1//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/CodeGen/ModuloSchedule.h"
10#include "llvm/ADT/StringExtras.h"
11#include "llvm/Analysis/MemoryLocation.h"
12#include "llvm/CodeGen/LiveIntervals.h"
13#include "llvm/CodeGen/MachineInstrBuilder.h"
14#include "llvm/CodeGen/MachineLoopUtils.h"
15#include "llvm/CodeGen/MachineRegisterInfo.h"
16#include "llvm/CodeGen/TargetInstrInfo.h"
17#include "llvm/InitializePasses.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/ErrorHandling.h"
21#include "llvm/Support/raw_ostream.h"
22
23#define DEBUG_TYPE "pipeliner"
24using namespace llvm;
25
26void ModuloSchedule::print(raw_ostream &OS) {
27  for (MachineInstr *MI : ScheduledInstrs)
28    OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
29}
30
31//===----------------------------------------------------------------------===//
32// ModuloScheduleExpander implementation
33//===----------------------------------------------------------------------===//
34
35/// Return the register values for  the operands of a Phi instruction.
36/// This function assume the instruction is a Phi.
37static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
38                       unsigned &InitVal, unsigned &LoopVal) {
39  assert(Phi.isPHI() && "Expecting a Phi.");
40
41  InitVal = 0;
42  LoopVal = 0;
43  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
44    if (Phi.getOperand(i + 1).getMBB() != Loop)
45      InitVal = Phi.getOperand(i).getReg();
46    else
47      LoopVal = Phi.getOperand(i).getReg();
48
49  assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
50}
51
52/// Return the Phi register value that comes from the incoming block.
53static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
54  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
55    if (Phi.getOperand(i + 1).getMBB() != LoopBB)
56      return Phi.getOperand(i).getReg();
57  return 0;
58}
59
60/// Return the Phi register value that comes the loop block.
61static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
62  for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
63    if (Phi.getOperand(i + 1).getMBB() == LoopBB)
64      return Phi.getOperand(i).getReg();
65  return 0;
66}
67
68void ModuloScheduleExpander::expand() {
69  BB = Schedule.getLoop()->getTopBlock();
70  Preheader = *BB->pred_begin();
71  if (Preheader == BB)
72    Preheader = *std::next(BB->pred_begin());
73
74  // Iterate over the definitions in each instruction, and compute the
75  // stage difference for each use.  Keep the maximum value.
76  for (MachineInstr *MI : Schedule.getInstructions()) {
77    int DefStage = Schedule.getStage(MI);
78    for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
79      MachineOperand &Op = MI->getOperand(i);
80      if (!Op.isReg() || !Op.isDef())
81        continue;
82
83      Register Reg = Op.getReg();
84      unsigned MaxDiff = 0;
85      bool PhiIsSwapped = false;
86      for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
87                                             EI = MRI.use_end();
88           UI != EI; ++UI) {
89        MachineOperand &UseOp = *UI;
90        MachineInstr *UseMI = UseOp.getParent();
91        int UseStage = Schedule.getStage(UseMI);
92        unsigned Diff = 0;
93        if (UseStage != -1 && UseStage >= DefStage)
94          Diff = UseStage - DefStage;
95        if (MI->isPHI()) {
96          if (isLoopCarried(*MI))
97            ++Diff;
98          else
99            PhiIsSwapped = true;
100        }
101        MaxDiff = std::max(Diff, MaxDiff);
102      }
103      RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
104    }
105  }
106
107  generatePipelinedLoop();
108}
109
110void ModuloScheduleExpander::generatePipelinedLoop() {
111  LoopInfo = TII->analyzeLoopForPipelining(BB);
112  assert(LoopInfo && "Must be able to analyze loop!");
113
114  // Create a new basic block for the kernel and add it to the CFG.
115  MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
116
117  unsigned MaxStageCount = Schedule.getNumStages() - 1;
118
119  // Remember the registers that are used in different stages. The index is
120  // the iteration, or stage, that the instruction is scheduled in.  This is
121  // a map between register names in the original block and the names created
122  // in each stage of the pipelined loop.
123  ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
124  InstrMapTy InstrMap;
125
126  SmallVector<MachineBasicBlock *, 4> PrologBBs;
127
128  // Generate the prolog instructions that set up the pipeline.
129  generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
130  MF.insert(BB->getIterator(), KernelBB);
131
132  // Rearrange the instructions to generate the new, pipelined loop,
133  // and update register names as needed.
134  for (MachineInstr *CI : Schedule.getInstructions()) {
135    if (CI->isPHI())
136      continue;
137    unsigned StageNum = Schedule.getStage(CI);
138    MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
139    updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
140    KernelBB->push_back(NewMI);
141    InstrMap[NewMI] = CI;
142  }
143
144  // Copy any terminator instructions to the new kernel, and update
145  // names as needed.
146  for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
147                                   E = BB->instr_end();
148       I != E; ++I) {
149    MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
150    updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
151    KernelBB->push_back(NewMI);
152    InstrMap[NewMI] = &*I;
153  }
154
155  NewKernel = KernelBB;
156  KernelBB->transferSuccessors(BB);
157  KernelBB->replaceSuccessor(BB, KernelBB);
158
159  generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
160                       InstrMap, MaxStageCount, MaxStageCount, false);
161  generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
162               MaxStageCount, MaxStageCount, false);
163
164  LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
165
166  SmallVector<MachineBasicBlock *, 4> EpilogBBs;
167  // Generate the epilog instructions to complete the pipeline.
168  generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
169
170  // We need this step because the register allocation doesn't handle some
171  // situations well, so we insert copies to help out.
172  splitLifetimes(KernelBB, EpilogBBs);
173
174  // Remove dead instructions due to loop induction variables.
175  removeDeadInstructions(KernelBB, EpilogBBs);
176
177  // Add branches between prolog and epilog blocks.
178  addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
179
180  delete[] VRMap;
181}
182
183void ModuloScheduleExpander::cleanup() {
184  // Remove the original loop since it's no longer referenced.
185  for (auto &I : *BB)
186    LIS.RemoveMachineInstrFromMaps(I);
187  BB->clear();
188  BB->eraseFromParent();
189}
190
191/// Generate the pipeline prolog code.
192void ModuloScheduleExpander::generateProlog(unsigned LastStage,
193                                            MachineBasicBlock *KernelBB,
194                                            ValueMapTy *VRMap,
195                                            MBBVectorTy &PrologBBs) {
196  MachineBasicBlock *PredBB = Preheader;
197  InstrMapTy InstrMap;
198
199  // Generate a basic block for each stage, not including the last stage,
200  // which will be generated in the kernel. Each basic block may contain
201  // instructions from multiple stages/iterations.
202  for (unsigned i = 0; i < LastStage; ++i) {
203    // Create and insert the prolog basic block prior to the original loop
204    // basic block.  The original loop is removed later.
205    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
206    PrologBBs.push_back(NewBB);
207    MF.insert(BB->getIterator(), NewBB);
208    NewBB->transferSuccessors(PredBB);
209    PredBB->addSuccessor(NewBB);
210    PredBB = NewBB;
211
212    // Generate instructions for each appropriate stage. Process instructions
213    // in original program order.
214    for (int StageNum = i; StageNum >= 0; --StageNum) {
215      for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
216                                       BBE = BB->getFirstTerminator();
217           BBI != BBE; ++BBI) {
218        if (Schedule.getStage(&*BBI) == StageNum) {
219          if (BBI->isPHI())
220            continue;
221          MachineInstr *NewMI =
222              cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
223          updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
224          NewBB->push_back(NewMI);
225          InstrMap[NewMI] = &*BBI;
226        }
227      }
228    }
229    rewritePhiValues(NewBB, i, VRMap, InstrMap);
230    LLVM_DEBUG({
231      dbgs() << "prolog:\n";
232      NewBB->dump();
233    });
234  }
235
236  PredBB->replaceSuccessor(BB, KernelBB);
237
238  // Check if we need to remove the branch from the preheader to the original
239  // loop, and replace it with a branch to the new loop.
240  unsigned numBranches = TII->removeBranch(*Preheader);
241  if (numBranches) {
242    SmallVector<MachineOperand, 0> Cond;
243    TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
244  }
245}
246
247/// Generate the pipeline epilog code. The epilog code finishes the iterations
248/// that were started in either the prolog or the kernel.  We create a basic
249/// block for each stage that needs to complete.
250void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
251                                            MachineBasicBlock *KernelBB,
252                                            ValueMapTy *VRMap,
253                                            MBBVectorTy &EpilogBBs,
254                                            MBBVectorTy &PrologBBs) {
255  // We need to change the branch from the kernel to the first epilog block, so
256  // this call to analyze branch uses the kernel rather than the original BB.
257  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
258  SmallVector<MachineOperand, 4> Cond;
259  bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
260  assert(!checkBranch && "generateEpilog must be able to analyze the branch");
261  if (checkBranch)
262    return;
263
264  MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
265  if (*LoopExitI == KernelBB)
266    ++LoopExitI;
267  assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
268  MachineBasicBlock *LoopExitBB = *LoopExitI;
269
270  MachineBasicBlock *PredBB = KernelBB;
271  MachineBasicBlock *EpilogStart = LoopExitBB;
272  InstrMapTy InstrMap;
273
274  // Generate a basic block for each stage, not including the last stage,
275  // which was generated for the kernel.  Each basic block may contain
276  // instructions from multiple stages/iterations.
277  int EpilogStage = LastStage + 1;
278  for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
279    MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
280    EpilogBBs.push_back(NewBB);
281    MF.insert(BB->getIterator(), NewBB);
282
283    PredBB->replaceSuccessor(LoopExitBB, NewBB);
284    NewBB->addSuccessor(LoopExitBB);
285
286    if (EpilogStart == LoopExitBB)
287      EpilogStart = NewBB;
288
289    // Add instructions to the epilog depending on the current block.
290    // Process instructions in original program order.
291    for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
292      for (auto &BBI : *BB) {
293        if (BBI.isPHI())
294          continue;
295        MachineInstr *In = &BBI;
296        if ((unsigned)Schedule.getStage(In) == StageNum) {
297          // Instructions with memoperands in the epilog are updated with
298          // conservative values.
299          MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
300          updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
301          NewBB->push_back(NewMI);
302          InstrMap[NewMI] = In;
303        }
304      }
305    }
306    generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
307                         InstrMap, LastStage, EpilogStage, i == 1);
308    generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
309                 LastStage, EpilogStage, i == 1);
310    PredBB = NewBB;
311
312    LLVM_DEBUG({
313      dbgs() << "epilog:\n";
314      NewBB->dump();
315    });
316  }
317
318  // Fix any Phi nodes in the loop exit block.
319  LoopExitBB->replacePhiUsesWith(BB, PredBB);
320
321  // Create a branch to the new epilog from the kernel.
322  // Remove the original branch and add a new branch to the epilog.
323  TII->removeBranch(*KernelBB);
324  TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
325  // Add a branch to the loop exit.
326  if (EpilogBBs.size() > 0) {
327    MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
328    SmallVector<MachineOperand, 4> Cond1;
329    TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
330  }
331}
332
333/// Replace all uses of FromReg that appear outside the specified
334/// basic block with ToReg.
335static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
336                                    MachineBasicBlock *MBB,
337                                    MachineRegisterInfo &MRI,
338                                    LiveIntervals &LIS) {
339  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
340                                         E = MRI.use_end();
341       I != E;) {
342    MachineOperand &O = *I;
343    ++I;
344    if (O.getParent()->getParent() != MBB)
345      O.setReg(ToReg);
346  }
347  if (!LIS.hasInterval(ToReg))
348    LIS.createEmptyInterval(ToReg);
349}
350
351/// Return true if the register has a use that occurs outside the
352/// specified loop.
353static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
354                            MachineRegisterInfo &MRI) {
355  for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
356                                         E = MRI.use_end();
357       I != E; ++I)
358    if (I->getParent()->getParent() != BB)
359      return true;
360  return false;
361}
362
363/// Generate Phis for the specific block in the generated pipelined code.
364/// This function looks at the Phis from the original code to guide the
365/// creation of new Phis.
366void ModuloScheduleExpander::generateExistingPhis(
367    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
368    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
369    unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
370  // Compute the stage number for the initial value of the Phi, which
371  // comes from the prolog. The prolog to use depends on to which kernel/
372  // epilog that we're adding the Phi.
373  unsigned PrologStage = 0;
374  unsigned PrevStage = 0;
375  bool InKernel = (LastStageNum == CurStageNum);
376  if (InKernel) {
377    PrologStage = LastStageNum - 1;
378    PrevStage = CurStageNum;
379  } else {
380    PrologStage = LastStageNum - (CurStageNum - LastStageNum);
381    PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
382  }
383
384  for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
385                                   BBE = BB->getFirstNonPHI();
386       BBI != BBE; ++BBI) {
387    Register Def = BBI->getOperand(0).getReg();
388
389    unsigned InitVal = 0;
390    unsigned LoopVal = 0;
391    getPhiRegs(*BBI, BB, InitVal, LoopVal);
392
393    unsigned PhiOp1 = 0;
394    // The Phi value from the loop body typically is defined in the loop, but
395    // not always. So, we need to check if the value is defined in the loop.
396    unsigned PhiOp2 = LoopVal;
397    if (VRMap[LastStageNum].count(LoopVal))
398      PhiOp2 = VRMap[LastStageNum][LoopVal];
399
400    int StageScheduled = Schedule.getStage(&*BBI);
401    int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
402    unsigned NumStages = getStagesForReg(Def, CurStageNum);
403    if (NumStages == 0) {
404      // We don't need to generate a Phi anymore, but we need to rename any uses
405      // of the Phi value.
406      unsigned NewReg = VRMap[PrevStage][LoopVal];
407      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
408                            InitVal, NewReg);
409      if (VRMap[CurStageNum].count(LoopVal))
410        VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
411    }
412    // Adjust the number of Phis needed depending on the number of prologs left,
413    // and the distance from where the Phi is first scheduled. The number of
414    // Phis cannot exceed the number of prolog stages. Each stage can
415    // potentially define two values.
416    unsigned MaxPhis = PrologStage + 2;
417    if (!InKernel && (int)PrologStage <= LoopValStage)
418      MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
419    unsigned NumPhis = std::min(NumStages, MaxPhis);
420
421    unsigned NewReg = 0;
422    unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
423    // In the epilog, we may need to look back one stage to get the correct
424    // Phi name, because the epilog and prolog blocks execute the same stage.
425    // The correct name is from the previous block only when the Phi has
426    // been completely scheduled prior to the epilog, and Phi value is not
427    // needed in multiple stages.
428    int StageDiff = 0;
429    if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
430        NumPhis == 1)
431      StageDiff = 1;
432    // Adjust the computations below when the phi and the loop definition
433    // are scheduled in different stages.
434    if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
435      StageDiff = StageScheduled - LoopValStage;
436    for (unsigned np = 0; np < NumPhis; ++np) {
437      // If the Phi hasn't been scheduled, then use the initial Phi operand
438      // value. Otherwise, use the scheduled version of the instruction. This
439      // is a little complicated when a Phi references another Phi.
440      if (np > PrologStage || StageScheduled >= (int)LastStageNum)
441        PhiOp1 = InitVal;
442      // Check if the Phi has already been scheduled in a prolog stage.
443      else if (PrologStage >= AccessStage + StageDiff + np &&
444               VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
445        PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
446      // Check if the Phi has already been scheduled, but the loop instruction
447      // is either another Phi, or doesn't occur in the loop.
448      else if (PrologStage >= AccessStage + StageDiff + np) {
449        // If the Phi references another Phi, we need to examine the other
450        // Phi to get the correct value.
451        PhiOp1 = LoopVal;
452        MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
453        int Indirects = 1;
454        while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
455          int PhiStage = Schedule.getStage(InstOp1);
456          if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
457            PhiOp1 = getInitPhiReg(*InstOp1, BB);
458          else
459            PhiOp1 = getLoopPhiReg(*InstOp1, BB);
460          InstOp1 = MRI.getVRegDef(PhiOp1);
461          int PhiOpStage = Schedule.getStage(InstOp1);
462          int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
463          if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
464              VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
465            PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
466            break;
467          }
468          ++Indirects;
469        }
470      } else
471        PhiOp1 = InitVal;
472      // If this references a generated Phi in the kernel, get the Phi operand
473      // from the incoming block.
474      if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
475        if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
476          PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
477
478      MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
479      bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
480      // In the epilog, a map lookup is needed to get the value from the kernel,
481      // or previous epilog block. How is does this depends on if the
482      // instruction is scheduled in the previous block.
483      if (!InKernel) {
484        int StageDiffAdj = 0;
485        if (LoopValStage != -1 && StageScheduled > LoopValStage)
486          StageDiffAdj = StageScheduled - LoopValStage;
487        // Use the loop value defined in the kernel, unless the kernel
488        // contains the last definition of the Phi.
489        if (np == 0 && PrevStage == LastStageNum &&
490            (StageScheduled != 0 || LoopValStage != 0) &&
491            VRMap[PrevStage - StageDiffAdj].count(LoopVal))
492          PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
493        // Use the value defined by the Phi. We add one because we switch
494        // from looking at the loop value to the Phi definition.
495        else if (np > 0 && PrevStage == LastStageNum &&
496                 VRMap[PrevStage - np + 1].count(Def))
497          PhiOp2 = VRMap[PrevStage - np + 1][Def];
498        // Use the loop value defined in the kernel.
499        else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
500                 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
501          PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
502        // Use the value defined by the Phi, unless we're generating the first
503        // epilog and the Phi refers to a Phi in a different stage.
504        else if (VRMap[PrevStage - np].count(Def) &&
505                 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
506                  (LoopValStage == StageScheduled)))
507          PhiOp2 = VRMap[PrevStage - np][Def];
508      }
509
510      // Check if we can reuse an existing Phi. This occurs when a Phi
511      // references another Phi, and the other Phi is scheduled in an
512      // earlier stage. We can try to reuse an existing Phi up until the last
513      // stage of the current Phi.
514      if (LoopDefIsPhi) {
515        if (static_cast<int>(PrologStage - np) >= StageScheduled) {
516          int LVNumStages = getStagesForPhi(LoopVal);
517          int StageDiff = (StageScheduled - LoopValStage);
518          LVNumStages -= StageDiff;
519          // Make sure the loop value Phi has been processed already.
520          if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
521            NewReg = PhiOp2;
522            unsigned ReuseStage = CurStageNum;
523            if (isLoopCarried(*PhiInst))
524              ReuseStage -= LVNumStages;
525            // Check if the Phi to reuse has been generated yet. If not, then
526            // there is nothing to reuse.
527            if (VRMap[ReuseStage - np].count(LoopVal)) {
528              NewReg = VRMap[ReuseStage - np][LoopVal];
529
530              rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
531                                    Def, NewReg);
532              // Update the map with the new Phi name.
533              VRMap[CurStageNum - np][Def] = NewReg;
534              PhiOp2 = NewReg;
535              if (VRMap[LastStageNum - np - 1].count(LoopVal))
536                PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
537
538              if (IsLast && np == NumPhis - 1)
539                replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
540              continue;
541            }
542          }
543        }
544        if (InKernel && StageDiff > 0 &&
545            VRMap[CurStageNum - StageDiff - np].count(LoopVal))
546          PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
547      }
548
549      const TargetRegisterClass *RC = MRI.getRegClass(Def);
550      NewReg = MRI.createVirtualRegister(RC);
551
552      MachineInstrBuilder NewPhi =
553          BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
554                  TII->get(TargetOpcode::PHI), NewReg);
555      NewPhi.addReg(PhiOp1).addMBB(BB1);
556      NewPhi.addReg(PhiOp2).addMBB(BB2);
557      if (np == 0)
558        InstrMap[NewPhi] = &*BBI;
559
560      // We define the Phis after creating the new pipelined code, so
561      // we need to rename the Phi values in scheduled instructions.
562
563      unsigned PrevReg = 0;
564      if (InKernel && VRMap[PrevStage - np].count(LoopVal))
565        PrevReg = VRMap[PrevStage - np][LoopVal];
566      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
567                            NewReg, PrevReg);
568      // If the Phi has been scheduled, use the new name for rewriting.
569      if (VRMap[CurStageNum - np].count(Def)) {
570        unsigned R = VRMap[CurStageNum - np][Def];
571        rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
572                              NewReg);
573      }
574
575      // Check if we need to rename any uses that occurs after the loop. The
576      // register to replace depends on whether the Phi is scheduled in the
577      // epilog.
578      if (IsLast && np == NumPhis - 1)
579        replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
580
581      // In the kernel, a dependent Phi uses the value from this Phi.
582      if (InKernel)
583        PhiOp2 = NewReg;
584
585      // Update the map with the new Phi name.
586      VRMap[CurStageNum - np][Def] = NewReg;
587    }
588
589    while (NumPhis++ < NumStages) {
590      rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
591                            NewReg, 0);
592    }
593
594    // Check if we need to rename a Phi that has been eliminated due to
595    // scheduling.
596    if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
597      replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
598  }
599}
600
601/// Generate Phis for the specified block in the generated pipelined code.
602/// These are new Phis needed because the definition is scheduled after the
603/// use in the pipelined sequence.
604void ModuloScheduleExpander::generatePhis(
605    MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
606    MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
607    unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
608  // Compute the stage number that contains the initial Phi value, and
609  // the Phi from the previous stage.
610  unsigned PrologStage = 0;
611  unsigned PrevStage = 0;
612  unsigned StageDiff = CurStageNum - LastStageNum;
613  bool InKernel = (StageDiff == 0);
614  if (InKernel) {
615    PrologStage = LastStageNum - 1;
616    PrevStage = CurStageNum;
617  } else {
618    PrologStage = LastStageNum - StageDiff;
619    PrevStage = LastStageNum + StageDiff - 1;
620  }
621
622  for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
623                                   BBE = BB->instr_end();
624       BBI != BBE; ++BBI) {
625    for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
626      MachineOperand &MO = BBI->getOperand(i);
627      if (!MO.isReg() || !MO.isDef() ||
628          !Register::isVirtualRegister(MO.getReg()))
629        continue;
630
631      int StageScheduled = Schedule.getStage(&*BBI);
632      assert(StageScheduled != -1 && "Expecting scheduled instruction.");
633      Register Def = MO.getReg();
634      unsigned NumPhis = getStagesForReg(Def, CurStageNum);
635      // An instruction scheduled in stage 0 and is used after the loop
636      // requires a phi in the epilog for the last definition from either
637      // the kernel or prolog.
638      if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
639          hasUseAfterLoop(Def, BB, MRI))
640        NumPhis = 1;
641      if (!InKernel && (unsigned)StageScheduled > PrologStage)
642        continue;
643
644      unsigned PhiOp2 = VRMap[PrevStage][Def];
645      if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
646        if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
647          PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
648      // The number of Phis can't exceed the number of prolog stages. The
649      // prolog stage number is zero based.
650      if (NumPhis > PrologStage + 1 - StageScheduled)
651        NumPhis = PrologStage + 1 - StageScheduled;
652      for (unsigned np = 0; np < NumPhis; ++np) {
653        unsigned PhiOp1 = VRMap[PrologStage][Def];
654        if (np <= PrologStage)
655          PhiOp1 = VRMap[PrologStage - np][Def];
656        if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
657          if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
658            PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
659          if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
660            PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
661        }
662        if (!InKernel)
663          PhiOp2 = VRMap[PrevStage - np][Def];
664
665        const TargetRegisterClass *RC = MRI.getRegClass(Def);
666        Register NewReg = MRI.createVirtualRegister(RC);
667
668        MachineInstrBuilder NewPhi =
669            BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
670                    TII->get(TargetOpcode::PHI), NewReg);
671        NewPhi.addReg(PhiOp1).addMBB(BB1);
672        NewPhi.addReg(PhiOp2).addMBB(BB2);
673        if (np == 0)
674          InstrMap[NewPhi] = &*BBI;
675
676        // Rewrite uses and update the map. The actions depend upon whether
677        // we generating code for the kernel or epilog blocks.
678        if (InKernel) {
679          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
680                                NewReg);
681          rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
682                                NewReg);
683
684          PhiOp2 = NewReg;
685          VRMap[PrevStage - np - 1][Def] = NewReg;
686        } else {
687          VRMap[CurStageNum - np][Def] = NewReg;
688          if (np == NumPhis - 1)
689            rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
690                                  NewReg);
691        }
692        if (IsLast && np == NumPhis - 1)
693          replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
694      }
695    }
696  }
697}
698
699/// Remove instructions that generate values with no uses.
700/// Typically, these are induction variable operations that generate values
701/// used in the loop itself.  A dead instruction has a definition with
702/// no uses, or uses that occur in the original loop only.
703void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
704                                                    MBBVectorTy &EpilogBBs) {
705  // For each epilog block, check that the value defined by each instruction
706  // is used.  If not, delete it.
707  for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
708                                     MBE = EpilogBBs.rend();
709       MBB != MBE; ++MBB)
710    for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
711                                                   ME = (*MBB)->instr_rend();
712         MI != ME;) {
713      // From DeadMachineInstructionElem. Don't delete inline assembly.
714      if (MI->isInlineAsm()) {
715        ++MI;
716        continue;
717      }
718      bool SawStore = false;
719      // Check if it's safe to remove the instruction due to side effects.
720      // We can, and want to, remove Phis here.
721      if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
722        ++MI;
723        continue;
724      }
725      bool used = true;
726      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
727                                      MOE = MI->operands_end();
728           MOI != MOE; ++MOI) {
729        if (!MOI->isReg() || !MOI->isDef())
730          continue;
731        Register reg = MOI->getReg();
732        // Assume physical registers are used, unless they are marked dead.
733        if (Register::isPhysicalRegister(reg)) {
734          used = !MOI->isDead();
735          if (used)
736            break;
737          continue;
738        }
739        unsigned realUses = 0;
740        for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
741                                               EI = MRI.use_end();
742             UI != EI; ++UI) {
743          // Check if there are any uses that occur only in the original
744          // loop.  If so, that's not a real use.
745          if (UI->getParent()->getParent() != BB) {
746            realUses++;
747            used = true;
748            break;
749          }
750        }
751        if (realUses > 0)
752          break;
753        used = false;
754      }
755      if (!used) {
756        LIS.RemoveMachineInstrFromMaps(*MI);
757        MI++->eraseFromParent();
758        continue;
759      }
760      ++MI;
761    }
762  // In the kernel block, check if we can remove a Phi that generates a value
763  // used in an instruction removed in the epilog block.
764  for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
765                                   BBE = KernelBB->getFirstNonPHI();
766       BBI != BBE;) {
767    MachineInstr *MI = &*BBI;
768    ++BBI;
769    Register reg = MI->getOperand(0).getReg();
770    if (MRI.use_begin(reg) == MRI.use_end()) {
771      LIS.RemoveMachineInstrFromMaps(*MI);
772      MI->eraseFromParent();
773    }
774  }
775}
776
777/// For loop carried definitions, we split the lifetime of a virtual register
778/// that has uses past the definition in the next iteration. A copy with a new
779/// virtual register is inserted before the definition, which helps with
780/// generating a better register assignment.
781///
782///   v1 = phi(a, v2)     v1 = phi(a, v2)
783///   v2 = phi(b, v3)     v2 = phi(b, v3)
784///   v3 = ..             v4 = copy v1
785///   .. = V1             v3 = ..
786///                       .. = v4
787void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
788                                            MBBVectorTy &EpilogBBs) {
789  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
790  for (auto &PHI : KernelBB->phis()) {
791    Register Def = PHI.getOperand(0).getReg();
792    // Check for any Phi definition that used as an operand of another Phi
793    // in the same block.
794    for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
795                                                 E = MRI.use_instr_end();
796         I != E; ++I) {
797      if (I->isPHI() && I->getParent() == KernelBB) {
798        // Get the loop carried definition.
799        unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
800        if (!LCDef)
801          continue;
802        MachineInstr *MI = MRI.getVRegDef(LCDef);
803        if (!MI || MI->getParent() != KernelBB || MI->isPHI())
804          continue;
805        // Search through the rest of the block looking for uses of the Phi
806        // definition. If one occurs, then split the lifetime.
807        unsigned SplitReg = 0;
808        for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
809                                    KernelBB->instr_end()))
810          if (BBJ.readsRegister(Def)) {
811            // We split the lifetime when we find the first use.
812            if (SplitReg == 0) {
813              SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
814              BuildMI(*KernelBB, MI, MI->getDebugLoc(),
815                      TII->get(TargetOpcode::COPY), SplitReg)
816                  .addReg(Def);
817            }
818            BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
819          }
820        if (!SplitReg)
821          continue;
822        // Search through each of the epilog blocks for any uses to be renamed.
823        for (auto &Epilog : EpilogBBs)
824          for (auto &I : *Epilog)
825            if (I.readsRegister(Def))
826              I.substituteRegister(Def, SplitReg, 0, *TRI);
827        break;
828      }
829    }
830  }
831}
832
833/// Remove the incoming block from the Phis in a basic block.
834static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
835  for (MachineInstr &MI : *BB) {
836    if (!MI.isPHI())
837      break;
838    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
839      if (MI.getOperand(i + 1).getMBB() == Incoming) {
840        MI.RemoveOperand(i + 1);
841        MI.RemoveOperand(i);
842        break;
843      }
844  }
845}
846
847/// Create branches from each prolog basic block to the appropriate epilog
848/// block.  These edges are needed if the loop ends before reaching the
849/// kernel.
850void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
851                                         MBBVectorTy &PrologBBs,
852                                         MachineBasicBlock *KernelBB,
853                                         MBBVectorTy &EpilogBBs,
854                                         ValueMapTy *VRMap) {
855  assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
856  MachineBasicBlock *LastPro = KernelBB;
857  MachineBasicBlock *LastEpi = KernelBB;
858
859  // Start from the blocks connected to the kernel and work "out"
860  // to the first prolog and the last epilog blocks.
861  SmallVector<MachineInstr *, 4> PrevInsts;
862  unsigned MaxIter = PrologBBs.size() - 1;
863  for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
864    // Add branches to the prolog that go to the corresponding
865    // epilog, and the fall-thru prolog/kernel block.
866    MachineBasicBlock *Prolog = PrologBBs[j];
867    MachineBasicBlock *Epilog = EpilogBBs[i];
868
869    SmallVector<MachineOperand, 4> Cond;
870    Optional<bool> StaticallyGreater =
871        LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
872    unsigned numAdded = 0;
873    if (!StaticallyGreater.hasValue()) {
874      Prolog->addSuccessor(Epilog);
875      numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
876    } else if (*StaticallyGreater == false) {
877      Prolog->addSuccessor(Epilog);
878      Prolog->removeSuccessor(LastPro);
879      LastEpi->removeSuccessor(Epilog);
880      numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
881      removePhis(Epilog, LastEpi);
882      // Remove the blocks that are no longer referenced.
883      if (LastPro != LastEpi) {
884        LastEpi->clear();
885        LastEpi->eraseFromParent();
886      }
887      if (LastPro == KernelBB) {
888        LoopInfo->disposed();
889        NewKernel = nullptr;
890      }
891      LastPro->clear();
892      LastPro->eraseFromParent();
893    } else {
894      numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
895      removePhis(Epilog, Prolog);
896    }
897    LastPro = Prolog;
898    LastEpi = Epilog;
899    for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
900                                                   E = Prolog->instr_rend();
901         I != E && numAdded > 0; ++I, --numAdded)
902      updateInstruction(&*I, false, j, 0, VRMap);
903  }
904
905  if (NewKernel) {
906    LoopInfo->setPreheader(PrologBBs[MaxIter]);
907    LoopInfo->adjustTripCount(-(MaxIter + 1));
908  }
909}
910
911/// Return true if we can compute the amount the instruction changes
912/// during each iteration. Set Delta to the amount of the change.
913bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
914  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
915  const MachineOperand *BaseOp;
916  int64_t Offset;
917  bool OffsetIsScalable;
918  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
919    return false;
920
921  // FIXME: This algorithm assumes instructions have fixed-size offsets.
922  if (OffsetIsScalable)
923    return false;
924
925  if (!BaseOp->isReg())
926    return false;
927
928  Register BaseReg = BaseOp->getReg();
929
930  MachineRegisterInfo &MRI = MF.getRegInfo();
931  // Check if there is a Phi. If so, get the definition in the loop.
932  MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
933  if (BaseDef && BaseDef->isPHI()) {
934    BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
935    BaseDef = MRI.getVRegDef(BaseReg);
936  }
937  if (!BaseDef)
938    return false;
939
940  int D = 0;
941  if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
942    return false;
943
944  Delta = D;
945  return true;
946}
947
948/// Update the memory operand with a new offset when the pipeliner
949/// generates a new copy of the instruction that refers to a
950/// different memory location.
951void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
952                                               MachineInstr &OldMI,
953                                               unsigned Num) {
954  if (Num == 0)
955    return;
956  // If the instruction has memory operands, then adjust the offset
957  // when the instruction appears in different stages.
958  if (NewMI.memoperands_empty())
959    return;
960  SmallVector<MachineMemOperand *, 2> NewMMOs;
961  for (MachineMemOperand *MMO : NewMI.memoperands()) {
962    // TODO: Figure out whether isAtomic is really necessary (see D57601).
963    if (MMO->isVolatile() || MMO->isAtomic() ||
964        (MMO->isInvariant() && MMO->isDereferenceable()) ||
965        (!MMO->getValue())) {
966      NewMMOs.push_back(MMO);
967      continue;
968    }
969    unsigned Delta;
970    if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
971      int64_t AdjOffset = Delta * Num;
972      NewMMOs.push_back(
973          MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
974    } else {
975      NewMMOs.push_back(
976          MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
977    }
978  }
979  NewMI.setMemRefs(MF, NewMMOs);
980}
981
982/// Clone the instruction for the new pipelined loop and update the
983/// memory operands, if needed.
984MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
985                                                 unsigned CurStageNum,
986                                                 unsigned InstStageNum) {
987  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
988  // Check for tied operands in inline asm instructions. This should be handled
989  // elsewhere, but I'm not sure of the best solution.
990  if (OldMI->isInlineAsm())
991    for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
992      const auto &MO = OldMI->getOperand(i);
993      if (MO.isReg() && MO.isUse())
994        break;
995      unsigned UseIdx;
996      if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
997        NewMI->tieOperands(i, UseIdx);
998    }
999  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1000  return NewMI;
1001}
1002
1003/// Clone the instruction for the new pipelined loop. If needed, this
1004/// function updates the instruction using the values saved in the
1005/// InstrChanges structure.
1006MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1007    MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1008  MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1009  auto It = InstrChanges.find(OldMI);
1010  if (It != InstrChanges.end()) {
1011    std::pair<unsigned, int64_t> RegAndOffset = It->second;
1012    unsigned BasePos, OffsetPos;
1013    if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1014      return nullptr;
1015    int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1016    MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1017    if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1018      NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1019    NewMI->getOperand(OffsetPos).setImm(NewOffset);
1020  }
1021  updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1022  return NewMI;
1023}
1024
1025/// Update the machine instruction with new virtual registers.  This
1026/// function may change the defintions and/or uses.
1027void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1028                                               bool LastDef,
1029                                               unsigned CurStageNum,
1030                                               unsigned InstrStageNum,
1031                                               ValueMapTy *VRMap) {
1032  for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1033    MachineOperand &MO = NewMI->getOperand(i);
1034    if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1035      continue;
1036    Register reg = MO.getReg();
1037    if (MO.isDef()) {
1038      // Create a new virtual register for the definition.
1039      const TargetRegisterClass *RC = MRI.getRegClass(reg);
1040      Register NewReg = MRI.createVirtualRegister(RC);
1041      MO.setReg(NewReg);
1042      VRMap[CurStageNum][reg] = NewReg;
1043      if (LastDef)
1044        replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1045    } else if (MO.isUse()) {
1046      MachineInstr *Def = MRI.getVRegDef(reg);
1047      // Compute the stage that contains the last definition for instruction.
1048      int DefStageNum = Schedule.getStage(Def);
1049      unsigned StageNum = CurStageNum;
1050      if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1051        // Compute the difference in stages between the defintion and the use.
1052        unsigned StageDiff = (InstrStageNum - DefStageNum);
1053        // Make an adjustment to get the last definition.
1054        StageNum -= StageDiff;
1055      }
1056      if (VRMap[StageNum].count(reg))
1057        MO.setReg(VRMap[StageNum][reg]);
1058    }
1059  }
1060}
1061
1062/// Return the instruction in the loop that defines the register.
1063/// If the definition is a Phi, then follow the Phi operand to
1064/// the instruction in the loop.
1065MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1066  SmallPtrSet<MachineInstr *, 8> Visited;
1067  MachineInstr *Def = MRI.getVRegDef(Reg);
1068  while (Def->isPHI()) {
1069    if (!Visited.insert(Def).second)
1070      break;
1071    for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1072      if (Def->getOperand(i + 1).getMBB() == BB) {
1073        Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1074        break;
1075      }
1076  }
1077  return Def;
1078}
1079
1080/// Return the new name for the value from the previous stage.
1081unsigned ModuloScheduleExpander::getPrevMapVal(
1082    unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1083    ValueMapTy *VRMap, MachineBasicBlock *BB) {
1084  unsigned PrevVal = 0;
1085  if (StageNum > PhiStage) {
1086    MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1087    if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1088      // The name is defined in the previous stage.
1089      PrevVal = VRMap[StageNum - 1][LoopVal];
1090    else if (VRMap[StageNum].count(LoopVal))
1091      // The previous name is defined in the current stage when the instruction
1092      // order is swapped.
1093      PrevVal = VRMap[StageNum][LoopVal];
1094    else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1095      // The loop value hasn't yet been scheduled.
1096      PrevVal = LoopVal;
1097    else if (StageNum == PhiStage + 1)
1098      // The loop value is another phi, which has not been scheduled.
1099      PrevVal = getInitPhiReg(*LoopInst, BB);
1100    else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1101      // The loop value is another phi, which has been scheduled.
1102      PrevVal =
1103          getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1104                        LoopStage, VRMap, BB);
1105  }
1106  return PrevVal;
1107}
1108
1109/// Rewrite the Phi values in the specified block to use the mappings
1110/// from the initial operand. Once the Phi is scheduled, we switch
1111/// to using the loop value instead of the Phi value, so those names
1112/// do not need to be rewritten.
1113void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1114                                              unsigned StageNum,
1115                                              ValueMapTy *VRMap,
1116                                              InstrMapTy &InstrMap) {
1117  for (auto &PHI : BB->phis()) {
1118    unsigned InitVal = 0;
1119    unsigned LoopVal = 0;
1120    getPhiRegs(PHI, BB, InitVal, LoopVal);
1121    Register PhiDef = PHI.getOperand(0).getReg();
1122
1123    unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1124    unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1125    unsigned NumPhis = getStagesForPhi(PhiDef);
1126    if (NumPhis > StageNum)
1127      NumPhis = StageNum;
1128    for (unsigned np = 0; np <= NumPhis; ++np) {
1129      unsigned NewVal =
1130          getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1131      if (!NewVal)
1132        NewVal = InitVal;
1133      rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1134                            NewVal);
1135    }
1136  }
1137}
1138
1139/// Rewrite a previously scheduled instruction to use the register value
1140/// from the new instruction. Make sure the instruction occurs in the
1141/// basic block, and we don't change the uses in the new instruction.
1142void ModuloScheduleExpander::rewriteScheduledInstr(
1143    MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1144    unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1145    unsigned PrevReg) {
1146  bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1147  int StagePhi = Schedule.getStage(Phi) + PhiNum;
1148  // Rewrite uses that have been scheduled already to use the new
1149  // Phi register.
1150  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1151                                         EI = MRI.use_end();
1152       UI != EI;) {
1153    MachineOperand &UseOp = *UI;
1154    MachineInstr *UseMI = UseOp.getParent();
1155    ++UI;
1156    if (UseMI->getParent() != BB)
1157      continue;
1158    if (UseMI->isPHI()) {
1159      if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1160        continue;
1161      if (getLoopPhiReg(*UseMI, BB) != OldReg)
1162        continue;
1163    }
1164    InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1165    assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1166    MachineInstr *OrigMI = OrigInstr->second;
1167    int StageSched = Schedule.getStage(OrigMI);
1168    int CycleSched = Schedule.getCycle(OrigMI);
1169    unsigned ReplaceReg = 0;
1170    // This is the stage for the scheduled instruction.
1171    if (StagePhi == StageSched && Phi->isPHI()) {
1172      int CyclePhi = Schedule.getCycle(Phi);
1173      if (PrevReg && InProlog)
1174        ReplaceReg = PrevReg;
1175      else if (PrevReg && !isLoopCarried(*Phi) &&
1176               (CyclePhi <= CycleSched || OrigMI->isPHI()))
1177        ReplaceReg = PrevReg;
1178      else
1179        ReplaceReg = NewReg;
1180    }
1181    // The scheduled instruction occurs before the scheduled Phi, and the
1182    // Phi is not loop carried.
1183    if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1184      ReplaceReg = NewReg;
1185    if (StagePhi > StageSched && Phi->isPHI())
1186      ReplaceReg = NewReg;
1187    if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1188      ReplaceReg = NewReg;
1189    if (ReplaceReg) {
1190      MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1191      UseOp.setReg(ReplaceReg);
1192    }
1193  }
1194}
1195
1196bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1197  if (!Phi.isPHI())
1198    return false;
1199  int DefCycle = Schedule.getCycle(&Phi);
1200  int DefStage = Schedule.getStage(&Phi);
1201
1202  unsigned InitVal = 0;
1203  unsigned LoopVal = 0;
1204  getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1205  MachineInstr *Use = MRI.getVRegDef(LoopVal);
1206  if (!Use || Use->isPHI())
1207    return true;
1208  int LoopCycle = Schedule.getCycle(Use);
1209  int LoopStage = Schedule.getStage(Use);
1210  return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1211}
1212
1213//===----------------------------------------------------------------------===//
1214// PeelingModuloScheduleExpander implementation
1215//===----------------------------------------------------------------------===//
1216// This is a reimplementation of ModuloScheduleExpander that works by creating
1217// a fully correct steady-state kernel and peeling off the prolog and epilogs.
1218//===----------------------------------------------------------------------===//
1219
1220namespace {
1221// Remove any dead phis in MBB. Dead phis either have only one block as input
1222// (in which case they are the identity) or have no uses.
1223void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1224                       LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1225  bool Changed = true;
1226  while (Changed) {
1227    Changed = false;
1228    for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
1229      MachineInstr &MI = *I++;
1230      assert(MI.isPHI());
1231      if (MRI.use_empty(MI.getOperand(0).getReg())) {
1232        if (LIS)
1233          LIS->RemoveMachineInstrFromMaps(MI);
1234        MI.eraseFromParent();
1235        Changed = true;
1236      } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1237        MRI.constrainRegClass(MI.getOperand(1).getReg(),
1238                              MRI.getRegClass(MI.getOperand(0).getReg()));
1239        MRI.replaceRegWith(MI.getOperand(0).getReg(),
1240                           MI.getOperand(1).getReg());
1241        if (LIS)
1242          LIS->RemoveMachineInstrFromMaps(MI);
1243        MI.eraseFromParent();
1244        Changed = true;
1245      }
1246    }
1247  }
1248}
1249
1250/// Rewrites the kernel block in-place to adhere to the given schedule.
1251/// KernelRewriter holds all of the state required to perform the rewriting.
1252class KernelRewriter {
1253  ModuloSchedule &S;
1254  MachineBasicBlock *BB;
1255  MachineBasicBlock *PreheaderBB, *ExitBB;
1256  MachineRegisterInfo &MRI;
1257  const TargetInstrInfo *TII;
1258  LiveIntervals *LIS;
1259
1260  // Map from register class to canonical undef register for that class.
1261  DenseMap<const TargetRegisterClass *, Register> Undefs;
1262  // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1263  // this map is only used when InitReg is non-undef.
1264  DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1265  // Map from LoopReg to phi register where the InitReg is undef.
1266  DenseMap<Register, Register> UndefPhis;
1267
1268  // Reg is used by MI. Return the new register MI should use to adhere to the
1269  // schedule. Insert phis as necessary.
1270  Register remapUse(Register Reg, MachineInstr &MI);
1271  // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1272  // If InitReg is not given it is chosen arbitrarily. It will either be undef
1273  // or will be chosen so as to share another phi.
1274  Register phi(Register LoopReg, Optional<Register> InitReg = {},
1275               const TargetRegisterClass *RC = nullptr);
1276  // Create an undef register of the given register class.
1277  Register undef(const TargetRegisterClass *RC);
1278
1279public:
1280  KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1281                 LiveIntervals *LIS = nullptr);
1282  void rewrite();
1283};
1284} // namespace
1285
1286KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1287                               LiveIntervals *LIS)
1288    : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()),
1289      ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1290      TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1291  PreheaderBB = *BB->pred_begin();
1292  if (PreheaderBB == BB)
1293    PreheaderBB = *std::next(BB->pred_begin());
1294}
1295
1296void KernelRewriter::rewrite() {
1297  // Rearrange the loop to be in schedule order. Note that the schedule may
1298  // contain instructions that are not owned by the loop block (InstrChanges and
1299  // friends), so we gracefully handle unowned instructions and delete any
1300  // instructions that weren't in the schedule.
1301  auto InsertPt = BB->getFirstTerminator();
1302  MachineInstr *FirstMI = nullptr;
1303  for (MachineInstr *MI : S.getInstructions()) {
1304    if (MI->isPHI())
1305      continue;
1306    if (MI->getParent())
1307      MI->removeFromParent();
1308    BB->insert(InsertPt, MI);
1309    if (!FirstMI)
1310      FirstMI = MI;
1311  }
1312  assert(FirstMI && "Failed to find first MI in schedule");
1313
1314  // At this point all of the scheduled instructions are between FirstMI
1315  // and the end of the block. Kill from the first non-phi to FirstMI.
1316  for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1317    if (LIS)
1318      LIS->RemoveMachineInstrFromMaps(*I);
1319    (I++)->eraseFromParent();
1320  }
1321
1322  // Now remap every instruction in the loop.
1323  for (MachineInstr &MI : *BB) {
1324    if (MI.isPHI() || MI.isTerminator())
1325      continue;
1326    for (MachineOperand &MO : MI.uses()) {
1327      if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1328        continue;
1329      Register Reg = remapUse(MO.getReg(), MI);
1330      MO.setReg(Reg);
1331    }
1332  }
1333  EliminateDeadPhis(BB, MRI, LIS);
1334
1335  // Ensure a phi exists for all instructions that are either referenced by
1336  // an illegal phi or by an instruction outside the loop. This allows us to
1337  // treat remaps of these values the same as "normal" values that come from
1338  // loop-carried phis.
1339  for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1340    if (MI->isPHI()) {
1341      Register R = MI->getOperand(0).getReg();
1342      phi(R);
1343      continue;
1344    }
1345
1346    for (MachineOperand &Def : MI->defs()) {
1347      for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1348        if (MI.getParent() != BB) {
1349          phi(Def.getReg());
1350          break;
1351        }
1352      }
1353    }
1354  }
1355}
1356
1357Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1358  MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1359  if (!Producer)
1360    return Reg;
1361
1362  int ConsumerStage = S.getStage(&MI);
1363  if (!Producer->isPHI()) {
1364    // Non-phi producers are simple to remap. Insert as many phis as the
1365    // difference between the consumer and producer stages.
1366    if (Producer->getParent() != BB)
1367      // Producer was not inside the loop. Use the register as-is.
1368      return Reg;
1369    int ProducerStage = S.getStage(Producer);
1370    assert(ConsumerStage != -1 &&
1371           "In-loop consumer should always be scheduled!");
1372    assert(ConsumerStage >= ProducerStage);
1373    unsigned StageDiff = ConsumerStage - ProducerStage;
1374
1375    for (unsigned I = 0; I < StageDiff; ++I)
1376      Reg = phi(Reg);
1377    return Reg;
1378  }
1379
1380  // First, dive through the phi chain to find the defaults for the generated
1381  // phis.
1382  SmallVector<Optional<Register>, 4> Defaults;
1383  Register LoopReg = Reg;
1384  auto LoopProducer = Producer;
1385  while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1386    LoopReg = getLoopPhiReg(*LoopProducer, BB);
1387    Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1388    LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1389    assert(LoopProducer);
1390  }
1391  int LoopProducerStage = S.getStage(LoopProducer);
1392
1393  Optional<Register> IllegalPhiDefault;
1394
1395  if (LoopProducerStage == -1) {
1396    // Do nothing.
1397  } else if (LoopProducerStage > ConsumerStage) {
1398    // This schedule is only representable if ProducerStage == ConsumerStage+1.
1399    // In addition, Consumer's cycle must be scheduled after Producer in the
1400    // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1401    // functions.
1402#ifndef NDEBUG // Silence unused variables in non-asserts mode.
1403    int LoopProducerCycle = S.getCycle(LoopProducer);
1404    int ConsumerCycle = S.getCycle(&MI);
1405#endif
1406    assert(LoopProducerCycle <= ConsumerCycle);
1407    assert(LoopProducerStage == ConsumerStage + 1);
1408    // Peel off the first phi from Defaults and insert a phi between producer
1409    // and consumer. This phi will not be at the front of the block so we
1410    // consider it illegal. It will only exist during the rewrite process; it
1411    // needs to exist while we peel off prologs because these could take the
1412    // default value. After that we can replace all uses with the loop producer
1413    // value.
1414    IllegalPhiDefault = Defaults.front();
1415    Defaults.erase(Defaults.begin());
1416  } else {
1417    assert(ConsumerStage >= LoopProducerStage);
1418    int StageDiff = ConsumerStage - LoopProducerStage;
1419    if (StageDiff > 0) {
1420      LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1421                        << " to " << (Defaults.size() + StageDiff) << "\n");
1422      // If we need more phis than we have defaults for, pad out with undefs for
1423      // the earliest phis, which are at the end of the defaults chain (the
1424      // chain is in reverse order).
1425      Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1426                                                       ? Optional<Register>()
1427                                                       : Defaults.back());
1428    }
1429  }
1430
1431  // Now we know the number of stages to jump back, insert the phi chain.
1432  auto DefaultI = Defaults.rbegin();
1433  while (DefaultI != Defaults.rend())
1434    LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1435
1436  if (IllegalPhiDefault.hasValue()) {
1437    // The consumer optionally consumes LoopProducer in the same iteration
1438    // (because the producer is scheduled at an earlier cycle than the consumer)
1439    // or the initial value. To facilitate this we create an illegal block here
1440    // by embedding a phi in the middle of the block. We will fix this up
1441    // immediately prior to pruning.
1442    auto RC = MRI.getRegClass(Reg);
1443    Register R = MRI.createVirtualRegister(RC);
1444    MachineInstr *IllegalPhi =
1445        BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1446            .addReg(IllegalPhiDefault.getValue())
1447            .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1448            .addReg(LoopReg)
1449            .addMBB(BB); // Block choice is arbitrary and has no effect.
1450    // Illegal phi should belong to the producer stage so that it can be
1451    // filtered correctly during peeling.
1452    S.setStage(IllegalPhi, LoopProducerStage);
1453    return R;
1454  }
1455
1456  return LoopReg;
1457}
1458
1459Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1460                             const TargetRegisterClass *RC) {
1461  // If the init register is not undef, try and find an existing phi.
1462  if (InitReg.hasValue()) {
1463    auto I = Phis.find({LoopReg, InitReg.getValue()});
1464    if (I != Phis.end())
1465      return I->second;
1466  } else {
1467    for (auto &KV : Phis) {
1468      if (KV.first.first == LoopReg)
1469        return KV.second;
1470    }
1471  }
1472
1473  // InitReg is either undef or no existing phi takes InitReg as input. Try and
1474  // find a phi that takes undef as input.
1475  auto I = UndefPhis.find(LoopReg);
1476  if (I != UndefPhis.end()) {
1477    Register R = I->second;
1478    if (!InitReg.hasValue())
1479      // Found a phi taking undef as input, and this input is undef so return
1480      // without any more changes.
1481      return R;
1482    // Found a phi taking undef as input, so rewrite it to take InitReg.
1483    MachineInstr *MI = MRI.getVRegDef(R);
1484    MI->getOperand(1).setReg(InitReg.getValue());
1485    Phis.insert({{LoopReg, InitReg.getValue()}, R});
1486    MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1487    UndefPhis.erase(I);
1488    return R;
1489  }
1490
1491  // Failed to find any existing phi to reuse, so create a new one.
1492  if (!RC)
1493    RC = MRI.getRegClass(LoopReg);
1494  Register R = MRI.createVirtualRegister(RC);
1495  if (InitReg.hasValue())
1496    MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1497  BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1498      .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1499      .addMBB(PreheaderBB)
1500      .addReg(LoopReg)
1501      .addMBB(BB);
1502  if (!InitReg.hasValue())
1503    UndefPhis[LoopReg] = R;
1504  else
1505    Phis[{LoopReg, *InitReg}] = R;
1506  return R;
1507}
1508
1509Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1510  Register &R = Undefs[RC];
1511  if (R == 0) {
1512    // Create an IMPLICIT_DEF that defines this register if we need it.
1513    // All uses of this should be removed by the time we have finished unrolling
1514    // prologs and epilogs.
1515    R = MRI.createVirtualRegister(RC);
1516    auto *InsertBB = &PreheaderBB->getParent()->front();
1517    BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1518            TII->get(TargetOpcode::IMPLICIT_DEF), R);
1519  }
1520  return R;
1521}
1522
1523namespace {
1524/// Describes an operand in the kernel of a pipelined loop. Characteristics of
1525/// the operand are discovered, such as how many in-loop PHIs it has to jump
1526/// through and defaults for these phis.
1527class KernelOperandInfo {
1528  MachineBasicBlock *BB;
1529  MachineRegisterInfo &MRI;
1530  SmallVector<Register, 4> PhiDefaults;
1531  MachineOperand *Source;
1532  MachineOperand *Target;
1533
1534public:
1535  KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1536                    const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1537      : MRI(MRI) {
1538    Source = MO;
1539    BB = MO->getParent()->getParent();
1540    while (isRegInLoop(MO)) {
1541      MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1542      if (MI->isFullCopy()) {
1543        MO = &MI->getOperand(1);
1544        continue;
1545      }
1546      if (!MI->isPHI())
1547        break;
1548      // If this is an illegal phi, don't count it in distance.
1549      if (IllegalPhis.count(MI)) {
1550        MO = &MI->getOperand(3);
1551        continue;
1552      }
1553
1554      Register Default = getInitPhiReg(*MI, BB);
1555      MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1556                                            : &MI->getOperand(3);
1557      PhiDefaults.push_back(Default);
1558    }
1559    Target = MO;
1560  }
1561
1562  bool operator==(const KernelOperandInfo &Other) const {
1563    return PhiDefaults.size() == Other.PhiDefaults.size();
1564  }
1565
1566  void print(raw_ostream &OS) const {
1567    OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1568       << *Source->getParent();
1569  }
1570
1571private:
1572  bool isRegInLoop(MachineOperand *MO) {
1573    return MO->isReg() && MO->getReg().isVirtual() &&
1574           MRI.getVRegDef(MO->getReg())->getParent() == BB;
1575  }
1576};
1577} // namespace
1578
1579MachineBasicBlock *
1580PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1581  MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1582  if (LPD == LPD_Front)
1583    PeeledFront.push_back(NewBB);
1584  else
1585    PeeledBack.push_front(NewBB);
1586  for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1587       ++I, ++NI) {
1588    CanonicalMIs[&*I] = &*I;
1589    CanonicalMIs[&*NI] = &*I;
1590    BlockMIs[{NewBB, &*I}] = &*NI;
1591    BlockMIs[{BB, &*I}] = &*I;
1592  }
1593  return NewBB;
1594}
1595
1596void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1597                                                       int MinStage) {
1598  for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1599       I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1600    MachineInstr *MI = &*I++;
1601    int Stage = getStage(MI);
1602    if (Stage == -1 || Stage >= MinStage)
1603      continue;
1604
1605    for (MachineOperand &DefMO : MI->defs()) {
1606      SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1607      for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1608        // Only PHIs can use values from this block by construction.
1609        // Match with the equivalent PHI in B.
1610        assert(UseMI.isPHI());
1611        Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1612                                               MI->getParent());
1613        Subs.emplace_back(&UseMI, Reg);
1614      }
1615      for (auto &Sub : Subs)
1616        Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1617                                      *MRI.getTargetRegisterInfo());
1618    }
1619    if (LIS)
1620      LIS->RemoveMachineInstrFromMaps(*MI);
1621    MI->eraseFromParent();
1622  }
1623}
1624
1625void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1626    MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1627  auto InsertPt = DestBB->getFirstNonPHI();
1628  DenseMap<Register, Register> Remaps;
1629  for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
1630    MachineInstr *MI = &*I++;
1631    if (MI->isPHI()) {
1632      // This is an illegal PHI. If we move any instructions using an illegal
1633      // PHI, we need to create a legal Phi.
1634      if (getStage(MI) != Stage) {
1635        // The legal Phi is not necessary if the illegal phi's stage
1636        // is being moved.
1637        Register PhiR = MI->getOperand(0).getReg();
1638        auto RC = MRI.getRegClass(PhiR);
1639        Register NR = MRI.createVirtualRegister(RC);
1640        MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1641                                   DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1642                               .addReg(PhiR)
1643                               .addMBB(SourceBB);
1644        BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
1645        CanonicalMIs[NI] = CanonicalMIs[MI];
1646        Remaps[PhiR] = NR;
1647      }
1648    }
1649    if (getStage(MI) != Stage)
1650      continue;
1651    MI->removeFromParent();
1652    DestBB->insert(InsertPt, MI);
1653    auto *KernelMI = CanonicalMIs[MI];
1654    BlockMIs[{DestBB, KernelMI}] = MI;
1655    BlockMIs.erase({SourceBB, KernelMI});
1656  }
1657  SmallVector<MachineInstr *, 4> PhiToDelete;
1658  for (MachineInstr &MI : DestBB->phis()) {
1659    assert(MI.getNumOperands() == 3);
1660    MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1661    // If the instruction referenced by the phi is moved inside the block
1662    // we don't need the phi anymore.
1663    if (getStage(Def) == Stage) {
1664      Register PhiReg = MI.getOperand(0).getReg();
1665      assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1666      MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1667      MI.getOperand(0).setReg(PhiReg);
1668      PhiToDelete.push_back(&MI);
1669    }
1670  }
1671  for (auto *P : PhiToDelete)
1672    P->eraseFromParent();
1673  InsertPt = DestBB->getFirstNonPHI();
1674  // Helper to clone Phi instructions into the destination block. We clone Phi
1675  // greedily to avoid combinatorial explosion of Phi instructions.
1676  auto clonePhi = [&](MachineInstr *Phi) {
1677    MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1678    DestBB->insert(InsertPt, NewMI);
1679    Register OrigR = Phi->getOperand(0).getReg();
1680    Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1681    NewMI->getOperand(0).setReg(R);
1682    NewMI->getOperand(1).setReg(OrigR);
1683    NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1684    Remaps[OrigR] = R;
1685    CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1686    BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1687    PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1688    return R;
1689  };
1690  for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1691    for (MachineOperand &MO : I->uses()) {
1692      if (!MO.isReg())
1693        continue;
1694      if (Remaps.count(MO.getReg()))
1695        MO.setReg(Remaps[MO.getReg()]);
1696      else {
1697        // If we are using a phi from the source block we need to add a new phi
1698        // pointing to the old one.
1699        MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1700        if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1701          Register R = clonePhi(Use);
1702          MO.setReg(R);
1703        }
1704      }
1705    }
1706  }
1707}
1708
1709Register
1710PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1711                                                  MachineInstr *Phi) {
1712  unsigned distance = PhiNodeLoopIteration[Phi];
1713  MachineInstr *CanonicalUse = CanonicalPhi;
1714  Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1715  for (unsigned I = 0; I < distance; ++I) {
1716    assert(CanonicalUse->isPHI());
1717    assert(CanonicalUse->getNumOperands() == 5);
1718    unsigned LoopRegIdx = 3, InitRegIdx = 1;
1719    if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1720      std::swap(LoopRegIdx, InitRegIdx);
1721    CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1722    CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1723  }
1724  return CanonicalUseReg;
1725}
1726
1727void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1728  BitVector LS(Schedule.getNumStages(), true);
1729  BitVector AS(Schedule.getNumStages(), true);
1730  LiveStages[BB] = LS;
1731  AvailableStages[BB] = AS;
1732
1733  // Peel out the prologs.
1734  LS.reset();
1735  for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1736    LS[I] = 1;
1737    Prologs.push_back(peelKernel(LPD_Front));
1738    LiveStages[Prologs.back()] = LS;
1739    AvailableStages[Prologs.back()] = LS;
1740  }
1741
1742  // Create a block that will end up as the new loop exiting block (dominated by
1743  // all prologs and epilogs). It will only contain PHIs, in the same order as
1744  // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1745  // that the exiting block is a (sub) clone of BB. This in turn gives us the
1746  // property that any value deffed in BB but used outside of BB is used by a
1747  // PHI in the exiting block.
1748  MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1749  EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1750  // Push out the epilogs, again in reverse order.
1751  // We can't assume anything about the minumum loop trip count at this point,
1752  // so emit a fairly complex epilog.
1753
1754  // We first peel number of stages minus one epilogue. Then we remove dead
1755  // stages and reorder instructions based on their stage. If we have 3 stages
1756  // we generate first:
1757  // E0[3, 2, 1]
1758  // E1[3', 2']
1759  // E2[3'']
1760  // And then we move instructions based on their stages to have:
1761  // E0[3]
1762  // E1[2, 3']
1763  // E2[1, 2', 3'']
1764  // The transformation is legal because we only move instructions past
1765  // instructions of a previous loop iteration.
1766  for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1767    Epilogs.push_back(peelKernel(LPD_Back));
1768    MachineBasicBlock *B = Epilogs.back();
1769    filterInstructions(B, Schedule.getNumStages() - I);
1770    // Keep track at which iteration each phi belongs to. We need it to know
1771    // what version of the variable to use during prologue/epilogue stitching.
1772    EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1773    for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi)
1774      PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I;
1775  }
1776  for (size_t I = 0; I < Epilogs.size(); I++) {
1777    LS.reset();
1778    for (size_t J = I; J < Epilogs.size(); J++) {
1779      int Iteration = J;
1780      unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1781      // Move stage one block at a time so that Phi nodes are updated correctly.
1782      for (size_t K = Iteration; K > I; K--)
1783        moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1784      LS[Stage] = 1;
1785    }
1786    LiveStages[Epilogs[I]] = LS;
1787    AvailableStages[Epilogs[I]] = AS;
1788  }
1789
1790  // Now we've defined all the prolog and epilog blocks as a fallthrough
1791  // sequence, add the edges that will be followed if the loop trip count is
1792  // lower than the number of stages (connecting prologs directly with epilogs).
1793  auto PI = Prologs.begin();
1794  auto EI = Epilogs.begin();
1795  assert(Prologs.size() == Epilogs.size());
1796  for (; PI != Prologs.end(); ++PI, ++EI) {
1797    MachineBasicBlock *Pred = *(*EI)->pred_begin();
1798    (*PI)->addSuccessor(*EI);
1799    for (MachineInstr &MI : (*EI)->phis()) {
1800      Register Reg = MI.getOperand(1).getReg();
1801      MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1802      if (Use && Use->getParent() == Pred) {
1803        MachineInstr *CanonicalUse = CanonicalMIs[Use];
1804        if (CanonicalUse->isPHI()) {
1805          // If the use comes from a phi we need to skip as many phi as the
1806          // distance between the epilogue and the kernel. Trace through the phi
1807          // chain to find the right value.
1808          Reg = getPhiCanonicalReg(CanonicalUse, Use);
1809        }
1810        Reg = getEquivalentRegisterIn(Reg, *PI);
1811      }
1812      MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1813      MI.addOperand(MachineOperand::CreateMBB(*PI));
1814    }
1815  }
1816
1817  // Create a list of all blocks in order.
1818  SmallVector<MachineBasicBlock *, 8> Blocks;
1819  llvm::copy(PeeledFront, std::back_inserter(Blocks));
1820  Blocks.push_back(BB);
1821  llvm::copy(PeeledBack, std::back_inserter(Blocks));
1822
1823  // Iterate in reverse order over all instructions, remapping as we go.
1824  for (MachineBasicBlock *B : reverse(Blocks)) {
1825    for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
1826         I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1827      MachineInstr *MI = &*I++;
1828      rewriteUsesOf(MI);
1829    }
1830  }
1831  for (auto *MI : IllegalPhisToDelete) {
1832    if (LIS)
1833      LIS->RemoveMachineInstrFromMaps(*MI);
1834    MI->eraseFromParent();
1835  }
1836  IllegalPhisToDelete.clear();
1837
1838  // Now all remapping has been done, we're free to optimize the generated code.
1839  for (MachineBasicBlock *B : reverse(Blocks))
1840    EliminateDeadPhis(B, MRI, LIS);
1841  EliminateDeadPhis(ExitingBB, MRI, LIS);
1842}
1843
1844MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1845  MachineFunction &MF = *BB->getParent();
1846  MachineBasicBlock *Exit = *BB->succ_begin();
1847  if (Exit == BB)
1848    Exit = *std::next(BB->succ_begin());
1849
1850  MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1851  MF.insert(std::next(BB->getIterator()), NewBB);
1852
1853  // Clone all phis in BB into NewBB and rewrite.
1854  for (MachineInstr &MI : BB->phis()) {
1855    auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1856    Register OldR = MI.getOperand(3).getReg();
1857    Register R = MRI.createVirtualRegister(RC);
1858    SmallVector<MachineInstr *, 4> Uses;
1859    for (MachineInstr &Use : MRI.use_instructions(OldR))
1860      if (Use.getParent() != BB)
1861        Uses.push_back(&Use);
1862    for (MachineInstr *Use : Uses)
1863      Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1864                              *MRI.getTargetRegisterInfo());
1865    MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1866        .addReg(OldR)
1867        .addMBB(BB);
1868    BlockMIs[{NewBB, &MI}] = NI;
1869    CanonicalMIs[NI] = &MI;
1870  }
1871  BB->replaceSuccessor(Exit, NewBB);
1872  Exit->replacePhiUsesWith(BB, NewBB);
1873  NewBB->addSuccessor(Exit);
1874
1875  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1876  SmallVector<MachineOperand, 4> Cond;
1877  bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1878  (void)CanAnalyzeBr;
1879  assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1880  TII->removeBranch(*BB);
1881  TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1882                    Cond, DebugLoc());
1883  TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1884  return NewBB;
1885}
1886
1887Register
1888PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1889                                                       MachineBasicBlock *BB) {
1890  MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1891  unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1892  return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1893}
1894
1895void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1896  if (MI->isPHI()) {
1897    // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1898    // and it is produced by this block.
1899    Register PhiR = MI->getOperand(0).getReg();
1900    Register R = MI->getOperand(3).getReg();
1901    int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1902    if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1903      R = MI->getOperand(1).getReg();
1904    MRI.setRegClass(R, MRI.getRegClass(PhiR));
1905    MRI.replaceRegWith(PhiR, R);
1906    // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1907    // later to figure out how to remap registers.
1908    MI->getOperand(0).setReg(PhiR);
1909    IllegalPhisToDelete.push_back(MI);
1910    return;
1911  }
1912
1913  int Stage = getStage(MI);
1914  if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1915      LiveStages[MI->getParent()].test(Stage))
1916    // Instruction is live, no rewriting to do.
1917    return;
1918
1919  for (MachineOperand &DefMO : MI->defs()) {
1920    SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1921    for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1922      // Only PHIs can use values from this block by construction.
1923      // Match with the equivalent PHI in B.
1924      assert(UseMI.isPHI());
1925      Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1926                                             MI->getParent());
1927      Subs.emplace_back(&UseMI, Reg);
1928    }
1929    for (auto &Sub : Subs)
1930      Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1931                                    *MRI.getTargetRegisterInfo());
1932  }
1933  if (LIS)
1934    LIS->RemoveMachineInstrFromMaps(*MI);
1935  MI->eraseFromParent();
1936}
1937
1938void PeelingModuloScheduleExpander::fixupBranches() {
1939  // Work outwards from the kernel.
1940  bool KernelDisposed = false;
1941  int TC = Schedule.getNumStages() - 1;
1942  for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1943       ++PI, ++EI, --TC) {
1944    MachineBasicBlock *Prolog = *PI;
1945    MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1946    MachineBasicBlock *Epilog = *EI;
1947    SmallVector<MachineOperand, 4> Cond;
1948    TII->removeBranch(*Prolog);
1949    Optional<bool> StaticallyGreater =
1950        LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1951    if (!StaticallyGreater.hasValue()) {
1952      LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1953      // Dynamically branch based on Cond.
1954      TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1955    } else if (*StaticallyGreater == false) {
1956      LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1957      // Prolog never falls through; branch to epilog and orphan interior
1958      // blocks. Leave it to unreachable-block-elim to clean up.
1959      Prolog->removeSuccessor(Fallthrough);
1960      for (MachineInstr &P : Fallthrough->phis()) {
1961        P.RemoveOperand(2);
1962        P.RemoveOperand(1);
1963      }
1964      TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1965      KernelDisposed = true;
1966    } else {
1967      LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1968      // Prolog always falls through; remove incoming values in epilog.
1969      Prolog->removeSuccessor(Epilog);
1970      for (MachineInstr &P : Epilog->phis()) {
1971        P.RemoveOperand(4);
1972        P.RemoveOperand(3);
1973      }
1974    }
1975  }
1976
1977  if (!KernelDisposed) {
1978    LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1979    LoopInfo->setPreheader(Prologs.back());
1980  } else {
1981    LoopInfo->disposed();
1982  }
1983}
1984
1985void PeelingModuloScheduleExpander::rewriteKernel() {
1986  KernelRewriter KR(*Schedule.getLoop(), Schedule);
1987  KR.rewrite();
1988}
1989
1990void PeelingModuloScheduleExpander::expand() {
1991  BB = Schedule.getLoop()->getTopBlock();
1992  Preheader = Schedule.getLoop()->getLoopPreheader();
1993  LLVM_DEBUG(Schedule.dump());
1994  LoopInfo = TII->analyzeLoopForPipelining(BB);
1995  assert(LoopInfo);
1996
1997  rewriteKernel();
1998  peelPrologAndEpilogs();
1999  fixupBranches();
2000}
2001
2002void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2003  BB = Schedule.getLoop()->getTopBlock();
2004  Preheader = Schedule.getLoop()->getLoopPreheader();
2005
2006  // Dump the schedule before we invalidate and remap all its instructions.
2007  // Stash it in a string so we can print it if we found an error.
2008  std::string ScheduleDump;
2009  raw_string_ostream OS(ScheduleDump);
2010  Schedule.print(OS);
2011  OS.flush();
2012
2013  // First, run the normal ModuleScheduleExpander. We don't support any
2014  // InstrChanges.
2015  assert(LIS && "Requires LiveIntervals!");
2016  ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2017                             ModuloScheduleExpander::InstrChangesTy());
2018  MSE.expand();
2019  MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2020  if (!ExpandedKernel) {
2021    // The expander optimized away the kernel. We can't do any useful checking.
2022    MSE.cleanup();
2023    return;
2024  }
2025  // Before running the KernelRewriter, re-add BB into the CFG.
2026  Preheader->addSuccessor(BB);
2027
2028  // Now run the new expansion algorithm.
2029  KernelRewriter KR(*Schedule.getLoop(), Schedule);
2030  KR.rewrite();
2031  peelPrologAndEpilogs();
2032
2033  // Collect all illegal phis that the new algorithm created. We'll give these
2034  // to KernelOperandInfo.
2035  SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2036  for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2037    if (NI->isPHI())
2038      IllegalPhis.insert(&*NI);
2039  }
2040
2041  // Co-iterate across both kernels. We expect them to be identical apart from
2042  // phis and full COPYs (we look through both).
2043  SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2044  auto OI = ExpandedKernel->begin();
2045  auto NI = BB->begin();
2046  for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2047    while (OI->isPHI() || OI->isFullCopy())
2048      ++OI;
2049    while (NI->isPHI() || NI->isFullCopy())
2050      ++NI;
2051    assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2052    // Analyze every operand separately.
2053    for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2054         OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2055      KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2056                        KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2057  }
2058
2059  bool Failed = false;
2060  for (auto &OldAndNew : KOIs) {
2061    if (OldAndNew.first == OldAndNew.second)
2062      continue;
2063    Failed = true;
2064    errs() << "Modulo kernel validation error: [\n";
2065    errs() << " [golden] ";
2066    OldAndNew.first.print(errs());
2067    errs() << "          ";
2068    OldAndNew.second.print(errs());
2069    errs() << "]\n";
2070  }
2071
2072  if (Failed) {
2073    errs() << "Golden reference kernel:\n";
2074    ExpandedKernel->print(errs());
2075    errs() << "New kernel:\n";
2076    BB->print(errs());
2077    errs() << ScheduleDump;
2078    report_fatal_error(
2079        "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2080  }
2081
2082  // Cleanup by removing BB from the CFG again as the original
2083  // ModuloScheduleExpander intended.
2084  Preheader->removeSuccessor(BB);
2085  MSE.cleanup();
2086}
2087
2088//===----------------------------------------------------------------------===//
2089// ModuloScheduleTestPass implementation
2090//===----------------------------------------------------------------------===//
2091// This pass constructs a ModuloSchedule from its module and runs
2092// ModuloScheduleExpander.
2093//
2094// The module is expected to contain a single-block analyzable loop.
2095// The total order of instructions is taken from the loop as-is.
2096// Instructions are expected to be annotated with a PostInstrSymbol.
2097// This PostInstrSymbol must have the following format:
2098//  "Stage=%d Cycle=%d".
2099//===----------------------------------------------------------------------===//
2100
2101namespace {
2102class ModuloScheduleTest : public MachineFunctionPass {
2103public:
2104  static char ID;
2105
2106  ModuloScheduleTest() : MachineFunctionPass(ID) {
2107    initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2108  }
2109
2110  bool runOnMachineFunction(MachineFunction &MF) override;
2111  void runOnLoop(MachineFunction &MF, MachineLoop &L);
2112
2113  void getAnalysisUsage(AnalysisUsage &AU) const override {
2114    AU.addRequired<MachineLoopInfo>();
2115    AU.addRequired<LiveIntervals>();
2116    MachineFunctionPass::getAnalysisUsage(AU);
2117  }
2118};
2119} // namespace
2120
2121char ModuloScheduleTest::ID = 0;
2122
2123INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2124                      "Modulo Schedule test pass", false, false)
2125INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2126INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2127INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2128                    "Modulo Schedule test pass", false, false)
2129
2130bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2131  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2132  for (auto *L : MLI) {
2133    if (L->getTopBlock() != L->getBottomBlock())
2134      continue;
2135    runOnLoop(MF, *L);
2136    return false;
2137  }
2138  return false;
2139}
2140
2141static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2142  std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2143  std::pair<StringRef, StringRef> StageTokenAndValue =
2144      getToken(StageAndCycle.first, "-");
2145  std::pair<StringRef, StringRef> CycleTokenAndValue =
2146      getToken(StageAndCycle.second, "-");
2147  if (StageTokenAndValue.first != "Stage" ||
2148      CycleTokenAndValue.first != "_Cycle") {
2149    llvm_unreachable(
2150        "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2151    return;
2152  }
2153
2154  StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2155  CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2156
2157  dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2158}
2159
2160void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2161  LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2162  MachineBasicBlock *BB = L.getTopBlock();
2163  dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2164
2165  DenseMap<MachineInstr *, int> Cycle, Stage;
2166  std::vector<MachineInstr *> Instrs;
2167  for (MachineInstr &MI : *BB) {
2168    if (MI.isTerminator())
2169      continue;
2170    Instrs.push_back(&MI);
2171    if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2172      dbgs() << "Parsing post-instr symbol for " << MI;
2173      parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2174    }
2175  }
2176
2177  ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2178                    std::move(Stage));
2179  ModuloScheduleExpander MSE(
2180      MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2181  MSE.expand();
2182  MSE.cleanup();
2183}
2184
2185//===----------------------------------------------------------------------===//
2186// ModuloScheduleTestAnnotater implementation
2187//===----------------------------------------------------------------------===//
2188
2189void ModuloScheduleTestAnnotater::annotate() {
2190  for (MachineInstr *MI : S.getInstructions()) {
2191    SmallVector<char, 16> SV;
2192    raw_svector_ostream OS(SV);
2193    OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2194    MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2195    MI->setPostInstrSymbol(MF, Sym);
2196  }
2197}
2198