1//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass moves instructions into successor blocks when possible, so that
10// they aren't executed on paths where their results aren't needed.
11//
12// This pass is not intended to be a replacement or a complete alternative
13// for an LLVM-IR-level sinking pass. It is only designed to sink simple
14// constructs that are not exposed before lowering and instruction selection.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/PointerIntPair.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/SparseBitVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/Analysis/AliasAnalysis.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29#include "llvm/CodeGen/MachineDominators.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFunctionPass.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineLoopInfo.h"
34#include "llvm/CodeGen/MachineOperand.h"
35#include "llvm/CodeGen/MachinePostDominators.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/TargetInstrInfo.h"
38#include "llvm/CodeGen/TargetRegisterInfo.h"
39#include "llvm/CodeGen/TargetSubtargetInfo.h"
40#include "llvm/IR/BasicBlock.h"
41#include "llvm/IR/DebugInfoMetadata.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/InitializePasses.h"
44#include "llvm/MC/MCRegisterInfo.h"
45#include "llvm/Pass.h"
46#include "llvm/Support/BranchProbability.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/raw_ostream.h"
50#include <algorithm>
51#include <cassert>
52#include <cstdint>
53#include <map>
54#include <utility>
55#include <vector>
56
57using namespace llvm;
58
59#define DEBUG_TYPE "machine-sink"
60
61static cl::opt<bool>
62SplitEdges("machine-sink-split",
63           cl::desc("Split critical edges during machine sinking"),
64           cl::init(true), cl::Hidden);
65
66static cl::opt<bool>
67UseBlockFreqInfo("machine-sink-bfi",
68           cl::desc("Use block frequency info to find successors to sink"),
69           cl::init(true), cl::Hidden);
70
71static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
72    "machine-sink-split-probability-threshold",
73    cl::desc(
74        "Percentage threshold for splitting single-instruction critical edge. "
75        "If the branch threshold is higher than this threshold, we allow "
76        "speculative execution of up to 1 instruction to avoid branching to "
77        "splitted critical edge"),
78    cl::init(40), cl::Hidden);
79
80STATISTIC(NumSunk,      "Number of machine instructions sunk");
81STATISTIC(NumSplit,     "Number of critical edges split");
82STATISTIC(NumCoalesces, "Number of copies coalesced");
83STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
84
85namespace {
86
87  class MachineSinking : public MachineFunctionPass {
88    const TargetInstrInfo *TII;
89    const TargetRegisterInfo *TRI;
90    MachineRegisterInfo  *MRI;     // Machine register information
91    MachineDominatorTree *DT;      // Machine dominator tree
92    MachinePostDominatorTree *PDT; // Machine post dominator tree
93    MachineLoopInfo *LI;
94    MachineBlockFrequencyInfo *MBFI;
95    const MachineBranchProbabilityInfo *MBPI;
96    AliasAnalysis *AA;
97
98    // Remember which edges have been considered for breaking.
99    SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
100    CEBCandidates;
101    // Remember which edges we are about to split.
102    // This is different from CEBCandidates since those edges
103    // will be split.
104    SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
105
106    SparseBitVector<> RegsToClearKillFlags;
107
108    using AllSuccsCache =
109        std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
110
111    /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
112    /// post-dominated by another DBG_VALUE of the same variable location.
113    /// This is necessary to detect sequences such as:
114    ///     %0 = someinst
115    ///     DBG_VALUE %0, !123, !DIExpression()
116    ///     %1 = anotherinst
117    ///     DBG_VALUE %1, !123, !DIExpression()
118    /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
119    /// would re-order assignments.
120    using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
121
122    /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
123    /// debug instructions to sink.
124    SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
125
126    /// Record of debug variables that have had their locations set in the
127    /// current block.
128    DenseSet<DebugVariable> SeenDbgVars;
129
130  public:
131    static char ID; // Pass identification
132
133    MachineSinking() : MachineFunctionPass(ID) {
134      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
135    }
136
137    bool runOnMachineFunction(MachineFunction &MF) override;
138
139    void getAnalysisUsage(AnalysisUsage &AU) const override {
140      MachineFunctionPass::getAnalysisUsage(AU);
141      AU.addRequired<AAResultsWrapperPass>();
142      AU.addRequired<MachineDominatorTree>();
143      AU.addRequired<MachinePostDominatorTree>();
144      AU.addRequired<MachineLoopInfo>();
145      AU.addRequired<MachineBranchProbabilityInfo>();
146      AU.addPreserved<MachineLoopInfo>();
147      if (UseBlockFreqInfo)
148        AU.addRequired<MachineBlockFrequencyInfo>();
149    }
150
151    void releaseMemory() override {
152      CEBCandidates.clear();
153    }
154
155  private:
156    bool ProcessBlock(MachineBasicBlock &MBB);
157    void ProcessDbgInst(MachineInstr &MI);
158    bool isWorthBreakingCriticalEdge(MachineInstr &MI,
159                                     MachineBasicBlock *From,
160                                     MachineBasicBlock *To);
161
162    /// Postpone the splitting of the given critical
163    /// edge (\p From, \p To).
164    ///
165    /// We do not split the edges on the fly. Indeed, this invalidates
166    /// the dominance information and thus triggers a lot of updates
167    /// of that information underneath.
168    /// Instead, we postpone all the splits after each iteration of
169    /// the main loop. That way, the information is at least valid
170    /// for the lifetime of an iteration.
171    ///
172    /// \return True if the edge is marked as toSplit, false otherwise.
173    /// False can be returned if, for instance, this is not profitable.
174    bool PostponeSplitCriticalEdge(MachineInstr &MI,
175                                   MachineBasicBlock *From,
176                                   MachineBasicBlock *To,
177                                   bool BreakPHIEdge);
178    bool SinkInstruction(MachineInstr &MI, bool &SawStore,
179                         AllSuccsCache &AllSuccessors);
180
181    /// If we sink a COPY inst, some debug users of it's destination may no
182    /// longer be dominated by the COPY, and will eventually be dropped.
183    /// This is easily rectified by forwarding the non-dominated debug uses
184    /// to the copy source.
185    void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
186                                       MachineBasicBlock *TargetBlock);
187    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
188                                 MachineBasicBlock *DefMBB,
189                                 bool &BreakPHIEdge, bool &LocalUse) const;
190    MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
191               bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
192    bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
193                              MachineBasicBlock *MBB,
194                              MachineBasicBlock *SuccToSinkTo,
195                              AllSuccsCache &AllSuccessors);
196
197    bool PerformTrivialForwardCoalescing(MachineInstr &MI,
198                                         MachineBasicBlock *MBB);
199
200    SmallVector<MachineBasicBlock *, 4> &
201    GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
202                           AllSuccsCache &AllSuccessors) const;
203  };
204
205} // end anonymous namespace
206
207char MachineSinking::ID = 0;
208
209char &llvm::MachineSinkingID = MachineSinking::ID;
210
211INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
212                      "Machine code sinking", false, false)
213INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
214INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
215INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
216INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
217INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
218                    "Machine code sinking", false, false)
219
220bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
221                                                     MachineBasicBlock *MBB) {
222  if (!MI.isCopy())
223    return false;
224
225  Register SrcReg = MI.getOperand(1).getReg();
226  Register DstReg = MI.getOperand(0).getReg();
227  if (!Register::isVirtualRegister(SrcReg) ||
228      !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
229    return false;
230
231  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
232  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
233  if (SRC != DRC)
234    return false;
235
236  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
237  if (DefMI->isCopyLike())
238    return false;
239  LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
240  LLVM_DEBUG(dbgs() << "*** to: " << MI);
241  MRI->replaceRegWith(DstReg, SrcReg);
242  MI.eraseFromParent();
243
244  // Conservatively, clear any kill flags, since it's possible that they are no
245  // longer correct.
246  MRI->clearKillFlags(SrcReg);
247
248  ++NumCoalesces;
249  return true;
250}
251
252/// AllUsesDominatedByBlock - Return true if all uses of the specified register
253/// occur in blocks dominated by the specified block. If any use is in the
254/// definition block, then return false since it is never legal to move def
255/// after uses.
256bool
257MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
258                                        MachineBasicBlock *MBB,
259                                        MachineBasicBlock *DefMBB,
260                                        bool &BreakPHIEdge,
261                                        bool &LocalUse) const {
262  assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
263
264  // Ignore debug uses because debug info doesn't affect the code.
265  if (MRI->use_nodbg_empty(Reg))
266    return true;
267
268  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
269  // into and they are all PHI nodes. In this case, machine-sink must break
270  // the critical edge first. e.g.
271  //
272  // %bb.1:
273  //   Predecessors according to CFG: %bb.0
274  //     ...
275  //     %def = DEC64_32r %x, implicit-def dead %eflags
276  //     ...
277  //     JE_4 <%bb.37>, implicit %eflags
278  //   Successors according to CFG: %bb.37 %bb.2
279  //
280  // %bb.2:
281  //     %p = PHI %y, %bb.0, %def, %bb.1
282  if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
283        MachineInstr *UseInst = MO.getParent();
284        unsigned OpNo = UseInst->getOperandNo(&MO);
285        MachineBasicBlock *UseBlock = UseInst->getParent();
286        return UseBlock == MBB && UseInst->isPHI() &&
287               UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
288      })) {
289    BreakPHIEdge = true;
290    return true;
291  }
292
293  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
294    // Determine the block of the use.
295    MachineInstr *UseInst = MO.getParent();
296    unsigned OpNo = &MO - &UseInst->getOperand(0);
297    MachineBasicBlock *UseBlock = UseInst->getParent();
298    if (UseInst->isPHI()) {
299      // PHI nodes use the operand in the predecessor block, not the block with
300      // the PHI.
301      UseBlock = UseInst->getOperand(OpNo+1).getMBB();
302    } else if (UseBlock == DefMBB) {
303      LocalUse = true;
304      return false;
305    }
306
307    // Check that it dominates.
308    if (!DT->dominates(MBB, UseBlock))
309      return false;
310  }
311
312  return true;
313}
314
315bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
316  if (skipFunction(MF.getFunction()))
317    return false;
318
319  LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
320
321  TII = MF.getSubtarget().getInstrInfo();
322  TRI = MF.getSubtarget().getRegisterInfo();
323  MRI = &MF.getRegInfo();
324  DT = &getAnalysis<MachineDominatorTree>();
325  PDT = &getAnalysis<MachinePostDominatorTree>();
326  LI = &getAnalysis<MachineLoopInfo>();
327  MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
328  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
329  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
330
331  bool EverMadeChange = false;
332
333  while (true) {
334    bool MadeChange = false;
335
336    // Process all basic blocks.
337    CEBCandidates.clear();
338    ToSplit.clear();
339    for (auto &MBB: MF)
340      MadeChange |= ProcessBlock(MBB);
341
342    // If we have anything we marked as toSplit, split it now.
343    for (auto &Pair : ToSplit) {
344      auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
345      if (NewSucc != nullptr) {
346        LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
347                          << printMBBReference(*Pair.first) << " -- "
348                          << printMBBReference(*NewSucc) << " -- "
349                          << printMBBReference(*Pair.second) << '\n');
350        if (MBFI) {
351          auto NewSuccFreq = MBFI->getBlockFreq(Pair.first) *
352                             MBPI->getEdgeProbability(Pair.first, NewSucc);
353          MBFI->setBlockFreq(NewSucc, NewSuccFreq.getFrequency());
354        }
355        MadeChange = true;
356        ++NumSplit;
357      } else
358        LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
359    }
360    // If this iteration over the code changed anything, keep iterating.
361    if (!MadeChange) break;
362    EverMadeChange = true;
363  }
364
365  // Now clear any kill flags for recorded registers.
366  for (auto I : RegsToClearKillFlags)
367    MRI->clearKillFlags(I);
368  RegsToClearKillFlags.clear();
369
370  return EverMadeChange;
371}
372
373bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
374  // Can't sink anything out of a block that has less than two successors.
375  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
376
377  // Don't bother sinking code out of unreachable blocks. In addition to being
378  // unprofitable, it can also lead to infinite looping, because in an
379  // unreachable loop there may be nowhere to stop.
380  if (!DT->isReachableFromEntry(&MBB)) return false;
381
382  bool MadeChange = false;
383
384  // Cache all successors, sorted by frequency info and loop depth.
385  AllSuccsCache AllSuccessors;
386
387  // Walk the basic block bottom-up.  Remember if we saw a store.
388  MachineBasicBlock::iterator I = MBB.end();
389  --I;
390  bool ProcessedBegin, SawStore = false;
391  do {
392    MachineInstr &MI = *I;  // The instruction to sink.
393
394    // Predecrement I (if it's not begin) so that it isn't invalidated by
395    // sinking.
396    ProcessedBegin = I == MBB.begin();
397    if (!ProcessedBegin)
398      --I;
399
400    if (MI.isDebugInstr()) {
401      if (MI.isDebugValue())
402        ProcessDbgInst(MI);
403      continue;
404    }
405
406    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
407    if (Joined) {
408      MadeChange = true;
409      continue;
410    }
411
412    if (SinkInstruction(MI, SawStore, AllSuccessors)) {
413      ++NumSunk;
414      MadeChange = true;
415    }
416
417    // If we just processed the first instruction in the block, we're done.
418  } while (!ProcessedBegin);
419
420  SeenDbgUsers.clear();
421  SeenDbgVars.clear();
422
423  return MadeChange;
424}
425
426void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
427  // When we see DBG_VALUEs for registers, record any vreg it reads, so that
428  // we know what to sink if the vreg def sinks.
429  assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
430
431  DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
432                    MI.getDebugLoc()->getInlinedAt());
433  bool SeenBefore = SeenDbgVars.count(Var) != 0;
434
435  MachineOperand &MO = MI.getDebugOperand(0);
436  if (MO.isReg() && MO.getReg().isVirtual())
437    SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
438
439  // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
440  SeenDbgVars.insert(Var);
441}
442
443bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
444                                                 MachineBasicBlock *From,
445                                                 MachineBasicBlock *To) {
446  // FIXME: Need much better heuristics.
447
448  // If the pass has already considered breaking this edge (during this pass
449  // through the function), then let's go ahead and break it. This means
450  // sinking multiple "cheap" instructions into the same block.
451  if (!CEBCandidates.insert(std::make_pair(From, To)).second)
452    return true;
453
454  if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
455    return true;
456
457  if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
458      BranchProbability(SplitEdgeProbabilityThreshold, 100))
459    return true;
460
461  // MI is cheap, we probably don't want to break the critical edge for it.
462  // However, if this would allow some definitions of its source operands
463  // to be sunk then it's probably worth it.
464  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
465    const MachineOperand &MO = MI.getOperand(i);
466    if (!MO.isReg() || !MO.isUse())
467      continue;
468    Register Reg = MO.getReg();
469    if (Reg == 0)
470      continue;
471
472    // We don't move live definitions of physical registers,
473    // so sinking their uses won't enable any opportunities.
474    if (Register::isPhysicalRegister(Reg))
475      continue;
476
477    // If this instruction is the only user of a virtual register,
478    // check if breaking the edge will enable sinking
479    // both this instruction and the defining instruction.
480    if (MRI->hasOneNonDBGUse(Reg)) {
481      // If the definition resides in same MBB,
482      // claim it's likely we can sink these together.
483      // If definition resides elsewhere, we aren't
484      // blocking it from being sunk so don't break the edge.
485      MachineInstr *DefMI = MRI->getVRegDef(Reg);
486      if (DefMI->getParent() == MI.getParent())
487        return true;
488    }
489  }
490
491  return false;
492}
493
494bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
495                                               MachineBasicBlock *FromBB,
496                                               MachineBasicBlock *ToBB,
497                                               bool BreakPHIEdge) {
498  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
499    return false;
500
501  // Avoid breaking back edge. From == To means backedge for single BB loop.
502  if (!SplitEdges || FromBB == ToBB)
503    return false;
504
505  // Check for backedges of more "complex" loops.
506  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
507      LI->isLoopHeader(ToBB))
508    return false;
509
510  // It's not always legal to break critical edges and sink the computation
511  // to the edge.
512  //
513  // %bb.1:
514  // v1024
515  // Beq %bb.3
516  // <fallthrough>
517  // %bb.2:
518  // ... no uses of v1024
519  // <fallthrough>
520  // %bb.3:
521  // ...
522  //       = v1024
523  //
524  // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
525  //
526  // %bb.1:
527  // ...
528  // Bne %bb.2
529  // %bb.4:
530  // v1024 =
531  // B %bb.3
532  // %bb.2:
533  // ... no uses of v1024
534  // <fallthrough>
535  // %bb.3:
536  // ...
537  //       = v1024
538  //
539  // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
540  // flow. We need to ensure the new basic block where the computation is
541  // sunk to dominates all the uses.
542  // It's only legal to break critical edge and sink the computation to the
543  // new block if all the predecessors of "To", except for "From", are
544  // not dominated by "From". Given SSA property, this means these
545  // predecessors are dominated by "To".
546  //
547  // There is no need to do this check if all the uses are PHI nodes. PHI
548  // sources are only defined on the specific predecessor edges.
549  if (!BreakPHIEdge) {
550    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
551           E = ToBB->pred_end(); PI != E; ++PI) {
552      if (*PI == FromBB)
553        continue;
554      if (!DT->dominates(ToBB, *PI))
555        return false;
556    }
557  }
558
559  ToSplit.insert(std::make_pair(FromBB, ToBB));
560
561  return true;
562}
563
564/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
565bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
566                                          MachineBasicBlock *MBB,
567                                          MachineBasicBlock *SuccToSinkTo,
568                                          AllSuccsCache &AllSuccessors) {
569  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
570
571  if (MBB == SuccToSinkTo)
572    return false;
573
574  // It is profitable if SuccToSinkTo does not post dominate current block.
575  if (!PDT->dominates(SuccToSinkTo, MBB))
576    return true;
577
578  // It is profitable to sink an instruction from a deeper loop to a shallower
579  // loop, even if the latter post-dominates the former (PR21115).
580  if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
581    return true;
582
583  // Check if only use in post dominated block is PHI instruction.
584  bool NonPHIUse = false;
585  for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
586    MachineBasicBlock *UseBlock = UseInst.getParent();
587    if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
588      NonPHIUse = true;
589  }
590  if (!NonPHIUse)
591    return true;
592
593  // If SuccToSinkTo post dominates then also it may be profitable if MI
594  // can further profitably sinked into another block in next round.
595  bool BreakPHIEdge = false;
596  // FIXME - If finding successor is compile time expensive then cache results.
597  if (MachineBasicBlock *MBB2 =
598          FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
599    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
600
601  // If SuccToSinkTo is final destination and it is a post dominator of current
602  // block then it is not profitable to sink MI into SuccToSinkTo block.
603  return false;
604}
605
606/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
607/// computing it if it was not already cached.
608SmallVector<MachineBasicBlock *, 4> &
609MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
610                                       AllSuccsCache &AllSuccessors) const {
611  // Do we have the sorted successors in cache ?
612  auto Succs = AllSuccessors.find(MBB);
613  if (Succs != AllSuccessors.end())
614    return Succs->second;
615
616  SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
617                                               MBB->succ_end());
618
619  // Handle cases where sinking can happen but where the sink point isn't a
620  // successor. For example:
621  //
622  //   x = computation
623  //   if () {} else {}
624  //   use x
625  //
626  for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
627    // DomTree children of MBB that have MBB as immediate dominator are added.
628    if (DTChild->getIDom()->getBlock() == MI.getParent() &&
629        // Skip MBBs already added to the AllSuccs vector above.
630        !MBB->isSuccessor(DTChild->getBlock()))
631      AllSuccs.push_back(DTChild->getBlock());
632  }
633
634  // Sort Successors according to their loop depth or block frequency info.
635  llvm::stable_sort(
636      AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
637        uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
638        uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
639        bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
640        return HasBlockFreq ? LHSFreq < RHSFreq
641                            : LI->getLoopDepth(L) < LI->getLoopDepth(R);
642      });
643
644  auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
645
646  return it.first->second;
647}
648
649/// FindSuccToSinkTo - Find a successor to sink this instruction to.
650MachineBasicBlock *
651MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
652                                 bool &BreakPHIEdge,
653                                 AllSuccsCache &AllSuccessors) {
654  assert (MBB && "Invalid MachineBasicBlock!");
655
656  // Loop over all the operands of the specified instruction.  If there is
657  // anything we can't handle, bail out.
658
659  // SuccToSinkTo - This is the successor to sink this instruction to, once we
660  // decide.
661  MachineBasicBlock *SuccToSinkTo = nullptr;
662  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
663    const MachineOperand &MO = MI.getOperand(i);
664    if (!MO.isReg()) continue;  // Ignore non-register operands.
665
666    Register Reg = MO.getReg();
667    if (Reg == 0) continue;
668
669    if (Register::isPhysicalRegister(Reg)) {
670      if (MO.isUse()) {
671        // If the physreg has no defs anywhere, it's just an ambient register
672        // and we can freely move its uses. Alternatively, if it's allocatable,
673        // it could get allocated to something with a def during allocation.
674        if (!MRI->isConstantPhysReg(Reg))
675          return nullptr;
676      } else if (!MO.isDead()) {
677        // A def that isn't dead. We can't move it.
678        return nullptr;
679      }
680    } else {
681      // Virtual register uses are always safe to sink.
682      if (MO.isUse()) continue;
683
684      // If it's not safe to move defs of the register class, then abort.
685      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
686        return nullptr;
687
688      // Virtual register defs can only be sunk if all their uses are in blocks
689      // dominated by one of the successors.
690      if (SuccToSinkTo) {
691        // If a previous operand picked a block to sink to, then this operand
692        // must be sinkable to the same block.
693        bool LocalUse = false;
694        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
695                                     BreakPHIEdge, LocalUse))
696          return nullptr;
697
698        continue;
699      }
700
701      // Otherwise, we should look at all the successors and decide which one
702      // we should sink to. If we have reliable block frequency information
703      // (frequency != 0) available, give successors with smaller frequencies
704      // higher priority, otherwise prioritize smaller loop depths.
705      for (MachineBasicBlock *SuccBlock :
706           GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
707        bool LocalUse = false;
708        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
709                                    BreakPHIEdge, LocalUse)) {
710          SuccToSinkTo = SuccBlock;
711          break;
712        }
713        if (LocalUse)
714          // Def is used locally, it's never safe to move this def.
715          return nullptr;
716      }
717
718      // If we couldn't find a block to sink to, ignore this instruction.
719      if (!SuccToSinkTo)
720        return nullptr;
721      if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
722        return nullptr;
723    }
724  }
725
726  // It is not possible to sink an instruction into its own block.  This can
727  // happen with loops.
728  if (MBB == SuccToSinkTo)
729    return nullptr;
730
731  // It's not safe to sink instructions to EH landing pad. Control flow into
732  // landing pad is implicitly defined.
733  if (SuccToSinkTo && SuccToSinkTo->isEHPad())
734    return nullptr;
735
736  // It ought to be okay to sink instructions into an INLINEASM_BR target, but
737  // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
738  // the source block (which this code does not yet do). So for now, forbid
739  // doing so.
740  if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
741    return nullptr;
742
743  return SuccToSinkTo;
744}
745
746/// Return true if MI is likely to be usable as a memory operation by the
747/// implicit null check optimization.
748///
749/// This is a "best effort" heuristic, and should not be relied upon for
750/// correctness.  This returning true does not guarantee that the implicit null
751/// check optimization is legal over MI, and this returning false does not
752/// guarantee MI cannot possibly be used to do a null check.
753static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
754                                             const TargetInstrInfo *TII,
755                                             const TargetRegisterInfo *TRI) {
756  using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
757
758  auto *MBB = MI.getParent();
759  if (MBB->pred_size() != 1)
760    return false;
761
762  auto *PredMBB = *MBB->pred_begin();
763  auto *PredBB = PredMBB->getBasicBlock();
764
765  // Frontends that don't use implicit null checks have no reason to emit
766  // branches with make.implicit metadata, and this function should always
767  // return false for them.
768  if (!PredBB ||
769      !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
770    return false;
771
772  const MachineOperand *BaseOp;
773  int64_t Offset;
774  bool OffsetIsScalable;
775  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
776    return false;
777
778  if (!BaseOp->isReg())
779    return false;
780
781  if (!(MI.mayLoad() && !MI.isPredicable()))
782    return false;
783
784  MachineBranchPredicate MBP;
785  if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
786    return false;
787
788  return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
789         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
790          MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
791         MBP.LHS.getReg() == BaseOp->getReg();
792}
793
794/// If the sunk instruction is a copy, try to forward the copy instead of
795/// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
796/// there's any subregister weirdness involved. Returns true if copy
797/// propagation occurred.
798static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
799  const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
800  const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
801
802  // Copy DBG_VALUE operand and set the original to undef. We then check to
803  // see whether this is something that can be copy-forwarded. If it isn't,
804  // continue around the loop.
805  MachineOperand &DbgMO = DbgMI.getDebugOperand(0);
806
807  const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
808  auto CopyOperands = TII.isCopyInstr(SinkInst);
809  if (!CopyOperands)
810    return false;
811  SrcMO = CopyOperands->Source;
812  DstMO = CopyOperands->Destination;
813
814  // Check validity of forwarding this copy.
815  bool PostRA = MRI.getNumVirtRegs() == 0;
816
817  // Trying to forward between physical and virtual registers is too hard.
818  if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
819    return false;
820
821  // Only try virtual register copy-forwarding before regalloc, and physical
822  // register copy-forwarding after regalloc.
823  bool arePhysRegs = !DbgMO.getReg().isVirtual();
824  if (arePhysRegs != PostRA)
825    return false;
826
827  // Pre-regalloc, only forward if all subregisters agree (or there are no
828  // subregs at all). More analysis might recover some forwardable copies.
829  if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
830                  DbgMO.getSubReg() != DstMO->getSubReg()))
831    return false;
832
833  // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
834  // of this copy. Only forward the copy if the DBG_VALUE operand exactly
835  // matches the copy destination.
836  if (PostRA && DbgMO.getReg() != DstMO->getReg())
837    return false;
838
839  DbgMO.setReg(SrcMO->getReg());
840  DbgMO.setSubReg(SrcMO->getSubReg());
841  return true;
842}
843
844/// Sink an instruction and its associated debug instructions.
845static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
846                        MachineBasicBlock::iterator InsertPos,
847                        SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
848
849  // If we cannot find a location to use (merge with), then we erase the debug
850  // location to prevent debug-info driven tools from potentially reporting
851  // wrong location information.
852  if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
853    MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
854                                                 InsertPos->getDebugLoc()));
855  else
856    MI.setDebugLoc(DebugLoc());
857
858  // Move the instruction.
859  MachineBasicBlock *ParentBlock = MI.getParent();
860  SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
861                      ++MachineBasicBlock::iterator(MI));
862
863  // Sink a copy of debug users to the insert position. Mark the original
864  // DBG_VALUE location as 'undef', indicating that any earlier variable
865  // location should be terminated as we've optimised away the value at this
866  // point.
867  for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
868                                                 DBE = DbgValuesToSink.end();
869       DBI != DBE; ++DBI) {
870    MachineInstr *DbgMI = *DBI;
871    MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
872    SuccToSinkTo.insert(InsertPos, NewDbgMI);
873
874    if (!attemptDebugCopyProp(MI, *DbgMI))
875      DbgMI->setDebugValueUndef();
876  }
877}
878
879/// SinkInstruction - Determine whether it is safe to sink the specified machine
880/// instruction out of its current block into a successor.
881bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
882                                     AllSuccsCache &AllSuccessors) {
883  // Don't sink instructions that the target prefers not to sink.
884  if (!TII->shouldSink(MI))
885    return false;
886
887  // Check if it's safe to move the instruction.
888  if (!MI.isSafeToMove(AA, SawStore))
889    return false;
890
891  // Convergent operations may not be made control-dependent on additional
892  // values.
893  if (MI.isConvergent())
894    return false;
895
896  // Don't break implicit null checks.  This is a performance heuristic, and not
897  // required for correctness.
898  if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
899    return false;
900
901  // FIXME: This should include support for sinking instructions within the
902  // block they are currently in to shorten the live ranges.  We often get
903  // instructions sunk into the top of a large block, but it would be better to
904  // also sink them down before their first use in the block.  This xform has to
905  // be careful not to *increase* register pressure though, e.g. sinking
906  // "x = y + z" down if it kills y and z would increase the live ranges of y
907  // and z and only shrink the live range of x.
908
909  bool BreakPHIEdge = false;
910  MachineBasicBlock *ParentBlock = MI.getParent();
911  MachineBasicBlock *SuccToSinkTo =
912      FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
913
914  // If there are no outputs, it must have side-effects.
915  if (!SuccToSinkTo)
916    return false;
917
918  // If the instruction to move defines a dead physical register which is live
919  // when leaving the basic block, don't move it because it could turn into a
920  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
921  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
922    const MachineOperand &MO = MI.getOperand(I);
923    if (!MO.isReg()) continue;
924    Register Reg = MO.getReg();
925    if (Reg == 0 || !Register::isPhysicalRegister(Reg))
926      continue;
927    if (SuccToSinkTo->isLiveIn(Reg))
928      return false;
929  }
930
931  LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
932
933  // If the block has multiple predecessors, this is a critical edge.
934  // Decide if we can sink along it or need to break the edge.
935  if (SuccToSinkTo->pred_size() > 1) {
936    // We cannot sink a load across a critical edge - there may be stores in
937    // other code paths.
938    bool TryBreak = false;
939    bool store = true;
940    if (!MI.isSafeToMove(AA, store)) {
941      LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
942      TryBreak = true;
943    }
944
945    // We don't want to sink across a critical edge if we don't dominate the
946    // successor. We could be introducing calculations to new code paths.
947    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
948      LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
949      TryBreak = true;
950    }
951
952    // Don't sink instructions into a loop.
953    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
954      LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
955      TryBreak = true;
956    }
957
958    // Otherwise we are OK with sinking along a critical edge.
959    if (!TryBreak)
960      LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
961    else {
962      // Mark this edge as to be split.
963      // If the edge can actually be split, the next iteration of the main loop
964      // will sink MI in the newly created block.
965      bool Status =
966        PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
967      if (!Status)
968        LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
969                             "break critical edge\n");
970      // The instruction will not be sunk this time.
971      return false;
972    }
973  }
974
975  if (BreakPHIEdge) {
976    // BreakPHIEdge is true if all the uses are in the successor MBB being
977    // sunken into and they are all PHI nodes. In this case, machine-sink must
978    // break the critical edge first.
979    bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
980                                            SuccToSinkTo, BreakPHIEdge);
981    if (!Status)
982      LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
983                           "break critical edge\n");
984    // The instruction will not be sunk this time.
985    return false;
986  }
987
988  // Determine where to insert into. Skip phi nodes.
989  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
990  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
991    ++InsertPos;
992
993  // Collect debug users of any vreg that this inst defines.
994  SmallVector<MachineInstr *, 4> DbgUsersToSink;
995  for (auto &MO : MI.operands()) {
996    if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
997      continue;
998    if (!SeenDbgUsers.count(MO.getReg()))
999      continue;
1000
1001    // Sink any users that don't pass any other DBG_VALUEs for this variable.
1002    auto &Users = SeenDbgUsers[MO.getReg()];
1003    for (auto &User : Users) {
1004      MachineInstr *DbgMI = User.getPointer();
1005      if (User.getInt()) {
1006        // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1007        // it, it can't be recovered. Set it undef.
1008        if (!attemptDebugCopyProp(MI, *DbgMI))
1009          DbgMI->setDebugValueUndef();
1010      } else {
1011        DbgUsersToSink.push_back(DbgMI);
1012      }
1013    }
1014  }
1015
1016  // After sinking, some debug users may not be dominated any more. If possible,
1017  // copy-propagate their operands. As it's expensive, don't do this if there's
1018  // no debuginfo in the program.
1019  if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1020    SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1021
1022  performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1023
1024  // Conservatively, clear any kill flags, since it's possible that they are no
1025  // longer correct.
1026  // Note that we have to clear the kill flags for any register this instruction
1027  // uses as we may sink over another instruction which currently kills the
1028  // used registers.
1029  for (MachineOperand &MO : MI.operands()) {
1030    if (MO.isReg() && MO.isUse())
1031      RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1032  }
1033
1034  return true;
1035}
1036
1037void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1038    MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1039  assert(MI.isCopy());
1040  assert(MI.getOperand(1).isReg());
1041
1042  // Enumerate all users of vreg operands that are def'd. Skip those that will
1043  // be sunk. For the rest, if they are not dominated by the block we will sink
1044  // MI into, propagate the copy source to them.
1045  SmallVector<MachineInstr *, 4> DbgDefUsers;
1046  const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1047  for (auto &MO : MI.operands()) {
1048    if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1049      continue;
1050    for (auto &User : MRI.use_instructions(MO.getReg())) {
1051      if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1052        continue;
1053
1054      // If is in same block, will either sink or be use-before-def.
1055      if (User.getParent() == MI.getParent())
1056        continue;
1057
1058      assert(User.getDebugOperand(0).isReg() &&
1059             "DBG_VALUE user of vreg, but non reg operand?");
1060      DbgDefUsers.push_back(&User);
1061    }
1062  }
1063
1064  // Point the users of this copy that are no longer dominated, at the source
1065  // of the copy.
1066  for (auto *User : DbgDefUsers) {
1067    User->getDebugOperand(0).setReg(MI.getOperand(1).getReg());
1068    User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg());
1069  }
1070}
1071
1072//===----------------------------------------------------------------------===//
1073// This pass is not intended to be a replacement or a complete alternative
1074// for the pre-ra machine sink pass. It is only designed to sink COPY
1075// instructions which should be handled after RA.
1076//
1077// This pass sinks COPY instructions into a successor block, if the COPY is not
1078// used in the current block and the COPY is live-in to a single successor
1079// (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
1080// copy on paths where their results aren't needed.  This also exposes
1081// additional opportunites for dead copy elimination and shrink wrapping.
1082//
1083// These copies were either not handled by or are inserted after the MachineSink
1084// pass. As an example of the former case, the MachineSink pass cannot sink
1085// COPY instructions with allocatable source registers; for AArch64 these type
1086// of copy instructions are frequently used to move function parameters (PhyReg)
1087// into virtual registers in the entry block.
1088//
1089// For the machine IR below, this pass will sink %w19 in the entry into its
1090// successor (%bb.1) because %w19 is only live-in in %bb.1.
1091// %bb.0:
1092//   %wzr = SUBSWri %w1, 1
1093//   %w19 = COPY %w0
1094//   Bcc 11, %bb.2
1095// %bb.1:
1096//   Live Ins: %w19
1097//   BL @fun
1098//   %w0 = ADDWrr %w0, %w19
1099//   RET %w0
1100// %bb.2:
1101//   %w0 = COPY %wzr
1102//   RET %w0
1103// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1104// able to see %bb.0 as a candidate.
1105//===----------------------------------------------------------------------===//
1106namespace {
1107
1108class PostRAMachineSinking : public MachineFunctionPass {
1109public:
1110  bool runOnMachineFunction(MachineFunction &MF) override;
1111
1112  static char ID;
1113  PostRAMachineSinking() : MachineFunctionPass(ID) {}
1114  StringRef getPassName() const override { return "PostRA Machine Sink"; }
1115
1116  void getAnalysisUsage(AnalysisUsage &AU) const override {
1117    AU.setPreservesCFG();
1118    MachineFunctionPass::getAnalysisUsage(AU);
1119  }
1120
1121  MachineFunctionProperties getRequiredProperties() const override {
1122    return MachineFunctionProperties().set(
1123        MachineFunctionProperties::Property::NoVRegs);
1124  }
1125
1126private:
1127  /// Track which register units have been modified and used.
1128  LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1129
1130  /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1131  /// entry in this map for each unit it touches.
1132  DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
1133
1134  /// Sink Copy instructions unused in the same block close to their uses in
1135  /// successors.
1136  bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1137                     const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1138};
1139} // namespace
1140
1141char PostRAMachineSinking::ID = 0;
1142char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1143
1144INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1145                "PostRA Machine Sink", false, false)
1146
1147static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1148                                  const TargetRegisterInfo *TRI) {
1149  LiveRegUnits LiveInRegUnits(*TRI);
1150  LiveInRegUnits.addLiveIns(MBB);
1151  return !LiveInRegUnits.available(Reg);
1152}
1153
1154static MachineBasicBlock *
1155getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1156                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1157                      unsigned Reg, const TargetRegisterInfo *TRI) {
1158  // Try to find a single sinkable successor in which Reg is live-in.
1159  MachineBasicBlock *BB = nullptr;
1160  for (auto *SI : SinkableBBs) {
1161    if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1162      // If BB is set here, Reg is live-in to at least two sinkable successors,
1163      // so quit.
1164      if (BB)
1165        return nullptr;
1166      BB = SI;
1167    }
1168  }
1169  // Reg is not live-in to any sinkable successors.
1170  if (!BB)
1171    return nullptr;
1172
1173  // Check if any register aliased with Reg is live-in in other successors.
1174  for (auto *SI : CurBB.successors()) {
1175    if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1176      return nullptr;
1177  }
1178  return BB;
1179}
1180
1181static MachineBasicBlock *
1182getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1183                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1184                      ArrayRef<unsigned> DefedRegsInCopy,
1185                      const TargetRegisterInfo *TRI) {
1186  MachineBasicBlock *SingleBB = nullptr;
1187  for (auto DefReg : DefedRegsInCopy) {
1188    MachineBasicBlock *BB =
1189        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1190    if (!BB || (SingleBB && SingleBB != BB))
1191      return nullptr;
1192    SingleBB = BB;
1193  }
1194  return SingleBB;
1195}
1196
1197static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1198                           SmallVectorImpl<unsigned> &UsedOpsInCopy,
1199                           LiveRegUnits &UsedRegUnits,
1200                           const TargetRegisterInfo *TRI) {
1201  for (auto U : UsedOpsInCopy) {
1202    MachineOperand &MO = MI->getOperand(U);
1203    Register SrcReg = MO.getReg();
1204    if (!UsedRegUnits.available(SrcReg)) {
1205      MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1206      for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1207        if (UI.killsRegister(SrcReg, TRI)) {
1208          UI.clearRegisterKills(SrcReg, TRI);
1209          MO.setIsKill(true);
1210          break;
1211        }
1212      }
1213    }
1214  }
1215}
1216
1217static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1218                         SmallVectorImpl<unsigned> &UsedOpsInCopy,
1219                         SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1220  MachineFunction &MF = *SuccBB->getParent();
1221  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1222  for (unsigned DefReg : DefedRegsInCopy)
1223    for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1224      SuccBB->removeLiveIn(*S);
1225  for (auto U : UsedOpsInCopy) {
1226    Register SrcReg = MI->getOperand(U).getReg();
1227    LaneBitmask Mask;
1228    for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1229      Mask |= (*S).second;
1230    }
1231    SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1232  }
1233  SuccBB->sortUniqueLiveIns();
1234}
1235
1236static bool hasRegisterDependency(MachineInstr *MI,
1237                                  SmallVectorImpl<unsigned> &UsedOpsInCopy,
1238                                  SmallVectorImpl<unsigned> &DefedRegsInCopy,
1239                                  LiveRegUnits &ModifiedRegUnits,
1240                                  LiveRegUnits &UsedRegUnits) {
1241  bool HasRegDependency = false;
1242  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1243    MachineOperand &MO = MI->getOperand(i);
1244    if (!MO.isReg())
1245      continue;
1246    Register Reg = MO.getReg();
1247    if (!Reg)
1248      continue;
1249    if (MO.isDef()) {
1250      if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1251        HasRegDependency = true;
1252        break;
1253      }
1254      DefedRegsInCopy.push_back(Reg);
1255
1256      // FIXME: instead of isUse(), readsReg() would be a better fix here,
1257      // For example, we can ignore modifications in reg with undef. However,
1258      // it's not perfectly clear if skipping the internal read is safe in all
1259      // other targets.
1260    } else if (MO.isUse()) {
1261      if (!ModifiedRegUnits.available(Reg)) {
1262        HasRegDependency = true;
1263        break;
1264      }
1265      UsedOpsInCopy.push_back(i);
1266    }
1267  }
1268  return HasRegDependency;
1269}
1270
1271static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1272                                         const TargetRegisterInfo *TRI) {
1273  SmallSet<unsigned, 4> RegUnits;
1274  for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1275    RegUnits.insert(*RI);
1276  return RegUnits;
1277}
1278
1279bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1280                                         MachineFunction &MF,
1281                                         const TargetRegisterInfo *TRI,
1282                                         const TargetInstrInfo *TII) {
1283  SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1284  // FIXME: For now, we sink only to a successor which has a single predecessor
1285  // so that we can directly sink COPY instructions to the successor without
1286  // adding any new block or branch instruction.
1287  for (MachineBasicBlock *SI : CurBB.successors())
1288    if (!SI->livein_empty() && SI->pred_size() == 1)
1289      SinkableBBs.insert(SI);
1290
1291  if (SinkableBBs.empty())
1292    return false;
1293
1294  bool Changed = false;
1295
1296  // Track which registers have been modified and used between the end of the
1297  // block and the current instruction.
1298  ModifiedRegUnits.clear();
1299  UsedRegUnits.clear();
1300  SeenDbgInstrs.clear();
1301
1302  for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1303    MachineInstr *MI = &*I;
1304    ++I;
1305
1306    // Track the operand index for use in Copy.
1307    SmallVector<unsigned, 2> UsedOpsInCopy;
1308    // Track the register number defed in Copy.
1309    SmallVector<unsigned, 2> DefedRegsInCopy;
1310
1311    // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1312    // for DBG_VALUEs later, record them when they're encountered.
1313    if (MI->isDebugValue()) {
1314      auto &MO = MI->getDebugOperand(0);
1315      if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1316        // Bail if we can already tell the sink would be rejected, rather
1317        // than needlessly accumulating lots of DBG_VALUEs.
1318        if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1319                                  ModifiedRegUnits, UsedRegUnits))
1320          continue;
1321
1322        // Record debug use of each reg unit.
1323        SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1324        for (unsigned Reg : Units)
1325          SeenDbgInstrs[Reg].push_back(MI);
1326      }
1327      continue;
1328    }
1329
1330    if (MI->isDebugInstr())
1331      continue;
1332
1333    // Do not move any instruction across function call.
1334    if (MI->isCall())
1335      return false;
1336
1337    if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1338      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1339                                        TRI);
1340      continue;
1341    }
1342
1343    // Don't sink the COPY if it would violate a register dependency.
1344    if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1345                              ModifiedRegUnits, UsedRegUnits)) {
1346      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1347                                        TRI);
1348      continue;
1349    }
1350    assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1351           "Unexpect SrcReg or DefReg");
1352    MachineBasicBlock *SuccBB =
1353        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1354    // Don't sink if we cannot find a single sinkable successor in which Reg
1355    // is live-in.
1356    if (!SuccBB) {
1357      LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1358                                        TRI);
1359      continue;
1360    }
1361    assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1362           "Unexpected predecessor");
1363
1364    // Collect DBG_VALUEs that must sink with this copy. We've previously
1365    // recorded which reg units that DBG_VALUEs read, if this instruction
1366    // writes any of those units then the corresponding DBG_VALUEs must sink.
1367    SetVector<MachineInstr *> DbgValsToSinkSet;
1368    SmallVector<MachineInstr *, 4> DbgValsToSink;
1369    for (auto &MO : MI->operands()) {
1370      if (!MO.isReg() || !MO.isDef())
1371        continue;
1372
1373      SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1374      for (unsigned Reg : Units)
1375        for (auto *MI : SeenDbgInstrs.lookup(Reg))
1376          DbgValsToSinkSet.insert(MI);
1377    }
1378    DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1379                         DbgValsToSinkSet.end());
1380
1381    // Clear the kill flag if SrcReg is killed between MI and the end of the
1382    // block.
1383    clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1384    MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1385    performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1386    updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1387
1388    Changed = true;
1389    ++NumPostRACopySink;
1390  }
1391  return Changed;
1392}
1393
1394bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1395  if (skipFunction(MF.getFunction()))
1396    return false;
1397
1398  bool Changed = false;
1399  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1400  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1401
1402  ModifiedRegUnits.init(*TRI);
1403  UsedRegUnits.init(*TRI);
1404  for (auto &BB : MF)
1405    Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1406
1407  return Changed;
1408}
1409