {
755    if (S.valno != SrcValNo)
756      continue;
757    // This is adding a segment from Src that ends in a copy that is about
758    // to be removed. This segment is going to be merged with a pre-existing
759    // segment in Dst. This works, except in cases when the corresponding
760    // segment in Dst is dead. For example: adding [192r,208r:1) from Src
761    // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
762    // Recognized such cases, so that the segments can be shrunk.
763    LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo);
764    LiveRange::Segment &Merged = *Dst.addSegment(Added);
765    if (Merged.end.isDead())
766      MergedWithDead = true;
767    Changed = true;
768  }
769  return std::make_pair(Changed, MergedWithDead);
770}
771
772std::pair<bool,bool>
773RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
774                                            MachineInstr *CopyMI) {
775  assert(!CP.isPhys());
776
777  LiveInterval &IntA =
778      LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
779  LiveInterval &IntB =
780      LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
781
782  // We found a non-trivially-coalescable copy with IntA being the source and
783  // IntB being the dest, thus this defines a value number in IntB.  If the
784  // source value number (in IntA) is defined by a commutable instruction and
785  // its other operand is coalesced to the copy dest register, see if we can
786  // transform the copy into a noop by commuting the definition. For example,
787  //
788  //  A3 = op A2 killed B0
789  //    ...
790  //  B1 = A3      <- this copy
791  //    ...
792  //     = op A3   <- more uses
793  //
794  // ==>
795  //
796  //  B2 = op B0 killed A2
797  //    ...
798  //  B1 = B2      <- now an identity copy
799  //    ...
800  //     = op B2   <- more uses
801
802  // BValNo is a value number in B that is defined by a copy from A. 'B1' in
803  // the example above.
804  SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
805  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
806  assert(BValNo != nullptr && BValNo->def == CopyIdx);
807
808  // AValNo is the value number in A that defines the copy, A3 in the example.
809  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
810  assert(AValNo && !AValNo->isUnused() && "COPY source not live");
811  if (AValNo->isPHIDef())
812    return { false, false };
813  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
814  if (!DefMI)
815    return { false, false };
816  if (!DefMI->isCommutable())
817    return { false, false };
818  // If DefMI is a two-address instruction then commuting it will change the
819  // destination register.
820  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
821  assert(DefIdx != -1);
822  unsigned UseOpIdx;
823  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
824    return { false, false };
825
826  // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
827  // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
828  // passed to the method. That _other_ operand is chosen by
829  // the findCommutedOpIndices() method.
830  //
831  // That is obviously an area for improvement in case of instructions having
832  // more than 2 operands. For example, if some instruction has 3 commutable
833  // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
834  // op#2<->op#3) of commute transformation should be considered/tried here.
835  unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex;
836  if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx))
837    return { false, false };
838
839  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
840  Register NewReg = NewDstMO.getReg();
841  if (NewReg != IntB.reg || !IntB.Query(AValNo->def).isKill())
842    return { false, false };
843
844  // Make sure there are no other definitions of IntB that would reach the
845  // uses which the new definition can reach.
846  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
847    return { false, false };
848
849  // If some of the uses of IntA.reg is already coalesced away, return false.
850  // It's not possible to determine whether it's safe to perform the coalescing.
851  for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg)) {
852    MachineInstr *UseMI = MO.getParent();
853    unsigned OpNo = &MO - &UseMI->getOperand(0);
854    SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI);
855    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
856    if (US == IntA.end() || US->valno != AValNo)
857      continue;
858    // If this use is tied to a def, we can't rewrite the register.
859    if (UseMI->isRegTiedToDefOperand(OpNo))
860      return { false, false };
861  }
862
863  LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
864                    << *DefMI);
865
866  // At this point we have decided that it is legal to do this
867  // transformation.  Start by commuting the instruction.
868  MachineBasicBlock *MBB = DefMI->getParent();
869  MachineInstr *NewMI =
870      TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx);
871  if (!NewMI)
872    return { false, false };
873  if (Register::isVirtualRegister(IntA.reg) &&
874      Register::isVirtualRegister(IntB.reg) &&
875      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
876    return { false, false };
877  if (NewMI != DefMI) {
878    LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI);
879    MachineBasicBlock::iterator Pos = DefMI;
880    MBB->insert(Pos, NewMI);
881    MBB->erase(DefMI);
882  }
883
884  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
885  // A = or A, B
886  // ...
887  // B = A
888  // ...
889  // C = killed A
890  // ...
891  //   = B
892
893  // Update uses of IntA of the specific Val# with IntB.
894  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
895                                         UE = MRI->use_end();
896       UI != UE; /* ++UI is below because of possible MI removal */) {
897    MachineOperand &UseMO = *UI;
898    ++UI;
899    if (UseMO.isUndef())
900      continue;
901    MachineInstr *UseMI = UseMO.getParent();
902    if (UseMI->isDebugValue()) {
903      // FIXME These don't have an instruction index.  Not clear we have enough
904      // info to decide whether to do this replacement or not.  For now do it.
905      UseMO.setReg(NewReg);
906      continue;
907    }
908    SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true);
909    LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx);
910    assert(US != IntA.end() && "Use must be live");
911    if (US->valno != AValNo)
912      continue;
913    // Kill flags are no longer accurate. They are recomputed after RA.
914    UseMO.setIsKill(false);
915    if (Register::isPhysicalRegister(NewReg))
916      UseMO.substPhysReg(NewReg, *TRI);
917    else
918      UseMO.setReg(NewReg);
919    if (UseMI == CopyMI)
920      continue;
921    if (!UseMI->isCopy())
922      continue;
923    if (UseMI->getOperand(0).getReg() != IntB.reg ||
924        UseMI->getOperand(0).getSubReg())
925      continue;
926
927    // This copy will become a noop. If it's defining a new val#, merge it into
928    // BValNo.
929    SlotIndex DefIdx = UseIdx.getRegSlot();
930    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
931    if (!DVNI)
932      continue;
933    LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
934    assert(DVNI->def == DefIdx);
935    BValNo = IntB.MergeValueNumberInto(DVNI, BValNo);
936    for (LiveInterval::SubRange &S : IntB.subranges()) {
937      VNInfo *SubDVNI = S.getVNInfoAt(DefIdx);
938      if (!SubDVNI)
939        continue;
940      VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx);
941      assert(SubBValNo->def == CopyIdx);
942      S.MergeValueNumberInto(SubDVNI, SubBValNo);
943    }
944
945    deleteInstr(UseMI);
946  }
947
948  // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
949  // is updated.
950  bool ShrinkB = false;
951  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
952  if (IntA.hasSubRanges() || IntB.hasSubRanges()) {
953    if (!IntA.hasSubRanges()) {
954      LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg);
955      IntA.createSubRangeFrom(Allocator, Mask, IntA);
956    } else if (!IntB.hasSubRanges()) {
957      LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg);
958      IntB.createSubRangeFrom(Allocator, Mask, IntB);
959    }
960    SlotIndex AIdx = CopyIdx.getRegSlot(true);
961    LaneBitmask MaskA;
962    const SlotIndexes &Indexes = *LIS->getSlotIndexes();
963    for (LiveInterval::SubRange &SA : IntA.subranges()) {
964      VNInfo *ASubValNo = SA.getVNInfoAt(AIdx);
965      // Even if we are dealing with a full copy, some lanes can
966      // still be undefined.
967      // E.g.,
968      // undef A.subLow = ...
969      // B = COPY A <== A.subHigh is undefined here and does
970      //                not have a value number.
971      if (!ASubValNo)
972        continue;
973      MaskA |= SA.LaneMask;
974
975      IntB.refineSubRanges(
976          Allocator, SA.LaneMask,
977          [&Allocator, &SA, CopyIdx, ASubValNo,
978           &ShrinkB](LiveInterval::SubRange &SR) {
979            VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator)
980                                           : SR.getVNInfoAt(CopyIdx);
981            assert(BSubValNo != nullptr);
982            auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo);
983            ShrinkB |= P.second;
984            if (P.first)
985              BSubValNo->def = ASubValNo->def;
986          },
987          Indexes, *TRI);
988    }
989    // Go over all subranges of IntB that have not been covered by IntA,
990    // and delete the segments starting at CopyIdx. This can happen if
991    // IntA has undef lanes that are defined in IntB.
992    for (LiveInterval::SubRange &SB : IntB.subranges()) {
993      if ((SB.LaneMask & MaskA).any())
994        continue;
995      if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx))
996        if (S->start.getBaseIndex() == CopyIdx.getBaseIndex())
997          SB.removeSegment(*S, true);
998    }
999  }
1000
1001  BValNo->def = AValNo->def;
1002  auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo);
1003  ShrinkB |= P.second;
1004  LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
1005
1006  LIS->removeVRegDefAt(IntA, AValNo->def);
1007
1008  LLVM_DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
1009  ++numCommutes;
1010  return { true, ShrinkB };
1011}
1012
1013/// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1014/// predecessor of BB2, and if B is not redefined on the way from A = B
1015/// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1016/// execution goes through the path from BB0 to BB2. We may move B = A
1017/// to the predecessor without such reversed copy.
1018/// So we will transform the program from:
1019///   BB0:
1020///      A = B;    BB1:
1021///       ...         ...
1022///     /     \      /
1023///             BB2:
1024///               ...
1025///               B = A;
1026///
1027/// to:
1028///
1029///   BB0:         BB1:
1030///      A = B;        ...
1031///       ...          B = A;
1032///     /     \       /
1033///             BB2:
1034///               ...
1035///
1036/// A special case is when BB0 and BB2 are the same BB which is the only
1037/// BB in a loop:
1038///   BB1:
1039///        ...
1040///   BB0/BB2:  ----
1041///        B = A;   |
1042///        ...      |
1043///        A = B;   |
1044///          |-------
1045///          |
1046/// We may hoist B = A from BB0/BB2 to BB1.
1047///
1048/// The major preconditions for correctness to remove such partial
1049/// redundancy include:
1050/// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1051///    the PHI is defined by the reversed copy A = B in BB0.
1052/// 2. No B is referenced from the start of BB2 to B = A.
1053/// 3. No B is defined from A = B to the end of BB0.
1054/// 4. BB1 has only one successor.
1055///
1056/// 2 and 4 implicitly ensure B is not live at the end of BB1.
1057/// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1058/// colder place, which not only prevent endless loop, but also make sure
1059/// the movement of copy is beneficial.
1060bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP,
1061                                                MachineInstr &CopyMI) {
1062  assert(!CP.isPhys());
1063  if (!CopyMI.isFullCopy())
1064    return false;
1065
1066  MachineBasicBlock &MBB = *CopyMI.getParent();
1067  // If this block is the target of an invoke/inlineasm_br, moving the copy into
1068  // the predecessor is tricker, and we don't handle it.
1069  if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget())
1070    return false;
1071
1072  if (MBB.pred_size() != 2)
1073    return false;
1074
1075  LiveInterval &IntA =
1076      LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
1077  LiveInterval &IntB =
1078      LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
1079
1080  // A is defined by PHI at the entry of MBB.
1081  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
1082  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx);
1083  assert(AValNo && !AValNo->isUnused() && "COPY source not live");
1084  if (!AValNo->isPHIDef())
1085    return false;
1086
1087  // No B is referenced before CopyMI in MBB.
1088  if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx))
1089    return false;
1090
1091  // MBB has two predecessors: one contains A = B so no copy will be inserted
1092  // for it. The other one will have a copy moved from MBB.
1093  bool FoundReverseCopy = false;
1094  MachineBasicBlock *CopyLeftBB = nullptr;
1095  for (MachineBasicBlock *Pred : MBB.predecessors()) {
1096    VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred));
1097    MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def);
1098    if (!DefMI || !DefMI->isFullCopy()) {
1099      CopyLeftBB = Pred;
1100      continue;
1101    }
1102    // Check DefMI is a reverse copy and it is in BB Pred.
1103    if (DefMI->getOperand(0).getReg() != IntA.reg ||
1104        DefMI->getOperand(1).getReg() != IntB.reg ||
1105        DefMI->getParent() != Pred) {
1106      CopyLeftBB = Pred;
1107      continue;
1108    }
1109    // If there is any other def of B after DefMI and before the end of Pred,
1110    // we need to keep the copy of B = A at the end of Pred if we remove
1111    // B = A from MBB.
1112    bool ValB_Changed = false;
1113    for (auto VNI : IntB.valnos) {
1114      if (VNI->isUnused())
1115        continue;
1116      if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) {
1117        ValB_Changed = true;
1118        break;
1119      }
1120    }
1121    if (ValB_Changed) {
1122      CopyLeftBB = Pred;
1123      continue;
1124    }
1125    FoundReverseCopy = true;
1126  }
1127
1128  // If no reverse copy is found in predecessors, nothing to do.
1129  if (!FoundReverseCopy)
1130    return false;
1131
1132  // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1133  // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1134  // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1135  // update IntA/IntB.
1136  //
1137  // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1138  // MBB is hotter than CopyLeftBB.
1139  if (CopyLeftBB && CopyLeftBB->succ_size() > 1)
1140    return false;
1141
1142  // Now (almost sure it's) ok to move copy.
1143  if (CopyLeftBB) {
1144    // Position in CopyLeftBB where we should insert new copy.
1145    auto InsPos = CopyLeftBB->getFirstTerminator();
1146
1147    // Make sure that B isn't referenced in the terminators (if any) at the end
1148    // of the predecessor since we're about to insert a new definition of B
1149    // before them.
1150    if (InsPos != CopyLeftBB->end()) {
1151      SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true);
1152      if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB)))
1153        return false;
1154    }
1155
1156    LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1157                      << printMBBReference(*CopyLeftBB) << '\t' << CopyMI);
1158
1159    // Insert new copy to CopyLeftBB.
1160    MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(),
1161                                      TII->get(TargetOpcode::COPY), IntB.reg)
1162                                  .addReg(IntA.reg);
1163    SlotIndex NewCopyIdx =
1164        LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot();
1165    IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1166    for (LiveInterval::SubRange &SR : IntB.subranges())
1167      SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator());
1168
1169    // If the newly created Instruction has an address of an instruction that was
1170    // deleted before (object recycled by the allocator) it needs to be removed from
1171    // the deleted list.
1172    ErasedInstrs.erase(NewCopyMI);
1173  } else {
1174    LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1175                      << printMBBReference(MBB) << '\t' << CopyMI);
1176  }
1177
1178  // Remove CopyMI.
1179  // Note: This is fine to remove the copy before updating the live-ranges.
1180  // While updating the live-ranges, we only look at slot indices and
1181  // never go back to the instruction.
1182  // Mark instructions as deleted.
1183  deleteInstr(&CopyMI);
1184
1185  // Update the liveness.
1186  SmallVector<SlotIndex, 8> EndPoints;
1187  VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead();
1188  LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(),
1189                  &EndPoints);
1190  BValNo->markUnused();
1191  // Extend IntB to the EndPoints of its original live interval.
1192  LIS->extendToIndices(IntB, EndPoints);
1193
1194  // Now, do the same for its subranges.
1195  for (LiveInterval::SubRange &SR : IntB.subranges()) {
1196    EndPoints.clear();
1197    VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead();
1198    assert(BValNo && "All sublanes should be live");
1199    LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints);
1200    BValNo->markUnused();
1201    // We can have a situation where the result of the original copy is live,
1202    // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1203    // the copy appear as an endpoint from pruneValue(), but we don't want it
1204    // to because the copy has been removed.  We can go ahead and remove that
1205    // endpoint; there is no other situation here that there could be a use at
1206    // the same place as we know that the copy is a full copy.
1207    for (unsigned I = 0; I != EndPoints.size(); ) {
1208      if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) {
1209        EndPoints[I] = EndPoints.back();
1210        EndPoints.pop_back();
1211        continue;
1212      }
1213      ++I;
1214    }
1215    LIS->extendToIndices(SR, EndPoints);
1216  }
1217  // If any dead defs were extended, truncate them.
1218  shrinkToUses(&IntB);
1219
1220  // Finally, update the live-range of IntA.
1221  shrinkToUses(&IntA);
1222  return true;
1223}
1224
1225/// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1226/// defining a subregister.
1227static bool definesFullReg(const MachineInstr &MI, unsigned Reg) {
1228  assert(!Register::isPhysicalRegister(Reg) &&
1229         "This code cannot handle physreg aliasing");
1230  for (const MachineOperand &Op : MI.operands()) {
1231    if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
1232      continue;
1233    // Return true if we define the full register or don't care about the value
1234    // inside other subregisters.
1235    if (Op.getSubReg() == 0 || Op.isUndef())
1236      return true;
1237  }
1238  return false;
1239}
1240
1241bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP,
1242                                                MachineInstr *CopyMI,
1243                                                bool &IsDefCopy) {
1244  IsDefCopy = false;
1245  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
1246  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
1247  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1248  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
1249  if (Register::isPhysicalRegister(SrcReg))
1250    return false;
1251
1252  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
1253  SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1254  VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn();
1255  if (!ValNo)
1256    return false;
1257  if (ValNo->isPHIDef() || ValNo->isUnused())
1258    return false;
1259  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
1260  if (!DefMI)
1261    return false;
1262  if (DefMI->isCopyLike()) {
1263    IsDefCopy = true;
1264    return false;
1265  }
1266  if (!TII->isAsCheapAsAMove(*DefMI))
1267    return false;
1268  if (!TII->isTriviallyReMaterializable(*DefMI, AA))
1269    return false;
1270  if (!definesFullReg(*DefMI, SrcReg))
1271    return false;
1272  bool SawStore = false;
1273  if (!DefMI->isSafeToMove(AA, SawStore))
1274    return false;
1275  const MCInstrDesc &MCID = DefMI->getDesc();
1276  if (MCID.getNumDefs() != 1)
1277    return false;
1278  // Only support subregister destinations when the def is read-undef.
1279  MachineOperand &DstOperand = CopyMI->getOperand(0);
1280  Register CopyDstReg = DstOperand.getReg();
1281  if (DstOperand.getSubReg() && !DstOperand.isUndef())
1282    return false;
1283
1284  // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1285  // the register substantially (beyond both source and dest size). This is bad
1286  // for performance since it can cascade through a function, introducing many
1287  // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1288  // around after a few subreg copies).
1289  if (SrcIdx && DstIdx)
1290    return false;
1291
1292  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
1293  if (!DefMI->isImplicitDef()) {
1294    if (Register::isPhysicalRegister(DstReg)) {
1295      unsigned NewDstReg = DstReg;
1296
1297      unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
1298                                              DefMI->getOperand(0).getSubReg());
1299      if (NewDstIdx)
1300        NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
1301
1302      // Finally, make sure that the physical subregister that will be
1303      // constructed later is permitted for the instruction.
1304      if (!DefRC->contains(NewDstReg))
1305        return false;
1306    } else {
1307      // Theoretically, some stack frame reference could exist. Just make sure
1308      // it hasn't actually happened.
1309      assert(Register::isVirtualRegister(DstReg) &&
1310             "Only expect to deal with virtual or physical registers");
1311    }
1312  }
1313
1314  DebugLoc DL = CopyMI->getDebugLoc();
1315  MachineBasicBlock *MBB = CopyMI->getParent();
1316  MachineBasicBlock::iterator MII =
1317    std::next(MachineBasicBlock::iterator(CopyMI));
1318  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, *DefMI, *TRI);
1319  MachineInstr &NewMI = *std::prev(MII);
1320  NewMI.setDebugLoc(DL);
1321
1322  // In a situation like the following:
1323  //     %0:subreg = instr              ; DefMI, subreg = DstIdx
1324  //     %1        = copy %0:subreg ; CopyMI, SrcIdx = 0
1325  // instead of widening %1 to the register class of %0 simply do:
1326  //     %1 = instr
1327  const TargetRegisterClass *NewRC = CP.getNewRC();
1328  if (DstIdx != 0) {
1329    MachineOperand &DefMO = NewMI.getOperand(0);
1330    if (DefMO.getSubReg() == DstIdx) {
1331      assert(SrcIdx == 0 && CP.isFlipped()
1332             && "Shouldn't have SrcIdx+DstIdx at this point");
1333      const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
1334      const TargetRegisterClass *CommonRC =
1335        TRI->getCommonSubClass(DefRC, DstRC);
1336      if (CommonRC != nullptr) {
1337        NewRC = CommonRC;
1338        DstIdx = 0;
1339        DefMO.setSubReg(0);
1340        DefMO.setIsUndef(false); // Only subregs can have def+undef.
1341      }
1342    }
1343  }
1344
1345  // CopyMI may have implicit operands, save them so that we can transfer them
1346  // over to the newly materialized instruction after CopyMI is removed.
1347  SmallVector<MachineOperand, 4> ImplicitOps;
1348  ImplicitOps.reserve(CopyMI->getNumOperands() -
1349                      CopyMI->getDesc().getNumOperands());
1350  for (unsigned I = CopyMI->getDesc().getNumOperands(),
1351                E = CopyMI->getNumOperands();
1352       I != E; ++I) {
1353    MachineOperand &MO = CopyMI->getOperand(I);
1354    if (MO.isReg()) {
1355      assert(MO.isImplicit() && "No explicit operands after implicit operands.");
1356      // Discard VReg implicit defs.
1357      if (Register::isPhysicalRegister(MO.getReg()))
1358        ImplicitOps.push_back(MO);
1359    }
1360  }
1361
1362  LIS->ReplaceMachineInstrInMaps(*CopyMI, NewMI);
1363  CopyMI->eraseFromParent();
1364  ErasedInstrs.insert(CopyMI);
1365
1366  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1367  // We need to remember these so we can add intervals once we insert
1368  // NewMI into SlotIndexes.
1369  SmallVector<unsigned, 4> NewMIImplDefs;
1370  for (unsigned i = NewMI.getDesc().getNumOperands(),
1371                e = NewMI.getNumOperands();
1372       i != e; ++i) {
1373    MachineOperand &MO = NewMI.getOperand(i);
1374    if (MO.isReg() && MO.isDef()) {
1375      assert(MO.isImplicit() && MO.isDead() &&
1376             Register::isPhysicalRegister(MO.getReg()));
1377      NewMIImplDefs.push_back(MO.getReg());
1378    }
1379  }
1380
1381  if (Register::isVirtualRegister(DstReg)) {
1382    unsigned NewIdx = NewMI.getOperand(0).getSubReg();
1383
1384    if (DefRC != nullptr) {
1385      if (NewIdx)
1386        NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx);
1387      else
1388        NewRC = TRI->getCommonSubClass(NewRC, DefRC);
1389      assert(NewRC && "subreg chosen for remat incompatible with instruction");
1390    }
1391    // Remap subranges to new lanemask and change register class.
1392    LiveInterval &DstInt = LIS->getInterval(DstReg);
1393    for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1394      SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask);
1395    }
1396    MRI->setRegClass(DstReg, NewRC);
1397
1398    // Update machine operands and add flags.
1399    updateRegDefsUses(DstReg, DstReg, DstIdx);
1400    NewMI.getOperand(0).setSubReg(NewIdx);
1401    // updateRegDefUses can add an "undef" flag to the definition, since
1402    // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1403    // sure that "undef" is not set.
1404    if (NewIdx == 0)
1405      NewMI.getOperand(0).setIsUndef(false);
1406    // Add dead subregister definitions if we are defining the whole register
1407    // but only part of it is live.
1408    // This could happen if the rematerialization instruction is rematerializing
1409    // more than actually is used in the register.
1410    // An example would be:
1411    // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1412    // ; Copying only part of the register here, but the rest is undef.
1413    // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1414    // ==>
1415    // ; Materialize all the constants but only using one
1416    // %2 = LOAD_CONSTANTS 5, 8
1417    //
1418    // at this point for the part that wasn't defined before we could have
1419    // subranges missing the definition.
1420    if (NewIdx == 0 && DstInt.hasSubRanges()) {
1421      SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1422      SlotIndex DefIndex =
1423          CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1424      LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg);
1425      VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator();
1426      for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1427        if (!SR.liveAt(DefIndex))
1428          SR.createDeadDef(DefIndex, Alloc);
1429        MaxMask &= ~SR.LaneMask;
1430      }
1431      if (MaxMask.any()) {
1432        LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask);
1433        SR->createDeadDef(DefIndex, Alloc);
1434      }
1435    }
1436
1437    // Make sure that the subrange for resultant undef is removed
1438    // For example:
1439    //   %1:sub1<def,read-undef> = LOAD CONSTANT 1
1440    //   %2 = COPY %1
1441    // ==>
1442    //   %2:sub1<def, read-undef> = LOAD CONSTANT 1
1443    //     ; Correct but need to remove the subrange for %2:sub0
1444    //     ; as it is now undef
1445    if (NewIdx != 0 && DstInt.hasSubRanges()) {
1446      // The affected subregister segments can be removed.
1447      SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI);
1448      LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx);
1449      bool UpdatedSubRanges = false;
1450      SlotIndex DefIndex =
1451          CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber());
1452      VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator();
1453      for (LiveInterval::SubRange &SR : DstInt.subranges()) {
1454        if ((SR.LaneMask & DstMask).none()) {
1455          LLVM_DEBUG(dbgs()
1456                     << "Removing undefined SubRange "
1457                     << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n");
1458          // VNI is in ValNo - remove any segments in this SubRange that have this ValNo
1459          if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) {
1460            SR.removeValNo(RmValNo);
1461            UpdatedSubRanges = true;
1462          }
1463        } else {
1464          // We know that this lane is defined by this instruction,
1465          // but at this point it may be empty because it is not used by
1466          // anything. This happens when updateRegDefUses adds the missing
1467          // lanes. Assign that lane a dead def so that the interferences
1468          // are properly modeled.
1469          if (SR.empty())
1470            SR.createDeadDef(DefIndex, Alloc);
1471        }
1472      }
1473      if (UpdatedSubRanges)
1474        DstInt.removeEmptySubRanges();
1475    }
1476  } else if (NewMI.getOperand(0).getReg() != CopyDstReg) {
1477    // The New instruction may be defining a sub-register of what's actually
1478    // been asked for. If so it must implicitly define the whole thing.
1479    assert(Register::isPhysicalRegister(DstReg) &&
1480           "Only expect virtual or physical registers in remat");
1481    NewMI.getOperand(0).setIsDead(true);
1482    NewMI.addOperand(MachineOperand::CreateReg(
1483        CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1484    // Record small dead def live-ranges for all the subregisters
1485    // of the destination register.
1486    // Otherwise, variables that live through may miss some
1487    // interferences, thus creating invalid allocation.
1488    // E.g., i386 code:
1489    // %1 = somedef ; %1 GR8
1490    // %2 = remat ; %2 GR32
1491    // CL = COPY %2.sub_8bit
1492    // = somedef %1 ; %1 GR8
1493    // =>
1494    // %1 = somedef ; %1 GR8
1495    // dead ECX = remat ; implicit-def CL
1496    // = somedef %1 ; %1 GR8
1497    // %1 will see the interferences with CL but not with CH since
1498    // no live-ranges would have been created for ECX.
1499    // Fix that!
1500    SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1501    for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI);
1502         Units.isValid(); ++Units)
1503      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1504        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1505  }
1506
1507  if (NewMI.getOperand(0).getSubReg())
1508    NewMI.getOperand(0).setIsUndef();
1509
1510  // Transfer over implicit operands to the rematerialized instruction.
1511  for (MachineOperand &MO : ImplicitOps)
1512    NewMI.addOperand(MO);
1513
1514  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
1515  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
1516    unsigned Reg = NewMIImplDefs[i];
1517    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1518      if (LiveRange *LR = LIS->getCachedRegUnit(*Units))
1519        LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
1520  }
1521
1522  LLVM_DEBUG(dbgs() << "Remat: " << NewMI);
1523  ++NumReMats;
1524
1525  // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1526  // to describe DstReg instead.
1527  if (MRI->use_nodbg_empty(SrcReg)) {
1528    for (MachineOperand &UseMO : MRI->use_operands(SrcReg)) {
1529      MachineInstr *UseMI = UseMO.getParent();
1530      if (UseMI->isDebugValue()) {
1531        if (Register::isPhysicalRegister(DstReg))
1532          UseMO.substPhysReg(DstReg, *TRI);
1533        else
1534          UseMO.setReg(DstReg);
1535        // Move the debug value directly after the def of the rematerialized
1536        // value in DstReg.
1537        MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI);
1538        LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI);
1539      }
1540    }
1541  }
1542
1543  if (ToBeUpdated.count(SrcReg))
1544    return true;
1545
1546  unsigned NumCopyUses = 0;
1547  for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
1548    if (UseMO.getParent()->isCopyLike())
1549      NumCopyUses++;
1550  }
1551  if (NumCopyUses < LateRematUpdateThreshold) {
1552    // The source interval can become smaller because we removed a use.
1553    shrinkToUses(&SrcInt, &DeadDefs);
1554    if (!DeadDefs.empty())
1555      eliminateDeadDefs();
1556  } else {
1557    ToBeUpdated.insert(SrcReg);
1558  }
1559  return true;
1560}
1561
1562MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) {
1563  // ProcessImplicitDefs may leave some copies of <undef> values, it only
1564  // removes local variables. When we have a copy like:
1565  //
1566  //   %1 = COPY undef %2
1567  //
1568  // We delete the copy and remove the corresponding value number from %1.
1569  // Any uses of that value number are marked as <undef>.
1570
1571  // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1572  // CoalescerPair may have a new register class with adjusted subreg indices
1573  // at this point.
1574  unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
1575  if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
1576    return nullptr;
1577
1578  SlotIndex Idx = LIS->getInstructionIndex(*CopyMI);
1579  const LiveInterval &SrcLI = LIS->getInterval(SrcReg);
1580  // CopyMI is undef iff SrcReg is not live before the instruction.
1581  if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) {
1582    LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx);
1583    for (const LiveInterval::SubRange &SR : SrcLI.subranges()) {
1584      if ((SR.LaneMask & SrcMask).none())
1585        continue;
1586      if (SR.liveAt(Idx))
1587        return nullptr;
1588    }
1589  } else if (SrcLI.liveAt(Idx))
1590    return nullptr;
1591
1592  // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1593  // then replace it with an IMPLICIT_DEF.
1594  LiveInterval &DstLI = LIS->getInterval(DstReg);
1595  SlotIndex RegIndex = Idx.getRegSlot();
1596  LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex);
1597  assert(Seg != nullptr && "No segment for defining instruction");
1598  if (VNInfo *V = DstLI.getVNInfoAt(Seg->end)) {
1599    if (V->isPHIDef()) {
1600      CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1601      for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) {
1602        MachineOperand &MO = CopyMI->getOperand(i-1);
1603        if (MO.isReg() && MO.isUse())
1604          CopyMI->RemoveOperand(i-1);
1605      }
1606      LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1607                           "implicit def\n");
1608      return CopyMI;
1609    }
1610  }
1611
1612  // Remove any DstReg segments starting at the instruction.
1613  LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1614
1615  // Remove value or merge with previous one in case of a subregister def.
1616  if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) {
1617    VNInfo *VNI = DstLI.getVNInfoAt(RegIndex);
1618    DstLI.MergeValueNumberInto(VNI, PrevVNI);
1619
1620    // The affected subregister segments can be removed.
1621    LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx);
1622    for (LiveInterval::SubRange &SR : DstLI.subranges()) {
1623      if ((SR.LaneMask & DstMask).none())
1624        continue;
1625
1626      VNInfo *SVNI = SR.getVNInfoAt(RegIndex);
1627      assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex));
1628      SR.removeValNo(SVNI);
1629    }
1630    DstLI.removeEmptySubRanges();
1631  } else
1632    LIS->removeVRegDefAt(DstLI, RegIndex);
1633
1634  // Mark uses as undef.
1635  for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) {
1636    if (MO.isDef() /*|| MO.isUndef()*/)
1637      continue;
1638    const MachineInstr &MI = *MO.getParent();
1639    SlotIndex UseIdx = LIS->getInstructionIndex(MI);
1640    LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
1641    bool isLive;
1642    if (!UseMask.all() && DstLI.hasSubRanges()) {
1643      isLive = false;
1644      for (const LiveInterval::SubRange &SR : DstLI.subranges()) {
1645        if ((SR.LaneMask & UseMask).none())
1646          continue;
1647        if (SR.liveAt(UseIdx)) {
1648          isLive = true;
1649          break;
1650        }
1651      }
1652    } else
1653      isLive = DstLI.liveAt(UseIdx);
1654    if (isLive)
1655      continue;
1656    MO.setIsUndef(true);
1657    LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI);
1658  }
1659
1660  // A def of a subregister may be a use of the other subregisters, so
1661  // deleting a def of a subregister may also remove uses. Since CopyMI
1662  // is still part of the function (but about to be erased), mark all
1663  // defs of DstReg in it as <undef>, so that shrinkToUses would
1664  // ignore them.
1665  for (MachineOperand &MO : CopyMI->operands())
1666    if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg)
1667      MO.setIsUndef(true);
1668  LIS->shrinkToUses(&DstLI);
1669
1670  return CopyMI;
1671}
1672
1673void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx,
1674                                     MachineOperand &MO, unsigned SubRegIdx) {
1675  LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx);
1676  if (MO.isDef())
1677    Mask = ~Mask;
1678  bool IsUndef = true;
1679  for (const LiveInterval::SubRange &S : Int.subranges()) {
1680    if ((S.LaneMask & Mask).none())
1681      continue;
1682    if (S.liveAt(UseIdx)) {
1683      IsUndef = false;
1684      break;
1685    }
1686  }
1687  if (IsUndef) {
1688    MO.setIsUndef(true);
1689    // We found out some subregister use is actually reading an undefined
1690    // value. In some cases the whole vreg has become undefined at this
1691    // point so we have to potentially shrink the main range if the
1692    // use was ending a live segment there.
1693    LiveQueryResult Q = Int.Query(UseIdx);
1694    if (Q.valueOut() == nullptr)
1695      ShrinkMainRange = true;
1696  }
1697}
1698
1699void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg, unsigned DstReg,
1700                                          unsigned SubIdx) {
1701  bool DstIsPhys = Register::isPhysicalRegister(DstReg);
1702  LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg);
1703
1704  if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) {
1705    for (MachineOperand &MO : MRI->reg_operands(DstReg)) {
1706      unsigned SubReg = MO.getSubReg();
1707      if (SubReg == 0 || MO.isUndef())
1708        continue;
1709      MachineInstr &MI = *MO.getParent();
1710      if (MI.isDebugValue())
1711        continue;
1712      SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true);
1713      addUndefFlag(*DstInt, UseIdx, MO, SubReg);
1714    }
1715  }
1716
1717  SmallPtrSet<MachineInstr*, 8> Visited;
1718  for (MachineRegisterInfo::reg_instr_iterator
1719       I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end();
1720       I != E; ) {
1721    MachineInstr *UseMI = &*(I++);
1722
1723    // Each instruction can only be rewritten once because sub-register
1724    // composition is not always idempotent. When SrcReg != DstReg, rewriting
1725    // the UseMI operands removes them from the SrcReg use-def chain, but when
1726    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1727    // operands mentioning the virtual register.
1728    if (SrcReg == DstReg && !Visited.insert(UseMI).second)
1729      continue;
1730
1731    SmallVector<unsigned,8> Ops;
1732    bool Reads, Writes;
1733    std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
1734
1735    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1736    // because SrcReg is a sub-register.
1737    if (DstInt && !Reads && SubIdx && !UseMI->isDebugValue())
1738      Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI));
1739
1740    // Replace SrcReg with DstReg in all UseMI operands.
1741    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1742      MachineOperand &MO = UseMI->getOperand(Ops[i]);
1743
1744      // Adjust <undef> flags in case of sub-register joins. We don't want to
1745      // turn a full def into a read-modify-write sub-register def and vice
1746      // versa.
1747      if (SubIdx && MO.isDef())
1748        MO.setIsUndef(!Reads);
1749
1750      // A subreg use of a partially undef (super) register may be a complete
1751      // undef use now and then has to be marked that way.
1752      if (SubIdx != 0 && MO.isUse() && MRI->shouldTrackSubRegLiveness(DstReg)) {
1753        if (!DstInt->hasSubRanges()) {
1754          BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
1755          LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg);
1756          LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx);
1757          LaneBitmask UnusedLanes = FullMask & ~UsedLanes;
1758          DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt);
1759          // The unused lanes are just empty live-ranges at this point.
1760          // It is the caller responsibility to set the proper
1761          // dead segments if there is an actual dead def of the
1762          // unused lanes. This may happen with rematerialization.
1763          DstInt->createSubRange(Allocator, UnusedLanes);
1764        }
1765        SlotIndex MIIdx = UseMI->isDebugValue()
1766                              ? LIS->getSlotIndexes()->getIndexBefore(*UseMI)
1767                              : LIS->getInstructionIndex(*UseMI);
1768        SlotIndex UseIdx = MIIdx.getRegSlot(true);
1769        addUndefFlag(*DstInt, UseIdx, MO, SubIdx);
1770      }
1771
1772      if (DstIsPhys)
1773        MO.substPhysReg(DstReg, *TRI);
1774      else
1775        MO.substVirtReg(DstReg, SubIdx, *TRI);
1776    }
1777
1778    LLVM_DEBUG({
1779      dbgs() << "\t\tupdated: ";
1780      if (!UseMI->isDebugValue())
1781        dbgs() << LIS->getInstructionIndex(*UseMI) << "\t";
1782      dbgs() << *UseMI;
1783    });
1784  }
1785}
1786
1787bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
1788  // Always join simple intervals that are defined by a single copy from a
1789  // reserved register. This doesn't increase register pressure, so it is
1790  // always beneficial.
1791  if (!MRI->isReserved(CP.getDstReg())) {
1792    LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1793    return false;
1794  }
1795
1796  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
1797  if (JoinVInt.containsOneValue())
1798    return true;
1799
1800  LLVM_DEBUG(
1801      dbgs() << "\tCannot join complex intervals into reserved register.\n");
1802  return false;
1803}
1804
1805bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
1806  Again = false;
1807  LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI);
1808
1809  CoalescerPair CP(*TRI);
1810  if (!CP.setRegisters(CopyMI)) {
1811    LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1812    return false;
1813  }
1814
1815  if (CP.getNewRC()) {
1816    auto SrcRC = MRI->getRegClass(CP.getSrcReg());
1817    auto DstRC = MRI->getRegClass(CP.getDstReg());
1818    unsigned SrcIdx = CP.getSrcIdx();
1819    unsigned DstIdx = CP.getDstIdx();
1820    if (CP.isFlipped()) {
1821      std::swap(SrcIdx, DstIdx);
1822      std::swap(SrcRC, DstRC);
1823    }
1824    if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx,
1825                             CP.getNewRC(), *LIS)) {
1826      LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1827      return false;
1828    }
1829  }
1830
1831  // Dead code elimination. This really should be handled by MachineDCE, but
1832  // sometimes dead copies slip through, and we can't generate invalid live
1833  // ranges.
1834  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
1835    LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1836    DeadDefs.push_back(CopyMI);
1837    eliminateDeadDefs();
1838    return true;
1839  }
1840
1841  // Eliminate undefs.
1842  if (!CP.isPhys()) {
1843    // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1844    if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) {
1845      if (UndefMI->isImplicitDef())
1846        return false;
1847      deleteInstr(CopyMI);
1848      return false;  // Not coalescable.
1849    }
1850  }
1851
1852  // Coalesced copies are normally removed immediately, but transformations
1853  // like removeCopyByCommutingDef() can inadvertently create identity copies.
1854  // When that happens, just join the values and remove the copy.
1855  if (CP.getSrcReg() == CP.getDstReg()) {
1856    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
1857    LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
1858    const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI);
1859    LiveQueryResult LRQ = LI.Query(CopyIdx);
1860    if (VNInfo *DefVNI = LRQ.valueDefined()) {
1861      VNInfo *ReadVNI = LRQ.valueIn();
1862      assert(ReadVNI && "No value before copy and no <undef> flag.");
1863      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
1864      LI.MergeValueNumberInto(DefVNI, ReadVNI);
1865
1866      // Process subregister liveranges.
1867      for (LiveInterval::SubRange &S : LI.subranges()) {
1868        LiveQueryResult SLRQ = S.Query(CopyIdx);
1869        if (VNInfo *SDefVNI = SLRQ.valueDefined()) {
1870          VNInfo *SReadVNI = SLRQ.valueIn();
1871          S.MergeValueNumberInto(SDefVNI, SReadVNI);
1872        }
1873      }
1874      LLVM_DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
1875    }
1876    deleteInstr(CopyMI);
1877    return true;
1878  }
1879
1880  // Enforce policies.
1881  if (CP.isPhys()) {
1882    LLVM_DEBUG(dbgs() << "\tConsidering merging "
1883                      << printReg(CP.getSrcReg(), TRI) << " with "
1884                      << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n');
1885    if (!canJoinPhys(CP)) {
1886      // Before giving up coalescing, if definition of source is defined by
1887      // trivial computation, try rematerializing it.
1888      bool IsDefCopy;
1889      if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1890        return true;
1891      if (IsDefCopy)
1892        Again = true;  // May be possible to coalesce later.
1893      return false;
1894    }
1895  } else {
1896    // When possible, let DstReg be the larger interval.
1897    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() >
1898                           LIS->getInterval(CP.getDstReg()).size())
1899      CP.flip();
1900
1901    LLVM_DEBUG({
1902      dbgs() << "\tConsidering merging to "
1903             << TRI->getRegClassName(CP.getNewRC()) << " with ";
1904      if (CP.getDstIdx() && CP.getSrcIdx())
1905        dbgs() << printReg(CP.getDstReg()) << " in "
1906               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
1907               << printReg(CP.getSrcReg()) << " in "
1908               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
1909      else
1910        dbgs() << printReg(CP.getSrcReg(), TRI) << " in "
1911               << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
1912    });
1913  }
1914
1915  ShrinkMask = LaneBitmask::getNone();
1916  ShrinkMainRange = false;
1917
1918  // Okay, attempt to join these two intervals.  On failure, this returns false.
1919  // Otherwise, if one of the intervals being joined is a physreg, this method
1920  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1921  // been modified, so we can use this information below to update aliases.
1922  if (!joinIntervals(CP)) {
1923    // Coalescing failed.
1924
1925    // If definition of source is defined by trivial computation, try
1926    // rematerializing it.
1927    bool IsDefCopy;
1928    if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
1929      return true;
1930
1931    // If we can eliminate the copy without merging the live segments, do so
1932    // now.
1933    if (!CP.isPartial() && !CP.isPhys()) {
1934      bool Changed = adjustCopiesBackFrom(CP, CopyMI);
1935      bool Shrink = false;
1936      if (!Changed)
1937        std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI);
1938      if (Changed) {
1939        deleteInstr(CopyMI);
1940        if (Shrink) {
1941          unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
1942          LiveInterval &DstLI = LIS->getInterval(DstReg);
1943          shrinkToUses(&DstLI);
1944          LLVM_DEBUG(dbgs() << "\t\tshrunk:   " << DstLI << '\n');
1945        }
1946        LLVM_DEBUG(dbgs() << "\tTrivial!\n");
1947        return true;
1948      }
1949    }
1950
1951    // Try and see if we can partially eliminate the copy by moving the copy to
1952    // its predecessor.
1953    if (!CP.isPartial() && !CP.isPhys())
1954      if (removePartialRedundancy(CP, *CopyMI))
1955        return true;
1956
1957    // Otherwise, we are unable to join the intervals.
1958    LLVM_DEBUG(dbgs() << "\tInterference!\n");
1959    Again = true;  // May be possible to coalesce later.
1960    return false;
1961  }
1962
1963  // Coalescing to a virtual register that is of a sub-register class of the
1964  // other. Make sure the resulting register is set to the right register class.
1965  if (CP.isCrossClass()) {
1966    ++numCrossRCs;
1967    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
1968  }
1969
1970  // Removing sub-register copies can ease the register class constraints.
1971  // Make sure we attempt to inflate the register class of DstReg.
1972  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
1973    InflateRegs.push_back(CP.getDstReg());
1974
1975  // CopyMI has been erased by joinIntervals at this point. Remove it from
1976  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
1977  // to the work list. This keeps ErasedInstrs from growing needlessly.
1978  ErasedInstrs.erase(CopyMI);
1979
1980  // Rewrite all SrcReg operands to DstReg.
1981  // Also update DstReg operands to include DstIdx if it is set.
1982  if (CP.getDstIdx())
1983    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
1984  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
1985
1986  // Shrink subregister ranges if necessary.
1987  if (ShrinkMask.any()) {
1988    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
1989    for (LiveInterval::SubRange &S : LI.subranges()) {
1990      if ((S.LaneMask & ShrinkMask).none())
1991        continue;
1992      LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask)
1993                        << ")\n");
1994      LIS->shrinkToUses(S, LI.reg);
1995    }
1996    LI.removeEmptySubRanges();
1997  }
1998
1999  // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2000  // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2001  // is not up-to-date, need to update the merged live interval here.
2002  if (ToBeUpdated.count(CP.getSrcReg()))
2003    ShrinkMainRange = true;
2004
2005  if (ShrinkMainRange) {
2006    LiveInterval &LI = LIS->getInterval(CP.getDstReg());
2007    shrinkToUses(&LI);
2008  }
2009
2010  // SrcReg is guaranteed to be the register whose live interval that is
2011  // being merged.
2012  LIS->removeInterval(CP.getSrcReg());
2013
2014  // Update regalloc hint.
2015  TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
2016
2017  LLVM_DEBUG({
2018    dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx())
2019           << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n';
2020    dbgs() << "\tResult = ";
2021    if (CP.isPhys())
2022      dbgs() << printReg(CP.getDstReg(), TRI);
2023    else
2024      dbgs() << LIS->getInterval(CP.getDstReg());
2025    dbgs() << '\n';
2026  });
2027
2028  ++numJoins;
2029  return true;
2030}
2031
2032bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
2033  unsigned DstReg = CP.getDstReg();
2034  unsigned SrcReg = CP.getSrcReg();
2035  assert(CP.isPhys() && "Must be a physreg copy");
2036  assert(MRI->isReserved(DstReg) && "Not a reserved register");
2037  LiveInterval &RHS = LIS->getInterval(SrcReg);
2038  LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n');
2039
2040  assert(RHS.containsOneValue() && "Invalid join with reserved register");
2041
2042  // Optimization for reserved registers like ESP. We can only merge with a
2043  // reserved physreg if RHS has a single value that is a copy of DstReg.
2044  // The live range of the reserved register will look like a set of dead defs
2045  // - we don't properly track the live range of reserved registers.
2046
2047  // Deny any overlapping intervals.  This depends on all the reserved
2048  // register live ranges to look like dead defs.
2049  if (!MRI->isConstantPhysReg(DstReg)) {
2050    for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2051      // Abort if not all the regunits are reserved.
2052      for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) {
2053        if (!MRI->isReserved(*RI))
2054          return false;
2055      }
2056      if (RHS.overlaps(LIS->getRegUnit(*UI))) {
2057        LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI)
2058                          << '\n');
2059        return false;
2060      }
2061    }
2062
2063    // We must also check for overlaps with regmask clobbers.
2064    BitVector RegMaskUsable;
2065    if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) &&
2066        !RegMaskUsable.test(DstReg)) {
2067      LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2068      return false;
2069    }
2070  }
2071
2072  // Skip any value computations, we are not adding new values to the
2073  // reserved register.  Also skip merging the live ranges, the reserved
2074  // register live range doesn't need to be accurate as long as all the
2075  // defs are there.
2076
2077  // Delete the identity copy.
2078  MachineInstr *CopyMI;
2079  if (CP.isFlipped()) {
2080    // Physreg is copied into vreg
2081    //   %y = COPY %physreg_x
2082    //   ...  //< no other def of %physreg_x here
2083    //   use %y
2084    // =>
2085    //   ...
2086    //   use %physreg_x
2087    CopyMI = MRI->getVRegDef(SrcReg);
2088  } else {
2089    // VReg is copied into physreg:
2090    //   %y = def
2091    //   ... //< no other def or use of %physreg_x here
2092    //   %physreg_x = COPY %y
2093    // =>
2094    //   %physreg_x = def
2095    //   ...
2096    if (!MRI->hasOneNonDBGUse(SrcReg)) {
2097      LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2098      return false;
2099    }
2100
2101    if (!LIS->intervalIsInOneMBB(RHS)) {
2102      LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2103      return false;
2104    }
2105
2106    MachineInstr &DestMI = *MRI->getVRegDef(SrcReg);
2107    CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg);
2108    SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot();
2109    SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot();
2110
2111    if (!MRI->isConstantPhysReg(DstReg)) {
2112      // We checked above that there are no interfering defs of the physical
2113      // register. However, for this case, where we intend to move up the def of
2114      // the physical register, we also need to check for interfering uses.
2115      SlotIndexes *Indexes = LIS->getSlotIndexes();
2116      for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx);
2117           SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) {
2118        MachineInstr *MI = LIS->getInstructionFromIndex(SI);
2119        if (MI->readsRegister(DstReg, TRI)) {
2120          LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI);
2121          return false;
2122        }
2123      }
2124    }
2125
2126    // We're going to remove the copy which defines a physical reserved
2127    // register, so remove its valno, etc.
2128    LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2129                      << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n");
2130
2131    LIS->removePhysRegDefAt(DstReg, CopyRegIdx);
2132    // Create a new dead def at the new def location.
2133    for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) {
2134      LiveRange &LR = LIS->getRegUnit(*UI);
2135      LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator());
2136    }
2137  }
2138
2139  deleteInstr(CopyMI);
2140
2141  // We don't track kills for reserved registers.
2142  MRI->clearKillFlags(CP.getSrcReg());
2143
2144  return true;
2145}
2146
2147//===----------------------------------------------------------------------===//
2148//                 Interference checking and interval joining
2149//===----------------------------------------------------------------------===//
2150//
2151// In the easiest case, the two live ranges being joined are disjoint, and
2152// there is no interference to consider. It is quite common, though, to have
2153// overlapping live ranges, and we need to check if the interference can be
2154// resolved.
2155//
2156// The live range of a single SSA value forms a sub-tree of the dominator tree.
2157// This means that two SSA values overlap if and only if the def of one value
2158// is contained in the live range of the other value. As a special case, the
2159// overlapping values can be defined at the same index.
2160//
2161// The interference from an overlapping def can be resolved in these cases:
2162//
2163// 1. Coalescable copies. The value is defined by a copy that would become an
2164//    identity copy after joining SrcReg and DstReg. The copy instruction will
2165//    be removed, and the value will be merged with the source value.
2166//
2167//    There can be several copies back and forth, causing many values to be
2168//    merged into one. We compute a list of ultimate values in the joined live
2169//    range as well as a mappings from the old value numbers.
2170//
2171// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2172//    predecessors have a live out value. It doesn't cause real interference,
2173//    and can be merged into the value it overlaps. Like a coalescable copy, it
2174//    can be erased after joining.
2175//
2176// 3. Copy of external value. The overlapping def may be a copy of a value that
2177//    is already in the other register. This is like a coalescable copy, but
2178//    the live range of the source register must be trimmed after erasing the
2179//    copy instruction:
2180//
2181//      %src = COPY %ext
2182//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
2183//
2184// 4. Clobbering undefined lanes. Vector registers are sometimes built by
2185//    defining one lane at a time:
2186//
2187//      %dst:ssub0<def,read-undef> = FOO
2188//      %src = BAR
2189//      %dst:ssub1 = COPY %src
2190//
2191//    The live range of %src overlaps the %dst value defined by FOO, but
2192//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2193//    which was undef anyway.
2194//
2195//    The value mapping is more complicated in this case. The final live range
2196//    will have different value numbers for both FOO and BAR, but there is no
2197//    simple mapping from old to new values. It may even be necessary to add
2198//    new PHI values.
2199//
2200// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2201//    is live, but never read. This can happen because we don't compute
2202//    individual live ranges per lane.
2203//
2204//      %dst = FOO
2205//      %src = BAR
2206//      %dst:ssub1 = COPY %src
2207//
2208//    This kind of interference is only resolved locally. If the clobbered
2209//    lane value escapes the block, the join is aborted.
2210
2211namespace {
2212
2213/// Track information about values in a single virtual register about to be
2214/// joined. Objects of this class are always created in pairs - one for each
2215/// side of the CoalescerPair (or one for each lane of a side of the coalescer
2216/// pair)
2217class JoinVals {
2218  /// Live range we work on.
2219  LiveRange &LR;
2220
2221  /// (Main) register we work on.
2222  const unsigned Reg;
2223
2224  /// Reg (and therefore the values in this liverange) will end up as
2225  /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2226  /// CP.SrcIdx.
2227  const unsigned SubIdx;
2228
2229  /// The LaneMask that this liverange will occupy the coalesced register. May
2230  /// be smaller than the lanemask produced by SubIdx when merging subranges.
2231  const LaneBitmask LaneMask;
2232
2233  /// This is true when joining sub register ranges, false when joining main
2234  /// ranges.
2235  const bool SubRangeJoin;
2236
2237  /// Whether the current LiveInterval tracks subregister liveness.
2238  const bool TrackSubRegLiveness;
2239
2240  /// Values that will be present in the final live range.
2241  SmallVectorImpl<VNInfo*> &NewVNInfo;
2242
2243  const CoalescerPair &CP;
2244  LiveIntervals *LIS;
2245  SlotIndexes *Indexes;
2246  const TargetRegisterInfo *TRI;
2247
2248  /// Value number assignments. Maps value numbers in LI to entries in
2249  /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2250  SmallVector<int, 8> Assignments;
2251
2252  public:
2253  /// Conflict resolution for overlapping values.
2254  enum ConflictResolution {
2255    /// No overlap, simply keep this value.
2256    CR_Keep,
2257
2258    /// Merge this value into OtherVNI and erase the defining instruction.
2259    /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2260    /// values.
2261    CR_Erase,
2262
2263    /// Merge this value into OtherVNI but keep the defining instruction.
2264    /// This is for the special case where OtherVNI is defined by the same
2265    /// instruction.
2266    CR_Merge,
2267
2268    /// Keep this value, and have it replace OtherVNI where possible. This
2269    /// complicates value mapping since OtherVNI maps to two different values
2270    /// before and after this def.
2271    /// Used when clobbering undefined or dead lanes.
2272    CR_Replace,
2273
2274    /// Unresolved conflict. Visit later when all values have been mapped.
2275    CR_Unresolved,
2276
2277    /// Unresolvable conflict. Abort the join.
2278    CR_Impossible
2279  };
2280
2281  private:
2282  /// Per-value info for LI. The lane bit masks are all relative to the final
2283  /// joined register, so they can be compared directly between SrcReg and
2284  /// DstReg.
2285  struct Val {
2286    ConflictResolution Resolution = CR_Keep;
2287
2288    /// Lanes written by this def, 0 for unanalyzed values.
2289    LaneBitmask WriteLanes;
2290
2291    /// Lanes with defined values in this register. Other lanes are undef and
2292    /// safe to clobber.
2293    LaneBitmask ValidLanes;
2294
2295    /// Value in LI being redefined by this def.
2296    VNInfo *RedefVNI = nullptr;
2297
2298    /// Value in the other live range that overlaps this def, if any.
2299    VNInfo *OtherVNI = nullptr;
2300
2301    /// Is this value an IMPLICIT_DEF that can be erased?
2302    ///
2303    /// IMPLICIT_DEF values should only exist at the end of a basic block that
2304    /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2305    /// safely erased if they are overlapping a live value in the other live
2306    /// interval.
2307    ///
2308    /// Weird control flow graphs and incomplete PHI handling in
2309    /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2310    /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2311    /// normal values.
2312    bool ErasableImplicitDef = false;
2313
2314    /// True when the live range of this value will be pruned because of an
2315    /// overlapping CR_Replace value in the other live range.
2316    bool Pruned = false;
2317
2318    /// True once Pruned above has been computed.
2319    bool PrunedComputed = false;
2320
2321    /// True if this value is determined to be identical to OtherVNI
2322    /// (in valuesIdentical). This is used with CR_Erase where the erased
2323    /// copy is redundant, i.e. the source value is already the same as
2324    /// the destination. In such cases the subranges need to be updated
2325    /// properly. See comment at pruneSubRegValues for more info.
2326    bool Identical = false;
2327
2328    Val() = default;
2329
2330    bool isAnalyzed() const { return WriteLanes.any(); }
2331  };
2332
2333  /// One entry per value number in LI.
2334  SmallVector<Val, 8> Vals;
2335
2336  /// Compute the bitmask of lanes actually written by DefMI.
2337  /// Set Redef if there are any partial register definitions that depend on the
2338  /// previous value of the register.
2339  LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const;
2340
2341  /// Find the ultimate value that VNI was copied from.
2342  std::pair<const VNInfo*,unsigned> followCopyChain(const VNInfo *VNI) const;
2343
2344  bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const;
2345
2346  /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2347  /// Return a conflict resolution when possible, but leave the hard cases as
2348  /// CR_Unresolved.
2349  /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2350  /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2351  /// The recursion always goes upwards in the dominator tree, making loops
2352  /// impossible.
2353  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
2354
2355  /// Compute the value assignment for ValNo in RI.
2356  /// This may be called recursively by analyzeValue(), but never for a ValNo on
2357  /// the stack.
2358  void computeAssignment(unsigned ValNo, JoinVals &Other);
2359
2360  /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2361  /// the extent of the tainted lanes in the block.
2362  ///
2363  /// Multiple values in Other.LR can be affected since partial redefinitions
2364  /// can preserve previously tainted lanes.
2365  ///
2366  ///   1 %dst = VLOAD           <-- Define all lanes in %dst
2367  ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
2368  ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
2369  ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2370  ///
2371  /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2372  /// entry to TaintedVals.
2373  ///
2374  /// Returns false if the tainted lanes extend beyond the basic block.
2375  bool
2376  taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2377              SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent);
2378
2379  /// Return true if MI uses any of the given Lanes from Reg.
2380  /// This does not include partial redefinitions of Reg.
2381  bool usesLanes(const MachineInstr &MI, unsigned, unsigned, LaneBitmask) const;
2382
2383  /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2384  /// be pruned:
2385  ///
2386  ///   %dst = COPY %src
2387  ///   %src = COPY %dst  <-- This value to be pruned.
2388  ///   %dst = COPY %src  <-- This value is a copy of a pruned value.
2389  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
2390
2391public:
2392  JoinVals(LiveRange &LR, unsigned Reg, unsigned SubIdx, LaneBitmask LaneMask,
2393           SmallVectorImpl<VNInfo*> &newVNInfo, const CoalescerPair &cp,
2394           LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin,
2395           bool TrackSubRegLiveness)
2396    : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask),
2397      SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness),
2398      NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()),
2399      TRI(TRI), Assignments(LR.getNumValNums(), -1), Vals(LR.getNumValNums()) {}
2400
2401  /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2402  /// Returns false if any conflicts were impossible to resolve.
2403  bool mapValues(JoinVals &Other);
2404
2405  /// Try to resolve conflicts that require all values to be mapped.
2406  /// Returns false if any conflicts were impossible to resolve.
2407  bool resolveConflicts(JoinVals &Other);
2408
2409  /// Prune the live range of values in Other.LR where they would conflict with
2410  /// CR_Replace values in LR. Collect end points for restoring the live range
2411  /// after joining.
2412  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints,
2413                   bool changeInstrs);
2414
2415  /// Removes subranges starting at copies that get removed. This sometimes
2416  /// happens when undefined subranges are copied around. These ranges contain
2417  /// no useful information and can be removed.
2418  void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask);
2419
2420  /// Pruning values in subranges can lead to removing segments in these
2421  /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2422  /// the main range also need to be removed. This function will mark
2423  /// the corresponding values in the main range as pruned, so that
2424  /// eraseInstrs can do the final cleanup.
2425  /// The parameter @p LI must be the interval whose main range is the
2426  /// live range LR.
2427  void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange);
2428
2429  /// Erase any machine instructions that have been coalesced away.
2430  /// Add erased instructions to ErasedInstrs.
2431  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2432  /// the erased instrs.
2433  void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
2434                   SmallVectorImpl<Register> &ShrinkRegs,
2435                   LiveInterval *LI = nullptr);
2436
2437  /// Remove liverange defs at places where implicit defs will be removed.
2438  void removeImplicitDefs();
2439
2440  /// Get the value assignments suitable for passing to LiveInterval::join.
2441  const int *getAssignments() const { return Assignments.data(); }
2442
2443  /// Get the conflict resolution for a value number.
2444  ConflictResolution getResolution(unsigned Num) const {
2445    return Vals[Num].Resolution;
2446  }
2447};
2448
2449} // end anonymous namespace
2450
2451LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef)
2452  const {
2453  LaneBitmask L;
2454  for (const MachineOperand &MO : DefMI->operands()) {
2455    if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef())
2456      continue;
2457    L |= TRI->getSubRegIndexLaneMask(
2458           TRI->composeSubRegIndices(SubIdx, MO.getSubReg()));
2459    if (MO.readsReg())
2460      Redef = true;
2461  }
2462  return L;
2463}
2464
2465std::pair<const VNInfo*, unsigned> JoinVals::followCopyChain(
2466    const VNInfo *VNI) const {
2467  unsigned TrackReg = Reg;
2468
2469  while (!VNI->isPHIDef()) {
2470    SlotIndex Def = VNI->def;
2471    MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
2472    assert(MI && "No defining instruction");
2473    if (!MI->isFullCopy())
2474      return std::make_pair(VNI, TrackReg);
2475    Register SrcReg = MI->getOperand(1).getReg();
2476    if (!Register::isVirtualRegister(SrcReg))
2477      return std::make_pair(VNI, TrackReg);
2478
2479    const LiveInterval &LI = LIS->getInterval(SrcReg);
2480    const VNInfo *ValueIn;
2481    // No subrange involved.
2482    if (!SubRangeJoin || !LI.hasSubRanges()) {
2483      LiveQueryResult LRQ = LI.Query(Def);
2484      ValueIn = LRQ.valueIn();
2485    } else {
2486      // Query subranges. Ensure that all matching ones take us to the same def
2487      // (allowing some of them to be undef).
2488      ValueIn = nullptr;
2489      for (const LiveInterval::SubRange &S : LI.subranges()) {
2490        // Transform lanemask to a mask in the joined live interval.
2491        LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask);
2492        if ((SMask & LaneMask).none())
2493          continue;
2494        LiveQueryResult LRQ = S.Query(Def);
2495        if (!ValueIn) {
2496          ValueIn = LRQ.valueIn();
2497          continue;
2498        }
2499        if (LRQ.valueIn() && ValueIn != LRQ.valueIn())
2500          return std::make_pair(VNI, TrackReg);
2501      }
2502    }
2503    if (ValueIn == nullptr) {
2504      // Reaching an undefined value is legitimate, for example:
2505      //
2506      // 1   undef %0.sub1 = ...  ;; %0.sub0 == undef
2507      // 2   %1 = COPY %0         ;; %1 is defined here.
2508      // 3   %0 = COPY %1         ;; Now %0.sub0 has a definition,
2509      //                          ;; but it's equivalent to "undef".
2510      return std::make_pair(nullptr, SrcReg);
2511    }
2512    VNI = ValueIn;
2513    TrackReg = SrcReg;
2514  }
2515  return std::make_pair(VNI, TrackReg);
2516}
2517
2518bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1,
2519                               const JoinVals &Other) const {
2520  const VNInfo *Orig0;
2521  unsigned Reg0;
2522  std::tie(Orig0, Reg0) = followCopyChain(Value0);
2523  if (Orig0 == Value1 && Reg0 == Other.Reg)
2524    return true;
2525
2526  const VNInfo *Orig1;
2527  unsigned Reg1;
2528  std::tie(Orig1, Reg1) = Other.followCopyChain(Value1);
2529  // If both values are undefined, and the source registers are the same
2530  // register, the values are identical. Filter out cases where only one
2531  // value is defined.
2532  if (Orig0 == nullptr || Orig1 == nullptr)
2533    return Orig0 == Orig1 && Reg0 == Reg1;
2534
2535  // The values are equal if they are defined at the same place and use the
2536  // same register. Note that we cannot compare VNInfos directly as some of
2537  // them might be from a copy created in mergeSubRangeInto()  while the other
2538  // is from the original LiveInterval.
2539  return Orig0->def == Orig1->def && Reg0 == Reg1;
2540}
2541
2542JoinVals::ConflictResolution
2543JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
2544  Val &V = Vals[ValNo];
2545  assert(!V.isAnalyzed() && "Value has already been analyzed!");
2546  VNInfo *VNI = LR.getValNumInfo(ValNo);
2547  if (VNI->isUnused()) {
2548    V.WriteLanes = LaneBitmask::getAll();
2549    return CR_Keep;
2550  }
2551
2552  // Get the instruction defining this value, compute the lanes written.
2553  const MachineInstr *DefMI = nullptr;
2554  if (VNI->isPHIDef()) {
2555    // Conservatively assume that all lanes in a PHI are valid.
2556    LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0)
2557                                     : TRI->getSubRegIndexLaneMask(SubIdx);
2558    V.ValidLanes = V.WriteLanes = Lanes;
2559  } else {
2560    DefMI = Indexes->getInstructionFromIndex(VNI->def);
2561    assert(DefMI != nullptr);
2562    if (SubRangeJoin) {
2563      // We don't care about the lanes when joining subregister ranges.
2564      V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0);
2565      if (DefMI->isImplicitDef()) {
2566        V.ValidLanes = LaneBitmask::getNone();
2567        V.ErasableImplicitDef = true;
2568      }
2569    } else {
2570      bool Redef = false;
2571      V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
2572
2573      // If this is a read-modify-write instruction, there may be more valid
2574      // lanes than the ones written by this instruction.
2575      // This only covers partial redef operands. DefMI may have normal use
2576      // operands reading the register. They don't contribute valid lanes.
2577      //
2578      // This adds ssub1 to the set of valid lanes in %src:
2579      //
2580      //   %src:ssub1 = FOO
2581      //
2582      // This leaves only ssub1 valid, making any other lanes undef:
2583      //
2584      //   %src:ssub1<def,read-undef> = FOO %src:ssub2
2585      //
2586      // The <read-undef> flag on the def operand means that old lane values are
2587      // not important.
2588      if (Redef) {
2589        V.RedefVNI = LR.Query(VNI->def).valueIn();
2590        assert((TrackSubRegLiveness || V.RedefVNI) &&
2591               "Instruction is reading nonexistent value");
2592        if (V.RedefVNI != nullptr) {
2593          computeAssignment(V.RedefVNI->id, Other);
2594          V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
2595        }
2596      }
2597
2598      // An IMPLICIT_DEF writes undef values.
2599      if (DefMI->isImplicitDef()) {
2600        // We normally expect IMPLICIT_DEF values to be live only until the end
2601        // of their block. If the value is really live longer and gets pruned in
2602        // another block, this flag is cleared again.
2603        //
2604        // Clearing the valid lanes is deferred until it is sure this can be
2605        // erased.
2606        V.ErasableImplicitDef = true;
2607      }
2608    }
2609  }
2610
2611  // Find the value in Other that overlaps VNI->def, if any.
2612  LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def);
2613
2614  // It is possible that both values are defined by the same instruction, or
2615  // the values are PHIs defined in the same block. When that happens, the two
2616  // values should be merged into one, but not into any preceding value.
2617  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2618  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
2619    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
2620
2621    // One value stays, the other is merged. Keep the earlier one, or the first
2622    // one we see.
2623    if (OtherVNI->def < VNI->def)
2624      Other.computeAssignment(OtherVNI->id, *this);
2625    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
2626      // This is an early-clobber def overlapping a live-in value in the other
2627      // register. Not mergeable.
2628      V.OtherVNI = OtherLRQ.valueIn();
2629      return CR_Impossible;
2630    }
2631    V.OtherVNI = OtherVNI;
2632    Val &OtherV = Other.Vals[OtherVNI->id];
2633    // Keep this value, check for conflicts when analyzing OtherVNI.
2634    if (!OtherV.isAnalyzed())
2635      return CR_Keep;
2636    // Both sides have been analyzed now.
2637    // Allow overlapping PHI values. Any real interference would show up in a
2638    // predecessor, the PHI itself can't introduce any conflicts.
2639    if (VNI->isPHIDef())
2640      return CR_Merge;
2641    if ((V.ValidLanes & OtherV.ValidLanes).any())
2642      // Overlapping lanes can't be resolved.
2643      return CR_Impossible;
2644    else
2645      return CR_Merge;
2646  }
2647
2648  // No simultaneous def. Is Other live at the def?
2649  V.OtherVNI = OtherLRQ.valueIn();
2650  if (!V.OtherVNI)
2651    // No overlap, no conflict.
2652    return CR_Keep;
2653
2654  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
2655
2656  // We have overlapping values, or possibly a kill of Other.
2657  // Recursively compute assignments up the dominator tree.
2658  Other.computeAssignment(V.OtherVNI->id, *this);
2659  Val &OtherV = Other.Vals[V.OtherVNI->id];
2660
2661  if (OtherV.ErasableImplicitDef) {
2662    // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2663    // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2664    // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2665    // technically.
2666    //
2667    // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2668    // to erase the IMPLICIT_DEF instruction.
2669    if (DefMI &&
2670        DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
2671      LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
2672                 << " extends into "
2673                 << printMBBReference(*DefMI->getParent())
2674                 << ", keeping it.\n");
2675      OtherV.ErasableImplicitDef = false;
2676    } else {
2677      // We deferred clearing these lanes in case we needed to save them
2678      OtherV.ValidLanes &= ~OtherV.WriteLanes;
2679    }
2680  }
2681
2682  // Allow overlapping PHI values. Any real interference would show up in a
2683  // predecessor, the PHI itself can't introduce any conflicts.
2684  if (VNI->isPHIDef())
2685    return CR_Replace;
2686
2687  // Check for simple erasable conflicts.
2688  if (DefMI->isImplicitDef()) {
2689    // We need the def for the subregister if there is nothing else live at the
2690    // subrange at this point.
2691    if (TrackSubRegLiveness
2692        && (V.WriteLanes & (OtherV.ValidLanes | OtherV.WriteLanes)).none())
2693      return CR_Replace;
2694    return CR_Erase;
2695  }
2696
2697  // Include the non-conflict where DefMI is a coalescable copy that kills
2698  // OtherVNI. We still want the copy erased and value numbers merged.
2699  if (CP.isCoalescable(DefMI)) {
2700    // Some of the lanes copied from OtherVNI may be undef, making them undef
2701    // here too.
2702    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
2703    return CR_Erase;
2704  }
2705
2706  // This may not be a real conflict if DefMI simply kills Other and defines
2707  // VNI.
2708  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
2709    return CR_Keep;
2710
2711  // Handle the case where VNI and OtherVNI can be proven to be identical:
2712  //
2713  //   %other = COPY %ext
2714  //   %this  = COPY %ext <-- Erase this copy
2715  //
2716  if (DefMI->isFullCopy() && !CP.isPartial() &&
2717      valuesIdentical(VNI, V.OtherVNI, Other)) {
2718    V.Identical = true;
2719    return CR_Erase;
2720  }
2721
2722  // The remaining checks apply to the lanes, which aren't tracked here.  This
2723  // was already decided to be OK via the following CR_Replace condition.
2724  // CR_Replace.
2725  if (SubRangeJoin)
2726    return CR_Replace;
2727
2728  // If the lanes written by this instruction were all undef in OtherVNI, it is
2729  // still safe to join the live ranges. This can't be done with a simple value
2730  // mapping, though - OtherVNI will map to multiple values:
2731  //
2732  //   1 %dst:ssub0 = FOO                <-- OtherVNI
2733  //   2 %src = BAR                      <-- VNI
2734  //   3 %dst:ssub1 = COPY killed %src    <-- Eliminate this copy.
2735  //   4 BAZ killed %dst
2736  //   5 QUUX killed %src
2737  //
2738  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2739  // handles this complex value mapping.
2740  if ((V.WriteLanes & OtherV.ValidLanes).none())
2741    return CR_Replace;
2742
2743  // If the other live range is killed by DefMI and the live ranges are still
2744  // overlapping, it must be because we're looking at an early clobber def:
2745  //
2746  //   %dst<def,early-clobber> = ASM killed %src
2747  //
2748  // In this case, it is illegal to merge the two live ranges since the early
2749  // clobber def would clobber %src before it was read.
2750  if (OtherLRQ.isKill()) {
2751    // This case where the def doesn't overlap the kill is handled above.
2752    assert(VNI->def.isEarlyClobber() &&
2753           "Only early clobber defs can overlap a kill");
2754    return CR_Impossible;
2755  }
2756
2757  // VNI is clobbering live lanes in OtherVNI, but there is still the
2758  // possibility that no instructions actually read the clobbered lanes.
2759  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2760  // Otherwise Other.RI wouldn't be live here.
2761  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none())
2762    return CR_Impossible;
2763
2764  // We need to verify that no instructions are reading the clobbered lanes. To
2765  // save compile time, we'll only check that locally. Don't allow the tainted
2766  // value to escape the basic block.
2767  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2768  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
2769    return CR_Impossible;
2770
2771  // There are still some things that could go wrong besides clobbered lanes
2772  // being read, for example OtherVNI may be only partially redefined in MBB,
2773  // and some clobbered lanes could escape the block. Save this analysis for
2774  // resolveConflicts() when all values have been mapped. We need to know
2775  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2776  // that now - the recursive analyzeValue() calls must go upwards in the
2777  // dominator tree.
2778  return CR_Unresolved;
2779}
2780
2781void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
2782  Val &V = Vals[ValNo];
2783  if (V.isAnalyzed()) {
2784    // Recursion should always move up the dominator tree, so ValNo is not
2785    // supposed to reappear before it has been assigned.
2786    assert(Assignments[ValNo] != -1 && "Bad recursion?");
2787    return;
2788  }
2789  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
2790  case CR_Erase:
2791  case CR_Merge:
2792    // Merge this ValNo into OtherVNI.
2793    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
2794    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
2795    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
2796    LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@'
2797                      << LR.getValNumInfo(ValNo)->def << " into "
2798                      << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@'
2799                      << V.OtherVNI->def << " --> @"
2800                      << NewVNInfo[Assignments[ValNo]]->def << '\n');
2801    break;
2802  case CR_Replace:
2803  case CR_Unresolved: {
2804    // The other value is going to be pruned if this join is successful.
2805    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
2806    Val &OtherV = Other.Vals[V.OtherVNI->id];
2807    // We cannot erase an IMPLICIT_DEF if we don't have valid values for all
2808    // its lanes.
2809    if (OtherV.ErasableImplicitDef &&
2810        TrackSubRegLiveness &&
2811        (OtherV.WriteLanes & ~V.ValidLanes).any()) {
2812      LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n");
2813
2814      OtherV.ErasableImplicitDef = false;
2815      // The valid lanes written by the implicit_def were speculatively cleared
2816      // before, so make this more conservative. It may be better to track this,
2817      // I haven't found a testcase where it matters.
2818      OtherV.ValidLanes = LaneBitmask::getAll();
2819    }
2820
2821    OtherV.Pruned = true;
2822    LLVM_FALLTHROUGH;
2823  }
2824  default:
2825    // This value number needs to go in the final joined live range.
2826    Assignments[ValNo] = NewVNInfo.size();
2827    NewVNInfo.push_back(LR.getValNumInfo(ValNo));
2828    break;
2829  }
2830}
2831
2832bool JoinVals::mapValues(JoinVals &Other) {
2833  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2834    computeAssignment(i, Other);
2835    if (Vals[i].Resolution == CR_Impossible) {
2836      LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i
2837                        << '@' << LR.getValNumInfo(i)->def << '\n');
2838      return false;
2839    }
2840  }
2841  return true;
2842}
2843
2844bool JoinVals::
2845taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other,
2846            SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) {
2847  VNInfo *VNI = LR.getValNumInfo(ValNo);
2848  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2849  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
2850
2851  // Scan Other.LR from VNI.def to MBBEnd.
2852  LiveInterval::iterator OtherI = Other.LR.find(VNI->def);
2853  assert(OtherI != Other.LR.end() && "No conflict?");
2854  do {
2855    // OtherI is pointing to a tainted value. Abort the join if the tainted
2856    // lanes escape the block.
2857    SlotIndex End = OtherI->end;
2858    if (End >= MBBEnd) {
2859      LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':'
2860                        << OtherI->valno->id << '@' << OtherI->start << '\n');
2861      return false;
2862    }
2863    LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':'
2864                      << OtherI->valno->id << '@' << OtherI->start << " to "
2865                      << End << '\n');
2866    // A dead def is not a problem.
2867    if (End.isDead())
2868      break;
2869    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
2870
2871    // Check for another def in the MBB.
2872    if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd)
2873      break;
2874
2875    // Lanes written by the new def are no longer tainted.
2876    const Val &OV = Other.Vals[OtherI->valno->id];
2877    TaintedLanes &= ~OV.WriteLanes;
2878    if (!OV.RedefVNI)
2879      break;
2880  } while (TaintedLanes.any());
2881  return true;
2882}
2883
2884bool JoinVals::usesLanes(const MachineInstr &MI, unsigned Reg, unsigned SubIdx,
2885                         LaneBitmask Lanes) const {
2886  if (MI.isDebugInstr())
2887    return false;
2888  for (const MachineOperand &MO : MI.operands()) {
2889    if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg)
2890      continue;
2891    if (!MO.readsReg())
2892      continue;
2893    unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg());
2894    if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any())
2895      return true;
2896  }
2897  return false;
2898}
2899
2900bool JoinVals::resolveConflicts(JoinVals &Other) {
2901  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2902    Val &V = Vals[i];
2903    assert(V.Resolution != CR_Impossible && "Unresolvable conflict");
2904    if (V.Resolution != CR_Unresolved)
2905      continue;
2906    LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@'
2907                      << LR.getValNumInfo(i)->def
2908                      << ' ' << PrintLaneMask(LaneMask) << '\n');
2909    if (SubRangeJoin)
2910      return false;
2911
2912    ++NumLaneConflicts;
2913    assert(V.OtherVNI && "Inconsistent conflict resolution.");
2914    VNInfo *VNI = LR.getValNumInfo(i);
2915    const Val &OtherV = Other.Vals[V.OtherVNI->id];
2916
2917    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
2918    // join, those lanes will be tainted with a wrong value. Get the extent of
2919    // the tainted lanes.
2920    LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
2921    SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent;
2922    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
2923      // Tainted lanes would extend beyond the basic block.
2924      return false;
2925
2926    assert(!TaintExtent.empty() && "There should be at least one conflict.");
2927
2928    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
2929    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
2930    MachineBasicBlock::iterator MI = MBB->begin();
2931    if (!VNI->isPHIDef()) {
2932      MI = Indexes->getInstructionFromIndex(VNI->def);
2933      // No need to check the instruction defining VNI for reads.
2934      ++MI;
2935    }
2936    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
2937           "Interference ends on VNI->def. Should have been handled earlier");
2938    MachineInstr *LastMI =
2939      Indexes->getInstructionFromIndex(TaintExtent.front().first);
2940    assert(LastMI && "Range must end at a proper instruction");
2941    unsigned TaintNum = 0;
2942    while (true) {
2943      assert(MI != MBB->end() && "Bad LastMI");
2944      if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) {
2945        LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
2946        return false;
2947      }
2948      // LastMI is the last instruction to use the current value.
2949      if (&*MI == LastMI) {
2950        if (++TaintNum == TaintExtent.size())
2951          break;
2952        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
2953        assert(LastMI && "Range must end at a proper instruction");
2954        TaintedLanes = TaintExtent[TaintNum].second;
2955      }
2956      ++MI;
2957    }
2958
2959    // The tainted lanes are unused.
2960    V.Resolution = CR_Replace;
2961    ++NumLaneResolves;
2962  }
2963  return true;
2964}
2965
2966bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
2967  Val &V = Vals[ValNo];
2968  if (V.Pruned || V.PrunedComputed)
2969    return V.Pruned;
2970
2971  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
2972    return V.Pruned;
2973
2974  // Follow copies up the dominator tree and check if any intermediate value
2975  // has been pruned.
2976  V.PrunedComputed = true;
2977  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
2978  return V.Pruned;
2979}
2980
2981void JoinVals::pruneValues(JoinVals &Other,
2982                           SmallVectorImpl<SlotIndex> &EndPoints,
2983                           bool changeInstrs) {
2984  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
2985    SlotIndex Def = LR.getValNumInfo(i)->def;
2986    switch (Vals[i].Resolution) {
2987    case CR_Keep:
2988      break;
2989    case CR_Replace: {
2990      // This value takes precedence over the value in Other.LR.
2991      LIS->pruneValue(Other.LR, Def, &EndPoints);
2992      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
2993      // instructions are only inserted to provide a live-out value for PHI
2994      // predecessors, so the instruction should simply go away once its value
2995      // has been replaced.
2996      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
2997      bool EraseImpDef = OtherV.ErasableImplicitDef &&
2998                         OtherV.Resolution == CR_Keep;
2999      if (!Def.isBlock()) {
3000        if (changeInstrs) {
3001          // Remove <def,read-undef> flags. This def is now a partial redef.
3002          // Also remove dead flags since the joined live range will
3003          // continue past this instruction.
3004          for (MachineOperand &MO :
3005               Indexes->getInstructionFromIndex(Def)->operands()) {
3006            if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
3007              if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef)
3008                MO.setIsUndef(false);
3009              MO.setIsDead(false);
3010            }
3011          }
3012        }
3013        // This value will reach instructions below, but we need to make sure
3014        // the live range also reaches the instruction at Def.
3015        if (!EraseImpDef)
3016          EndPoints.push_back(Def);
3017      }
3018      LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def
3019                        << ": " << Other.LR << '\n');
3020      break;
3021    }
3022    case CR_Erase:
3023    case CR_Merge:
3024      if (isPrunedValue(i, Other)) {
3025        // This value is ultimately a copy of a pruned value in LR or Other.LR.
3026        // We can no longer trust the value mapping computed by
3027        // computeAssignment(), the value that was originally copied could have
3028        // been replaced.
3029        LIS->pruneValue(LR, Def, &EndPoints);
3030        LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at "
3031                          << Def << ": " << LR << '\n');
3032      }
3033      break;
3034    case CR_Unresolved:
3035    case CR_Impossible:
3036      llvm_unreachable("Unresolved conflicts");
3037    }
3038  }
3039}
3040
3041/// Consider the following situation when coalescing the copy between
3042/// %31 and %45 at 800. (The vertical lines represent live range segments.)
3043///
3044///                              Main range         Subrange 0004 (sub2)
3045///                              %31    %45           %31    %45
3046///  544    %45 = COPY %28               +                    +
3047///                                      | v1                 | v1
3048///  560B bb.1:                          +                    +
3049///  624        = %45.sub2               | v2                 | v2
3050///  800    %31 = COPY %45        +      +             +      +
3051///                               | v0                 | v0
3052///  816    %31.sub1 = ...        +                    |
3053///  880    %30 = COPY %31        | v1                 +
3054///  928    %45 = COPY %30        |      +                    +
3055///                               |      | v0                 | v0  <--+
3056///  992B   ; backedge -> bb.1    |      +                    +        |
3057/// 1040        = %31.sub0        +                                    |
3058///                                                 This value must remain
3059///                                                 live-out!
3060///
3061/// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3062/// redundant, since it copies the value from %45 back into it. The
3063/// conflict resolution for the main range determines that %45.v0 is
3064/// to be erased, which is ok since %31.v1 is identical to it.
3065/// The problem happens with the subrange for sub2: it has to be live
3066/// on exit from the block, but since 928 was actually a point of
3067/// definition of %45.sub2, %45.sub2 was not live immediately prior
3068/// to that definition. As a result, when 928 was erased, the value v0
3069/// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3070/// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3071/// providing an incorrect value to the use at 624.
3072///
3073/// Since the main-range values %31.v1 and %45.v0 were proved to be
3074/// identical, the corresponding values in subranges must also be the
3075/// same. A redundant copy is removed because it's not needed, and not
3076/// because it copied an undefined value, so any liveness that originated
3077/// from that copy cannot disappear. When pruning a value that started
3078/// at the removed copy, the corresponding identical value must be
3079/// extended to replace it.
3080void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) {
3081  // Look for values being erased.
3082  bool DidPrune = false;
3083  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3084    Val &V = Vals[i];
3085    // We should trigger in all cases in which eraseInstrs() does something.
3086    // match what eraseInstrs() is doing, print a message so
3087    if (V.Resolution != CR_Erase &&
3088        (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned))
3089      continue;
3090
3091    // Check subranges at the point where the copy will be removed.
3092    SlotIndex Def = LR.getValNumInfo(i)->def;
3093    SlotIndex OtherDef;
3094    if (V.Identical)
3095      OtherDef = V.OtherVNI->def;
3096
3097    // Print message so mismatches with eraseInstrs() can be diagnosed.
3098    LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3099                      << '\n');
3100    for (LiveInterval::SubRange &S : LI.subranges()) {
3101      LiveQueryResult Q = S.Query(Def);
3102
3103      // If a subrange starts at the copy then an undefined value has been
3104      // copied and we must remove that subrange value as well.
3105      VNInfo *ValueOut = Q.valueOutOrDead();
3106      if (ValueOut != nullptr && (Q.valueIn() == nullptr ||
3107                                  (V.Identical && V.Resolution == CR_Erase &&
3108                                   ValueOut->def == Def))) {
3109        LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask)
3110                          << " at " << Def << "\n");
3111        SmallVector<SlotIndex,8> EndPoints;
3112        LIS->pruneValue(S, Def, &EndPoints);
3113        DidPrune = true;
3114        // Mark value number as unused.
3115        ValueOut->markUnused();
3116
3117        if (V.Identical && S.Query(OtherDef).valueOutOrDead()) {
3118          // If V is identical to V.OtherVNI (and S was live at OtherDef),
3119          // then we can't simply prune V from S. V needs to be replaced
3120          // with V.OtherVNI.
3121          LIS->extendToIndices(S, EndPoints);
3122        }
3123        continue;
3124      }
3125      // If a subrange ends at the copy, then a value was copied but only
3126      // partially used later. Shrink the subregister range appropriately.
3127      if (Q.valueIn() != nullptr && Q.valueOut() == nullptr) {
3128        LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3129                          << PrintLaneMask(S.LaneMask) << " at " << Def
3130                          << "\n");
3131        ShrinkMask |= S.LaneMask;
3132      }
3133    }
3134  }
3135  if (DidPrune)
3136    LI.removeEmptySubRanges();
3137}
3138
3139/// Check if any of the subranges of @p LI contain a definition at @p Def.
3140static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) {
3141  for (LiveInterval::SubRange &SR : LI.subranges()) {
3142    if (VNInfo *VNI = SR.Query(Def).valueOutOrDead())
3143      if (VNI->def == Def)
3144        return true;
3145  }
3146  return false;
3147}
3148
3149void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) {
3150  assert(&static_cast<LiveRange&>(LI) == &LR);
3151
3152  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3153    if (Vals[i].Resolution != CR_Keep)
3154      continue;
3155    VNInfo *VNI = LR.getValNumInfo(i);
3156    if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def))
3157      continue;
3158    Vals[i].Pruned = true;
3159    ShrinkMainRange = true;
3160  }
3161}
3162
3163void JoinVals::removeImplicitDefs() {
3164  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3165    Val &V = Vals[i];
3166    if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)
3167      continue;
3168
3169    VNInfo *VNI = LR.getValNumInfo(i);
3170    VNI->markUnused();
3171    LR.removeValNo(VNI);
3172  }
3173}
3174
3175void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs,
3176                           SmallVectorImpl<Register> &ShrinkRegs,
3177                           LiveInterval *LI) {
3178  for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) {
3179    // Get the def location before markUnused() below invalidates it.
3180    VNInfo *VNI = LR.getValNumInfo(i);
3181    SlotIndex Def = VNI->def;
3182    switch (Vals[i].Resolution) {
3183    case CR_Keep: {
3184      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3185      // longer. The IMPLICIT_DEF instructions are only inserted by
3186      // PHIElimination to guarantee that all PHI predecessors have a value.
3187      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
3188        break;
3189      // Remove value number i from LR.
3190      // For intervals with subranges, removing a segment from the main range
3191      // may require extending the previous segment: for each definition of
3192      // a subregister, there will be a corresponding def in the main range.
3193      // That def may fall in the middle of a segment from another subrange.
3194      // In such cases, removing this def from the main range must be
3195      // complemented by extending the main range to account for the liveness
3196      // of the other subrange.
3197      // The new end point of the main range segment to be extended.
3198      SlotIndex NewEnd;
3199      if (LI != nullptr) {
3200        LiveRange::iterator I = LR.FindSegmentContaining(Def);
3201        assert(I != LR.end());
3202        // Do not extend beyond the end of the segment being removed.
3203        // The segment may have been pruned in preparation for joining
3204        // live ranges.
3205        NewEnd = I->end;
3206      }
3207
3208      LR.removeValNo(VNI);
3209      // Note that this VNInfo is reused and still referenced in NewVNInfo,
3210      // make it appear like an unused value number.
3211      VNI->markUnused();
3212
3213      if (LI != nullptr && LI->hasSubRanges()) {
3214        assert(static_cast<LiveRange*>(LI) == &LR);
3215        // Determine the end point based on the subrange information:
3216        // minimum of (earliest def of next segment,
3217        //             latest end point of containing segment)
3218        SlotIndex ED, LE;
3219        for (LiveInterval::SubRange &SR : LI->subranges()) {
3220          LiveRange::iterator I = SR.find(Def);
3221          if (I == SR.end())
3222            continue;
3223          if (I->start > Def)
3224            ED = ED.isValid() ? std::min(ED, I->start) : I->start;
3225          else
3226            LE = LE.isValid() ? std::max(LE, I->end) : I->end;
3227        }
3228        if (LE.isValid())
3229          NewEnd = std::min(NewEnd, LE);
3230        if (ED.isValid())
3231          NewEnd = std::min(NewEnd, ED);
3232
3233        // We only want to do the extension if there was a subrange that
3234        // was live across Def.
3235        if (LE.isValid()) {
3236          LiveRange::iterator S = LR.find(Def);
3237          if (S != LR.begin())
3238            std::prev(S)->end = NewEnd;
3239        }
3240      }
3241      LLVM_DEBUG({
3242        dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n';
3243        if (LI != nullptr)
3244          dbgs() << "\t\t  LHS = " << *LI << '\n';
3245      });
3246      LLVM_FALLTHROUGH;
3247    }
3248
3249    case CR_Erase: {
3250      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
3251      assert(MI && "No instruction to erase");
3252      if (MI->isCopy()) {
3253        Register Reg = MI->getOperand(1).getReg();
3254        if (Register::isVirtualRegister(Reg) && Reg != CP.getSrcReg() &&
3255            Reg != CP.getDstReg())
3256          ShrinkRegs.push_back(Reg);
3257      }
3258      ErasedInstrs.insert(MI);
3259      LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
3260      LIS->RemoveMachineInstrFromMaps(*MI);
3261      MI->eraseFromParent();
3262      break;
3263    }
3264    default:
3265      break;
3266    }
3267  }
3268}
3269
3270void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange,
3271                                         LaneBitmask LaneMask,
3272                                         const CoalescerPair &CP) {
3273  SmallVector<VNInfo*, 16> NewVNInfo;
3274  JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask,
3275                   NewVNInfo, CP, LIS, TRI, true, true);
3276  JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask,
3277                   NewVNInfo, CP, LIS, TRI, true, true);
3278
3279  // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3280  // We should be able to resolve all conflicts here as we could successfully do
3281  // it on the mainrange already. There is however a problem when multiple
3282  // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3283  // interferences.
3284  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) {
3285    // We already determined that it is legal to merge the intervals, so this
3286    // should never fail.
3287    llvm_unreachable("*** Couldn't join subrange!\n");
3288  }
3289  if (!LHSVals.resolveConflicts(RHSVals) ||
3290      !RHSVals.resolveConflicts(LHSVals)) {
3291    // We already determined that it is legal to merge the intervals, so this
3292    // should never fail.
3293    llvm_unreachable("*** Couldn't join subrange!\n");
3294  }
3295
3296  // The merging algorithm in LiveInterval::join() can't handle conflicting
3297  // value mappings, so we need to remove any live ranges that overlap a
3298  // CR_Replace resolution. Collect a set of end points that can be used to
3299  // restore the live range after joining.
3300  SmallVector<SlotIndex, 8> EndPoints;
3301  LHSVals.pruneValues(RHSVals, EndPoints, false);
3302  RHSVals.pruneValues(LHSVals, EndPoints, false);
3303
3304  LHSVals.removeImplicitDefs();
3305  RHSVals.removeImplicitDefs();
3306
3307  LRange.verify();
3308  RRange.verify();
3309
3310  // Join RRange into LHS.
3311  LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(),
3312              NewVNInfo);
3313
3314  LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask)
3315                    << ' ' << LRange << "\n");
3316  if (EndPoints.empty())
3317    return;
3318
3319  // Recompute the parts of the live range we had to remove because of
3320  // CR_Replace conflicts.
3321  LLVM_DEBUG({
3322    dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3323    for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3324      dbgs() << EndPoints[i];
3325      if (i != n-1)
3326        dbgs() << ',';
3327    }
3328    dbgs() << ":  " << LRange << '\n';
3329  });
3330  LIS->extendToIndices(LRange, EndPoints);
3331}
3332
3333void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI,
3334                                          const LiveRange &ToMerge,
3335                                          LaneBitmask LaneMask,
3336                                          CoalescerPair &CP,
3337                                          unsigned ComposeSubRegIdx) {
3338  BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3339  LI.refineSubRanges(
3340      Allocator, LaneMask,
3341      [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) {
3342        if (SR.empty()) {
3343          SR.assign(ToMerge, Allocator);
3344        } else {
3345          // joinSubRegRange() destroys the merged range, so we need a copy.
3346          LiveRange RangeCopy(ToMerge, Allocator);
3347          joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP);
3348        }
3349      },
3350      *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx);
3351}
3352
3353bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) {
3354  if (LI.valnos.size() < LargeIntervalSizeThreshold)
3355    return false;
3356  auto &Counter = LargeLIVisitCounter[LI.reg];
3357  if (Counter < LargeIntervalFreqThreshold) {
3358    Counter++;
3359    return false;
3360  }
3361  return true;
3362}
3363
3364bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
3365  SmallVector<VNInfo*, 16> NewVNInfo;
3366  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
3367  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
3368  bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC());
3369  JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(),
3370                   NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3371  JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(),
3372                   NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness);
3373
3374  LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n');
3375
3376  if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS))
3377    return false;
3378
3379  // First compute NewVNInfo and the simple value mappings.
3380  // Detect impossible conflicts early.
3381  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
3382    return false;
3383
3384  // Some conflicts can only be resolved after all values have been mapped.
3385  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
3386    return false;
3387
3388  // All clear, the live ranges can be merged.
3389  if (RHS.hasSubRanges() || LHS.hasSubRanges()) {
3390    BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator();
3391
3392    // Transform lanemasks from the LHS to masks in the coalesced register and
3393    // create initial subranges if necessary.
3394    unsigned DstIdx = CP.getDstIdx();
3395    if (!LHS.hasSubRanges()) {
3396      LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask()
3397                                     : TRI->getSubRegIndexLaneMask(DstIdx);
3398      // LHS must support subregs or we wouldn't be in this codepath.
3399      assert(Mask.any());
3400      LHS.createSubRangeFrom(Allocator, Mask, LHS);
3401    } else if (DstIdx != 0) {
3402      // Transform LHS lanemasks to new register class if necessary.
3403      for (LiveInterval::SubRange &R : LHS.subranges()) {
3404        LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask);
3405        R.LaneMask = Mask;
3406      }
3407    }
3408    LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS
3409                      << '\n');
3410
3411    // Determine lanemasks of RHS in the coalesced register and merge subranges.
3412    unsigned SrcIdx = CP.getSrcIdx();
3413    if (!RHS.hasSubRanges()) {
3414      LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask()
3415                                     : TRI->getSubRegIndexLaneMask(SrcIdx);
3416      mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx);
3417    } else {
3418      // Pair up subranges and merge.
3419      for (LiveInterval::SubRange &R : RHS.subranges()) {
3420        LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask);
3421        mergeSubRangeInto(LHS, R, Mask, CP, DstIdx);
3422      }
3423    }
3424    LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n");
3425
3426    // Pruning implicit defs from subranges may result in the main range
3427    // having stale segments.
3428    LHSVals.pruneMainSegments(LHS, ShrinkMainRange);
3429
3430    LHSVals.pruneSubRegValues(LHS, ShrinkMask);
3431    RHSVals.pruneSubRegValues(LHS, ShrinkMask);
3432  }
3433
3434  // The merging algorithm in LiveInterval::join() can't handle conflicting
3435  // value mappings, so we need to remove any live ranges that overlap a
3436  // CR_Replace resolution. Collect a set of end points that can be used to
3437  // restore the live range after joining.
3438  SmallVector<SlotIndex, 8> EndPoints;
3439  LHSVals.pruneValues(RHSVals, EndPoints, true);
3440  RHSVals.pruneValues(LHSVals, EndPoints, true);
3441
3442  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3443  // registers to require trimming.
3444  SmallVector<Register, 8> ShrinkRegs;
3445  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS);
3446  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
3447  while (!ShrinkRegs.empty())
3448    shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
3449
3450  // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3451  checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals);
3452
3453  // Join RHS into LHS.
3454  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo);
3455
3456  // Kill flags are going to be wrong if the live ranges were overlapping.
3457  // Eventually, we should simply clear all kill flags when computing live
3458  // ranges. They are reinserted after register allocation.
3459  MRI->clearKillFlags(LHS.reg);
3460  MRI->clearKillFlags(RHS.reg);
3461
3462  if (!EndPoints.empty()) {
3463    // Recompute the parts of the live range we had to remove because of
3464    // CR_Replace conflicts.
3465    LLVM_DEBUG({
3466      dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: ";
3467      for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) {
3468        dbgs() << EndPoints[i];
3469        if (i != n-1)
3470          dbgs() << ',';
3471      }
3472      dbgs() << ":  " << LHS << '\n';
3473    });
3474    LIS->extendToIndices((LiveRange&)LHS, EndPoints);
3475  }
3476
3477  return true;
3478}
3479
3480bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
3481  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
3482}
3483
3484void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF)
3485{
3486  const SlotIndexes &Slots = *LIS->getSlotIndexes();
3487  SmallVector<MachineInstr *, 8> ToInsert;
3488
3489  // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3490  // vreg => DbgValueLoc map.
3491  auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) {
3492    for (auto *X : ToInsert)
3493      DbgVRegToValues[X->getDebugOperand(0).getReg()].push_back({Slot, X});
3494
3495    ToInsert.clear();
3496  };
3497
3498  // Iterate over all instructions, collecting them into the ToInsert vector.
3499  // Once a non-debug instruction is found, record the slot index of the
3500  // collected DBG_VALUEs.
3501  for (auto &MBB : MF) {
3502    SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB);
3503
3504    for (auto &MI : MBB) {
3505      if (MI.isDebugValue() && MI.getDebugOperand(0).isReg() &&
3506          MI.getDebugOperand(0).getReg().isVirtual()) {
3507        ToInsert.push_back(&MI);
3508      } else if (!MI.isDebugInstr()) {
3509        CurrentSlot = Slots.getInstructionIndex(MI);
3510        CloseNewDVRange(CurrentSlot);
3511      }
3512    }
3513
3514    // Close range of DBG_VALUEs at the end of blocks.
3515    CloseNewDVRange(Slots.getMBBEndIdx(&MBB));
3516  }
3517
3518  // Sort all DBG_VALUEs we've seen by slot number.
3519  for (auto &Pair : DbgVRegToValues)
3520    llvm::sort(Pair.second);
3521}
3522
3523void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP,
3524                                                     LiveRange &LHS,
3525                                                     JoinVals &LHSVals,
3526                                                     LiveRange &RHS,
3527                                                     JoinVals &RHSVals) {
3528  auto ScanForDstReg = [&](unsigned Reg) {
3529    checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals);
3530  };
3531
3532  auto ScanForSrcReg = [&](unsigned Reg) {
3533    checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals);
3534  };
3535
3536  // Scan for potentially unsound DBG_VALUEs: examine first the register number
3537  // Reg, and then any other vregs that may have been merged into  it.
3538  auto PerformScan = [this](unsigned Reg, std::function<void(unsigned)> Func) {
3539    Func(Reg);
3540    if (DbgMergedVRegNums.count(Reg))
3541      for (unsigned X : DbgMergedVRegNums[Reg])
3542        Func(X);
3543  };
3544
3545  // Scan for unsound updates of both the source and destination register.
3546  PerformScan(CP.getSrcReg(), ScanForSrcReg);
3547  PerformScan(CP.getDstReg(), ScanForDstReg);
3548}
3549
3550void RegisterCoalescer::checkMergingChangesDbgValuesImpl(unsigned Reg,
3551                                                         LiveRange &OtherLR,
3552                                                         LiveRange &RegLR,
3553                                                         JoinVals &RegVals) {
3554  // Are there any DBG_VALUEs to examine?
3555  auto VRegMapIt = DbgVRegToValues.find(Reg);
3556  if (VRegMapIt == DbgVRegToValues.end())
3557    return;
3558
3559  auto &DbgValueSet = VRegMapIt->second;
3560  auto DbgValueSetIt = DbgValueSet.begin();
3561  auto SegmentIt = OtherLR.begin();
3562
3563  bool LastUndefResult = false;
3564  SlotIndex LastUndefIdx;
3565
3566  // If the "Other" register is live at a slot Idx, test whether Reg can
3567  // safely be merged with it, or should be marked undef.
3568  auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult,
3569                      &LastUndefIdx](SlotIndex Idx) -> bool {
3570    // Our worst-case performance typically happens with asan, causing very
3571    // many DBG_VALUEs of the same location. Cache a copy of the most recent
3572    // result for this edge-case.
3573    if (LastUndefIdx == Idx)
3574      return LastUndefResult;
3575
3576    // If the other range was live, and Reg's was not, the register coalescer
3577    // will not have tried to resolve any conflicts. We don't know whether
3578    // the DBG_VALUE will refer to the same value number, so it must be made
3579    // undef.
3580    auto OtherIt = RegLR.find(Idx);
3581    if (OtherIt == RegLR.end())
3582      return true;
3583
3584    // Both the registers were live: examine the conflict resolution record for
3585    // the value number Reg refers to. CR_Keep meant that this value number
3586    // "won" and the merged register definitely refers to that value. CR_Erase
3587    // means the value number was a redundant copy of the other value, which
3588    // was coalesced and Reg deleted. It's safe to refer to the other register
3589    // (which will be the source of the copy).
3590    auto Resolution = RegVals.getResolution(OtherIt->valno->id);
3591    LastUndefResult = Resolution != JoinVals::CR_Keep &&
3592                      Resolution != JoinVals::CR_Erase;
3593    LastUndefIdx = Idx;
3594    return LastUndefResult;
3595  };
3596
3597  // Iterate over both the live-range of the "Other" register, and the set of
3598  // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3599  // slot index. This relies on the DbgValueSet being ordered.
3600  while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) {
3601    if (DbgValueSetIt->first < SegmentIt->end) {
3602      // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3603      // set it undef.
3604      if (DbgValueSetIt->first >= SegmentIt->start &&
3605          DbgValueSetIt->second->getDebugOperand(0).getReg() != 0 &&
3606          ShouldUndef(DbgValueSetIt->first)) {
3607        // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3608        DbgValueSetIt->second->setDebugValueUndef();
3609        continue;
3610      }
3611      ++DbgValueSetIt;
3612    } else {
3613      ++SegmentIt;
3614    }
3615  }
3616}
3617
3618namespace {
3619
3620/// Information concerning MBB coalescing priority.
3621struct MBBPriorityInfo {
3622  MachineBasicBlock *MBB;
3623  unsigned Depth;
3624  bool IsSplit;
3625
3626  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
3627    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
3628};
3629
3630} // end anonymous namespace
3631
3632/// C-style comparator that sorts first based on the loop depth of the basic
3633/// block (the unsigned), and then on the MBB number.
3634///
3635/// EnableGlobalCopies assumes that the primary sort key is loop depth.
3636static int compareMBBPriority(const MBBPriorityInfo *LHS,
3637                              const MBBPriorityInfo *RHS) {
3638  // Deeper loops first
3639  if (LHS->Depth != RHS->Depth)
3640    return LHS->Depth > RHS->Depth ? -1 : 1;
3641
3642  // Try to unsplit critical edges next.
3643  if (LHS->IsSplit != RHS->IsSplit)
3644    return LHS->IsSplit ? -1 : 1;
3645
3646  // Prefer blocks that are more connected in the CFG. This takes care of
3647  // the most difficult copies first while intervals are short.
3648  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
3649  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
3650  if (cl != cr)
3651    return cl > cr ? -1 : 1;
3652
3653  // As a last resort, sort by block number.
3654  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
3655}
3656
3657/// \returns true if the given copy uses or defines a local live range.
3658static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
3659  if (!Copy->isCopy())
3660    return false;
3661
3662  if (Copy->getOperand(1).isUndef())
3663    return false;
3664
3665  Register SrcReg = Copy->getOperand(1).getReg();
3666  Register DstReg = Copy->getOperand(0).getReg();
3667  if (Register::isPhysicalRegister(SrcReg) ||
3668      Register::isPhysicalRegister(DstReg))
3669    return false;
3670
3671  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
3672    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
3673}
3674
3675void RegisterCoalescer::lateLiveIntervalUpdate() {
3676  for (unsigned reg : ToBeUpdated) {
3677    if (!LIS->hasInterval(reg))
3678      continue;
3679    LiveInterval &LI = LIS->getInterval(reg);
3680    shrinkToUses(&LI, &DeadDefs);
3681    if (!DeadDefs.empty())
3682      eliminateDeadDefs();
3683  }
3684  ToBeUpdated.clear();
3685}
3686
3687bool RegisterCoalescer::
3688copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
3689  bool Progress = false;
3690  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
3691    if (!CurrList[i])
3692      continue;
3693    // Skip instruction pointers that have already been erased, for example by
3694    // dead code elimination.
3695    if (ErasedInstrs.count(CurrList[i])) {
3696      CurrList[i] = nullptr;
3697      continue;
3698    }
3699    bool Again = false;
3700    bool Success = joinCopy(CurrList[i], Again);
3701    Progress |= Success;
3702    if (Success || !Again)
3703      CurrList[i] = nullptr;
3704  }
3705  return Progress;
3706}
3707
3708/// Check if DstReg is a terminal node.
3709/// I.e., it does not have any affinity other than \p Copy.
3710static bool isTerminalReg(unsigned DstReg, const MachineInstr &Copy,
3711                          const MachineRegisterInfo *MRI) {
3712  assert(Copy.isCopyLike());
3713  // Check if the destination of this copy as any other affinity.
3714  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg))
3715    if (&MI != &Copy && MI.isCopyLike())
3716      return false;
3717  return true;
3718}
3719
3720bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const {
3721  assert(Copy.isCopyLike());
3722  if (!UseTerminalRule)
3723    return false;
3724  unsigned DstReg, DstSubReg, SrcReg, SrcSubReg;
3725  if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
3726    return false;
3727  // Check if the destination of this copy has any other affinity.
3728  if (Register::isPhysicalRegister(DstReg) ||
3729      // If SrcReg is a physical register, the copy won't be coalesced.
3730      // Ignoring it may have other side effect (like missing
3731      // rematerialization). So keep it.
3732      Register::isPhysicalRegister(SrcReg) || !isTerminalReg(DstReg, Copy, MRI))
3733    return false;
3734
3735  // DstReg is a terminal node. Check if it interferes with any other
3736  // copy involving SrcReg.
3737  const MachineBasicBlock *OrigBB = Copy.getParent();
3738  const LiveInterval &DstLI = LIS->getInterval(DstReg);
3739  for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) {
3740    // Technically we should check if the weight of the new copy is
3741    // interesting compared to the other one and update the weight
3742    // of the copies accordingly. However, this would only work if
3743    // we would gather all the copies first then coalesce, whereas
3744    // right now we interleave both actions.
3745    // For now, just consider the copies that are in the same block.
3746    if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB)
3747      continue;
3748    unsigned OtherReg, OtherSubReg, OtherSrcReg, OtherSrcSubReg;
3749    if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg,
3750                OtherSubReg))
3751      return false;
3752    if (OtherReg == SrcReg)
3753      OtherReg = OtherSrcReg;
3754    // Check if OtherReg is a non-terminal.
3755    if (Register::isPhysicalRegister(OtherReg) ||
3756        isTerminalReg(OtherReg, MI, MRI))
3757      continue;
3758    // Check that OtherReg interfere with DstReg.
3759    if (LIS->getInterval(OtherReg).overlaps(DstLI)) {
3760      LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg)
3761                        << '\n');
3762      return true;
3763    }
3764  }
3765  return false;
3766}
3767
3768void
3769RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
3770  LLVM_DEBUG(dbgs() << MBB->getName() << ":\n");
3771
3772  // Collect all copy-like instructions in MBB. Don't start coalescing anything
3773  // yet, it might invalidate the iterator.
3774  const unsigned PrevSize = WorkList.size();
3775  if (JoinGlobalCopies) {
3776    SmallVector<MachineInstr*, 2> LocalTerminals;
3777    SmallVector<MachineInstr*, 2> GlobalTerminals;
3778    // Coalesce copies bottom-up to coalesce local defs before local uses. They
3779    // are not inherently easier to resolve, but slightly preferable until we
3780    // have local live range splitting. In particular this is required by
3781    // cmp+jmp macro fusion.
3782    for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
3783         MII != E; ++MII) {
3784      if (!MII->isCopyLike())
3785        continue;
3786      bool ApplyTerminalRule = applyTerminalRule(*MII);
3787      if (isLocalCopy(&(*MII), LIS)) {
3788        if (ApplyTerminalRule)
3789          LocalTerminals.push_back(&(*MII));
3790        else
3791          LocalWorkList.push_back(&(*MII));
3792      } else {
3793        if (ApplyTerminalRule)
3794          GlobalTerminals.push_back(&(*MII));
3795        else
3796          WorkList.push_back(&(*MII));
3797      }
3798    }
3799    // Append the copies evicted by the terminal rule at the end of the list.
3800    LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end());
3801    WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end());
3802  }
3803  else {
3804    SmallVector<MachineInstr*, 2> Terminals;
3805    for (MachineInstr &MII : *MBB)
3806      if (MII.isCopyLike()) {
3807        if (applyTerminalRule(MII))
3808          Terminals.push_back(&MII);
3809        else
3810          WorkList.push_back(&MII);
3811      }
3812    // Append the copies evicted by the terminal rule at the end of the list.
3813    WorkList.append(Terminals.begin(), Terminals.end());
3814  }
3815  // Try coalescing the collected copies immediately, and remove the nulls.
3816  // This prevents the WorkList from getting too large since most copies are
3817  // joinable on the first attempt.
3818  MutableArrayRef<MachineInstr*>
3819    CurrList(WorkList.begin() + PrevSize, WorkList.end());
3820  if (copyCoalesceWorkList(CurrList))
3821    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
3822                               nullptr), WorkList.end());
3823}
3824
3825void RegisterCoalescer::coalesceLocals() {
3826  copyCoalesceWorkList(LocalWorkList);
3827  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
3828    if (LocalWorkList[j])
3829      WorkList.push_back(LocalWorkList[j]);
3830  }
3831  LocalWorkList.clear();
3832}
3833
3834void RegisterCoalescer::joinAllIntervals() {
3835  LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
3836  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
3837
3838  std::vector<MBBPriorityInfo> MBBs;
3839  MBBs.reserve(MF->size());
3840  for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) {
3841    MachineBasicBlock *MBB = &*I;
3842    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
3843                                   JoinSplitEdges && isSplitEdge(MBB)));
3844  }
3845  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
3846
3847  // Coalesce intervals in MBB priority order.
3848  unsigned CurrDepth = std::numeric_limits<unsigned>::max();
3849  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
3850    // Try coalescing the collected local copies for deeper loops.
3851    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
3852      coalesceLocals();
3853      CurrDepth = MBBs[i].Depth;
3854    }
3855    copyCoalesceInMBB(MBBs[i].MBB);
3856  }
3857  lateLiveIntervalUpdate();
3858  coalesceLocals();
3859
3860  // Joining intervals can allow other intervals to be joined.  Iteratively join
3861  // until we make no progress.
3862  while (copyCoalesceWorkList(WorkList))
3863    /* empty */ ;
3864  lateLiveIntervalUpdate();
3865}
3866
3867void RegisterCoalescer::releaseMemory() {
3868  ErasedInstrs.clear();
3869  WorkList.clear();
3870  DeadDefs.clear();
3871  InflateRegs.clear();
3872  LargeLIVisitCounter.clear();
3873}
3874
3875bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
3876  LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
3877                    << "********** Function: " << fn.getName() << '\n');
3878
3879  // Variables changed between a setjmp and a longjump can have undefined value
3880  // after the longjmp. This behaviour can be observed if such a variable is
3881  // spilled, so longjmp won't restore the value in the spill slot.
3882  // RegisterCoalescer should not run in functions with a setjmp to avoid
3883  // merging such undefined variables with predictable ones.
3884  //
3885  // TODO: Could specifically disable coalescing registers live across setjmp
3886  // calls
3887  if (fn.exposesReturnsTwice()) {
3888    LLVM_DEBUG(
3889        dbgs() << "* Skipped as it exposes funcions that returns twice.\n");
3890    return false;
3891  }
3892
3893  MF = &fn;
3894  MRI = &fn.getRegInfo();
3895  const TargetSubtargetInfo &STI = fn.getSubtarget();
3896  TRI = STI.getRegisterInfo();
3897  TII = STI.getInstrInfo();
3898  LIS = &getAnalysis<LiveIntervals>();
3899  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3900  Loops = &getAnalysis<MachineLoopInfo>();
3901  if (EnableGlobalCopies == cl::BOU_UNSET)
3902    JoinGlobalCopies = STI.enableJoinGlobalCopies();
3903  else
3904    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
3905
3906  // The MachineScheduler does not currently require JoinSplitEdges. This will
3907  // either be enabled unconditionally or replaced by a more general live range
3908  // splitting optimization.
3909  JoinSplitEdges = EnableJoinSplits;
3910
3911  if (VerifyCoalescing)
3912    MF->verify(this, "Before register coalescing");
3913
3914  DbgVRegToValues.clear();
3915  DbgMergedVRegNums.clear();
3916  buildVRegToDbgValueMap(fn);
3917
3918  RegClassInfo.runOnMachineFunction(fn);
3919
3920  // Join (coalesce) intervals if requested.
3921  if (EnableJoining)
3922    joinAllIntervals();
3923
3924  // After deleting a lot of copies, register classes may be less constrained.
3925  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
3926  // DPR inflation.
3927  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
3928  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
3929                    InflateRegs.end());
3930  LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size()
3931                    << " regs.\n");
3932  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
3933    unsigned Reg = InflateRegs[i];
3934    if (MRI->reg_nodbg_empty(Reg))
3935      continue;
3936    if (MRI->recomputeRegClass(Reg)) {
3937      LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to "
3938                        << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n');
3939      ++NumInflated;
3940
3941      LiveInterval &LI = LIS->getInterval(Reg);
3942      if (LI.hasSubRanges()) {
3943        // If the inflated register class does not support subregisters anymore
3944        // remove the subranges.
3945        if (!MRI->shouldTrackSubRegLiveness(Reg)) {
3946          LI.clearSubRanges();
3947        } else {
3948#ifndef NDEBUG
3949          LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3950          // If subranges are still supported, then the same subregs
3951          // should still be supported.
3952          for (LiveInterval::SubRange &S : LI.subranges()) {
3953            assert((S.LaneMask & ~MaxMask).none());
3954          }
3955#endif
3956        }
3957      }
3958    }
3959  }
3960
3961  LLVM_DEBUG(dump());
3962  if (VerifyCoalescing)
3963    MF->verify(this, "After register coalescing");
3964  return true;
3965}
3966
3967void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
3968   LIS->print(O, m);
3969}
3970