1//===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file This file implements the LiveInterval analysis pass which is used
10/// by the Linear Scan Register allocator. This pass linearizes the
11/// basic blocks of the function in DFS order and computes live intervals for
12/// each virtual and physical register.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/LiveIntervals.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/iterator_range.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/CodeGen/LiveInterval.h"
24#include "llvm/CodeGen/LiveIntervalCalc.h"
25#include "llvm/CodeGen/LiveVariables.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineInstrBundle.h"
32#include "llvm/CodeGen/MachineOperand.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/Passes.h"
35#include "llvm/CodeGen/SlotIndexes.h"
36#include "llvm/CodeGen/TargetRegisterInfo.h"
37#include "llvm/CodeGen/TargetSubtargetInfo.h"
38#include "llvm/CodeGen/VirtRegMap.h"
39#include "llvm/Config/llvm-config.h"
40#include "llvm/MC/LaneBitmask.h"
41#include "llvm/MC/MCRegisterInfo.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/BlockFrequency.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include <algorithm>
50#include <cassert>
51#include <cstdint>
52#include <iterator>
53#include <tuple>
54#include <utility>
55
56using namespace llvm;
57
58#define DEBUG_TYPE "regalloc"
59
60char LiveIntervals::ID = 0;
61char &llvm::LiveIntervalsID = LiveIntervals::ID;
62INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
63                "Live Interval Analysis", false, false)
64INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
66INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
67INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
68                "Live Interval Analysis", false, false)
69
70#ifndef NDEBUG
71static cl::opt<bool> EnablePrecomputePhysRegs(
72  "precompute-phys-liveness", cl::Hidden,
73  cl::desc("Eagerly compute live intervals for all physreg units."));
74#else
75static bool EnablePrecomputePhysRegs = false;
76#endif // NDEBUG
77
78namespace llvm {
79
80cl::opt<bool> UseSegmentSetForPhysRegs(
81    "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
82    cl::desc(
83        "Use segment set for the computation of the live ranges of physregs."));
84
85} // end namespace llvm
86
87void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
88  AU.setPreservesCFG();
89  AU.addRequired<AAResultsWrapperPass>();
90  AU.addPreserved<AAResultsWrapperPass>();
91  AU.addPreserved<LiveVariables>();
92  AU.addPreservedID(MachineLoopInfoID);
93  AU.addRequiredTransitiveID(MachineDominatorsID);
94  AU.addPreservedID(MachineDominatorsID);
95  AU.addPreserved<SlotIndexes>();
96  AU.addRequiredTransitive<SlotIndexes>();
97  MachineFunctionPass::getAnalysisUsage(AU);
98}
99
100LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
101  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
102}
103
104LiveIntervals::~LiveIntervals() { delete LICalc; }
105
106void LiveIntervals::releaseMemory() {
107  // Free the live intervals themselves.
108  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
109    delete VirtRegIntervals[Register::index2VirtReg(i)];
110  VirtRegIntervals.clear();
111  RegMaskSlots.clear();
112  RegMaskBits.clear();
113  RegMaskBlocks.clear();
114
115  for (LiveRange *LR : RegUnitRanges)
116    delete LR;
117  RegUnitRanges.clear();
118
119  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
120  VNInfoAllocator.Reset();
121}
122
123bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
124  MF = &fn;
125  MRI = &MF->getRegInfo();
126  TRI = MF->getSubtarget().getRegisterInfo();
127  TII = MF->getSubtarget().getInstrInfo();
128  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
129  Indexes = &getAnalysis<SlotIndexes>();
130  DomTree = &getAnalysis<MachineDominatorTree>();
131
132  if (!LICalc)
133    LICalc = new LiveIntervalCalc();
134
135  // Allocate space for all virtual registers.
136  VirtRegIntervals.resize(MRI->getNumVirtRegs());
137
138  computeVirtRegs();
139  computeRegMasks();
140  computeLiveInRegUnits();
141
142  if (EnablePrecomputePhysRegs) {
143    // For stress testing, precompute live ranges of all physical register
144    // units, including reserved registers.
145    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
146      getRegUnit(i);
147  }
148  LLVM_DEBUG(dump());
149  return true;
150}
151
152void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
153  OS << "********** INTERVALS **********\n";
154
155  // Dump the regunits.
156  for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
157    if (LiveRange *LR = RegUnitRanges[Unit])
158      OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
159
160  // Dump the virtregs.
161  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
162    unsigned Reg = Register::index2VirtReg(i);
163    if (hasInterval(Reg))
164      OS << getInterval(Reg) << '\n';
165  }
166
167  OS << "RegMasks:";
168  for (SlotIndex Idx : RegMaskSlots)
169    OS << ' ' << Idx;
170  OS << '\n';
171
172  printInstrs(OS);
173}
174
175void LiveIntervals::printInstrs(raw_ostream &OS) const {
176  OS << "********** MACHINEINSTRS **********\n";
177  MF->print(OS, Indexes);
178}
179
180#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
181LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
182  printInstrs(dbgs());
183}
184#endif
185
186LiveInterval* LiveIntervals::createInterval(unsigned reg) {
187  float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
188  return new LiveInterval(reg, Weight);
189}
190
191/// Compute the live interval of a virtual register, based on defs and uses.
192bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
193  assert(LICalc && "LICalc not initialized.");
194  assert(LI.empty() && "Should only compute empty intervals.");
195  LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
196  LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
197  return computeDeadValues(LI, nullptr);
198}
199
200void LiveIntervals::computeVirtRegs() {
201  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
202    unsigned Reg = Register::index2VirtReg(i);
203    if (MRI->reg_nodbg_empty(Reg))
204      continue;
205    LiveInterval &LI = createEmptyInterval(Reg);
206    bool NeedSplit = computeVirtRegInterval(LI);
207    if (NeedSplit) {
208      SmallVector<LiveInterval*, 8> SplitLIs;
209      splitSeparateComponents(LI, SplitLIs);
210    }
211  }
212}
213
214void LiveIntervals::computeRegMasks() {
215  RegMaskBlocks.resize(MF->getNumBlockIDs());
216
217  // Find all instructions with regmask operands.
218  for (const MachineBasicBlock &MBB : *MF) {
219    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
220    RMB.first = RegMaskSlots.size();
221
222    // Some block starts, such as EH funclets, create masks.
223    if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
224      RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
225      RegMaskBits.push_back(Mask);
226    }
227
228    for (const MachineInstr &MI : MBB) {
229      for (const MachineOperand &MO : MI.operands()) {
230        if (!MO.isRegMask())
231          continue;
232        RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
233        RegMaskBits.push_back(MO.getRegMask());
234      }
235    }
236
237    // Some block ends, such as funclet returns, create masks. Put the mask on
238    // the last instruction of the block, because MBB slot index intervals are
239    // half-open.
240    if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
241      assert(!MBB.empty() && "empty return block?");
242      RegMaskSlots.push_back(
243          Indexes->getInstructionIndex(MBB.back()).getRegSlot());
244      RegMaskBits.push_back(Mask);
245    }
246
247    // Compute the number of register mask instructions in this block.
248    RMB.second = RegMaskSlots.size() - RMB.first;
249  }
250}
251
252//===----------------------------------------------------------------------===//
253//                           Register Unit Liveness
254//===----------------------------------------------------------------------===//
255//
256// Fixed interference typically comes from ABI boundaries: Function arguments
257// and return values are passed in fixed registers, and so are exception
258// pointers entering landing pads. Certain instructions require values to be
259// present in specific registers. That is also represented through fixed
260// interference.
261//
262
263/// Compute the live range of a register unit, based on the uses and defs of
264/// aliasing registers.  The range should be empty, or contain only dead
265/// phi-defs from ABI blocks.
266void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
267  assert(LICalc && "LICalc not initialized.");
268  LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
269
270  // The physregs aliasing Unit are the roots and their super-registers.
271  // Create all values as dead defs before extending to uses. Note that roots
272  // may share super-registers. That's OK because createDeadDefs() is
273  // idempotent. It is very rare for a register unit to have multiple roots, so
274  // uniquing super-registers is probably not worthwhile.
275  bool IsReserved = false;
276  for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
277    bool IsRootReserved = true;
278    for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
279         Super.isValid(); ++Super) {
280      unsigned Reg = *Super;
281      if (!MRI->reg_empty(Reg))
282        LICalc->createDeadDefs(LR, Reg);
283      // A register unit is considered reserved if all its roots and all their
284      // super registers are reserved.
285      if (!MRI->isReserved(Reg))
286        IsRootReserved = false;
287    }
288    IsReserved |= IsRootReserved;
289  }
290  assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
291         "reserved computation mismatch");
292
293  // Now extend LR to reach all uses.
294  // Ignore uses of reserved registers. We only track defs of those.
295  if (!IsReserved) {
296    for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
297      for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
298           Super.isValid(); ++Super) {
299        unsigned Reg = *Super;
300        if (!MRI->reg_empty(Reg))
301          LICalc->extendToUses(LR, Reg);
302      }
303    }
304  }
305
306  // Flush the segment set to the segment vector.
307  if (UseSegmentSetForPhysRegs)
308    LR.flushSegmentSet();
309}
310
311/// Precompute the live ranges of any register units that are live-in to an ABI
312/// block somewhere. Register values can appear without a corresponding def when
313/// entering the entry block or a landing pad.
314void LiveIntervals::computeLiveInRegUnits() {
315  RegUnitRanges.resize(TRI->getNumRegUnits());
316  LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
317
318  // Keep track of the live range sets allocated.
319  SmallVector<unsigned, 8> NewRanges;
320
321  // Check all basic blocks for live-ins.
322  for (const MachineBasicBlock &MBB : *MF) {
323    // We only care about ABI blocks: Entry + landing pads.
324    if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
325      continue;
326
327    // Create phi-defs at Begin for all live-in registers.
328    SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
329    LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
330    for (const auto &LI : MBB.liveins()) {
331      for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
332        unsigned Unit = *Units;
333        LiveRange *LR = RegUnitRanges[Unit];
334        if (!LR) {
335          // Use segment set to speed-up initial computation of the live range.
336          LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
337          NewRanges.push_back(Unit);
338        }
339        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
340        (void)VNI;
341        LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
342      }
343    }
344    LLVM_DEBUG(dbgs() << '\n');
345  }
346  LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
347
348  // Compute the 'normal' part of the ranges.
349  for (unsigned Unit : NewRanges)
350    computeRegUnitRange(*RegUnitRanges[Unit], Unit);
351}
352
353static void createSegmentsForValues(LiveRange &LR,
354    iterator_range<LiveInterval::vni_iterator> VNIs) {
355  for (VNInfo *VNI : VNIs) {
356    if (VNI->isUnused())
357      continue;
358    SlotIndex Def = VNI->def;
359    LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
360  }
361}
362
363void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
364                                         ShrinkToUsesWorkList &WorkList,
365                                         unsigned Reg, LaneBitmask LaneMask) {
366  // Keep track of the PHIs that are in use.
367  SmallPtrSet<VNInfo*, 8> UsedPHIs;
368  // Blocks that have already been added to WorkList as live-out.
369  SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
370
371  auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
372        -> const LiveRange& {
373    if (M.none())
374      return I;
375    for (const LiveInterval::SubRange &SR : I.subranges()) {
376      if ((SR.LaneMask & M).any()) {
377        assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
378        return SR;
379      }
380    }
381    llvm_unreachable("Subrange for mask not found");
382  };
383
384  const LiveInterval &LI = getInterval(Reg);
385  const LiveRange &OldRange = getSubRange(LI, LaneMask);
386
387  // Extend intervals to reach all uses in WorkList.
388  while (!WorkList.empty()) {
389    SlotIndex Idx = WorkList.back().first;
390    VNInfo *VNI = WorkList.back().second;
391    WorkList.pop_back();
392    const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
393    SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
394
395    // Extend the live range for VNI to be live at Idx.
396    if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
397      assert(ExtVNI == VNI && "Unexpected existing value number");
398      (void)ExtVNI;
399      // Is this a PHIDef we haven't seen before?
400      if (!VNI->isPHIDef() || VNI->def != BlockStart ||
401          !UsedPHIs.insert(VNI).second)
402        continue;
403      // The PHI is live, make sure the predecessors are live-out.
404      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
405        if (!LiveOut.insert(Pred).second)
406          continue;
407        SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
408        // A predecessor is not required to have a live-out value for a PHI.
409        if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
410          WorkList.push_back(std::make_pair(Stop, PVNI));
411      }
412      continue;
413    }
414
415    // VNI is live-in to MBB.
416    LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
417    Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
418
419    // Make sure VNI is live-out from the predecessors.
420    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
421      if (!LiveOut.insert(Pred).second)
422        continue;
423      SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
424      if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
425        assert(OldVNI == VNI && "Wrong value out of predecessor");
426        (void)OldVNI;
427        WorkList.push_back(std::make_pair(Stop, VNI));
428      } else {
429#ifndef NDEBUG
430        // There was no old VNI. Verify that Stop is jointly dominated
431        // by <undef>s for this live range.
432        assert(LaneMask.any() &&
433               "Missing value out of predecessor for main range");
434        SmallVector<SlotIndex,8> Undefs;
435        LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
436        assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
437               "Missing value out of predecessor for subrange");
438#endif
439      }
440    }
441  }
442}
443
444bool LiveIntervals::shrinkToUses(LiveInterval *li,
445                                 SmallVectorImpl<MachineInstr*> *dead) {
446  LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
447  assert(Register::isVirtualRegister(li->reg) &&
448         "Can only shrink virtual registers");
449
450  // Shrink subregister live ranges.
451  bool NeedsCleanup = false;
452  for (LiveInterval::SubRange &S : li->subranges()) {
453    shrinkToUses(S, li->reg);
454    if (S.empty())
455      NeedsCleanup = true;
456  }
457  if (NeedsCleanup)
458    li->removeEmptySubRanges();
459
460  // Find all the values used, including PHI kills.
461  ShrinkToUsesWorkList WorkList;
462
463  // Visit all instructions reading li->reg.
464  unsigned Reg = li->reg;
465  for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
466    if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
467      continue;
468    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
469    LiveQueryResult LRQ = li->Query(Idx);
470    VNInfo *VNI = LRQ.valueIn();
471    if (!VNI) {
472      // This shouldn't happen: readsVirtualRegister returns true, but there is
473      // no live value. It is likely caused by a target getting <undef> flags
474      // wrong.
475      LLVM_DEBUG(
476          dbgs() << Idx << '\t' << UseMI
477                 << "Warning: Instr claims to read non-existent value in "
478                 << *li << '\n');
479      continue;
480    }
481    // Special case: An early-clobber tied operand reads and writes the
482    // register one slot early.
483    if (VNInfo *DefVNI = LRQ.valueDefined())
484      Idx = DefVNI->def;
485
486    WorkList.push_back(std::make_pair(Idx, VNI));
487  }
488
489  // Create new live ranges with only minimal live segments per def.
490  LiveRange NewLR;
491  createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
492  extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
493
494  // Move the trimmed segments back.
495  li->segments.swap(NewLR.segments);
496
497  // Handle dead values.
498  bool CanSeparate = computeDeadValues(*li, dead);
499  LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
500  return CanSeparate;
501}
502
503bool LiveIntervals::computeDeadValues(LiveInterval &LI,
504                                      SmallVectorImpl<MachineInstr*> *dead) {
505  bool MayHaveSplitComponents = false;
506  bool HaveDeadDef = false;
507
508  for (VNInfo *VNI : LI.valnos) {
509    if (VNI->isUnused())
510      continue;
511    SlotIndex Def = VNI->def;
512    LiveRange::iterator I = LI.FindSegmentContaining(Def);
513    assert(I != LI.end() && "Missing segment for VNI");
514
515    // Is the register live before? Otherwise we may have to add a read-undef
516    // flag for subregister defs.
517    unsigned VReg = LI.reg;
518    if (MRI->shouldTrackSubRegLiveness(VReg)) {
519      if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
520        MachineInstr *MI = getInstructionFromIndex(Def);
521        MI->setRegisterDefReadUndef(VReg);
522      }
523    }
524
525    if (I->end != Def.getDeadSlot())
526      continue;
527    if (VNI->isPHIDef()) {
528      // This is a dead PHI. Remove it.
529      VNI->markUnused();
530      LI.removeSegment(I);
531      LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
532      MayHaveSplitComponents = true;
533    } else {
534      // This is a dead def. Make sure the instruction knows.
535      MachineInstr *MI = getInstructionFromIndex(Def);
536      assert(MI && "No instruction defining live value");
537      MI->addRegisterDead(LI.reg, TRI);
538      if (HaveDeadDef)
539        MayHaveSplitComponents = true;
540      HaveDeadDef = true;
541
542      if (dead && MI->allDefsAreDead()) {
543        LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
544        dead->push_back(MI);
545      }
546    }
547  }
548  return MayHaveSplitComponents;
549}
550
551void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
552  LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
553  assert(Register::isVirtualRegister(Reg) &&
554         "Can only shrink virtual registers");
555  // Find all the values used, including PHI kills.
556  ShrinkToUsesWorkList WorkList;
557
558  // Visit all instructions reading Reg.
559  SlotIndex LastIdx;
560  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
561    // Skip "undef" uses.
562    if (!MO.readsReg())
563      continue;
564    // Maybe the operand is for a subregister we don't care about.
565    unsigned SubReg = MO.getSubReg();
566    if (SubReg != 0) {
567      LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
568      if ((LaneMask & SR.LaneMask).none())
569        continue;
570    }
571    // We only need to visit each instruction once.
572    MachineInstr *UseMI = MO.getParent();
573    SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
574    if (Idx == LastIdx)
575      continue;
576    LastIdx = Idx;
577
578    LiveQueryResult LRQ = SR.Query(Idx);
579    VNInfo *VNI = LRQ.valueIn();
580    // For Subranges it is possible that only undef values are left in that
581    // part of the subregister, so there is no real liverange at the use
582    if (!VNI)
583      continue;
584
585    // Special case: An early-clobber tied operand reads and writes the
586    // register one slot early.
587    if (VNInfo *DefVNI = LRQ.valueDefined())
588      Idx = DefVNI->def;
589
590    WorkList.push_back(std::make_pair(Idx, VNI));
591  }
592
593  // Create a new live ranges with only minimal live segments per def.
594  LiveRange NewLR;
595  createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
596  extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
597
598  // Move the trimmed ranges back.
599  SR.segments.swap(NewLR.segments);
600
601  // Remove dead PHI value numbers
602  for (VNInfo *VNI : SR.valnos) {
603    if (VNI->isUnused())
604      continue;
605    const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
606    assert(Segment != nullptr && "Missing segment for VNI");
607    if (Segment->end != VNI->def.getDeadSlot())
608      continue;
609    if (VNI->isPHIDef()) {
610      // This is a dead PHI. Remove it.
611      LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
612                        << " may separate interval\n");
613      VNI->markUnused();
614      SR.removeSegment(*Segment);
615    }
616  }
617
618  LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
619}
620
621void LiveIntervals::extendToIndices(LiveRange &LR,
622                                    ArrayRef<SlotIndex> Indices,
623                                    ArrayRef<SlotIndex> Undefs) {
624  assert(LICalc && "LICalc not initialized.");
625  LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
626  for (SlotIndex Idx : Indices)
627    LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
628}
629
630void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
631                               SmallVectorImpl<SlotIndex> *EndPoints) {
632  LiveQueryResult LRQ = LR.Query(Kill);
633  VNInfo *VNI = LRQ.valueOutOrDead();
634  if (!VNI)
635    return;
636
637  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
638  SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
639
640  // If VNI isn't live out from KillMBB, the value is trivially pruned.
641  if (LRQ.endPoint() < MBBEnd) {
642    LR.removeSegment(Kill, LRQ.endPoint());
643    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
644    return;
645  }
646
647  // VNI is live out of KillMBB.
648  LR.removeSegment(Kill, MBBEnd);
649  if (EndPoints) EndPoints->push_back(MBBEnd);
650
651  // Find all blocks that are reachable from KillMBB without leaving VNI's live
652  // range. It is possible that KillMBB itself is reachable, so start a DFS
653  // from each successor.
654  using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
655  VisitedTy Visited;
656  for (MachineBasicBlock *Succ : KillMBB->successors()) {
657    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
658         I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
659         I != E;) {
660      MachineBasicBlock *MBB = *I;
661
662      // Check if VNI is live in to MBB.
663      SlotIndex MBBStart, MBBEnd;
664      std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
665      LiveQueryResult LRQ = LR.Query(MBBStart);
666      if (LRQ.valueIn() != VNI) {
667        // This block isn't part of the VNI segment. Prune the search.
668        I.skipChildren();
669        continue;
670      }
671
672      // Prune the search if VNI is killed in MBB.
673      if (LRQ.endPoint() < MBBEnd) {
674        LR.removeSegment(MBBStart, LRQ.endPoint());
675        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
676        I.skipChildren();
677        continue;
678      }
679
680      // VNI is live through MBB.
681      LR.removeSegment(MBBStart, MBBEnd);
682      if (EndPoints) EndPoints->push_back(MBBEnd);
683      ++I;
684    }
685  }
686}
687
688//===----------------------------------------------------------------------===//
689// Register allocator hooks.
690//
691
692void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
693  // Keep track of regunit ranges.
694  SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
695  // Keep track of subregister ranges.
696  SmallVector<std::pair<const LiveInterval::SubRange*,
697                        LiveRange::const_iterator>, 4> SRs;
698
699  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
700    unsigned Reg = Register::index2VirtReg(i);
701    if (MRI->reg_nodbg_empty(Reg))
702      continue;
703    const LiveInterval &LI = getInterval(Reg);
704    if (LI.empty())
705      continue;
706
707    // Find the regunit intervals for the assigned register. They may overlap
708    // the virtual register live range, cancelling any kills.
709    RU.clear();
710    for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
711         ++Unit) {
712      const LiveRange &RURange = getRegUnit(*Unit);
713      if (RURange.empty())
714        continue;
715      RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
716    }
717
718    if (MRI->subRegLivenessEnabled()) {
719      SRs.clear();
720      for (const LiveInterval::SubRange &SR : LI.subranges()) {
721        SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
722      }
723    }
724
725    // Every instruction that kills Reg corresponds to a segment range end
726    // point.
727    for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
728         ++RI) {
729      // A block index indicates an MBB edge.
730      if (RI->end.isBlock())
731        continue;
732      MachineInstr *MI = getInstructionFromIndex(RI->end);
733      if (!MI)
734        continue;
735
736      // Check if any of the regunits are live beyond the end of RI. That could
737      // happen when a physreg is defined as a copy of a virtreg:
738      //
739      //   %eax = COPY %5
740      //   FOO %5             <--- MI, cancel kill because %eax is live.
741      //   BAR killed %eax
742      //
743      // There should be no kill flag on FOO when %5 is rewritten as %eax.
744      for (auto &RUP : RU) {
745        const LiveRange &RURange = *RUP.first;
746        LiveRange::const_iterator &I = RUP.second;
747        if (I == RURange.end())
748          continue;
749        I = RURange.advanceTo(I, RI->end);
750        if (I == RURange.end() || I->start >= RI->end)
751          continue;
752        // I is overlapping RI.
753        goto CancelKill;
754      }
755
756      if (MRI->subRegLivenessEnabled()) {
757        // When reading a partial undefined value we must not add a kill flag.
758        // The regalloc might have used the undef lane for something else.
759        // Example:
760        //     %1 = ...                  ; R32: %1
761        //     %2:high16 = ...           ; R64: %2
762        //        = read killed %2        ; R64: %2
763        //        = read %1              ; R32: %1
764        // The <kill> flag is correct for %2, but the register allocator may
765        // assign R0L to %1, and R0 to %2 because the low 32bits of R0
766        // are actually never written by %2. After assignment the <kill>
767        // flag at the read instruction is invalid.
768        LaneBitmask DefinedLanesMask;
769        if (!SRs.empty()) {
770          // Compute a mask of lanes that are defined.
771          DefinedLanesMask = LaneBitmask::getNone();
772          for (auto &SRP : SRs) {
773            const LiveInterval::SubRange &SR = *SRP.first;
774            LiveRange::const_iterator &I = SRP.second;
775            if (I == SR.end())
776              continue;
777            I = SR.advanceTo(I, RI->end);
778            if (I == SR.end() || I->start >= RI->end)
779              continue;
780            // I is overlapping RI
781            DefinedLanesMask |= SR.LaneMask;
782          }
783        } else
784          DefinedLanesMask = LaneBitmask::getAll();
785
786        bool IsFullWrite = false;
787        for (const MachineOperand &MO : MI->operands()) {
788          if (!MO.isReg() || MO.getReg() != Reg)
789            continue;
790          if (MO.isUse()) {
791            // Reading any undefined lanes?
792            LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
793            if ((UseMask & ~DefinedLanesMask).any())
794              goto CancelKill;
795          } else if (MO.getSubReg() == 0) {
796            // Writing to the full register?
797            assert(MO.isDef());
798            IsFullWrite = true;
799          }
800        }
801
802        // If an instruction writes to a subregister, a new segment starts in
803        // the LiveInterval. But as this is only overriding part of the register
804        // adding kill-flags is not correct here after registers have been
805        // assigned.
806        if (!IsFullWrite) {
807          // Next segment has to be adjacent in the subregister write case.
808          LiveRange::const_iterator N = std::next(RI);
809          if (N != LI.end() && N->start == RI->end)
810            goto CancelKill;
811        }
812      }
813
814      MI->addRegisterKilled(Reg, nullptr);
815      continue;
816CancelKill:
817      MI->clearRegisterKills(Reg, nullptr);
818    }
819  }
820}
821
822MachineBasicBlock*
823LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
824  // A local live range must be fully contained inside the block, meaning it is
825  // defined and killed at instructions, not at block boundaries. It is not
826  // live in or out of any block.
827  //
828  // It is technically possible to have a PHI-defined live range identical to a
829  // single block, but we are going to return false in that case.
830
831  SlotIndex Start = LI.beginIndex();
832  if (Start.isBlock())
833    return nullptr;
834
835  SlotIndex Stop = LI.endIndex();
836  if (Stop.isBlock())
837    return nullptr;
838
839  // getMBBFromIndex doesn't need to search the MBB table when both indexes
840  // belong to proper instructions.
841  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
842  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
843  return MBB1 == MBB2 ? MBB1 : nullptr;
844}
845
846bool
847LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
848  for (const VNInfo *PHI : LI.valnos) {
849    if (PHI->isUnused() || !PHI->isPHIDef())
850      continue;
851    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
852    // Conservatively return true instead of scanning huge predecessor lists.
853    if (PHIMBB->pred_size() > 100)
854      return true;
855    for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
856      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
857        return true;
858  }
859  return false;
860}
861
862float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
863                                    const MachineBlockFrequencyInfo *MBFI,
864                                    const MachineInstr &MI) {
865  return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
866}
867
868float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
869                                    const MachineBlockFrequencyInfo *MBFI,
870                                    const MachineBasicBlock *MBB) {
871  BlockFrequency Freq = MBFI->getBlockFreq(MBB);
872  const float Scale = 1.0f / MBFI->getEntryFreq();
873  return (isDef + isUse) * (Freq.getFrequency() * Scale);
874}
875
876LiveRange::Segment
877LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
878  LiveInterval& Interval = createEmptyInterval(reg);
879  VNInfo *VN = Interval.getNextValue(
880      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
881      getVNInfoAllocator());
882  LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
883                       getMBBEndIdx(startInst.getParent()), VN);
884  Interval.addSegment(S);
885
886  return S;
887}
888
889//===----------------------------------------------------------------------===//
890//                          Register mask functions
891//===----------------------------------------------------------------------===//
892
893bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
894                                             BitVector &UsableRegs) {
895  if (LI.empty())
896    return false;
897  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
898
899  // Use a smaller arrays for local live ranges.
900  ArrayRef<SlotIndex> Slots;
901  ArrayRef<const uint32_t*> Bits;
902  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
903    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
904    Bits = getRegMaskBitsInBlock(MBB->getNumber());
905  } else {
906    Slots = getRegMaskSlots();
907    Bits = getRegMaskBits();
908  }
909
910  // We are going to enumerate all the register mask slots contained in LI.
911  // Start with a binary search of RegMaskSlots to find a starting point.
912  ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
913  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
914
915  // No slots in range, LI begins after the last call.
916  if (SlotI == SlotE)
917    return false;
918
919  bool Found = false;
920  while (true) {
921    assert(*SlotI >= LiveI->start);
922    // Loop over all slots overlapping this segment.
923    while (*SlotI < LiveI->end) {
924      // *SlotI overlaps LI. Collect mask bits.
925      if (!Found) {
926        // This is the first overlap. Initialize UsableRegs to all ones.
927        UsableRegs.clear();
928        UsableRegs.resize(TRI->getNumRegs(), true);
929        Found = true;
930      }
931      // Remove usable registers clobbered by this mask.
932      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
933      if (++SlotI == SlotE)
934        return Found;
935    }
936    // *SlotI is beyond the current LI segment.
937    LiveI = LI.advanceTo(LiveI, *SlotI);
938    if (LiveI == LiveE)
939      return Found;
940    // Advance SlotI until it overlaps.
941    while (*SlotI < LiveI->start)
942      if (++SlotI == SlotE)
943        return Found;
944  }
945}
946
947//===----------------------------------------------------------------------===//
948//                         IntervalUpdate class.
949//===----------------------------------------------------------------------===//
950
951/// Toolkit used by handleMove to trim or extend live intervals.
952class LiveIntervals::HMEditor {
953private:
954  LiveIntervals& LIS;
955  const MachineRegisterInfo& MRI;
956  const TargetRegisterInfo& TRI;
957  SlotIndex OldIdx;
958  SlotIndex NewIdx;
959  SmallPtrSet<LiveRange*, 8> Updated;
960  bool UpdateFlags;
961
962public:
963  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
964           const TargetRegisterInfo& TRI,
965           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
966    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
967      UpdateFlags(UpdateFlags) {}
968
969  // FIXME: UpdateFlags is a workaround that creates live intervals for all
970  // physregs, even those that aren't needed for regalloc, in order to update
971  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
972  // flags, and postRA passes will use a live register utility instead.
973  LiveRange *getRegUnitLI(unsigned Unit) {
974    if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
975      return &LIS.getRegUnit(Unit);
976    return LIS.getCachedRegUnit(Unit);
977  }
978
979  /// Update all live ranges touched by MI, assuming a move from OldIdx to
980  /// NewIdx.
981  void updateAllRanges(MachineInstr *MI) {
982    LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
983                      << *MI);
984    bool hasRegMask = false;
985    for (MachineOperand &MO : MI->operands()) {
986      if (MO.isRegMask())
987        hasRegMask = true;
988      if (!MO.isReg())
989        continue;
990      if (MO.isUse()) {
991        if (!MO.readsReg())
992          continue;
993        // Aggressively clear all kill flags.
994        // They are reinserted by VirtRegRewriter.
995        MO.setIsKill(false);
996      }
997
998      Register Reg = MO.getReg();
999      if (!Reg)
1000        continue;
1001      if (Register::isVirtualRegister(Reg)) {
1002        LiveInterval &LI = LIS.getInterval(Reg);
1003        if (LI.hasSubRanges()) {
1004          unsigned SubReg = MO.getSubReg();
1005          LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1006                                        : MRI.getMaxLaneMaskForVReg(Reg);
1007          for (LiveInterval::SubRange &S : LI.subranges()) {
1008            if ((S.LaneMask & LaneMask).none())
1009              continue;
1010            updateRange(S, Reg, S.LaneMask);
1011          }
1012        }
1013        updateRange(LI, Reg, LaneBitmask::getNone());
1014        // If main range has a hole and we are moving a subrange use across
1015        // the hole updateRange() cannot properly handle it since it only
1016        // gets the LiveRange and not the whole LiveInterval. As a result
1017        // we may end up with a main range not covering all subranges.
1018        // This is extremely rare case, so let's check and reconstruct the
1019        // main range.
1020        for (LiveInterval::SubRange &S : LI.subranges()) {
1021          if (LI.covers(S))
1022            continue;
1023          LI.clear();
1024          LIS.constructMainRangeFromSubranges(LI);
1025          break;
1026        }
1027
1028        continue;
1029      }
1030
1031      // For physregs, only update the regunits that actually have a
1032      // precomputed live range.
1033      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1034        if (LiveRange *LR = getRegUnitLI(*Units))
1035          updateRange(*LR, *Units, LaneBitmask::getNone());
1036    }
1037    if (hasRegMask)
1038      updateRegMaskSlots();
1039  }
1040
1041private:
1042  /// Update a single live range, assuming an instruction has been moved from
1043  /// OldIdx to NewIdx.
1044  void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1045    if (!Updated.insert(&LR).second)
1046      return;
1047    LLVM_DEBUG({
1048      dbgs() << "     ";
1049      if (Register::isVirtualRegister(Reg)) {
1050        dbgs() << printReg(Reg);
1051        if (LaneMask.any())
1052          dbgs() << " L" << PrintLaneMask(LaneMask);
1053      } else {
1054        dbgs() << printRegUnit(Reg, &TRI);
1055      }
1056      dbgs() << ":\t" << LR << '\n';
1057    });
1058    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1059      handleMoveDown(LR);
1060    else
1061      handleMoveUp(LR, Reg, LaneMask);
1062    LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1063    LR.verify();
1064  }
1065
1066  /// Update LR to reflect an instruction has been moved downwards from OldIdx
1067  /// to NewIdx (OldIdx < NewIdx).
1068  void handleMoveDown(LiveRange &LR) {
1069    LiveRange::iterator E = LR.end();
1070    // Segment going into OldIdx.
1071    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1072
1073    // No value live before or after OldIdx? Nothing to do.
1074    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1075      return;
1076
1077    LiveRange::iterator OldIdxOut;
1078    // Do we have a value live-in to OldIdx?
1079    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1080      // If the live-in value already extends to NewIdx, there is nothing to do.
1081      if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1082        return;
1083      // Aggressively remove all kill flags from the old kill point.
1084      // Kill flags shouldn't be used while live intervals exist, they will be
1085      // reinserted by VirtRegRewriter.
1086      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1087        for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1088          if (MOP.isReg() && MOP.isUse())
1089            MOP.setIsKill(false);
1090
1091      // Is there a def before NewIdx which is not OldIdx?
1092      LiveRange::iterator Next = std::next(OldIdxIn);
1093      if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1094          SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1095        // If we are here then OldIdx was just a use but not a def. We only have
1096        // to ensure liveness extends to NewIdx.
1097        LiveRange::iterator NewIdxIn =
1098          LR.advanceTo(Next, NewIdx.getBaseIndex());
1099        // Extend the segment before NewIdx if necessary.
1100        if (NewIdxIn == E ||
1101            !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1102          LiveRange::iterator Prev = std::prev(NewIdxIn);
1103          Prev->end = NewIdx.getRegSlot();
1104        }
1105        // Extend OldIdxIn.
1106        OldIdxIn->end = Next->start;
1107        return;
1108      }
1109
1110      // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1111      // invalid by overlapping ranges.
1112      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1113      OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1114      // If this was not a kill, then there was no def and we're done.
1115      if (!isKill)
1116        return;
1117
1118      // Did we have a Def at OldIdx?
1119      OldIdxOut = Next;
1120      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1121        return;
1122    } else {
1123      OldIdxOut = OldIdxIn;
1124    }
1125
1126    // If we are here then there is a Definition at OldIdx. OldIdxOut points
1127    // to the segment starting there.
1128    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1129           "No def?");
1130    VNInfo *OldIdxVNI = OldIdxOut->valno;
1131    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1132
1133    // If the defined value extends beyond NewIdx, just move the beginning
1134    // of the segment to NewIdx.
1135    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1136    if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1137      OldIdxVNI->def = NewIdxDef;
1138      OldIdxOut->start = OldIdxVNI->def;
1139      return;
1140    }
1141
1142    // If we are here then we have a Definition at OldIdx which ends before
1143    // NewIdx.
1144
1145    // Is there an existing Def at NewIdx?
1146    LiveRange::iterator AfterNewIdx
1147      = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1148    bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1149    if (!OldIdxDefIsDead &&
1150        SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1151      // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1152      VNInfo *DefVNI;
1153      if (OldIdxOut != LR.begin() &&
1154          !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1155                                     OldIdxOut->start)) {
1156        // There is no gap between OldIdxOut and its predecessor anymore,
1157        // merge them.
1158        LiveRange::iterator IPrev = std::prev(OldIdxOut);
1159        DefVNI = OldIdxVNI;
1160        IPrev->end = OldIdxOut->end;
1161      } else {
1162        // The value is live in to OldIdx
1163        LiveRange::iterator INext = std::next(OldIdxOut);
1164        assert(INext != E && "Must have following segment");
1165        // We merge OldIdxOut and its successor. As we're dealing with subreg
1166        // reordering, there is always a successor to OldIdxOut in the same BB
1167        // We don't need INext->valno anymore and will reuse for the new segment
1168        // we create later.
1169        DefVNI = OldIdxVNI;
1170        INext->start = OldIdxOut->end;
1171        INext->valno->def = INext->start;
1172      }
1173      // If NewIdx is behind the last segment, extend that and append a new one.
1174      if (AfterNewIdx == E) {
1175        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1176        // one position.
1177        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1178        // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1179        std::copy(std::next(OldIdxOut), E, OldIdxOut);
1180        // The last segment is undefined now, reuse it for a dead def.
1181        LiveRange::iterator NewSegment = std::prev(E);
1182        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1183                                         DefVNI);
1184        DefVNI->def = NewIdxDef;
1185
1186        LiveRange::iterator Prev = std::prev(NewSegment);
1187        Prev->end = NewIdxDef;
1188      } else {
1189        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1190        // one position.
1191        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1192        // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1193        std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1194        LiveRange::iterator Prev = std::prev(AfterNewIdx);
1195        // We have two cases:
1196        if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1197          // Case 1: NewIdx is inside a liverange. Split this liverange at
1198          // NewIdxDef into the segment "Prev" followed by "NewSegment".
1199          LiveRange::iterator NewSegment = AfterNewIdx;
1200          *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1201          Prev->valno->def = NewIdxDef;
1202
1203          *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1204          DefVNI->def = Prev->start;
1205        } else {
1206          // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1207          // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1208          *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1209          DefVNI->def = NewIdxDef;
1210          assert(DefVNI != AfterNewIdx->valno);
1211        }
1212      }
1213      return;
1214    }
1215
1216    if (AfterNewIdx != E &&
1217        SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1218      // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1219      // that value.
1220      assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1221      LR.removeValNo(OldIdxVNI);
1222    } else {
1223      // There was no existing def at NewIdx. We need to create a dead def
1224      // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1225      // a new segment at the place where we want to construct the dead def.
1226      //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1227      // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1228      assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1229      std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1230      // We can reuse OldIdxVNI now.
1231      LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1232      VNInfo *NewSegmentVNI = OldIdxVNI;
1233      NewSegmentVNI->def = NewIdxDef;
1234      *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1235                                       NewSegmentVNI);
1236    }
1237  }
1238
1239  /// Update LR to reflect an instruction has been moved upwards from OldIdx
1240  /// to NewIdx (NewIdx < OldIdx).
1241  void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1242    LiveRange::iterator E = LR.end();
1243    // Segment going into OldIdx.
1244    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1245
1246    // No value live before or after OldIdx? Nothing to do.
1247    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1248      return;
1249
1250    LiveRange::iterator OldIdxOut;
1251    // Do we have a value live-in to OldIdx?
1252    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1253      // If the live-in value isn't killed here, then we have no Def at
1254      // OldIdx, moreover the value must be live at NewIdx so there is nothing
1255      // to do.
1256      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1257      if (!isKill)
1258        return;
1259
1260      // At this point we have to move OldIdxIn->end back to the nearest
1261      // previous use or (dead-)def but no further than NewIdx.
1262      SlotIndex DefBeforeOldIdx
1263        = std::max(OldIdxIn->start.getDeadSlot(),
1264                   NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1265      OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1266
1267      // Did we have a Def at OldIdx? If not we are done now.
1268      OldIdxOut = std::next(OldIdxIn);
1269      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1270        return;
1271    } else {
1272      OldIdxOut = OldIdxIn;
1273      OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1274    }
1275
1276    // If we are here then there is a Definition at OldIdx. OldIdxOut points
1277    // to the segment starting there.
1278    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1279           "No def?");
1280    VNInfo *OldIdxVNI = OldIdxOut->valno;
1281    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1282    bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1283
1284    // Is there an existing def at NewIdx?
1285    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1286    LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1287    if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1288      assert(NewIdxOut->valno != OldIdxVNI &&
1289             "Same value defined more than once?");
1290      // If OldIdx was a dead def remove it.
1291      if (!OldIdxDefIsDead) {
1292        // Remove segment starting at NewIdx and move begin of OldIdxOut to
1293        // NewIdx so it can take its place.
1294        OldIdxVNI->def = NewIdxDef;
1295        OldIdxOut->start = NewIdxDef;
1296        LR.removeValNo(NewIdxOut->valno);
1297      } else {
1298        // Simply remove the dead def at OldIdx.
1299        LR.removeValNo(OldIdxVNI);
1300      }
1301    } else {
1302      // Previously nothing was live after NewIdx, so all we have to do now is
1303      // move the begin of OldIdxOut to NewIdx.
1304      if (!OldIdxDefIsDead) {
1305        // Do we have any intermediate Defs between OldIdx and NewIdx?
1306        if (OldIdxIn != E &&
1307            SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1308          // OldIdx is not a dead def and NewIdx is before predecessor start.
1309          LiveRange::iterator NewIdxIn = NewIdxOut;
1310          assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1311          const SlotIndex SplitPos = NewIdxDef;
1312          OldIdxVNI = OldIdxIn->valno;
1313
1314          SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1315          LiveRange::iterator Prev = std::prev(OldIdxIn);
1316          if (OldIdxIn != LR.begin() &&
1317              SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1318            // If the segment before OldIdx read a value defined earlier than
1319            // NewIdx, the moved instruction also reads and forwards that
1320            // value. Extend the lifetime of the new def point.
1321
1322            // Extend to where the previous range started, unless there is
1323            // another redef first.
1324            NewDefEndPoint = std::min(OldIdxIn->start,
1325                                      std::next(NewIdxOut)->start);
1326          }
1327
1328          // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1329          OldIdxOut->valno->def = OldIdxIn->start;
1330          *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1331                                          OldIdxOut->valno);
1332          // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1333          // We Slide [NewIdxIn, OldIdxIn) down one position.
1334          //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1335          // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1336          std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1337          // NewIdxIn is now considered undef so we can reuse it for the moved
1338          // value.
1339          LiveRange::iterator NewSegment = NewIdxIn;
1340          LiveRange::iterator Next = std::next(NewSegment);
1341          if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1342            // There is no gap between NewSegment and its predecessor.
1343            *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1344                                             Next->valno);
1345
1346            *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1347            Next->valno->def = SplitPos;
1348          } else {
1349            // There is a gap between NewSegment and its predecessor
1350            // Value becomes live in.
1351            *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1352            NewSegment->valno->def = SplitPos;
1353          }
1354        } else {
1355          // Leave the end point of a live def.
1356          OldIdxOut->start = NewIdxDef;
1357          OldIdxVNI->def = NewIdxDef;
1358          if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1359            OldIdxIn->end = NewIdxDef;
1360        }
1361      } else if (OldIdxIn != E
1362          && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1363          && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1364        // OldIdxVNI is a dead def that has been moved into the middle of
1365        // another value in LR. That can happen when LR is a whole register,
1366        // but the dead def is a write to a subreg that is dead at NewIdx.
1367        // The dead def may have been moved across other values
1368        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1369        // down one position.
1370        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1371        // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1372        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1373        // Modify the segment at NewIdxOut and the following segment to meet at
1374        // the point of the dead def, with the following segment getting
1375        // OldIdxVNI as its value number.
1376        *NewIdxOut = LiveRange::Segment(
1377            NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1378        *(NewIdxOut + 1) = LiveRange::Segment(
1379            NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1380        OldIdxVNI->def = NewIdxDef;
1381        // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1382        for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1383          Idx->valno = OldIdxVNI;
1384        // Aggressively remove all dead flags from the former dead definition.
1385        // Kill/dead flags shouldn't be used while live intervals exist; they
1386        // will be reinserted by VirtRegRewriter.
1387        if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1388          for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1389            if (MO->isReg() && !MO->isUse())
1390              MO->setIsDead(false);
1391      } else {
1392        // OldIdxVNI is a dead def. It may have been moved across other values
1393        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1394        // down one position.
1395        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1396        // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1397        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1398        // OldIdxVNI can be reused now to build a new dead def segment.
1399        LiveRange::iterator NewSegment = NewIdxOut;
1400        VNInfo *NewSegmentVNI = OldIdxVNI;
1401        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1402                                         NewSegmentVNI);
1403        NewSegmentVNI->def = NewIdxDef;
1404      }
1405    }
1406  }
1407
1408  void updateRegMaskSlots() {
1409    SmallVectorImpl<SlotIndex>::iterator RI =
1410        llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1411    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1412           "No RegMask at OldIdx.");
1413    *RI = NewIdx.getRegSlot();
1414    assert((RI == LIS.RegMaskSlots.begin() ||
1415            SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1416           "Cannot move regmask instruction above another call");
1417    assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1418            SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1419           "Cannot move regmask instruction below another call");
1420  }
1421
1422  // Return the last use of reg between NewIdx and OldIdx.
1423  SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
1424                              LaneBitmask LaneMask) {
1425    if (Register::isVirtualRegister(Reg)) {
1426      SlotIndex LastUse = Before;
1427      for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1428        if (MO.isUndef())
1429          continue;
1430        unsigned SubReg = MO.getSubReg();
1431        if (SubReg != 0 && LaneMask.any()
1432            && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1433          continue;
1434
1435        const MachineInstr &MI = *MO.getParent();
1436        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1437        if (InstSlot > LastUse && InstSlot < OldIdx)
1438          LastUse = InstSlot.getRegSlot();
1439      }
1440      return LastUse;
1441    }
1442
1443    // This is a regunit interval, so scanning the use list could be very
1444    // expensive. Scan upwards from OldIdx instead.
1445    assert(Before < OldIdx && "Expected upwards move");
1446    SlotIndexes *Indexes = LIS.getSlotIndexes();
1447    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1448
1449    // OldIdx may not correspond to an instruction any longer, so set MII to
1450    // point to the next instruction after OldIdx, or MBB->end().
1451    MachineBasicBlock::iterator MII = MBB->end();
1452    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1453                           Indexes->getNextNonNullIndex(OldIdx)))
1454      if (MI->getParent() == MBB)
1455        MII = MI;
1456
1457    MachineBasicBlock::iterator Begin = MBB->begin();
1458    while (MII != Begin) {
1459      if ((--MII)->isDebugInstr())
1460        continue;
1461      SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1462
1463      // Stop searching when Before is reached.
1464      if (!SlotIndex::isEarlierInstr(Before, Idx))
1465        return Before;
1466
1467      // Check if MII uses Reg.
1468      for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1469        if (MO->isReg() && !MO->isUndef() &&
1470            Register::isPhysicalRegister(MO->getReg()) &&
1471            TRI.hasRegUnit(MO->getReg(), Reg))
1472          return Idx.getRegSlot();
1473    }
1474    // Didn't reach Before. It must be the first instruction in the block.
1475    return Before;
1476  }
1477};
1478
1479void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1480  // It is fine to move a bundle as a whole, but not an individual instruction
1481  // inside it.
1482  assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1483         "Cannot move instruction in bundle");
1484  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1485  Indexes->removeMachineInstrFromMaps(MI);
1486  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1487  assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1488         OldIndex < getMBBEndIdx(MI.getParent()) &&
1489         "Cannot handle moves across basic block boundaries.");
1490
1491  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1492  HME.updateAllRanges(&MI);
1493}
1494
1495void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1496                                            bool UpdateFlags) {
1497  assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1498         "Bundle start is not a bundle");
1499  SmallVector<SlotIndex, 16> ToProcess;
1500  const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1501  auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1502
1503  auto I = BundleStart.getIterator();
1504  I++;
1505  while (I != BundleEnd) {
1506    if (!Indexes->hasIndex(*I))
1507      continue;
1508    SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1509    ToProcess.push_back(OldIndex);
1510    Indexes->removeMachineInstrFromMaps(*I, true);
1511    I++;
1512  }
1513  for (SlotIndex OldIndex : ToProcess) {
1514    HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1515    HME.updateAllRanges(&BundleStart);
1516  }
1517
1518  // Fix up dead defs
1519  const SlotIndex Index = getInstructionIndex(BundleStart);
1520  for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
1521    MachineOperand &MO = BundleStart.getOperand(Idx);
1522    if (!MO.isReg())
1523      continue;
1524    Register Reg = MO.getReg();
1525    if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1526      LiveInterval &LI = getInterval(Reg);
1527      LiveQueryResult LRQ = LI.Query(Index);
1528      if (LRQ.isDeadDef())
1529        MO.setIsDead();
1530    }
1531  }
1532}
1533
1534void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1535                                        const MachineBasicBlock::iterator End,
1536                                        const SlotIndex endIdx,
1537                                        LiveRange &LR, const unsigned Reg,
1538                                        LaneBitmask LaneMask) {
1539  LiveInterval::iterator LII = LR.find(endIdx);
1540  SlotIndex lastUseIdx;
1541  if (LII == LR.begin()) {
1542    // This happens when the function is called for a subregister that only
1543    // occurs _after_ the range that is to be repaired.
1544    return;
1545  }
1546  if (LII != LR.end() && LII->start < endIdx)
1547    lastUseIdx = LII->end;
1548  else
1549    --LII;
1550
1551  for (MachineBasicBlock::iterator I = End; I != Begin;) {
1552    --I;
1553    MachineInstr &MI = *I;
1554    if (MI.isDebugInstr())
1555      continue;
1556
1557    SlotIndex instrIdx = getInstructionIndex(MI);
1558    bool isStartValid = getInstructionFromIndex(LII->start);
1559    bool isEndValid = getInstructionFromIndex(LII->end);
1560
1561    // FIXME: This doesn't currently handle early-clobber or multiple removed
1562    // defs inside of the region to repair.
1563    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1564                                    OE = MI.operands_end();
1565         OI != OE; ++OI) {
1566      const MachineOperand &MO = *OI;
1567      if (!MO.isReg() || MO.getReg() != Reg)
1568        continue;
1569
1570      unsigned SubReg = MO.getSubReg();
1571      LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1572      if ((Mask & LaneMask).none())
1573        continue;
1574
1575      if (MO.isDef()) {
1576        if (!isStartValid) {
1577          if (LII->end.isDead()) {
1578            SlotIndex prevStart;
1579            if (LII != LR.begin())
1580              prevStart = std::prev(LII)->start;
1581
1582            // FIXME: This could be more efficient if there was a
1583            // removeSegment method that returned an iterator.
1584            LR.removeSegment(*LII, true);
1585            if (prevStart.isValid())
1586              LII = LR.find(prevStart);
1587            else
1588              LII = LR.begin();
1589          } else {
1590            LII->start = instrIdx.getRegSlot();
1591            LII->valno->def = instrIdx.getRegSlot();
1592            if (MO.getSubReg() && !MO.isUndef())
1593              lastUseIdx = instrIdx.getRegSlot();
1594            else
1595              lastUseIdx = SlotIndex();
1596            continue;
1597          }
1598        }
1599
1600        if (!lastUseIdx.isValid()) {
1601          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1602          LiveRange::Segment S(instrIdx.getRegSlot(),
1603                               instrIdx.getDeadSlot(), VNI);
1604          LII = LR.addSegment(S);
1605        } else if (LII->start != instrIdx.getRegSlot()) {
1606          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1607          LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1608          LII = LR.addSegment(S);
1609        }
1610
1611        if (MO.getSubReg() && !MO.isUndef())
1612          lastUseIdx = instrIdx.getRegSlot();
1613        else
1614          lastUseIdx = SlotIndex();
1615      } else if (MO.isUse()) {
1616        // FIXME: This should probably be handled outside of this branch,
1617        // either as part of the def case (for defs inside of the region) or
1618        // after the loop over the region.
1619        if (!isEndValid && !LII->end.isBlock())
1620          LII->end = instrIdx.getRegSlot();
1621        if (!lastUseIdx.isValid())
1622          lastUseIdx = instrIdx.getRegSlot();
1623      }
1624    }
1625  }
1626}
1627
1628void
1629LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1630                                      MachineBasicBlock::iterator Begin,
1631                                      MachineBasicBlock::iterator End,
1632                                      ArrayRef<Register> OrigRegs) {
1633  // Find anchor points, which are at the beginning/end of blocks or at
1634  // instructions that already have indexes.
1635  while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1636    --Begin;
1637  while (End != MBB->end() && !Indexes->hasIndex(*End))
1638    ++End;
1639
1640  SlotIndex endIdx;
1641  if (End == MBB->end())
1642    endIdx = getMBBEndIdx(MBB).getPrevSlot();
1643  else
1644    endIdx = getInstructionIndex(*End);
1645
1646  Indexes->repairIndexesInRange(MBB, Begin, End);
1647
1648  for (MachineBasicBlock::iterator I = End; I != Begin;) {
1649    --I;
1650    MachineInstr &MI = *I;
1651    if (MI.isDebugInstr())
1652      continue;
1653    for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1654                                          MOE = MI.operands_end();
1655         MOI != MOE; ++MOI) {
1656      if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) &&
1657          !hasInterval(MOI->getReg())) {
1658        createAndComputeVirtRegInterval(MOI->getReg());
1659      }
1660    }
1661  }
1662
1663  for (Register Reg : OrigRegs) {
1664    if (!Reg.isVirtual())
1665      continue;
1666
1667    LiveInterval &LI = getInterval(Reg);
1668    // FIXME: Should we support undefs that gain defs?
1669    if (!LI.hasAtLeastOneValue())
1670      continue;
1671
1672    for (LiveInterval::SubRange &S : LI.subranges())
1673      repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1674
1675    repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1676  }
1677}
1678
1679void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1680  for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1681    if (LiveRange *LR = getCachedRegUnit(*Unit))
1682      if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1683        LR->removeValNo(VNI);
1684  }
1685}
1686
1687void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1688  // LI may not have the main range computed yet, but its subranges may
1689  // be present.
1690  VNInfo *VNI = LI.getVNInfoAt(Pos);
1691  if (VNI != nullptr) {
1692    assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1693    LI.removeValNo(VNI);
1694  }
1695
1696  // Also remove the value defined in subranges.
1697  for (LiveInterval::SubRange &S : LI.subranges()) {
1698    if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1699      if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1700        S.removeValNo(SVNI);
1701  }
1702  LI.removeEmptySubRanges();
1703}
1704
1705void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1706    SmallVectorImpl<LiveInterval*> &SplitLIs) {
1707  ConnectedVNInfoEqClasses ConEQ(*this);
1708  unsigned NumComp = ConEQ.Classify(LI);
1709  if (NumComp <= 1)
1710    return;
1711  LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1712  unsigned Reg = LI.reg;
1713  const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1714  for (unsigned I = 1; I < NumComp; ++I) {
1715    Register NewVReg = MRI->createVirtualRegister(RegClass);
1716    LiveInterval &NewLI = createEmptyInterval(NewVReg);
1717    SplitLIs.push_back(&NewLI);
1718  }
1719  ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1720}
1721
1722void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1723  assert(LICalc && "LICalc not initialized.");
1724  LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1725  LICalc->constructMainRangeFromSubranges(LI);
1726}
1727