1//===- MIParser.cpp - Machine instructions parser implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the parsing of machine instructions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/MIRParser/MIParser.h"
14#include "MILexer.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/StringSwitch.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/Analysis/MemoryLocation.h"
27#include "llvm/AsmParser/Parser.h"
28#include "llvm/AsmParser/SlotMapping.h"
29#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31#include "llvm/CodeGen/MIRFormatter.h"
32#include "llvm/CodeGen/MIRPrinter.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineInstr.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineMemOperand.h"
39#include "llvm/CodeGen/MachineOperand.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/TargetInstrInfo.h"
42#include "llvm/CodeGen/TargetRegisterInfo.h"
43#include "llvm/CodeGen/TargetSubtargetInfo.h"
44#include "llvm/IR/BasicBlock.h"
45#include "llvm/IR/Constants.h"
46#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/DebugInfoMetadata.h"
48#include "llvm/IR/DebugLoc.h"
49#include "llvm/IR/Function.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instructions.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Module.h"
55#include "llvm/IR/ModuleSlotTracker.h"
56#include "llvm/IR/Type.h"
57#include "llvm/IR/Value.h"
58#include "llvm/IR/ValueSymbolTable.h"
59#include "llvm/MC/LaneBitmask.h"
60#include "llvm/MC/MCContext.h"
61#include "llvm/MC/MCDwarf.h"
62#include "llvm/MC/MCInstrDesc.h"
63#include "llvm/MC/MCRegisterInfo.h"
64#include "llvm/Support/AtomicOrdering.h"
65#include "llvm/Support/BranchProbability.h"
66#include "llvm/Support/Casting.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/LowLevelTypeImpl.h"
69#include "llvm/Support/MemoryBuffer.h"
70#include "llvm/Support/SMLoc.h"
71#include "llvm/Support/SourceMgr.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Target/TargetIntrinsicInfo.h"
74#include "llvm/Target/TargetMachine.h"
75#include <algorithm>
76#include <cassert>
77#include <cctype>
78#include <cstddef>
79#include <cstdint>
80#include <limits>
81#include <string>
82#include <utility>
83
84using namespace llvm;
85
86void PerTargetMIParsingState::setTarget(
87  const TargetSubtargetInfo &NewSubtarget) {
88
89  // If the subtarget changed, over conservatively assume everything is invalid.
90  if (&Subtarget == &NewSubtarget)
91    return;
92
93  Names2InstrOpCodes.clear();
94  Names2Regs.clear();
95  Names2RegMasks.clear();
96  Names2SubRegIndices.clear();
97  Names2TargetIndices.clear();
98  Names2DirectTargetFlags.clear();
99  Names2BitmaskTargetFlags.clear();
100  Names2MMOTargetFlags.clear();
101
102  initNames2RegClasses();
103  initNames2RegBanks();
104}
105
106void PerTargetMIParsingState::initNames2Regs() {
107  if (!Names2Regs.empty())
108    return;
109
110  // The '%noreg' register is the register 0.
111  Names2Regs.insert(std::make_pair("noreg", 0));
112  const auto *TRI = Subtarget.getRegisterInfo();
113  assert(TRI && "Expected target register info");
114
115  for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
116    bool WasInserted =
117        Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
118            .second;
119    (void)WasInserted;
120    assert(WasInserted && "Expected registers to be unique case-insensitively");
121  }
122}
123
124bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
125                                                Register &Reg) {
126  initNames2Regs();
127  auto RegInfo = Names2Regs.find(RegName);
128  if (RegInfo == Names2Regs.end())
129    return true;
130  Reg = RegInfo->getValue();
131  return false;
132}
133
134void PerTargetMIParsingState::initNames2InstrOpCodes() {
135  if (!Names2InstrOpCodes.empty())
136    return;
137  const auto *TII = Subtarget.getInstrInfo();
138  assert(TII && "Expected target instruction info");
139  for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
140    Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
141}
142
143bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
144                                             unsigned &OpCode) {
145  initNames2InstrOpCodes();
146  auto InstrInfo = Names2InstrOpCodes.find(InstrName);
147  if (InstrInfo == Names2InstrOpCodes.end())
148    return true;
149  OpCode = InstrInfo->getValue();
150  return false;
151}
152
153void PerTargetMIParsingState::initNames2RegMasks() {
154  if (!Names2RegMasks.empty())
155    return;
156  const auto *TRI = Subtarget.getRegisterInfo();
157  assert(TRI && "Expected target register info");
158  ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
159  ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
160  assert(RegMasks.size() == RegMaskNames.size());
161  for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
162    Names2RegMasks.insert(
163        std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
164}
165
166const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
167  initNames2RegMasks();
168  auto RegMaskInfo = Names2RegMasks.find(Identifier);
169  if (RegMaskInfo == Names2RegMasks.end())
170    return nullptr;
171  return RegMaskInfo->getValue();
172}
173
174void PerTargetMIParsingState::initNames2SubRegIndices() {
175  if (!Names2SubRegIndices.empty())
176    return;
177  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
178  for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
179    Names2SubRegIndices.insert(
180        std::make_pair(TRI->getSubRegIndexName(I), I));
181}
182
183unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
184  initNames2SubRegIndices();
185  auto SubRegInfo = Names2SubRegIndices.find(Name);
186  if (SubRegInfo == Names2SubRegIndices.end())
187    return 0;
188  return SubRegInfo->getValue();
189}
190
191void PerTargetMIParsingState::initNames2TargetIndices() {
192  if (!Names2TargetIndices.empty())
193    return;
194  const auto *TII = Subtarget.getInstrInfo();
195  assert(TII && "Expected target instruction info");
196  auto Indices = TII->getSerializableTargetIndices();
197  for (const auto &I : Indices)
198    Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
199}
200
201bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
202  initNames2TargetIndices();
203  auto IndexInfo = Names2TargetIndices.find(Name);
204  if (IndexInfo == Names2TargetIndices.end())
205    return true;
206  Index = IndexInfo->second;
207  return false;
208}
209
210void PerTargetMIParsingState::initNames2DirectTargetFlags() {
211  if (!Names2DirectTargetFlags.empty())
212    return;
213
214  const auto *TII = Subtarget.getInstrInfo();
215  assert(TII && "Expected target instruction info");
216  auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
217  for (const auto &I : Flags)
218    Names2DirectTargetFlags.insert(
219        std::make_pair(StringRef(I.second), I.first));
220}
221
222bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
223                                                  unsigned &Flag) {
224  initNames2DirectTargetFlags();
225  auto FlagInfo = Names2DirectTargetFlags.find(Name);
226  if (FlagInfo == Names2DirectTargetFlags.end())
227    return true;
228  Flag = FlagInfo->second;
229  return false;
230}
231
232void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
233  if (!Names2BitmaskTargetFlags.empty())
234    return;
235
236  const auto *TII = Subtarget.getInstrInfo();
237  assert(TII && "Expected target instruction info");
238  auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
239  for (const auto &I : Flags)
240    Names2BitmaskTargetFlags.insert(
241        std::make_pair(StringRef(I.second), I.first));
242}
243
244bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
245                                                   unsigned &Flag) {
246  initNames2BitmaskTargetFlags();
247  auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
248  if (FlagInfo == Names2BitmaskTargetFlags.end())
249    return true;
250  Flag = FlagInfo->second;
251  return false;
252}
253
254void PerTargetMIParsingState::initNames2MMOTargetFlags() {
255  if (!Names2MMOTargetFlags.empty())
256    return;
257
258  const auto *TII = Subtarget.getInstrInfo();
259  assert(TII && "Expected target instruction info");
260  auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
261  for (const auto &I : Flags)
262    Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
263}
264
265bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
266                                               MachineMemOperand::Flags &Flag) {
267  initNames2MMOTargetFlags();
268  auto FlagInfo = Names2MMOTargetFlags.find(Name);
269  if (FlagInfo == Names2MMOTargetFlags.end())
270    return true;
271  Flag = FlagInfo->second;
272  return false;
273}
274
275void PerTargetMIParsingState::initNames2RegClasses() {
276  if (!Names2RegClasses.empty())
277    return;
278
279  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
280  for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
281    const auto *RC = TRI->getRegClass(I);
282    Names2RegClasses.insert(
283        std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
284  }
285}
286
287void PerTargetMIParsingState::initNames2RegBanks() {
288  if (!Names2RegBanks.empty())
289    return;
290
291  const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
292  // If the target does not support GlobalISel, we may not have a
293  // register bank info.
294  if (!RBI)
295    return;
296
297  for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
298    const auto &RegBank = RBI->getRegBank(I);
299    Names2RegBanks.insert(
300        std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
301  }
302}
303
304const TargetRegisterClass *
305PerTargetMIParsingState::getRegClass(StringRef Name) {
306  auto RegClassInfo = Names2RegClasses.find(Name);
307  if (RegClassInfo == Names2RegClasses.end())
308    return nullptr;
309  return RegClassInfo->getValue();
310}
311
312const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
313  auto RegBankInfo = Names2RegBanks.find(Name);
314  if (RegBankInfo == Names2RegBanks.end())
315    return nullptr;
316  return RegBankInfo->getValue();
317}
318
319PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
320    SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
321  : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
322}
323
324VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
325  auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
326  if (I.second) {
327    MachineRegisterInfo &MRI = MF.getRegInfo();
328    VRegInfo *Info = new (Allocator) VRegInfo;
329    Info->VReg = MRI.createIncompleteVirtualRegister();
330    I.first->second = Info;
331  }
332  return *I.first->second;
333}
334
335VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
336  assert(RegName != "" && "Expected named reg.");
337
338  auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
339  if (I.second) {
340    VRegInfo *Info = new (Allocator) VRegInfo;
341    Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
342    I.first->second = Info;
343  }
344  return *I.first->second;
345}
346
347static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
348                           DenseMap<unsigned, const Value *> &Slots2Values) {
349  int Slot = MST.getLocalSlot(V);
350  if (Slot == -1)
351    return;
352  Slots2Values.insert(std::make_pair(unsigned(Slot), V));
353}
354
355/// Creates the mapping from slot numbers to function's unnamed IR values.
356static void initSlots2Values(const Function &F,
357                             DenseMap<unsigned, const Value *> &Slots2Values) {
358  ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
359  MST.incorporateFunction(F);
360  for (const auto &Arg : F.args())
361    mapValueToSlot(&Arg, MST, Slots2Values);
362  for (const auto &BB : F) {
363    mapValueToSlot(&BB, MST, Slots2Values);
364    for (const auto &I : BB)
365      mapValueToSlot(&I, MST, Slots2Values);
366  }
367}
368
369const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
370  if (Slots2Values.empty())
371    initSlots2Values(MF.getFunction(), Slots2Values);
372  auto ValueInfo = Slots2Values.find(Slot);
373  if (ValueInfo == Slots2Values.end())
374    return nullptr;
375  return ValueInfo->second;
376}
377
378namespace {
379
380/// A wrapper struct around the 'MachineOperand' struct that includes a source
381/// range and other attributes.
382struct ParsedMachineOperand {
383  MachineOperand Operand;
384  StringRef::iterator Begin;
385  StringRef::iterator End;
386  Optional<unsigned> TiedDefIdx;
387
388  ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
389                       StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
390      : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
391    if (TiedDefIdx)
392      assert(Operand.isReg() && Operand.isUse() &&
393             "Only used register operands can be tied");
394  }
395};
396
397class MIParser {
398  MachineFunction &MF;
399  SMDiagnostic &Error;
400  StringRef Source, CurrentSource;
401  MIToken Token;
402  PerFunctionMIParsingState &PFS;
403  /// Maps from slot numbers to function's unnamed basic blocks.
404  DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
405
406public:
407  MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
408           StringRef Source);
409
410  /// \p SkipChar gives the number of characters to skip before looking
411  /// for the next token.
412  void lex(unsigned SkipChar = 0);
413
414  /// Report an error at the current location with the given message.
415  ///
416  /// This function always return true.
417  bool error(const Twine &Msg);
418
419  /// Report an error at the given location with the given message.
420  ///
421  /// This function always return true.
422  bool error(StringRef::iterator Loc, const Twine &Msg);
423
424  bool
425  parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
426  bool parseBasicBlocks();
427  bool parse(MachineInstr *&MI);
428  bool parseStandaloneMBB(MachineBasicBlock *&MBB);
429  bool parseStandaloneNamedRegister(Register &Reg);
430  bool parseStandaloneVirtualRegister(VRegInfo *&Info);
431  bool parseStandaloneRegister(Register &Reg);
432  bool parseStandaloneStackObject(int &FI);
433  bool parseStandaloneMDNode(MDNode *&Node);
434
435  bool
436  parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
437  bool parseBasicBlock(MachineBasicBlock &MBB,
438                       MachineBasicBlock *&AddFalthroughFrom);
439  bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
440  bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
441
442  bool parseNamedRegister(Register &Reg);
443  bool parseVirtualRegister(VRegInfo *&Info);
444  bool parseNamedVirtualRegister(VRegInfo *&Info);
445  bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
446  bool parseRegisterFlag(unsigned &Flags);
447  bool parseRegisterClassOrBank(VRegInfo &RegInfo);
448  bool parseSubRegisterIndex(unsigned &SubReg);
449  bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
450  bool parseRegisterOperand(MachineOperand &Dest,
451                            Optional<unsigned> &TiedDefIdx, bool IsDef = false);
452  bool parseImmediateOperand(MachineOperand &Dest);
453  bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
454                       const Constant *&C);
455  bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
456  bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
457  bool parseTypedImmediateOperand(MachineOperand &Dest);
458  bool parseFPImmediateOperand(MachineOperand &Dest);
459  bool parseMBBReference(MachineBasicBlock *&MBB);
460  bool parseMBBOperand(MachineOperand &Dest);
461  bool parseStackFrameIndex(int &FI);
462  bool parseStackObjectOperand(MachineOperand &Dest);
463  bool parseFixedStackFrameIndex(int &FI);
464  bool parseFixedStackObjectOperand(MachineOperand &Dest);
465  bool parseGlobalValue(GlobalValue *&GV);
466  bool parseGlobalAddressOperand(MachineOperand &Dest);
467  bool parseConstantPoolIndexOperand(MachineOperand &Dest);
468  bool parseSubRegisterIndexOperand(MachineOperand &Dest);
469  bool parseJumpTableIndexOperand(MachineOperand &Dest);
470  bool parseExternalSymbolOperand(MachineOperand &Dest);
471  bool parseMCSymbolOperand(MachineOperand &Dest);
472  bool parseMDNode(MDNode *&Node);
473  bool parseDIExpression(MDNode *&Expr);
474  bool parseDILocation(MDNode *&Expr);
475  bool parseMetadataOperand(MachineOperand &Dest);
476  bool parseCFIOffset(int &Offset);
477  bool parseCFIRegister(Register &Reg);
478  bool parseCFIEscapeValues(std::string& Values);
479  bool parseCFIOperand(MachineOperand &Dest);
480  bool parseIRBlock(BasicBlock *&BB, const Function &F);
481  bool parseBlockAddressOperand(MachineOperand &Dest);
482  bool parseIntrinsicOperand(MachineOperand &Dest);
483  bool parsePredicateOperand(MachineOperand &Dest);
484  bool parseShuffleMaskOperand(MachineOperand &Dest);
485  bool parseTargetIndexOperand(MachineOperand &Dest);
486  bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
487  bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
488  bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
489                           MachineOperand &Dest,
490                           Optional<unsigned> &TiedDefIdx);
491  bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
492                                         const unsigned OpIdx,
493                                         MachineOperand &Dest,
494                                         Optional<unsigned> &TiedDefIdx);
495  bool parseOffset(int64_t &Offset);
496  bool parseAlignment(unsigned &Alignment);
497  bool parseAddrspace(unsigned &Addrspace);
498  bool parseSectionID(Optional<MBBSectionID> &SID);
499  bool parseOperandsOffset(MachineOperand &Op);
500  bool parseIRValue(const Value *&V);
501  bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
502  bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
503  bool parseMachinePointerInfo(MachinePointerInfo &Dest);
504  bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
505  bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
506  bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
507  bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
508  bool parseHeapAllocMarker(MDNode *&Node);
509
510  bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
511                              MachineOperand &Dest, const MIRFormatter &MF);
512
513private:
514  /// Convert the integer literal in the current token into an unsigned integer.
515  ///
516  /// Return true if an error occurred.
517  bool getUnsigned(unsigned &Result);
518
519  /// Convert the integer literal in the current token into an uint64.
520  ///
521  /// Return true if an error occurred.
522  bool getUint64(uint64_t &Result);
523
524  /// Convert the hexadecimal literal in the current token into an unsigned
525  ///  APInt with a minimum bitwidth required to represent the value.
526  ///
527  /// Return true if the literal does not represent an integer value.
528  bool getHexUint(APInt &Result);
529
530  /// If the current token is of the given kind, consume it and return false.
531  /// Otherwise report an error and return true.
532  bool expectAndConsume(MIToken::TokenKind TokenKind);
533
534  /// If the current token is of the given kind, consume it and return true.
535  /// Otherwise return false.
536  bool consumeIfPresent(MIToken::TokenKind TokenKind);
537
538  bool parseInstruction(unsigned &OpCode, unsigned &Flags);
539
540  bool assignRegisterTies(MachineInstr &MI,
541                          ArrayRef<ParsedMachineOperand> Operands);
542
543  bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
544                              const MCInstrDesc &MCID);
545
546  const BasicBlock *getIRBlock(unsigned Slot);
547  const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
548
549  /// Get or create an MCSymbol for a given name.
550  MCSymbol *getOrCreateMCSymbol(StringRef Name);
551
552  /// parseStringConstant
553  ///   ::= StringConstant
554  bool parseStringConstant(std::string &Result);
555};
556
557} // end anonymous namespace
558
559MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
560                   StringRef Source)
561    : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
562{}
563
564void MIParser::lex(unsigned SkipChar) {
565  CurrentSource = lexMIToken(
566      CurrentSource.slice(SkipChar, StringRef::npos), Token,
567      [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
568}
569
570bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
571
572bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
573  const SourceMgr &SM = *PFS.SM;
574  assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
575  const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
576  if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
577    // Create an ordinary diagnostic when the source manager's buffer is the
578    // source string.
579    Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
580    return true;
581  }
582  // Create a diagnostic for a YAML string literal.
583  Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
584                       Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
585                       Source, None, None);
586  return true;
587}
588
589typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
590    ErrorCallbackType;
591
592static const char *toString(MIToken::TokenKind TokenKind) {
593  switch (TokenKind) {
594  case MIToken::comma:
595    return "','";
596  case MIToken::equal:
597    return "'='";
598  case MIToken::colon:
599    return "':'";
600  case MIToken::lparen:
601    return "'('";
602  case MIToken::rparen:
603    return "')'";
604  default:
605    return "<unknown token>";
606  }
607}
608
609bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
610  if (Token.isNot(TokenKind))
611    return error(Twine("expected ") + toString(TokenKind));
612  lex();
613  return false;
614}
615
616bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
617  if (Token.isNot(TokenKind))
618    return false;
619  lex();
620  return true;
621}
622
623// Parse Machine Basic Block Section ID.
624bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) {
625  assert(Token.is(MIToken::kw_bbsections));
626  lex();
627  if (Token.is(MIToken::IntegerLiteral)) {
628    unsigned Value = 0;
629    if (getUnsigned(Value))
630      return error("Unknown Section ID");
631    SID = MBBSectionID{Value};
632  } else {
633    const StringRef &S = Token.stringValue();
634    if (S == "Exception")
635      SID = MBBSectionID::ExceptionSectionID;
636    else if (S == "Cold")
637      SID = MBBSectionID::ColdSectionID;
638    else
639      return error("Unknown Section ID");
640  }
641  lex();
642  return false;
643}
644
645bool MIParser::parseBasicBlockDefinition(
646    DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
647  assert(Token.is(MIToken::MachineBasicBlockLabel));
648  unsigned ID = 0;
649  if (getUnsigned(ID))
650    return true;
651  auto Loc = Token.location();
652  auto Name = Token.stringValue();
653  lex();
654  bool HasAddressTaken = false;
655  bool IsLandingPad = false;
656  bool IsEHFuncletEntry = false;
657  Optional<MBBSectionID> SectionID;
658  unsigned Alignment = 0;
659  BasicBlock *BB = nullptr;
660  if (consumeIfPresent(MIToken::lparen)) {
661    do {
662      // TODO: Report an error when multiple same attributes are specified.
663      switch (Token.kind()) {
664      case MIToken::kw_address_taken:
665        HasAddressTaken = true;
666        lex();
667        break;
668      case MIToken::kw_landing_pad:
669        IsLandingPad = true;
670        lex();
671        break;
672      case MIToken::kw_ehfunclet_entry:
673        IsEHFuncletEntry = true;
674        lex();
675        break;
676      case MIToken::kw_align:
677        if (parseAlignment(Alignment))
678          return true;
679        break;
680      case MIToken::IRBlock:
681        // TODO: Report an error when both name and ir block are specified.
682        if (parseIRBlock(BB, MF.getFunction()))
683          return true;
684        lex();
685        break;
686      case MIToken::kw_bbsections:
687        if (parseSectionID(SectionID))
688          return true;
689        break;
690      default:
691        break;
692      }
693    } while (consumeIfPresent(MIToken::comma));
694    if (expectAndConsume(MIToken::rparen))
695      return true;
696  }
697  if (expectAndConsume(MIToken::colon))
698    return true;
699
700  if (!Name.empty()) {
701    BB = dyn_cast_or_null<BasicBlock>(
702        MF.getFunction().getValueSymbolTable()->lookup(Name));
703    if (!BB)
704      return error(Loc, Twine("basic block '") + Name +
705                            "' is not defined in the function '" +
706                            MF.getName() + "'");
707  }
708  auto *MBB = MF.CreateMachineBasicBlock(BB);
709  MF.insert(MF.end(), MBB);
710  bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
711  if (!WasInserted)
712    return error(Loc, Twine("redefinition of machine basic block with id #") +
713                          Twine(ID));
714  if (Alignment)
715    MBB->setAlignment(Align(Alignment));
716  if (HasAddressTaken)
717    MBB->setHasAddressTaken();
718  MBB->setIsEHPad(IsLandingPad);
719  MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
720  if (SectionID.hasValue()) {
721    MBB->setSectionID(SectionID.getValue());
722    MF.setBBSectionsType(BasicBlockSection::List);
723  }
724  return false;
725}
726
727bool MIParser::parseBasicBlockDefinitions(
728    DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
729  lex();
730  // Skip until the first machine basic block.
731  while (Token.is(MIToken::Newline))
732    lex();
733  if (Token.isErrorOrEOF())
734    return Token.isError();
735  if (Token.isNot(MIToken::MachineBasicBlockLabel))
736    return error("expected a basic block definition before instructions");
737  unsigned BraceDepth = 0;
738  do {
739    if (parseBasicBlockDefinition(MBBSlots))
740      return true;
741    bool IsAfterNewline = false;
742    // Skip until the next machine basic block.
743    while (true) {
744      if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
745          Token.isErrorOrEOF())
746        break;
747      else if (Token.is(MIToken::MachineBasicBlockLabel))
748        return error("basic block definition should be located at the start of "
749                     "the line");
750      else if (consumeIfPresent(MIToken::Newline)) {
751        IsAfterNewline = true;
752        continue;
753      }
754      IsAfterNewline = false;
755      if (Token.is(MIToken::lbrace))
756        ++BraceDepth;
757      if (Token.is(MIToken::rbrace)) {
758        if (!BraceDepth)
759          return error("extraneous closing brace ('}')");
760        --BraceDepth;
761      }
762      lex();
763    }
764    // Verify that we closed all of the '{' at the end of a file or a block.
765    if (!Token.isError() && BraceDepth)
766      return error("expected '}'"); // FIXME: Report a note that shows '{'.
767  } while (!Token.isErrorOrEOF());
768  return Token.isError();
769}
770
771bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
772  assert(Token.is(MIToken::kw_liveins));
773  lex();
774  if (expectAndConsume(MIToken::colon))
775    return true;
776  if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
777    return false;
778  do {
779    if (Token.isNot(MIToken::NamedRegister))
780      return error("expected a named register");
781    Register Reg;
782    if (parseNamedRegister(Reg))
783      return true;
784    lex();
785    LaneBitmask Mask = LaneBitmask::getAll();
786    if (consumeIfPresent(MIToken::colon)) {
787      // Parse lane mask.
788      if (Token.isNot(MIToken::IntegerLiteral) &&
789          Token.isNot(MIToken::HexLiteral))
790        return error("expected a lane mask");
791      static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
792                    "Use correct get-function for lane mask");
793      LaneBitmask::Type V;
794      if (getUint64(V))
795        return error("invalid lane mask value");
796      Mask = LaneBitmask(V);
797      lex();
798    }
799    MBB.addLiveIn(Reg, Mask);
800  } while (consumeIfPresent(MIToken::comma));
801  return false;
802}
803
804bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
805  assert(Token.is(MIToken::kw_successors));
806  lex();
807  if (expectAndConsume(MIToken::colon))
808    return true;
809  if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
810    return false;
811  do {
812    if (Token.isNot(MIToken::MachineBasicBlock))
813      return error("expected a machine basic block reference");
814    MachineBasicBlock *SuccMBB = nullptr;
815    if (parseMBBReference(SuccMBB))
816      return true;
817    lex();
818    unsigned Weight = 0;
819    if (consumeIfPresent(MIToken::lparen)) {
820      if (Token.isNot(MIToken::IntegerLiteral) &&
821          Token.isNot(MIToken::HexLiteral))
822        return error("expected an integer literal after '('");
823      if (getUnsigned(Weight))
824        return true;
825      lex();
826      if (expectAndConsume(MIToken::rparen))
827        return true;
828    }
829    MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
830  } while (consumeIfPresent(MIToken::comma));
831  MBB.normalizeSuccProbs();
832  return false;
833}
834
835bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
836                               MachineBasicBlock *&AddFalthroughFrom) {
837  // Skip the definition.
838  assert(Token.is(MIToken::MachineBasicBlockLabel));
839  lex();
840  if (consumeIfPresent(MIToken::lparen)) {
841    while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
842      lex();
843    consumeIfPresent(MIToken::rparen);
844  }
845  consumeIfPresent(MIToken::colon);
846
847  // Parse the liveins and successors.
848  // N.B: Multiple lists of successors and liveins are allowed and they're
849  // merged into one.
850  // Example:
851  //   liveins: %edi
852  //   liveins: %esi
853  //
854  // is equivalent to
855  //   liveins: %edi, %esi
856  bool ExplicitSuccessors = false;
857  while (true) {
858    if (Token.is(MIToken::kw_successors)) {
859      if (parseBasicBlockSuccessors(MBB))
860        return true;
861      ExplicitSuccessors = true;
862    } else if (Token.is(MIToken::kw_liveins)) {
863      if (parseBasicBlockLiveins(MBB))
864        return true;
865    } else if (consumeIfPresent(MIToken::Newline)) {
866      continue;
867    } else
868      break;
869    if (!Token.isNewlineOrEOF())
870      return error("expected line break at the end of a list");
871    lex();
872  }
873
874  // Parse the instructions.
875  bool IsInBundle = false;
876  MachineInstr *PrevMI = nullptr;
877  while (!Token.is(MIToken::MachineBasicBlockLabel) &&
878         !Token.is(MIToken::Eof)) {
879    if (consumeIfPresent(MIToken::Newline))
880      continue;
881    if (consumeIfPresent(MIToken::rbrace)) {
882      // The first parsing pass should verify that all closing '}' have an
883      // opening '{'.
884      assert(IsInBundle);
885      IsInBundle = false;
886      continue;
887    }
888    MachineInstr *MI = nullptr;
889    if (parse(MI))
890      return true;
891    MBB.insert(MBB.end(), MI);
892    if (IsInBundle) {
893      PrevMI->setFlag(MachineInstr::BundledSucc);
894      MI->setFlag(MachineInstr::BundledPred);
895    }
896    PrevMI = MI;
897    if (Token.is(MIToken::lbrace)) {
898      if (IsInBundle)
899        return error("nested instruction bundles are not allowed");
900      lex();
901      // This instruction is the start of the bundle.
902      MI->setFlag(MachineInstr::BundledSucc);
903      IsInBundle = true;
904      if (!Token.is(MIToken::Newline))
905        // The next instruction can be on the same line.
906        continue;
907    }
908    assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
909    lex();
910  }
911
912  // Construct successor list by searching for basic block machine operands.
913  if (!ExplicitSuccessors) {
914    SmallVector<MachineBasicBlock*,4> Successors;
915    bool IsFallthrough;
916    guessSuccessors(MBB, Successors, IsFallthrough);
917    for (MachineBasicBlock *Succ : Successors)
918      MBB.addSuccessor(Succ);
919
920    if (IsFallthrough) {
921      AddFalthroughFrom = &MBB;
922    } else {
923      MBB.normalizeSuccProbs();
924    }
925  }
926
927  return false;
928}
929
930bool MIParser::parseBasicBlocks() {
931  lex();
932  // Skip until the first machine basic block.
933  while (Token.is(MIToken::Newline))
934    lex();
935  if (Token.isErrorOrEOF())
936    return Token.isError();
937  // The first parsing pass should have verified that this token is a MBB label
938  // in the 'parseBasicBlockDefinitions' method.
939  assert(Token.is(MIToken::MachineBasicBlockLabel));
940  MachineBasicBlock *AddFalthroughFrom = nullptr;
941  do {
942    MachineBasicBlock *MBB = nullptr;
943    if (parseMBBReference(MBB))
944      return true;
945    if (AddFalthroughFrom) {
946      if (!AddFalthroughFrom->isSuccessor(MBB))
947        AddFalthroughFrom->addSuccessor(MBB);
948      AddFalthroughFrom->normalizeSuccProbs();
949      AddFalthroughFrom = nullptr;
950    }
951    if (parseBasicBlock(*MBB, AddFalthroughFrom))
952      return true;
953    // The method 'parseBasicBlock' should parse the whole block until the next
954    // block or the end of file.
955    assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
956  } while (Token.isNot(MIToken::Eof));
957  return false;
958}
959
960bool MIParser::parse(MachineInstr *&MI) {
961  // Parse any register operands before '='
962  MachineOperand MO = MachineOperand::CreateImm(0);
963  SmallVector<ParsedMachineOperand, 8> Operands;
964  while (Token.isRegister() || Token.isRegisterFlag()) {
965    auto Loc = Token.location();
966    Optional<unsigned> TiedDefIdx;
967    if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
968      return true;
969    Operands.push_back(
970        ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
971    if (Token.isNot(MIToken::comma))
972      break;
973    lex();
974  }
975  if (!Operands.empty() && expectAndConsume(MIToken::equal))
976    return true;
977
978  unsigned OpCode, Flags = 0;
979  if (Token.isError() || parseInstruction(OpCode, Flags))
980    return true;
981
982  // Parse the remaining machine operands.
983  while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
984         Token.isNot(MIToken::kw_post_instr_symbol) &&
985         Token.isNot(MIToken::kw_heap_alloc_marker) &&
986         Token.isNot(MIToken::kw_debug_location) &&
987         Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
988    auto Loc = Token.location();
989    Optional<unsigned> TiedDefIdx;
990    if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
991      return true;
992    if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
993      MO.setIsDebug();
994    Operands.push_back(
995        ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
996    if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
997        Token.is(MIToken::lbrace))
998      break;
999    if (Token.isNot(MIToken::comma))
1000      return error("expected ',' before the next machine operand");
1001    lex();
1002  }
1003
1004  MCSymbol *PreInstrSymbol = nullptr;
1005  if (Token.is(MIToken::kw_pre_instr_symbol))
1006    if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1007      return true;
1008  MCSymbol *PostInstrSymbol = nullptr;
1009  if (Token.is(MIToken::kw_post_instr_symbol))
1010    if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1011      return true;
1012  MDNode *HeapAllocMarker = nullptr;
1013  if (Token.is(MIToken::kw_heap_alloc_marker))
1014    if (parseHeapAllocMarker(HeapAllocMarker))
1015      return true;
1016
1017  DebugLoc DebugLocation;
1018  if (Token.is(MIToken::kw_debug_location)) {
1019    lex();
1020    MDNode *Node = nullptr;
1021    if (Token.is(MIToken::exclaim)) {
1022      if (parseMDNode(Node))
1023        return true;
1024    } else if (Token.is(MIToken::md_dilocation)) {
1025      if (parseDILocation(Node))
1026        return true;
1027    } else
1028      return error("expected a metadata node after 'debug-location'");
1029    if (!isa<DILocation>(Node))
1030      return error("referenced metadata is not a DILocation");
1031    DebugLocation = DebugLoc(Node);
1032  }
1033
1034  // Parse the machine memory operands.
1035  SmallVector<MachineMemOperand *, 2> MemOperands;
1036  if (Token.is(MIToken::coloncolon)) {
1037    lex();
1038    while (!Token.isNewlineOrEOF()) {
1039      MachineMemOperand *MemOp = nullptr;
1040      if (parseMachineMemoryOperand(MemOp))
1041        return true;
1042      MemOperands.push_back(MemOp);
1043      if (Token.isNewlineOrEOF())
1044        break;
1045      if (Token.isNot(MIToken::comma))
1046        return error("expected ',' before the next machine memory operand");
1047      lex();
1048    }
1049  }
1050
1051  const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1052  if (!MCID.isVariadic()) {
1053    // FIXME: Move the implicit operand verification to the machine verifier.
1054    if (verifyImplicitOperands(Operands, MCID))
1055      return true;
1056  }
1057
1058  // TODO: Check for extraneous machine operands.
1059  MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1060  MI->setFlags(Flags);
1061  for (const auto &Operand : Operands)
1062    MI->addOperand(MF, Operand.Operand);
1063  if (assignRegisterTies(*MI, Operands))
1064    return true;
1065  if (PreInstrSymbol)
1066    MI->setPreInstrSymbol(MF, PreInstrSymbol);
1067  if (PostInstrSymbol)
1068    MI->setPostInstrSymbol(MF, PostInstrSymbol);
1069  if (HeapAllocMarker)
1070    MI->setHeapAllocMarker(MF, HeapAllocMarker);
1071  if (!MemOperands.empty())
1072    MI->setMemRefs(MF, MemOperands);
1073  return false;
1074}
1075
1076bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1077  lex();
1078  if (Token.isNot(MIToken::MachineBasicBlock))
1079    return error("expected a machine basic block reference");
1080  if (parseMBBReference(MBB))
1081    return true;
1082  lex();
1083  if (Token.isNot(MIToken::Eof))
1084    return error(
1085        "expected end of string after the machine basic block reference");
1086  return false;
1087}
1088
1089bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1090  lex();
1091  if (Token.isNot(MIToken::NamedRegister))
1092    return error("expected a named register");
1093  if (parseNamedRegister(Reg))
1094    return true;
1095  lex();
1096  if (Token.isNot(MIToken::Eof))
1097    return error("expected end of string after the register reference");
1098  return false;
1099}
1100
1101bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1102  lex();
1103  if (Token.isNot(MIToken::VirtualRegister))
1104    return error("expected a virtual register");
1105  if (parseVirtualRegister(Info))
1106    return true;
1107  lex();
1108  if (Token.isNot(MIToken::Eof))
1109    return error("expected end of string after the register reference");
1110  return false;
1111}
1112
1113bool MIParser::parseStandaloneRegister(Register &Reg) {
1114  lex();
1115  if (Token.isNot(MIToken::NamedRegister) &&
1116      Token.isNot(MIToken::VirtualRegister))
1117    return error("expected either a named or virtual register");
1118
1119  VRegInfo *Info;
1120  if (parseRegister(Reg, Info))
1121    return true;
1122
1123  lex();
1124  if (Token.isNot(MIToken::Eof))
1125    return error("expected end of string after the register reference");
1126  return false;
1127}
1128
1129bool MIParser::parseStandaloneStackObject(int &FI) {
1130  lex();
1131  if (Token.isNot(MIToken::StackObject))
1132    return error("expected a stack object");
1133  if (parseStackFrameIndex(FI))
1134    return true;
1135  if (Token.isNot(MIToken::Eof))
1136    return error("expected end of string after the stack object reference");
1137  return false;
1138}
1139
1140bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1141  lex();
1142  if (Token.is(MIToken::exclaim)) {
1143    if (parseMDNode(Node))
1144      return true;
1145  } else if (Token.is(MIToken::md_diexpr)) {
1146    if (parseDIExpression(Node))
1147      return true;
1148  } else if (Token.is(MIToken::md_dilocation)) {
1149    if (parseDILocation(Node))
1150      return true;
1151  } else
1152    return error("expected a metadata node");
1153  if (Token.isNot(MIToken::Eof))
1154    return error("expected end of string after the metadata node");
1155  return false;
1156}
1157
1158static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1159  assert(MO.isImplicit());
1160  return MO.isDef() ? "implicit-def" : "implicit";
1161}
1162
1163static std::string getRegisterName(const TargetRegisterInfo *TRI,
1164                                   Register Reg) {
1165  assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1166  return StringRef(TRI->getName(Reg)).lower();
1167}
1168
1169/// Return true if the parsed machine operands contain a given machine operand.
1170static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1171                                ArrayRef<ParsedMachineOperand> Operands) {
1172  for (const auto &I : Operands) {
1173    if (ImplicitOperand.isIdenticalTo(I.Operand))
1174      return true;
1175  }
1176  return false;
1177}
1178
1179bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1180                                      const MCInstrDesc &MCID) {
1181  if (MCID.isCall())
1182    // We can't verify call instructions as they can contain arbitrary implicit
1183    // register and register mask operands.
1184    return false;
1185
1186  // Gather all the expected implicit operands.
1187  SmallVector<MachineOperand, 4> ImplicitOperands;
1188  if (MCID.ImplicitDefs)
1189    for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1190      ImplicitOperands.push_back(
1191          MachineOperand::CreateReg(*ImpDefs, true, true));
1192  if (MCID.ImplicitUses)
1193    for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1194      ImplicitOperands.push_back(
1195          MachineOperand::CreateReg(*ImpUses, false, true));
1196
1197  const auto *TRI = MF.getSubtarget().getRegisterInfo();
1198  assert(TRI && "Expected target register info");
1199  for (const auto &I : ImplicitOperands) {
1200    if (isImplicitOperandIn(I, Operands))
1201      continue;
1202    return error(Operands.empty() ? Token.location() : Operands.back().End,
1203                 Twine("missing implicit register operand '") +
1204                     printImplicitRegisterFlag(I) + " $" +
1205                     getRegisterName(TRI, I.getReg()) + "'");
1206  }
1207  return false;
1208}
1209
1210bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1211  // Allow frame and fast math flags for OPCODE
1212  while (Token.is(MIToken::kw_frame_setup) ||
1213         Token.is(MIToken::kw_frame_destroy) ||
1214         Token.is(MIToken::kw_nnan) ||
1215         Token.is(MIToken::kw_ninf) ||
1216         Token.is(MIToken::kw_nsz) ||
1217         Token.is(MIToken::kw_arcp) ||
1218         Token.is(MIToken::kw_contract) ||
1219         Token.is(MIToken::kw_afn) ||
1220         Token.is(MIToken::kw_reassoc) ||
1221         Token.is(MIToken::kw_nuw) ||
1222         Token.is(MIToken::kw_nsw) ||
1223         Token.is(MIToken::kw_exact) ||
1224         Token.is(MIToken::kw_nofpexcept)) {
1225    // Mine frame and fast math flags
1226    if (Token.is(MIToken::kw_frame_setup))
1227      Flags |= MachineInstr::FrameSetup;
1228    if (Token.is(MIToken::kw_frame_destroy))
1229      Flags |= MachineInstr::FrameDestroy;
1230    if (Token.is(MIToken::kw_nnan))
1231      Flags |= MachineInstr::FmNoNans;
1232    if (Token.is(MIToken::kw_ninf))
1233      Flags |= MachineInstr::FmNoInfs;
1234    if (Token.is(MIToken::kw_nsz))
1235      Flags |= MachineInstr::FmNsz;
1236    if (Token.is(MIToken::kw_arcp))
1237      Flags |= MachineInstr::FmArcp;
1238    if (Token.is(MIToken::kw_contract))
1239      Flags |= MachineInstr::FmContract;
1240    if (Token.is(MIToken::kw_afn))
1241      Flags |= MachineInstr::FmAfn;
1242    if (Token.is(MIToken::kw_reassoc))
1243      Flags |= MachineInstr::FmReassoc;
1244    if (Token.is(MIToken::kw_nuw))
1245      Flags |= MachineInstr::NoUWrap;
1246    if (Token.is(MIToken::kw_nsw))
1247      Flags |= MachineInstr::NoSWrap;
1248    if (Token.is(MIToken::kw_exact))
1249      Flags |= MachineInstr::IsExact;
1250    if (Token.is(MIToken::kw_nofpexcept))
1251      Flags |= MachineInstr::NoFPExcept;
1252
1253    lex();
1254  }
1255  if (Token.isNot(MIToken::Identifier))
1256    return error("expected a machine instruction");
1257  StringRef InstrName = Token.stringValue();
1258  if (PFS.Target.parseInstrName(InstrName, OpCode))
1259    return error(Twine("unknown machine instruction name '") + InstrName + "'");
1260  lex();
1261  return false;
1262}
1263
1264bool MIParser::parseNamedRegister(Register &Reg) {
1265  assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1266  StringRef Name = Token.stringValue();
1267  if (PFS.Target.getRegisterByName(Name, Reg))
1268    return error(Twine("unknown register name '") + Name + "'");
1269  return false;
1270}
1271
1272bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1273  assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1274  StringRef Name = Token.stringValue();
1275  // TODO: Check that the VReg name is not the same as a physical register name.
1276  //       If it is, then print a warning (when warnings are implemented).
1277  Info = &PFS.getVRegInfoNamed(Name);
1278  return false;
1279}
1280
1281bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1282  if (Token.is(MIToken::NamedVirtualRegister))
1283    return parseNamedVirtualRegister(Info);
1284  assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1285  unsigned ID;
1286  if (getUnsigned(ID))
1287    return true;
1288  Info = &PFS.getVRegInfo(ID);
1289  return false;
1290}
1291
1292bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1293  switch (Token.kind()) {
1294  case MIToken::underscore:
1295    Reg = 0;
1296    return false;
1297  case MIToken::NamedRegister:
1298    return parseNamedRegister(Reg);
1299  case MIToken::NamedVirtualRegister:
1300  case MIToken::VirtualRegister:
1301    if (parseVirtualRegister(Info))
1302      return true;
1303    Reg = Info->VReg;
1304    return false;
1305  // TODO: Parse other register kinds.
1306  default:
1307    llvm_unreachable("The current token should be a register");
1308  }
1309}
1310
1311bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1312  if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1313    return error("expected '_', register class, or register bank name");
1314  StringRef::iterator Loc = Token.location();
1315  StringRef Name = Token.stringValue();
1316
1317  // Was it a register class?
1318  const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1319  if (RC) {
1320    lex();
1321
1322    switch (RegInfo.Kind) {
1323    case VRegInfo::UNKNOWN:
1324    case VRegInfo::NORMAL:
1325      RegInfo.Kind = VRegInfo::NORMAL;
1326      if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1327        const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1328        return error(Loc, Twine("conflicting register classes, previously: ") +
1329                     Twine(TRI.getRegClassName(RegInfo.D.RC)));
1330      }
1331      RegInfo.D.RC = RC;
1332      RegInfo.Explicit = true;
1333      return false;
1334
1335    case VRegInfo::GENERIC:
1336    case VRegInfo::REGBANK:
1337      return error(Loc, "register class specification on generic register");
1338    }
1339    llvm_unreachable("Unexpected register kind");
1340  }
1341
1342  // Should be a register bank or a generic register.
1343  const RegisterBank *RegBank = nullptr;
1344  if (Name != "_") {
1345    RegBank = PFS.Target.getRegBank(Name);
1346    if (!RegBank)
1347      return error(Loc, "expected '_', register class, or register bank name");
1348  }
1349
1350  lex();
1351
1352  switch (RegInfo.Kind) {
1353  case VRegInfo::UNKNOWN:
1354  case VRegInfo::GENERIC:
1355  case VRegInfo::REGBANK:
1356    RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1357    if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1358      return error(Loc, "conflicting generic register banks");
1359    RegInfo.D.RegBank = RegBank;
1360    RegInfo.Explicit = true;
1361    return false;
1362
1363  case VRegInfo::NORMAL:
1364    return error(Loc, "register bank specification on normal register");
1365  }
1366  llvm_unreachable("Unexpected register kind");
1367}
1368
1369bool MIParser::parseRegisterFlag(unsigned &Flags) {
1370  const unsigned OldFlags = Flags;
1371  switch (Token.kind()) {
1372  case MIToken::kw_implicit:
1373    Flags |= RegState::Implicit;
1374    break;
1375  case MIToken::kw_implicit_define:
1376    Flags |= RegState::ImplicitDefine;
1377    break;
1378  case MIToken::kw_def:
1379    Flags |= RegState::Define;
1380    break;
1381  case MIToken::kw_dead:
1382    Flags |= RegState::Dead;
1383    break;
1384  case MIToken::kw_killed:
1385    Flags |= RegState::Kill;
1386    break;
1387  case MIToken::kw_undef:
1388    Flags |= RegState::Undef;
1389    break;
1390  case MIToken::kw_internal:
1391    Flags |= RegState::InternalRead;
1392    break;
1393  case MIToken::kw_early_clobber:
1394    Flags |= RegState::EarlyClobber;
1395    break;
1396  case MIToken::kw_debug_use:
1397    Flags |= RegState::Debug;
1398    break;
1399  case MIToken::kw_renamable:
1400    Flags |= RegState::Renamable;
1401    break;
1402  default:
1403    llvm_unreachable("The current token should be a register flag");
1404  }
1405  if (OldFlags == Flags)
1406    // We know that the same flag is specified more than once when the flags
1407    // weren't modified.
1408    return error("duplicate '" + Token.stringValue() + "' register flag");
1409  lex();
1410  return false;
1411}
1412
1413bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1414  assert(Token.is(MIToken::dot));
1415  lex();
1416  if (Token.isNot(MIToken::Identifier))
1417    return error("expected a subregister index after '.'");
1418  auto Name = Token.stringValue();
1419  SubReg = PFS.Target.getSubRegIndex(Name);
1420  if (!SubReg)
1421    return error(Twine("use of unknown subregister index '") + Name + "'");
1422  lex();
1423  return false;
1424}
1425
1426bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1427  if (!consumeIfPresent(MIToken::kw_tied_def))
1428    return true;
1429  if (Token.isNot(MIToken::IntegerLiteral))
1430    return error("expected an integer literal after 'tied-def'");
1431  if (getUnsigned(TiedDefIdx))
1432    return true;
1433  lex();
1434  if (expectAndConsume(MIToken::rparen))
1435    return true;
1436  return false;
1437}
1438
1439bool MIParser::assignRegisterTies(MachineInstr &MI,
1440                                  ArrayRef<ParsedMachineOperand> Operands) {
1441  SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1442  for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1443    if (!Operands[I].TiedDefIdx)
1444      continue;
1445    // The parser ensures that this operand is a register use, so we just have
1446    // to check the tied-def operand.
1447    unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1448    if (DefIdx >= E)
1449      return error(Operands[I].Begin,
1450                   Twine("use of invalid tied-def operand index '" +
1451                         Twine(DefIdx) + "'; instruction has only ") +
1452                       Twine(E) + " operands");
1453    const auto &DefOperand = Operands[DefIdx].Operand;
1454    if (!DefOperand.isReg() || !DefOperand.isDef())
1455      // FIXME: add note with the def operand.
1456      return error(Operands[I].Begin,
1457                   Twine("use of invalid tied-def operand index '") +
1458                       Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1459                       " isn't a defined register");
1460    // Check that the tied-def operand wasn't tied elsewhere.
1461    for (const auto &TiedPair : TiedRegisterPairs) {
1462      if (TiedPair.first == DefIdx)
1463        return error(Operands[I].Begin,
1464                     Twine("the tied-def operand #") + Twine(DefIdx) +
1465                         " is already tied with another register operand");
1466    }
1467    TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1468  }
1469  // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1470  // indices must be less than tied max.
1471  for (const auto &TiedPair : TiedRegisterPairs)
1472    MI.tieOperands(TiedPair.first, TiedPair.second);
1473  return false;
1474}
1475
1476bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1477                                    Optional<unsigned> &TiedDefIdx,
1478                                    bool IsDef) {
1479  unsigned Flags = IsDef ? RegState::Define : 0;
1480  while (Token.isRegisterFlag()) {
1481    if (parseRegisterFlag(Flags))
1482      return true;
1483  }
1484  if (!Token.isRegister())
1485    return error("expected a register after register flags");
1486  Register Reg;
1487  VRegInfo *RegInfo;
1488  if (parseRegister(Reg, RegInfo))
1489    return true;
1490  lex();
1491  unsigned SubReg = 0;
1492  if (Token.is(MIToken::dot)) {
1493    if (parseSubRegisterIndex(SubReg))
1494      return true;
1495    if (!Register::isVirtualRegister(Reg))
1496      return error("subregister index expects a virtual register");
1497  }
1498  if (Token.is(MIToken::colon)) {
1499    if (!Register::isVirtualRegister(Reg))
1500      return error("register class specification expects a virtual register");
1501    lex();
1502    if (parseRegisterClassOrBank(*RegInfo))
1503        return true;
1504  }
1505  MachineRegisterInfo &MRI = MF.getRegInfo();
1506  if ((Flags & RegState::Define) == 0) {
1507    if (consumeIfPresent(MIToken::lparen)) {
1508      unsigned Idx;
1509      if (!parseRegisterTiedDefIndex(Idx))
1510        TiedDefIdx = Idx;
1511      else {
1512        // Try a redundant low-level type.
1513        LLT Ty;
1514        if (parseLowLevelType(Token.location(), Ty))
1515          return error("expected tied-def or low-level type after '('");
1516
1517        if (expectAndConsume(MIToken::rparen))
1518          return true;
1519
1520        if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1521          return error("inconsistent type for generic virtual register");
1522
1523        MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1524        MRI.setType(Reg, Ty);
1525      }
1526    }
1527  } else if (consumeIfPresent(MIToken::lparen)) {
1528    // Virtual registers may have a tpe with GlobalISel.
1529    if (!Register::isVirtualRegister(Reg))
1530      return error("unexpected type on physical register");
1531
1532    LLT Ty;
1533    if (parseLowLevelType(Token.location(), Ty))
1534      return true;
1535
1536    if (expectAndConsume(MIToken::rparen))
1537      return true;
1538
1539    if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1540      return error("inconsistent type for generic virtual register");
1541
1542    MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1543    MRI.setType(Reg, Ty);
1544  } else if (Register::isVirtualRegister(Reg)) {
1545    // Generic virtual registers must have a type.
1546    // If we end up here this means the type hasn't been specified and
1547    // this is bad!
1548    if (RegInfo->Kind == VRegInfo::GENERIC ||
1549        RegInfo->Kind == VRegInfo::REGBANK)
1550      return error("generic virtual registers must have a type");
1551  }
1552  Dest = MachineOperand::CreateReg(
1553      Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1554      Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1555      Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1556      Flags & RegState::InternalRead, Flags & RegState::Renamable);
1557
1558  return false;
1559}
1560
1561bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1562  assert(Token.is(MIToken::IntegerLiteral));
1563  const APSInt &Int = Token.integerValue();
1564  if (Int.getMinSignedBits() > 64)
1565    return error("integer literal is too large to be an immediate operand");
1566  Dest = MachineOperand::CreateImm(Int.getExtValue());
1567  lex();
1568  return false;
1569}
1570
1571bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1572                                      const unsigned OpIdx,
1573                                      MachineOperand &Dest,
1574                                      const MIRFormatter &MF) {
1575  assert(Token.is(MIToken::dot));
1576  auto Loc = Token.location(); // record start position
1577  size_t Len = 1;              // for "."
1578  lex();
1579
1580  // Handle the case that mnemonic starts with number.
1581  if (Token.is(MIToken::IntegerLiteral)) {
1582    Len += Token.range().size();
1583    lex();
1584  }
1585
1586  StringRef Src;
1587  if (Token.is(MIToken::comma))
1588    Src = StringRef(Loc, Len);
1589  else {
1590    assert(Token.is(MIToken::Identifier));
1591    Src = StringRef(Loc, Len + Token.stringValue().size());
1592  }
1593  int64_t Val;
1594  if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1595                          [this](StringRef::iterator Loc, const Twine &Msg)
1596                              -> bool { return error(Loc, Msg); }))
1597    return true;
1598
1599  Dest = MachineOperand::CreateImm(Val);
1600  if (!Token.is(MIToken::comma))
1601    lex();
1602  return false;
1603}
1604
1605static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1606                            PerFunctionMIParsingState &PFS, const Constant *&C,
1607                            ErrorCallbackType ErrCB) {
1608  auto Source = StringValue.str(); // The source has to be null terminated.
1609  SMDiagnostic Err;
1610  C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1611                         &PFS.IRSlots);
1612  if (!C)
1613    return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1614  return false;
1615}
1616
1617bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1618                               const Constant *&C) {
1619  return ::parseIRConstant(
1620      Loc, StringValue, PFS, C,
1621      [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1622        return error(Loc, Msg);
1623      });
1624}
1625
1626bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1627  if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1628    return true;
1629  lex();
1630  return false;
1631}
1632
1633// See LLT implemntation for bit size limits.
1634static bool verifyScalarSize(uint64_t Size) {
1635  return Size != 0 && isUInt<16>(Size);
1636}
1637
1638static bool verifyVectorElementCount(uint64_t NumElts) {
1639  return NumElts != 0 && isUInt<16>(NumElts);
1640}
1641
1642static bool verifyAddrSpace(uint64_t AddrSpace) {
1643  return isUInt<24>(AddrSpace);
1644}
1645
1646bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1647  if (Token.range().front() == 's' || Token.range().front() == 'p') {
1648    StringRef SizeStr = Token.range().drop_front();
1649    if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1650      return error("expected integers after 's'/'p' type character");
1651  }
1652
1653  if (Token.range().front() == 's') {
1654    auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1655    if (!verifyScalarSize(ScalarSize))
1656      return error("invalid size for scalar type");
1657
1658    Ty = LLT::scalar(ScalarSize);
1659    lex();
1660    return false;
1661  } else if (Token.range().front() == 'p') {
1662    const DataLayout &DL = MF.getDataLayout();
1663    uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1664    if (!verifyAddrSpace(AS))
1665      return error("invalid address space number");
1666
1667    Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1668    lex();
1669    return false;
1670  }
1671
1672  // Now we're looking for a vector.
1673  if (Token.isNot(MIToken::less))
1674    return error(Loc,
1675                 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1676  lex();
1677
1678  if (Token.isNot(MIToken::IntegerLiteral))
1679    return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1680  uint64_t NumElements = Token.integerValue().getZExtValue();
1681  if (!verifyVectorElementCount(NumElements))
1682    return error("invalid number of vector elements");
1683
1684  lex();
1685
1686  if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1687    return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1688  lex();
1689
1690  if (Token.range().front() != 's' && Token.range().front() != 'p')
1691    return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1692  StringRef SizeStr = Token.range().drop_front();
1693  if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1694    return error("expected integers after 's'/'p' type character");
1695
1696  if (Token.range().front() == 's') {
1697    auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1698    if (!verifyScalarSize(ScalarSize))
1699      return error("invalid size for scalar type");
1700    Ty = LLT::scalar(ScalarSize);
1701  } else if (Token.range().front() == 'p') {
1702    const DataLayout &DL = MF.getDataLayout();
1703    uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1704    if (!verifyAddrSpace(AS))
1705      return error("invalid address space number");
1706
1707    Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1708  } else
1709    return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1710  lex();
1711
1712  if (Token.isNot(MIToken::greater))
1713    return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1714  lex();
1715
1716  Ty = LLT::vector(NumElements, Ty);
1717  return false;
1718}
1719
1720bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1721  assert(Token.is(MIToken::Identifier));
1722  StringRef TypeStr = Token.range();
1723  if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1724      TypeStr.front() != 'p')
1725    return error(
1726        "a typed immediate operand should start with one of 'i', 's', or 'p'");
1727  StringRef SizeStr = Token.range().drop_front();
1728  if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1729    return error("expected integers after 'i'/'s'/'p' type character");
1730
1731  auto Loc = Token.location();
1732  lex();
1733  if (Token.isNot(MIToken::IntegerLiteral)) {
1734    if (Token.isNot(MIToken::Identifier) ||
1735        !(Token.range() == "true" || Token.range() == "false"))
1736      return error("expected an integer literal");
1737  }
1738  const Constant *C = nullptr;
1739  if (parseIRConstant(Loc, C))
1740    return true;
1741  Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1742  return false;
1743}
1744
1745bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1746  auto Loc = Token.location();
1747  lex();
1748  if (Token.isNot(MIToken::FloatingPointLiteral) &&
1749      Token.isNot(MIToken::HexLiteral))
1750    return error("expected a floating point literal");
1751  const Constant *C = nullptr;
1752  if (parseIRConstant(Loc, C))
1753    return true;
1754  Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1755  return false;
1756}
1757
1758static bool getHexUint(const MIToken &Token, APInt &Result) {
1759  assert(Token.is(MIToken::HexLiteral));
1760  StringRef S = Token.range();
1761  assert(S[0] == '0' && tolower(S[1]) == 'x');
1762  // This could be a floating point literal with a special prefix.
1763  if (!isxdigit(S[2]))
1764    return true;
1765  StringRef V = S.substr(2);
1766  APInt A(V.size()*4, V, 16);
1767
1768  // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
1769  // sure it isn't the case before constructing result.
1770  unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
1771  Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1772  return false;
1773}
1774
1775static bool getUnsigned(const MIToken &Token, unsigned &Result,
1776                        ErrorCallbackType ErrCB) {
1777  if (Token.hasIntegerValue()) {
1778    const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1779    uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1780    if (Val64 == Limit)
1781      return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1782    Result = Val64;
1783    return false;
1784  }
1785  if (Token.is(MIToken::HexLiteral)) {
1786    APInt A;
1787    if (getHexUint(Token, A))
1788      return true;
1789    if (A.getBitWidth() > 32)
1790      return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1791    Result = A.getZExtValue();
1792    return false;
1793  }
1794  return true;
1795}
1796
1797bool MIParser::getUnsigned(unsigned &Result) {
1798  return ::getUnsigned(
1799      Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1800        return error(Loc, Msg);
1801      });
1802}
1803
1804bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1805  assert(Token.is(MIToken::MachineBasicBlock) ||
1806         Token.is(MIToken::MachineBasicBlockLabel));
1807  unsigned Number;
1808  if (getUnsigned(Number))
1809    return true;
1810  auto MBBInfo = PFS.MBBSlots.find(Number);
1811  if (MBBInfo == PFS.MBBSlots.end())
1812    return error(Twine("use of undefined machine basic block #") +
1813                 Twine(Number));
1814  MBB = MBBInfo->second;
1815  // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1816  // we drop the <irname> from the bb.<id>.<irname> format.
1817  if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1818    return error(Twine("the name of machine basic block #") + Twine(Number) +
1819                 " isn't '" + Token.stringValue() + "'");
1820  return false;
1821}
1822
1823bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1824  MachineBasicBlock *MBB;
1825  if (parseMBBReference(MBB))
1826    return true;
1827  Dest = MachineOperand::CreateMBB(MBB);
1828  lex();
1829  return false;
1830}
1831
1832bool MIParser::parseStackFrameIndex(int &FI) {
1833  assert(Token.is(MIToken::StackObject));
1834  unsigned ID;
1835  if (getUnsigned(ID))
1836    return true;
1837  auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1838  if (ObjectInfo == PFS.StackObjectSlots.end())
1839    return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1840                 "'");
1841  StringRef Name;
1842  if (const auto *Alloca =
1843          MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1844    Name = Alloca->getName();
1845  if (!Token.stringValue().empty() && Token.stringValue() != Name)
1846    return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1847                 "' isn't '" + Token.stringValue() + "'");
1848  lex();
1849  FI = ObjectInfo->second;
1850  return false;
1851}
1852
1853bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1854  int FI;
1855  if (parseStackFrameIndex(FI))
1856    return true;
1857  Dest = MachineOperand::CreateFI(FI);
1858  return false;
1859}
1860
1861bool MIParser::parseFixedStackFrameIndex(int &FI) {
1862  assert(Token.is(MIToken::FixedStackObject));
1863  unsigned ID;
1864  if (getUnsigned(ID))
1865    return true;
1866  auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1867  if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1868    return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1869                 Twine(ID) + "'");
1870  lex();
1871  FI = ObjectInfo->second;
1872  return false;
1873}
1874
1875bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1876  int FI;
1877  if (parseFixedStackFrameIndex(FI))
1878    return true;
1879  Dest = MachineOperand::CreateFI(FI);
1880  return false;
1881}
1882
1883static bool parseGlobalValue(const MIToken &Token,
1884                             PerFunctionMIParsingState &PFS, GlobalValue *&GV,
1885                             ErrorCallbackType ErrCB) {
1886  switch (Token.kind()) {
1887  case MIToken::NamedGlobalValue: {
1888    const Module *M = PFS.MF.getFunction().getParent();
1889    GV = M->getNamedValue(Token.stringValue());
1890    if (!GV)
1891      return ErrCB(Token.location(), Twine("use of undefined global value '") +
1892                                         Token.range() + "'");
1893    break;
1894  }
1895  case MIToken::GlobalValue: {
1896    unsigned GVIdx;
1897    if (getUnsigned(Token, GVIdx, ErrCB))
1898      return true;
1899    if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1900      return ErrCB(Token.location(), Twine("use of undefined global value '@") +
1901                                         Twine(GVIdx) + "'");
1902    GV = PFS.IRSlots.GlobalValues[GVIdx];
1903    break;
1904  }
1905  default:
1906    llvm_unreachable("The current token should be a global value");
1907  }
1908  return false;
1909}
1910
1911bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1912  return ::parseGlobalValue(
1913      Token, PFS, GV,
1914      [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1915        return error(Loc, Msg);
1916      });
1917}
1918
1919bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1920  GlobalValue *GV = nullptr;
1921  if (parseGlobalValue(GV))
1922    return true;
1923  lex();
1924  Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1925  if (parseOperandsOffset(Dest))
1926    return true;
1927  return false;
1928}
1929
1930bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1931  assert(Token.is(MIToken::ConstantPoolItem));
1932  unsigned ID;
1933  if (getUnsigned(ID))
1934    return true;
1935  auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1936  if (ConstantInfo == PFS.ConstantPoolSlots.end())
1937    return error("use of undefined constant '%const." + Twine(ID) + "'");
1938  lex();
1939  Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1940  if (parseOperandsOffset(Dest))
1941    return true;
1942  return false;
1943}
1944
1945bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1946  assert(Token.is(MIToken::JumpTableIndex));
1947  unsigned ID;
1948  if (getUnsigned(ID))
1949    return true;
1950  auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1951  if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1952    return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1953  lex();
1954  Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1955  return false;
1956}
1957
1958bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1959  assert(Token.is(MIToken::ExternalSymbol));
1960  const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1961  lex();
1962  Dest = MachineOperand::CreateES(Symbol);
1963  if (parseOperandsOffset(Dest))
1964    return true;
1965  return false;
1966}
1967
1968bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1969  assert(Token.is(MIToken::MCSymbol));
1970  MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1971  lex();
1972  Dest = MachineOperand::CreateMCSymbol(Symbol);
1973  if (parseOperandsOffset(Dest))
1974    return true;
1975  return false;
1976}
1977
1978bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1979  assert(Token.is(MIToken::SubRegisterIndex));
1980  StringRef Name = Token.stringValue();
1981  unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
1982  if (SubRegIndex == 0)
1983    return error(Twine("unknown subregister index '") + Name + "'");
1984  lex();
1985  Dest = MachineOperand::CreateImm(SubRegIndex);
1986  return false;
1987}
1988
1989bool MIParser::parseMDNode(MDNode *&Node) {
1990  assert(Token.is(MIToken::exclaim));
1991
1992  auto Loc = Token.location();
1993  lex();
1994  if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1995    return error("expected metadata id after '!'");
1996  unsigned ID;
1997  if (getUnsigned(ID))
1998    return true;
1999  auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
2000  if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
2001    return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
2002  lex();
2003  Node = NodeInfo->second.get();
2004  return false;
2005}
2006
2007bool MIParser::parseDIExpression(MDNode *&Expr) {
2008  assert(Token.is(MIToken::md_diexpr));
2009  lex();
2010
2011  // FIXME: Share this parsing with the IL parser.
2012  SmallVector<uint64_t, 8> Elements;
2013
2014  if (expectAndConsume(MIToken::lparen))
2015    return true;
2016
2017  if (Token.isNot(MIToken::rparen)) {
2018    do {
2019      if (Token.is(MIToken::Identifier)) {
2020        if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2021          lex();
2022          Elements.push_back(Op);
2023          continue;
2024        }
2025        if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2026          lex();
2027          Elements.push_back(Enc);
2028          continue;
2029        }
2030        return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2031      }
2032
2033      if (Token.isNot(MIToken::IntegerLiteral) ||
2034          Token.integerValue().isSigned())
2035        return error("expected unsigned integer");
2036
2037      auto &U = Token.integerValue();
2038      if (U.ugt(UINT64_MAX))
2039        return error("element too large, limit is " + Twine(UINT64_MAX));
2040      Elements.push_back(U.getZExtValue());
2041      lex();
2042
2043    } while (consumeIfPresent(MIToken::comma));
2044  }
2045
2046  if (expectAndConsume(MIToken::rparen))
2047    return true;
2048
2049  Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2050  return false;
2051}
2052
2053bool MIParser::parseDILocation(MDNode *&Loc) {
2054  assert(Token.is(MIToken::md_dilocation));
2055  lex();
2056
2057  bool HaveLine = false;
2058  unsigned Line = 0;
2059  unsigned Column = 0;
2060  MDNode *Scope = nullptr;
2061  MDNode *InlinedAt = nullptr;
2062  bool ImplicitCode = false;
2063
2064  if (expectAndConsume(MIToken::lparen))
2065    return true;
2066
2067  if (Token.isNot(MIToken::rparen)) {
2068    do {
2069      if (Token.is(MIToken::Identifier)) {
2070        if (Token.stringValue() == "line") {
2071          lex();
2072          if (expectAndConsume(MIToken::colon))
2073            return true;
2074          if (Token.isNot(MIToken::IntegerLiteral) ||
2075              Token.integerValue().isSigned())
2076            return error("expected unsigned integer");
2077          Line = Token.integerValue().getZExtValue();
2078          HaveLine = true;
2079          lex();
2080          continue;
2081        }
2082        if (Token.stringValue() == "column") {
2083          lex();
2084          if (expectAndConsume(MIToken::colon))
2085            return true;
2086          if (Token.isNot(MIToken::IntegerLiteral) ||
2087              Token.integerValue().isSigned())
2088            return error("expected unsigned integer");
2089          Column = Token.integerValue().getZExtValue();
2090          lex();
2091          continue;
2092        }
2093        if (Token.stringValue() == "scope") {
2094          lex();
2095          if (expectAndConsume(MIToken::colon))
2096            return true;
2097          if (parseMDNode(Scope))
2098            return error("expected metadata node");
2099          if (!isa<DIScope>(Scope))
2100            return error("expected DIScope node");
2101          continue;
2102        }
2103        if (Token.stringValue() == "inlinedAt") {
2104          lex();
2105          if (expectAndConsume(MIToken::colon))
2106            return true;
2107          if (Token.is(MIToken::exclaim)) {
2108            if (parseMDNode(InlinedAt))
2109              return true;
2110          } else if (Token.is(MIToken::md_dilocation)) {
2111            if (parseDILocation(InlinedAt))
2112              return true;
2113          } else
2114            return error("expected metadata node");
2115          if (!isa<DILocation>(InlinedAt))
2116            return error("expected DILocation node");
2117          continue;
2118        }
2119        if (Token.stringValue() == "isImplicitCode") {
2120          lex();
2121          if (expectAndConsume(MIToken::colon))
2122            return true;
2123          if (!Token.is(MIToken::Identifier))
2124            return error("expected true/false");
2125          // As far as I can see, we don't have any existing need for parsing
2126          // true/false in MIR yet. Do it ad-hoc until there's something else
2127          // that needs it.
2128          if (Token.stringValue() == "true")
2129            ImplicitCode = true;
2130          else if (Token.stringValue() == "false")
2131            ImplicitCode = false;
2132          else
2133            return error("expected true/false");
2134          lex();
2135          continue;
2136        }
2137      }
2138      return error(Twine("invalid DILocation argument '") +
2139                   Token.stringValue() + "'");
2140    } while (consumeIfPresent(MIToken::comma));
2141  }
2142
2143  if (expectAndConsume(MIToken::rparen))
2144    return true;
2145
2146  if (!HaveLine)
2147    return error("DILocation requires line number");
2148  if (!Scope)
2149    return error("DILocation requires a scope");
2150
2151  Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2152                        InlinedAt, ImplicitCode);
2153  return false;
2154}
2155
2156bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2157  MDNode *Node = nullptr;
2158  if (Token.is(MIToken::exclaim)) {
2159    if (parseMDNode(Node))
2160      return true;
2161  } else if (Token.is(MIToken::md_diexpr)) {
2162    if (parseDIExpression(Node))
2163      return true;
2164  }
2165  Dest = MachineOperand::CreateMetadata(Node);
2166  return false;
2167}
2168
2169bool MIParser::parseCFIOffset(int &Offset) {
2170  if (Token.isNot(MIToken::IntegerLiteral))
2171    return error("expected a cfi offset");
2172  if (Token.integerValue().getMinSignedBits() > 32)
2173    return error("expected a 32 bit integer (the cfi offset is too large)");
2174  Offset = (int)Token.integerValue().getExtValue();
2175  lex();
2176  return false;
2177}
2178
2179bool MIParser::parseCFIRegister(Register &Reg) {
2180  if (Token.isNot(MIToken::NamedRegister))
2181    return error("expected a cfi register");
2182  Register LLVMReg;
2183  if (parseNamedRegister(LLVMReg))
2184    return true;
2185  const auto *TRI = MF.getSubtarget().getRegisterInfo();
2186  assert(TRI && "Expected target register info");
2187  int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2188  if (DwarfReg < 0)
2189    return error("invalid DWARF register");
2190  Reg = (unsigned)DwarfReg;
2191  lex();
2192  return false;
2193}
2194
2195bool MIParser::parseCFIEscapeValues(std::string &Values) {
2196  do {
2197    if (Token.isNot(MIToken::HexLiteral))
2198      return error("expected a hexadecimal literal");
2199    unsigned Value;
2200    if (getUnsigned(Value))
2201      return true;
2202    if (Value > UINT8_MAX)
2203      return error("expected a 8-bit integer (too large)");
2204    Values.push_back(static_cast<uint8_t>(Value));
2205    lex();
2206  } while (consumeIfPresent(MIToken::comma));
2207  return false;
2208}
2209
2210bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2211  auto Kind = Token.kind();
2212  lex();
2213  int Offset;
2214  Register Reg;
2215  unsigned CFIIndex;
2216  switch (Kind) {
2217  case MIToken::kw_cfi_same_value:
2218    if (parseCFIRegister(Reg))
2219      return true;
2220    CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2221    break;
2222  case MIToken::kw_cfi_offset:
2223    if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2224        parseCFIOffset(Offset))
2225      return true;
2226    CFIIndex =
2227        MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2228    break;
2229  case MIToken::kw_cfi_rel_offset:
2230    if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2231        parseCFIOffset(Offset))
2232      return true;
2233    CFIIndex = MF.addFrameInst(
2234        MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2235    break;
2236  case MIToken::kw_cfi_def_cfa_register:
2237    if (parseCFIRegister(Reg))
2238      return true;
2239    CFIIndex =
2240        MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2241    break;
2242  case MIToken::kw_cfi_def_cfa_offset:
2243    if (parseCFIOffset(Offset))
2244      return true;
2245    CFIIndex =
2246        MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset));
2247    break;
2248  case MIToken::kw_cfi_adjust_cfa_offset:
2249    if (parseCFIOffset(Offset))
2250      return true;
2251    CFIIndex = MF.addFrameInst(
2252        MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2253    break;
2254  case MIToken::kw_cfi_def_cfa:
2255    if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2256        parseCFIOffset(Offset))
2257      return true;
2258    CFIIndex =
2259        MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset));
2260    break;
2261  case MIToken::kw_cfi_remember_state:
2262    CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2263    break;
2264  case MIToken::kw_cfi_restore:
2265    if (parseCFIRegister(Reg))
2266      return true;
2267    CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2268    break;
2269  case MIToken::kw_cfi_restore_state:
2270    CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2271    break;
2272  case MIToken::kw_cfi_undefined:
2273    if (parseCFIRegister(Reg))
2274      return true;
2275    CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2276    break;
2277  case MIToken::kw_cfi_register: {
2278    Register Reg2;
2279    if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2280        parseCFIRegister(Reg2))
2281      return true;
2282
2283    CFIIndex =
2284        MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2285    break;
2286  }
2287  case MIToken::kw_cfi_window_save:
2288    CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2289    break;
2290  case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2291    CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2292    break;
2293  case MIToken::kw_cfi_escape: {
2294    std::string Values;
2295    if (parseCFIEscapeValues(Values))
2296      return true;
2297    CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2298    break;
2299  }
2300  default:
2301    // TODO: Parse the other CFI operands.
2302    llvm_unreachable("The current token should be a cfi operand");
2303  }
2304  Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2305  return false;
2306}
2307
2308bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2309  switch (Token.kind()) {
2310  case MIToken::NamedIRBlock: {
2311    BB = dyn_cast_or_null<BasicBlock>(
2312        F.getValueSymbolTable()->lookup(Token.stringValue()));
2313    if (!BB)
2314      return error(Twine("use of undefined IR block '") + Token.range() + "'");
2315    break;
2316  }
2317  case MIToken::IRBlock: {
2318    unsigned SlotNumber = 0;
2319    if (getUnsigned(SlotNumber))
2320      return true;
2321    BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2322    if (!BB)
2323      return error(Twine("use of undefined IR block '%ir-block.") +
2324                   Twine(SlotNumber) + "'");
2325    break;
2326  }
2327  default:
2328    llvm_unreachable("The current token should be an IR block reference");
2329  }
2330  return false;
2331}
2332
2333bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2334  assert(Token.is(MIToken::kw_blockaddress));
2335  lex();
2336  if (expectAndConsume(MIToken::lparen))
2337    return true;
2338  if (Token.isNot(MIToken::GlobalValue) &&
2339      Token.isNot(MIToken::NamedGlobalValue))
2340    return error("expected a global value");
2341  GlobalValue *GV = nullptr;
2342  if (parseGlobalValue(GV))
2343    return true;
2344  auto *F = dyn_cast<Function>(GV);
2345  if (!F)
2346    return error("expected an IR function reference");
2347  lex();
2348  if (expectAndConsume(MIToken::comma))
2349    return true;
2350  BasicBlock *BB = nullptr;
2351  if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2352    return error("expected an IR block reference");
2353  if (parseIRBlock(BB, *F))
2354    return true;
2355  lex();
2356  if (expectAndConsume(MIToken::rparen))
2357    return true;
2358  Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2359  if (parseOperandsOffset(Dest))
2360    return true;
2361  return false;
2362}
2363
2364bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2365  assert(Token.is(MIToken::kw_intrinsic));
2366  lex();
2367  if (expectAndConsume(MIToken::lparen))
2368    return error("expected syntax intrinsic(@llvm.whatever)");
2369
2370  if (Token.isNot(MIToken::NamedGlobalValue))
2371    return error("expected syntax intrinsic(@llvm.whatever)");
2372
2373  std::string Name = std::string(Token.stringValue());
2374  lex();
2375
2376  if (expectAndConsume(MIToken::rparen))
2377    return error("expected ')' to terminate intrinsic name");
2378
2379  // Find out what intrinsic we're dealing with, first try the global namespace
2380  // and then the target's private intrinsics if that fails.
2381  const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2382  Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2383  if (ID == Intrinsic::not_intrinsic && TII)
2384    ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2385
2386  if (ID == Intrinsic::not_intrinsic)
2387    return error("unknown intrinsic name");
2388  Dest = MachineOperand::CreateIntrinsicID(ID);
2389
2390  return false;
2391}
2392
2393bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2394  assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2395  bool IsFloat = Token.is(MIToken::kw_floatpred);
2396  lex();
2397
2398  if (expectAndConsume(MIToken::lparen))
2399    return error("expected syntax intpred(whatever) or floatpred(whatever");
2400
2401  if (Token.isNot(MIToken::Identifier))
2402    return error("whatever");
2403
2404  CmpInst::Predicate Pred;
2405  if (IsFloat) {
2406    Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2407               .Case("false", CmpInst::FCMP_FALSE)
2408               .Case("oeq", CmpInst::FCMP_OEQ)
2409               .Case("ogt", CmpInst::FCMP_OGT)
2410               .Case("oge", CmpInst::FCMP_OGE)
2411               .Case("olt", CmpInst::FCMP_OLT)
2412               .Case("ole", CmpInst::FCMP_OLE)
2413               .Case("one", CmpInst::FCMP_ONE)
2414               .Case("ord", CmpInst::FCMP_ORD)
2415               .Case("uno", CmpInst::FCMP_UNO)
2416               .Case("ueq", CmpInst::FCMP_UEQ)
2417               .Case("ugt", CmpInst::FCMP_UGT)
2418               .Case("uge", CmpInst::FCMP_UGE)
2419               .Case("ult", CmpInst::FCMP_ULT)
2420               .Case("ule", CmpInst::FCMP_ULE)
2421               .Case("une", CmpInst::FCMP_UNE)
2422               .Case("true", CmpInst::FCMP_TRUE)
2423               .Default(CmpInst::BAD_FCMP_PREDICATE);
2424    if (!CmpInst::isFPPredicate(Pred))
2425      return error("invalid floating-point predicate");
2426  } else {
2427    Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2428               .Case("eq", CmpInst::ICMP_EQ)
2429               .Case("ne", CmpInst::ICMP_NE)
2430               .Case("sgt", CmpInst::ICMP_SGT)
2431               .Case("sge", CmpInst::ICMP_SGE)
2432               .Case("slt", CmpInst::ICMP_SLT)
2433               .Case("sle", CmpInst::ICMP_SLE)
2434               .Case("ugt", CmpInst::ICMP_UGT)
2435               .Case("uge", CmpInst::ICMP_UGE)
2436               .Case("ult", CmpInst::ICMP_ULT)
2437               .Case("ule", CmpInst::ICMP_ULE)
2438               .Default(CmpInst::BAD_ICMP_PREDICATE);
2439    if (!CmpInst::isIntPredicate(Pred))
2440      return error("invalid integer predicate");
2441  }
2442
2443  lex();
2444  Dest = MachineOperand::CreatePredicate(Pred);
2445  if (expectAndConsume(MIToken::rparen))
2446    return error("predicate should be terminated by ')'.");
2447
2448  return false;
2449}
2450
2451bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2452  assert(Token.is(MIToken::kw_shufflemask));
2453
2454  lex();
2455  if (expectAndConsume(MIToken::lparen))
2456    return error("expected syntax shufflemask(<integer or undef>, ...)");
2457
2458  SmallVector<int, 32> ShufMask;
2459  do {
2460    if (Token.is(MIToken::kw_undef)) {
2461      ShufMask.push_back(-1);
2462    } else if (Token.is(MIToken::IntegerLiteral)) {
2463      const APSInt &Int = Token.integerValue();
2464      ShufMask.push_back(Int.getExtValue());
2465    } else
2466      return error("expected integer constant");
2467
2468    lex();
2469  } while (consumeIfPresent(MIToken::comma));
2470
2471  if (expectAndConsume(MIToken::rparen))
2472    return error("shufflemask should be terminated by ')'.");
2473
2474  ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2475  Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2476  return false;
2477}
2478
2479bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2480  assert(Token.is(MIToken::kw_target_index));
2481  lex();
2482  if (expectAndConsume(MIToken::lparen))
2483    return true;
2484  if (Token.isNot(MIToken::Identifier))
2485    return error("expected the name of the target index");
2486  int Index = 0;
2487  if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2488    return error("use of undefined target index '" + Token.stringValue() + "'");
2489  lex();
2490  if (expectAndConsume(MIToken::rparen))
2491    return true;
2492  Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2493  if (parseOperandsOffset(Dest))
2494    return true;
2495  return false;
2496}
2497
2498bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2499  assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2500  lex();
2501  if (expectAndConsume(MIToken::lparen))
2502    return true;
2503
2504  uint32_t *Mask = MF.allocateRegMask();
2505  while (true) {
2506    if (Token.isNot(MIToken::NamedRegister))
2507      return error("expected a named register");
2508    Register Reg;
2509    if (parseNamedRegister(Reg))
2510      return true;
2511    lex();
2512    Mask[Reg / 32] |= 1U << (Reg % 32);
2513    // TODO: Report an error if the same register is used more than once.
2514    if (Token.isNot(MIToken::comma))
2515      break;
2516    lex();
2517  }
2518
2519  if (expectAndConsume(MIToken::rparen))
2520    return true;
2521  Dest = MachineOperand::CreateRegMask(Mask);
2522  return false;
2523}
2524
2525bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2526  assert(Token.is(MIToken::kw_liveout));
2527  uint32_t *Mask = MF.allocateRegMask();
2528  lex();
2529  if (expectAndConsume(MIToken::lparen))
2530    return true;
2531  while (true) {
2532    if (Token.isNot(MIToken::NamedRegister))
2533      return error("expected a named register");
2534    Register Reg;
2535    if (parseNamedRegister(Reg))
2536      return true;
2537    lex();
2538    Mask[Reg / 32] |= 1U << (Reg % 32);
2539    // TODO: Report an error if the same register is used more than once.
2540    if (Token.isNot(MIToken::comma))
2541      break;
2542    lex();
2543  }
2544  if (expectAndConsume(MIToken::rparen))
2545    return true;
2546  Dest = MachineOperand::CreateRegLiveOut(Mask);
2547  return false;
2548}
2549
2550bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2551                                   MachineOperand &Dest,
2552                                   Optional<unsigned> &TiedDefIdx) {
2553  switch (Token.kind()) {
2554  case MIToken::kw_implicit:
2555  case MIToken::kw_implicit_define:
2556  case MIToken::kw_def:
2557  case MIToken::kw_dead:
2558  case MIToken::kw_killed:
2559  case MIToken::kw_undef:
2560  case MIToken::kw_internal:
2561  case MIToken::kw_early_clobber:
2562  case MIToken::kw_debug_use:
2563  case MIToken::kw_renamable:
2564  case MIToken::underscore:
2565  case MIToken::NamedRegister:
2566  case MIToken::VirtualRegister:
2567  case MIToken::NamedVirtualRegister:
2568    return parseRegisterOperand(Dest, TiedDefIdx);
2569  case MIToken::IntegerLiteral:
2570    return parseImmediateOperand(Dest);
2571  case MIToken::kw_half:
2572  case MIToken::kw_float:
2573  case MIToken::kw_double:
2574  case MIToken::kw_x86_fp80:
2575  case MIToken::kw_fp128:
2576  case MIToken::kw_ppc_fp128:
2577    return parseFPImmediateOperand(Dest);
2578  case MIToken::MachineBasicBlock:
2579    return parseMBBOperand(Dest);
2580  case MIToken::StackObject:
2581    return parseStackObjectOperand(Dest);
2582  case MIToken::FixedStackObject:
2583    return parseFixedStackObjectOperand(Dest);
2584  case MIToken::GlobalValue:
2585  case MIToken::NamedGlobalValue:
2586    return parseGlobalAddressOperand(Dest);
2587  case MIToken::ConstantPoolItem:
2588    return parseConstantPoolIndexOperand(Dest);
2589  case MIToken::JumpTableIndex:
2590    return parseJumpTableIndexOperand(Dest);
2591  case MIToken::ExternalSymbol:
2592    return parseExternalSymbolOperand(Dest);
2593  case MIToken::MCSymbol:
2594    return parseMCSymbolOperand(Dest);
2595  case MIToken::SubRegisterIndex:
2596    return parseSubRegisterIndexOperand(Dest);
2597  case MIToken::md_diexpr:
2598  case MIToken::exclaim:
2599    return parseMetadataOperand(Dest);
2600  case MIToken::kw_cfi_same_value:
2601  case MIToken::kw_cfi_offset:
2602  case MIToken::kw_cfi_rel_offset:
2603  case MIToken::kw_cfi_def_cfa_register:
2604  case MIToken::kw_cfi_def_cfa_offset:
2605  case MIToken::kw_cfi_adjust_cfa_offset:
2606  case MIToken::kw_cfi_escape:
2607  case MIToken::kw_cfi_def_cfa:
2608  case MIToken::kw_cfi_register:
2609  case MIToken::kw_cfi_remember_state:
2610  case MIToken::kw_cfi_restore:
2611  case MIToken::kw_cfi_restore_state:
2612  case MIToken::kw_cfi_undefined:
2613  case MIToken::kw_cfi_window_save:
2614  case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2615    return parseCFIOperand(Dest);
2616  case MIToken::kw_blockaddress:
2617    return parseBlockAddressOperand(Dest);
2618  case MIToken::kw_intrinsic:
2619    return parseIntrinsicOperand(Dest);
2620  case MIToken::kw_target_index:
2621    return parseTargetIndexOperand(Dest);
2622  case MIToken::kw_liveout:
2623    return parseLiveoutRegisterMaskOperand(Dest);
2624  case MIToken::kw_floatpred:
2625  case MIToken::kw_intpred:
2626    return parsePredicateOperand(Dest);
2627  case MIToken::kw_shufflemask:
2628    return parseShuffleMaskOperand(Dest);
2629  case MIToken::Error:
2630    return true;
2631  case MIToken::Identifier:
2632    if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2633      Dest = MachineOperand::CreateRegMask(RegMask);
2634      lex();
2635      break;
2636    } else if (Token.stringValue() == "CustomRegMask") {
2637      return parseCustomRegisterMaskOperand(Dest);
2638    } else
2639      return parseTypedImmediateOperand(Dest);
2640  case MIToken::dot: {
2641    const auto *TII = MF.getSubtarget().getInstrInfo();
2642    if (const auto *Formatter = TII->getMIRFormatter()) {
2643      return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2644    }
2645    LLVM_FALLTHROUGH;
2646  }
2647  default:
2648    // FIXME: Parse the MCSymbol machine operand.
2649    return error("expected a machine operand");
2650  }
2651  return false;
2652}
2653
2654bool MIParser::parseMachineOperandAndTargetFlags(
2655    const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2656    Optional<unsigned> &TiedDefIdx) {
2657  unsigned TF = 0;
2658  bool HasTargetFlags = false;
2659  if (Token.is(MIToken::kw_target_flags)) {
2660    HasTargetFlags = true;
2661    lex();
2662    if (expectAndConsume(MIToken::lparen))
2663      return true;
2664    if (Token.isNot(MIToken::Identifier))
2665      return error("expected the name of the target flag");
2666    if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2667      if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2668        return error("use of undefined target flag '" + Token.stringValue() +
2669                     "'");
2670    }
2671    lex();
2672    while (Token.is(MIToken::comma)) {
2673      lex();
2674      if (Token.isNot(MIToken::Identifier))
2675        return error("expected the name of the target flag");
2676      unsigned BitFlag = 0;
2677      if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2678        return error("use of undefined target flag '" + Token.stringValue() +
2679                     "'");
2680      // TODO: Report an error when using a duplicate bit target flag.
2681      TF |= BitFlag;
2682      lex();
2683    }
2684    if (expectAndConsume(MIToken::rparen))
2685      return true;
2686  }
2687  auto Loc = Token.location();
2688  if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2689    return true;
2690  if (!HasTargetFlags)
2691    return false;
2692  if (Dest.isReg())
2693    return error(Loc, "register operands can't have target flags");
2694  Dest.setTargetFlags(TF);
2695  return false;
2696}
2697
2698bool MIParser::parseOffset(int64_t &Offset) {
2699  if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2700    return false;
2701  StringRef Sign = Token.range();
2702  bool IsNegative = Token.is(MIToken::minus);
2703  lex();
2704  if (Token.isNot(MIToken::IntegerLiteral))
2705    return error("expected an integer literal after '" + Sign + "'");
2706  if (Token.integerValue().getMinSignedBits() > 64)
2707    return error("expected 64-bit integer (too large)");
2708  Offset = Token.integerValue().getExtValue();
2709  if (IsNegative)
2710    Offset = -Offset;
2711  lex();
2712  return false;
2713}
2714
2715bool MIParser::parseAlignment(unsigned &Alignment) {
2716  assert(Token.is(MIToken::kw_align));
2717  lex();
2718  if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2719    return error("expected an integer literal after 'align'");
2720  if (getUnsigned(Alignment))
2721    return true;
2722  lex();
2723
2724  if (!isPowerOf2_32(Alignment))
2725    return error("expected a power-of-2 literal after 'align'");
2726
2727  return false;
2728}
2729
2730bool MIParser::parseAddrspace(unsigned &Addrspace) {
2731  assert(Token.is(MIToken::kw_addrspace));
2732  lex();
2733  if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2734    return error("expected an integer literal after 'addrspace'");
2735  if (getUnsigned(Addrspace))
2736    return true;
2737  lex();
2738  return false;
2739}
2740
2741bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2742  int64_t Offset = 0;
2743  if (parseOffset(Offset))
2744    return true;
2745  Op.setOffset(Offset);
2746  return false;
2747}
2748
2749static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
2750                         const Value *&V, ErrorCallbackType ErrCB) {
2751  switch (Token.kind()) {
2752  case MIToken::NamedIRValue: {
2753    V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2754    break;
2755  }
2756  case MIToken::IRValue: {
2757    unsigned SlotNumber = 0;
2758    if (getUnsigned(Token, SlotNumber, ErrCB))
2759      return true;
2760    V = PFS.getIRValue(SlotNumber);
2761    break;
2762  }
2763  case MIToken::NamedGlobalValue:
2764  case MIToken::GlobalValue: {
2765    GlobalValue *GV = nullptr;
2766    if (parseGlobalValue(Token, PFS, GV, ErrCB))
2767      return true;
2768    V = GV;
2769    break;
2770  }
2771  case MIToken::QuotedIRValue: {
2772    const Constant *C = nullptr;
2773    if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
2774      return true;
2775    V = C;
2776    break;
2777  }
2778  default:
2779    llvm_unreachable("The current token should be an IR block reference");
2780  }
2781  if (!V)
2782    return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
2783  return false;
2784}
2785
2786bool MIParser::parseIRValue(const Value *&V) {
2787  return ::parseIRValue(
2788      Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2789        return error(Loc, Msg);
2790      });
2791}
2792
2793bool MIParser::getUint64(uint64_t &Result) {
2794  if (Token.hasIntegerValue()) {
2795    if (Token.integerValue().getActiveBits() > 64)
2796      return error("expected 64-bit integer (too large)");
2797    Result = Token.integerValue().getZExtValue();
2798    return false;
2799  }
2800  if (Token.is(MIToken::HexLiteral)) {
2801    APInt A;
2802    if (getHexUint(A))
2803      return true;
2804    if (A.getBitWidth() > 64)
2805      return error("expected 64-bit integer (too large)");
2806    Result = A.getZExtValue();
2807    return false;
2808  }
2809  return true;
2810}
2811
2812bool MIParser::getHexUint(APInt &Result) {
2813  return ::getHexUint(Token, Result);
2814}
2815
2816bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2817  const auto OldFlags = Flags;
2818  switch (Token.kind()) {
2819  case MIToken::kw_volatile:
2820    Flags |= MachineMemOperand::MOVolatile;
2821    break;
2822  case MIToken::kw_non_temporal:
2823    Flags |= MachineMemOperand::MONonTemporal;
2824    break;
2825  case MIToken::kw_dereferenceable:
2826    Flags |= MachineMemOperand::MODereferenceable;
2827    break;
2828  case MIToken::kw_invariant:
2829    Flags |= MachineMemOperand::MOInvariant;
2830    break;
2831  case MIToken::StringConstant: {
2832    MachineMemOperand::Flags TF;
2833    if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
2834      return error("use of undefined target MMO flag '" + Token.stringValue() +
2835                   "'");
2836    Flags |= TF;
2837    break;
2838  }
2839  default:
2840    llvm_unreachable("The current token should be a memory operand flag");
2841  }
2842  if (OldFlags == Flags)
2843    // We know that the same flag is specified more than once when the flags
2844    // weren't modified.
2845    return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2846  lex();
2847  return false;
2848}
2849
2850bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2851  switch (Token.kind()) {
2852  case MIToken::kw_stack:
2853    PSV = MF.getPSVManager().getStack();
2854    break;
2855  case MIToken::kw_got:
2856    PSV = MF.getPSVManager().getGOT();
2857    break;
2858  case MIToken::kw_jump_table:
2859    PSV = MF.getPSVManager().getJumpTable();
2860    break;
2861  case MIToken::kw_constant_pool:
2862    PSV = MF.getPSVManager().getConstantPool();
2863    break;
2864  case MIToken::FixedStackObject: {
2865    int FI;
2866    if (parseFixedStackFrameIndex(FI))
2867      return true;
2868    PSV = MF.getPSVManager().getFixedStack(FI);
2869    // The token was already consumed, so use return here instead of break.
2870    return false;
2871  }
2872  case MIToken::StackObject: {
2873    int FI;
2874    if (parseStackFrameIndex(FI))
2875      return true;
2876    PSV = MF.getPSVManager().getFixedStack(FI);
2877    // The token was already consumed, so use return here instead of break.
2878    return false;
2879  }
2880  case MIToken::kw_call_entry:
2881    lex();
2882    switch (Token.kind()) {
2883    case MIToken::GlobalValue:
2884    case MIToken::NamedGlobalValue: {
2885      GlobalValue *GV = nullptr;
2886      if (parseGlobalValue(GV))
2887        return true;
2888      PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2889      break;
2890    }
2891    case MIToken::ExternalSymbol:
2892      PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2893          MF.createExternalSymbolName(Token.stringValue()));
2894      break;
2895    default:
2896      return error(
2897          "expected a global value or an external symbol after 'call-entry'");
2898    }
2899    break;
2900  case MIToken::kw_custom: {
2901    lex();
2902    const auto *TII = MF.getSubtarget().getInstrInfo();
2903    if (const auto *Formatter = TII->getMIRFormatter()) {
2904      if (Formatter->parseCustomPseudoSourceValue(
2905              Token.stringValue(), MF, PFS, PSV,
2906              [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2907                return error(Loc, Msg);
2908              }))
2909        return true;
2910    } else
2911      return error("unable to parse target custom pseudo source value");
2912    break;
2913  }
2914  default:
2915    llvm_unreachable("The current token should be pseudo source value");
2916  }
2917  lex();
2918  return false;
2919}
2920
2921bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2922  if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2923      Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2924      Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2925      Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
2926    const PseudoSourceValue *PSV = nullptr;
2927    if (parseMemoryPseudoSourceValue(PSV))
2928      return true;
2929    int64_t Offset = 0;
2930    if (parseOffset(Offset))
2931      return true;
2932    Dest = MachinePointerInfo(PSV, Offset);
2933    return false;
2934  }
2935  if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2936      Token.isNot(MIToken::GlobalValue) &&
2937      Token.isNot(MIToken::NamedGlobalValue) &&
2938      Token.isNot(MIToken::QuotedIRValue))
2939    return error("expected an IR value reference");
2940  const Value *V = nullptr;
2941  if (parseIRValue(V))
2942    return true;
2943  if (!V->getType()->isPointerTy())
2944    return error("expected a pointer IR value");
2945  lex();
2946  int64_t Offset = 0;
2947  if (parseOffset(Offset))
2948    return true;
2949  Dest = MachinePointerInfo(V, Offset);
2950  return false;
2951}
2952
2953bool MIParser::parseOptionalScope(LLVMContext &Context,
2954                                  SyncScope::ID &SSID) {
2955  SSID = SyncScope::System;
2956  if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2957    lex();
2958    if (expectAndConsume(MIToken::lparen))
2959      return error("expected '(' in syncscope");
2960
2961    std::string SSN;
2962    if (parseStringConstant(SSN))
2963      return true;
2964
2965    SSID = Context.getOrInsertSyncScopeID(SSN);
2966    if (expectAndConsume(MIToken::rparen))
2967      return error("expected ')' in syncscope");
2968  }
2969
2970  return false;
2971}
2972
2973bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2974  Order = AtomicOrdering::NotAtomic;
2975  if (Token.isNot(MIToken::Identifier))
2976    return false;
2977
2978  Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2979              .Case("unordered", AtomicOrdering::Unordered)
2980              .Case("monotonic", AtomicOrdering::Monotonic)
2981              .Case("acquire", AtomicOrdering::Acquire)
2982              .Case("release", AtomicOrdering::Release)
2983              .Case("acq_rel", AtomicOrdering::AcquireRelease)
2984              .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2985              .Default(AtomicOrdering::NotAtomic);
2986
2987  if (Order != AtomicOrdering::NotAtomic) {
2988    lex();
2989    return false;
2990  }
2991
2992  return error("expected an atomic scope, ordering or a size specification");
2993}
2994
2995bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2996  if (expectAndConsume(MIToken::lparen))
2997    return true;
2998  MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2999  while (Token.isMemoryOperandFlag()) {
3000    if (parseMemoryOperandFlag(Flags))
3001      return true;
3002  }
3003  if (Token.isNot(MIToken::Identifier) ||
3004      (Token.stringValue() != "load" && Token.stringValue() != "store"))
3005    return error("expected 'load' or 'store' memory operation");
3006  if (Token.stringValue() == "load")
3007    Flags |= MachineMemOperand::MOLoad;
3008  else
3009    Flags |= MachineMemOperand::MOStore;
3010  lex();
3011
3012  // Optional 'store' for operands that both load and store.
3013  if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3014    Flags |= MachineMemOperand::MOStore;
3015    lex();
3016  }
3017
3018  // Optional synchronization scope.
3019  SyncScope::ID SSID;
3020  if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3021    return true;
3022
3023  // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3024  AtomicOrdering Order, FailureOrder;
3025  if (parseOptionalAtomicOrdering(Order))
3026    return true;
3027
3028  if (parseOptionalAtomicOrdering(FailureOrder))
3029    return true;
3030
3031  if (Token.isNot(MIToken::IntegerLiteral) &&
3032      Token.isNot(MIToken::kw_unknown_size))
3033    return error("expected the size integer literal or 'unknown-size' after "
3034                 "memory operation");
3035  uint64_t Size;
3036  if (Token.is(MIToken::IntegerLiteral)) {
3037    if (getUint64(Size))
3038      return true;
3039  } else if (Token.is(MIToken::kw_unknown_size)) {
3040    Size = MemoryLocation::UnknownSize;
3041  }
3042  lex();
3043
3044  MachinePointerInfo Ptr = MachinePointerInfo();
3045  if (Token.is(MIToken::Identifier)) {
3046    const char *Word =
3047        ((Flags & MachineMemOperand::MOLoad) &&
3048         (Flags & MachineMemOperand::MOStore))
3049            ? "on"
3050            : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3051    if (Token.stringValue() != Word)
3052      return error(Twine("expected '") + Word + "'");
3053    lex();
3054
3055    if (parseMachinePointerInfo(Ptr))
3056      return true;
3057  }
3058  unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
3059  AAMDNodes AAInfo;
3060  MDNode *Range = nullptr;
3061  while (consumeIfPresent(MIToken::comma)) {
3062    switch (Token.kind()) {
3063    case MIToken::kw_align:
3064      if (parseAlignment(BaseAlignment))
3065        return true;
3066      break;
3067    case MIToken::kw_addrspace:
3068      if (parseAddrspace(Ptr.AddrSpace))
3069        return true;
3070      break;
3071    case MIToken::md_tbaa:
3072      lex();
3073      if (parseMDNode(AAInfo.TBAA))
3074        return true;
3075      break;
3076    case MIToken::md_alias_scope:
3077      lex();
3078      if (parseMDNode(AAInfo.Scope))
3079        return true;
3080      break;
3081    case MIToken::md_noalias:
3082      lex();
3083      if (parseMDNode(AAInfo.NoAlias))
3084        return true;
3085      break;
3086    case MIToken::md_range:
3087      lex();
3088      if (parseMDNode(Range))
3089        return true;
3090      break;
3091    // TODO: Report an error on duplicate metadata nodes.
3092    default:
3093      return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3094                   "'!noalias' or '!range'");
3095    }
3096  }
3097  if (expectAndConsume(MIToken::rparen))
3098    return true;
3099  Dest = MF.getMachineMemOperand(Ptr, Flags, Size, Align(BaseAlignment), AAInfo,
3100                                 Range, SSID, Order, FailureOrder);
3101  return false;
3102}
3103
3104bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3105  assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3106          Token.is(MIToken::kw_post_instr_symbol)) &&
3107         "Invalid token for a pre- post-instruction symbol!");
3108  lex();
3109  if (Token.isNot(MIToken::MCSymbol))
3110    return error("expected a symbol after 'pre-instr-symbol'");
3111  Symbol = getOrCreateMCSymbol(Token.stringValue());
3112  lex();
3113  if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3114      Token.is(MIToken::lbrace))
3115    return false;
3116  if (Token.isNot(MIToken::comma))
3117    return error("expected ',' before the next machine operand");
3118  lex();
3119  return false;
3120}
3121
3122bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3123  assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3124         "Invalid token for a heap alloc marker!");
3125  lex();
3126  parseMDNode(Node);
3127  if (!Node)
3128    return error("expected a MDNode after 'heap-alloc-marker'");
3129  if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3130      Token.is(MIToken::lbrace))
3131    return false;
3132  if (Token.isNot(MIToken::comma))
3133    return error("expected ',' before the next machine operand");
3134  lex();
3135  return false;
3136}
3137
3138static void initSlots2BasicBlocks(
3139    const Function &F,
3140    DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3141  ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3142  MST.incorporateFunction(F);
3143  for (auto &BB : F) {
3144    if (BB.hasName())
3145      continue;
3146    int Slot = MST.getLocalSlot(&BB);
3147    if (Slot == -1)
3148      continue;
3149    Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3150  }
3151}
3152
3153static const BasicBlock *getIRBlockFromSlot(
3154    unsigned Slot,
3155    const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3156  auto BlockInfo = Slots2BasicBlocks.find(Slot);
3157  if (BlockInfo == Slots2BasicBlocks.end())
3158    return nullptr;
3159  return BlockInfo->second;
3160}
3161
3162const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3163  if (Slots2BasicBlocks.empty())
3164    initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3165  return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3166}
3167
3168const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3169  if (&F == &MF.getFunction())
3170    return getIRBlock(Slot);
3171  DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3172  initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3173  return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3174}
3175
3176MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3177  // FIXME: Currently we can't recognize temporary or local symbols and call all
3178  // of the appropriate forms to create them. However, this handles basic cases
3179  // well as most of the special aspects are recognized by a prefix on their
3180  // name, and the input names should already be unique. For test cases, keeping
3181  // the symbol name out of the symbol table isn't terribly important.
3182  return MF.getContext().getOrCreateSymbol(Name);
3183}
3184
3185bool MIParser::parseStringConstant(std::string &Result) {
3186  if (Token.isNot(MIToken::StringConstant))
3187    return error("expected string constant");
3188  Result = std::string(Token.stringValue());
3189  lex();
3190  return false;
3191}
3192
3193bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3194                                             StringRef Src,
3195                                             SMDiagnostic &Error) {
3196  return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3197}
3198
3199bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3200                                    StringRef Src, SMDiagnostic &Error) {
3201  return MIParser(PFS, Error, Src).parseBasicBlocks();
3202}
3203
3204bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3205                             MachineBasicBlock *&MBB, StringRef Src,
3206                             SMDiagnostic &Error) {
3207  return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3208}
3209
3210bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3211                                  Register &Reg, StringRef Src,
3212                                  SMDiagnostic &Error) {
3213  return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3214}
3215
3216bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3217                                       Register &Reg, StringRef Src,
3218                                       SMDiagnostic &Error) {
3219  return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3220}
3221
3222bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3223                                         VRegInfo *&Info, StringRef Src,
3224                                         SMDiagnostic &Error) {
3225  return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3226}
3227
3228bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3229                                     int &FI, StringRef Src,
3230                                     SMDiagnostic &Error) {
3231  return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3232}
3233
3234bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3235                       MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3236  return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3237}
3238
3239bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3240                                PerFunctionMIParsingState &PFS, const Value *&V,
3241                                ErrorCallbackType ErrorCallback) {
3242  MIToken Token;
3243  Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3244    ErrorCallback(Loc, Msg);
3245  });
3246  V = nullptr;
3247
3248  return ::parseIRValue(Token, PFS, V, ErrorCallback);
3249}
3250