1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements an analysis that determines, for a given memory
10// operation, what preceding memory operations it depends on.  It builds on
11// alias analysis information, and tries to provide a lazy, caching interface to
12// a common kind of alias information query.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/MemoryDependenceAnalysis.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/AssumptionCache.h"
24#include "llvm/Analysis/MemoryBuiltins.h"
25#include "llvm/Analysis/MemoryLocation.h"
26#include "llvm/Analysis/PHITransAddr.h"
27#include "llvm/Analysis/PhiValues.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/IR/Attributes.h"
31#include "llvm/IR/BasicBlock.h"
32#include "llvm/IR/Constants.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/DerivedTypes.h"
35#include "llvm/IR/Dominators.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/InstrTypes.h"
38#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/IR/Metadata.h"
43#include "llvm/IR/Module.h"
44#include "llvm/IR/PredIteratorCache.h"
45#include "llvm/IR/Type.h"
46#include "llvm/IR/Use.h"
47#include "llvm/IR/User.h"
48#include "llvm/IR/Value.h"
49#include "llvm/InitializePasses.h"
50#include "llvm/Pass.h"
51#include "llvm/Support/AtomicOrdering.h"
52#include "llvm/Support/Casting.h"
53#include "llvm/Support/CommandLine.h"
54#include "llvm/Support/Compiler.h"
55#include "llvm/Support/Debug.h"
56#include "llvm/Support/MathExtras.h"
57#include <algorithm>
58#include <cassert>
59#include <cstdint>
60#include <iterator>
61#include <utility>
62
63using namespace llvm;
64
65#define DEBUG_TYPE "memdep"
66
67STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70
71STATISTIC(NumCacheNonLocalPtr,
72          "Number of fully cached non-local ptr responses");
73STATISTIC(NumCacheDirtyNonLocalPtr,
74          "Number of cached, but dirty, non-local ptr responses");
75STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76STATISTIC(NumCacheCompleteNonLocalPtr,
77          "Number of block queries that were completely cached");
78
79// Limit for the number of instructions to scan in a block.
80
81static cl::opt<unsigned> BlockScanLimit(
82    "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83    cl::desc("The number of instructions to scan in a block in memory "
84             "dependency analysis (default = 100)"));
85
86static cl::opt<unsigned>
87    BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                     cl::desc("The number of blocks to scan during memory "
89                              "dependency analysis (default = 1000)"));
90
91// Limit on the number of memdep results to process.
92static const unsigned int NumResultsLimit = 100;
93
94/// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95///
96/// If the set becomes empty, remove Inst's entry.
97template <typename KeyTy>
98static void
99RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                     Instruction *Inst, KeyTy Val) {
101  typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102      ReverseMap.find(Inst);
103  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104  bool Found = InstIt->second.erase(Val);
105  assert(Found && "Invalid reverse map!");
106  (void)Found;
107  if (InstIt->second.empty())
108    ReverseMap.erase(InstIt);
109}
110
111/// If the given instruction references a specific memory location, fill in Loc
112/// with the details, otherwise set Loc.Ptr to null.
113///
114/// Returns a ModRefInfo value describing the general behavior of the
115/// instruction.
116static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                              const TargetLibraryInfo &TLI) {
118  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119    if (LI->isUnordered()) {
120      Loc = MemoryLocation::get(LI);
121      return ModRefInfo::Ref;
122    }
123    if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124      Loc = MemoryLocation::get(LI);
125      return ModRefInfo::ModRef;
126    }
127    Loc = MemoryLocation();
128    return ModRefInfo::ModRef;
129  }
130
131  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132    if (SI->isUnordered()) {
133      Loc = MemoryLocation::get(SI);
134      return ModRefInfo::Mod;
135    }
136    if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137      Loc = MemoryLocation::get(SI);
138      return ModRefInfo::ModRef;
139    }
140    Loc = MemoryLocation();
141    return ModRefInfo::ModRef;
142  }
143
144  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145    Loc = MemoryLocation::get(V);
146    return ModRefInfo::ModRef;
147  }
148
149  if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150    // calls to free() deallocate the entire structure
151    Loc = MemoryLocation(CI->getArgOperand(0));
152    return ModRefInfo::Mod;
153  }
154
155  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156    switch (II->getIntrinsicID()) {
157    case Intrinsic::lifetime_start:
158    case Intrinsic::lifetime_end:
159    case Intrinsic::invariant_start:
160      Loc = MemoryLocation::getForArgument(II, 1, TLI);
161      // These intrinsics don't really modify the memory, but returning Mod
162      // will allow them to be handled conservatively.
163      return ModRefInfo::Mod;
164    case Intrinsic::invariant_end:
165      Loc = MemoryLocation::getForArgument(II, 2, TLI);
166      // These intrinsics don't really modify the memory, but returning Mod
167      // will allow them to be handled conservatively.
168      return ModRefInfo::Mod;
169    default:
170      break;
171    }
172  }
173
174  // Otherwise, just do the coarse-grained thing that always works.
175  if (Inst->mayWriteToMemory())
176    return ModRefInfo::ModRef;
177  if (Inst->mayReadFromMemory())
178    return ModRefInfo::Ref;
179  return ModRefInfo::NoModRef;
180}
181
182/// Private helper for finding the local dependencies of a call site.
183MemDepResult MemoryDependenceResults::getCallDependencyFrom(
184    CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
185    BasicBlock *BB) {
186  unsigned Limit = getDefaultBlockScanLimit();
187
188  // Walk backwards through the block, looking for dependencies.
189  while (ScanIt != BB->begin()) {
190    Instruction *Inst = &*--ScanIt;
191    // Debug intrinsics don't cause dependences and should not affect Limit
192    if (isa<DbgInfoIntrinsic>(Inst))
193      continue;
194
195    // Limit the amount of scanning we do so we don't end up with quadratic
196    // running time on extreme testcases.
197    --Limit;
198    if (!Limit)
199      return MemDepResult::getUnknown();
200
201    // If this inst is a memory op, get the pointer it accessed
202    MemoryLocation Loc;
203    ModRefInfo MR = GetLocation(Inst, Loc, TLI);
204    if (Loc.Ptr) {
205      // A simple instruction.
206      if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
207        return MemDepResult::getClobber(Inst);
208      continue;
209    }
210
211    if (auto *CallB = dyn_cast<CallBase>(Inst)) {
212      // If these two calls do not interfere, look past it.
213      if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
214        // If the two calls are the same, return Inst as a Def, so that
215        // Call can be found redundant and eliminated.
216        if (isReadOnlyCall && !isModSet(MR) &&
217            Call->isIdenticalToWhenDefined(CallB))
218          return MemDepResult::getDef(Inst);
219
220        // Otherwise if the two calls don't interact (e.g. CallB is readnone)
221        // keep scanning.
222        continue;
223      } else
224        return MemDepResult::getClobber(Inst);
225    }
226
227    // If we could not obtain a pointer for the instruction and the instruction
228    // touches memory then assume that this is a dependency.
229    if (isModOrRefSet(MR))
230      return MemDepResult::getClobber(Inst);
231  }
232
233  // No dependence found.  If this is the entry block of the function, it is
234  // unknown, otherwise it is non-local.
235  if (BB != &BB->getParent()->getEntryBlock())
236    return MemDepResult::getNonLocal();
237  return MemDepResult::getNonFuncLocal();
238}
239
240static bool isVolatile(Instruction *Inst) {
241  if (auto *LI = dyn_cast<LoadInst>(Inst))
242    return LI->isVolatile();
243  if (auto *SI = dyn_cast<StoreInst>(Inst))
244    return SI->isVolatile();
245  if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
246    return AI->isVolatile();
247  return false;
248}
249
250MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
251    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
252    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
253  MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
254  if (QueryInst != nullptr) {
255    if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
256      InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
257
258      if (InvariantGroupDependency.isDef())
259        return InvariantGroupDependency;
260    }
261  }
262  MemDepResult SimpleDep = getSimplePointerDependencyFrom(
263      MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
264  if (SimpleDep.isDef())
265    return SimpleDep;
266  // Non-local invariant group dependency indicates there is non local Def
267  // (it only returns nonLocal if it finds nonLocal def), which is better than
268  // local clobber and everything else.
269  if (InvariantGroupDependency.isNonLocal())
270    return InvariantGroupDependency;
271
272  assert(InvariantGroupDependency.isUnknown() &&
273         "InvariantGroupDependency should be only unknown at this point");
274  return SimpleDep;
275}
276
277MemDepResult
278MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
279                                                            BasicBlock *BB) {
280
281  if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
282    return MemDepResult::getUnknown();
283
284  // Take the ptr operand after all casts and geps 0. This way we can search
285  // cast graph down only.
286  Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
287
288  // It's is not safe to walk the use list of global value, because function
289  // passes aren't allowed to look outside their functions.
290  // FIXME: this could be fixed by filtering instructions from outside
291  // of current function.
292  if (isa<GlobalValue>(LoadOperand))
293    return MemDepResult::getUnknown();
294
295  // Queue to process all pointers that are equivalent to load operand.
296  SmallVector<const Value *, 8> LoadOperandsQueue;
297  LoadOperandsQueue.push_back(LoadOperand);
298
299  Instruction *ClosestDependency = nullptr;
300  // Order of instructions in uses list is unpredictible. In order to always
301  // get the same result, we will look for the closest dominance.
302  auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
303    assert(Other && "Must call it with not null instruction");
304    if (Best == nullptr || DT.dominates(Best, Other))
305      return Other;
306    return Best;
307  };
308
309  // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
310  // we will see all the instructions. This should be fixed in MSSA.
311  while (!LoadOperandsQueue.empty()) {
312    const Value *Ptr = LoadOperandsQueue.pop_back_val();
313    assert(Ptr && !isa<GlobalValue>(Ptr) &&
314           "Null or GlobalValue should not be inserted");
315
316    for (const Use &Us : Ptr->uses()) {
317      auto *U = dyn_cast<Instruction>(Us.getUser());
318      if (!U || U == LI || !DT.dominates(U, LI))
319        continue;
320
321      // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
322      // users.      U = bitcast Ptr
323      if (isa<BitCastInst>(U)) {
324        LoadOperandsQueue.push_back(U);
325        continue;
326      }
327      // Gep with zeros is equivalent to bitcast.
328      // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
329      // or gep 0 to bitcast because of SROA, so there are 2 forms. When
330      // typeless pointers will be ready then both cases will be gone
331      // (and this BFS also won't be needed).
332      if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
333        if (GEP->hasAllZeroIndices()) {
334          LoadOperandsQueue.push_back(U);
335          continue;
336        }
337
338      // If we hit load/store with the same invariant.group metadata (and the
339      // same pointer operand) we can assume that value pointed by pointer
340      // operand didn't change.
341      if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
342          U->hasMetadata(LLVMContext::MD_invariant_group))
343        ClosestDependency = GetClosestDependency(ClosestDependency, U);
344    }
345  }
346
347  if (!ClosestDependency)
348    return MemDepResult::getUnknown();
349  if (ClosestDependency->getParent() == BB)
350    return MemDepResult::getDef(ClosestDependency);
351  // Def(U) can't be returned here because it is non-local. If local
352  // dependency won't be found then return nonLocal counting that the
353  // user will call getNonLocalPointerDependency, which will return cached
354  // result.
355  NonLocalDefsCache.try_emplace(
356      LI, NonLocalDepResult(ClosestDependency->getParent(),
357                            MemDepResult::getDef(ClosestDependency), nullptr));
358  ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
359  return MemDepResult::getNonLocal();
360}
361
362MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
363    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
364    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
365  bool isInvariantLoad = false;
366
367  unsigned DefaultLimit = getDefaultBlockScanLimit();
368  if (!Limit)
369    Limit = &DefaultLimit;
370
371  // We must be careful with atomic accesses, as they may allow another thread
372  //   to touch this location, clobbering it. We are conservative: if the
373  //   QueryInst is not a simple (non-atomic) memory access, we automatically
374  //   return getClobber.
375  // If it is simple, we know based on the results of
376  // "Compiler testing via a theory of sound optimisations in the C11/C++11
377  //   memory model" in PLDI 2013, that a non-atomic location can only be
378  //   clobbered between a pair of a release and an acquire action, with no
379  //   access to the location in between.
380  // Here is an example for giving the general intuition behind this rule.
381  // In the following code:
382  //   store x 0;
383  //   release action; [1]
384  //   acquire action; [4]
385  //   %val = load x;
386  // It is unsafe to replace %val by 0 because another thread may be running:
387  //   acquire action; [2]
388  //   store x 42;
389  //   release action; [3]
390  // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
391  // being 42. A key property of this program however is that if either
392  // 1 or 4 were missing, there would be a race between the store of 42
393  // either the store of 0 or the load (making the whole program racy).
394  // The paper mentioned above shows that the same property is respected
395  // by every program that can detect any optimization of that kind: either
396  // it is racy (undefined) or there is a release followed by an acquire
397  // between the pair of accesses under consideration.
398
399  // If the load is invariant, we "know" that it doesn't alias *any* write. We
400  // do want to respect mustalias results since defs are useful for value
401  // forwarding, but any mayalias write can be assumed to be noalias.
402  // Arguably, this logic should be pushed inside AliasAnalysis itself.
403  if (isLoad && QueryInst) {
404    LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
405    if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
406      isInvariantLoad = true;
407  }
408
409  const DataLayout &DL = BB->getModule()->getDataLayout();
410
411  // Return "true" if and only if the instruction I is either a non-simple
412  // load or a non-simple store.
413  auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
414    if (auto *LI = dyn_cast<LoadInst>(I))
415      return !LI->isSimple();
416    if (auto *SI = dyn_cast<StoreInst>(I))
417      return !SI->isSimple();
418    return false;
419  };
420
421  // Return "true" if I is not a load and not a store, but it does access
422  // memory.
423  auto isOtherMemAccess = [](Instruction *I) -> bool {
424    return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
425  };
426
427  // Walk backwards through the basic block, looking for dependencies.
428  while (ScanIt != BB->begin()) {
429    Instruction *Inst = &*--ScanIt;
430
431    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
432      // Debug intrinsics don't (and can't) cause dependencies.
433      if (isa<DbgInfoIntrinsic>(II))
434        continue;
435
436    // Limit the amount of scanning we do so we don't end up with quadratic
437    // running time on extreme testcases.
438    --*Limit;
439    if (!*Limit)
440      return MemDepResult::getUnknown();
441
442    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
443      // If we reach a lifetime begin or end marker, then the query ends here
444      // because the value is undefined.
445      if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
446        // FIXME: This only considers queries directly on the invariant-tagged
447        // pointer, not on query pointers that are indexed off of them.  It'd
448        // be nice to handle that at some point (the right approach is to use
449        // GetPointerBaseWithConstantOffset).
450        if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
451          return MemDepResult::getDef(II);
452        continue;
453      }
454    }
455
456    // Values depend on loads if the pointers are must aliased.  This means
457    // that a load depends on another must aliased load from the same value.
458    // One exception is atomic loads: a value can depend on an atomic load that
459    // it does not alias with when this atomic load indicates that another
460    // thread may be accessing the location.
461    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
462      // While volatile access cannot be eliminated, they do not have to clobber
463      // non-aliasing locations, as normal accesses, for example, can be safely
464      // reordered with volatile accesses.
465      if (LI->isVolatile()) {
466        if (!QueryInst)
467          // Original QueryInst *may* be volatile
468          return MemDepResult::getClobber(LI);
469        if (isVolatile(QueryInst))
470          // Ordering required if QueryInst is itself volatile
471          return MemDepResult::getClobber(LI);
472        // Otherwise, volatile doesn't imply any special ordering
473      }
474
475      // Atomic loads have complications involved.
476      // A Monotonic (or higher) load is OK if the query inst is itself not
477      // atomic.
478      // FIXME: This is overly conservative.
479      if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
480        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
481            isOtherMemAccess(QueryInst))
482          return MemDepResult::getClobber(LI);
483        if (LI->getOrdering() != AtomicOrdering::Monotonic)
484          return MemDepResult::getClobber(LI);
485      }
486
487      MemoryLocation LoadLoc = MemoryLocation::get(LI);
488
489      // If we found a pointer, check if it could be the same as our pointer.
490      AliasResult R = AA.alias(LoadLoc, MemLoc);
491
492      if (isLoad) {
493        if (R == NoAlias)
494          continue;
495
496        // Must aliased loads are defs of each other.
497        if (R == MustAlias)
498          return MemDepResult::getDef(Inst);
499
500#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
501      // in terms of clobbering loads, but since it does this by looking
502      // at the clobbering load directly, it doesn't know about any
503      // phi translation that may have happened along the way.
504
505        // If we have a partial alias, then return this as a clobber for the
506        // client to handle.
507        if (R == PartialAlias)
508          return MemDepResult::getClobber(Inst);
509#endif
510
511        // Random may-alias loads don't depend on each other without a
512        // dependence.
513        continue;
514      }
515
516      // Stores don't depend on other no-aliased accesses.
517      if (R == NoAlias)
518        continue;
519
520      // Stores don't alias loads from read-only memory.
521      if (AA.pointsToConstantMemory(LoadLoc))
522        continue;
523
524      // Stores depend on may/must aliased loads.
525      return MemDepResult::getDef(Inst);
526    }
527
528    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
529      // Atomic stores have complications involved.
530      // A Monotonic store is OK if the query inst is itself not atomic.
531      // FIXME: This is overly conservative.
532      if (!SI->isUnordered() && SI->isAtomic()) {
533        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
534            isOtherMemAccess(QueryInst))
535          return MemDepResult::getClobber(SI);
536        if (SI->getOrdering() != AtomicOrdering::Monotonic)
537          return MemDepResult::getClobber(SI);
538      }
539
540      // FIXME: this is overly conservative.
541      // While volatile access cannot be eliminated, they do not have to clobber
542      // non-aliasing locations, as normal accesses can for example be reordered
543      // with volatile accesses.
544      if (SI->isVolatile())
545        if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
546            isOtherMemAccess(QueryInst))
547          return MemDepResult::getClobber(SI);
548
549      // If alias analysis can tell that this store is guaranteed to not modify
550      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
551      // the query pointer points to constant memory etc.
552      if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
553        continue;
554
555      // Ok, this store might clobber the query pointer.  Check to see if it is
556      // a must alias: in this case, we want to return this as a def.
557      // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
558      MemoryLocation StoreLoc = MemoryLocation::get(SI);
559
560      // If we found a pointer, check if it could be the same as our pointer.
561      AliasResult R = AA.alias(StoreLoc, MemLoc);
562
563      if (R == NoAlias)
564        continue;
565      if (R == MustAlias)
566        return MemDepResult::getDef(Inst);
567      if (isInvariantLoad)
568        continue;
569      return MemDepResult::getClobber(Inst);
570    }
571
572    // If this is an allocation, and if we know that the accessed pointer is to
573    // the allocation, return Def.  This means that there is no dependence and
574    // the access can be optimized based on that.  For example, a load could
575    // turn into undef.  Note that we can bypass the allocation itself when
576    // looking for a clobber in many cases; that's an alias property and is
577    // handled by BasicAA.
578    if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
579      const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
580      if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
581        return MemDepResult::getDef(Inst);
582    }
583
584    if (isInvariantLoad)
585      continue;
586
587    // A release fence requires that all stores complete before it, but does
588    // not prevent the reordering of following loads or stores 'before' the
589    // fence.  As a result, we look past it when finding a dependency for
590    // loads.  DSE uses this to find preceding stores to delete and thus we
591    // can't bypass the fence if the query instruction is a store.
592    if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
593      if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
594        continue;
595
596    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
597    ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
598    // If necessary, perform additional analysis.
599    if (isModAndRefSet(MR))
600      MR = AA.callCapturesBefore(Inst, MemLoc, &DT);
601    switch (clearMust(MR)) {
602    case ModRefInfo::NoModRef:
603      // If the call has no effect on the queried pointer, just ignore it.
604      continue;
605    case ModRefInfo::Mod:
606      return MemDepResult::getClobber(Inst);
607    case ModRefInfo::Ref:
608      // If the call is known to never store to the pointer, and if this is a
609      // load query, we can safely ignore it (scan past it).
610      if (isLoad)
611        continue;
612      LLVM_FALLTHROUGH;
613    default:
614      // Otherwise, there is a potential dependence.  Return a clobber.
615      return MemDepResult::getClobber(Inst);
616    }
617  }
618
619  // No dependence found.  If this is the entry block of the function, it is
620  // unknown, otherwise it is non-local.
621  if (BB != &BB->getParent()->getEntryBlock())
622    return MemDepResult::getNonLocal();
623  return MemDepResult::getNonFuncLocal();
624}
625
626MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
627  Instruction *ScanPos = QueryInst;
628
629  // Check for a cached result
630  MemDepResult &LocalCache = LocalDeps[QueryInst];
631
632  // If the cached entry is non-dirty, just return it.  Note that this depends
633  // on MemDepResult's default constructing to 'dirty'.
634  if (!LocalCache.isDirty())
635    return LocalCache;
636
637  // Otherwise, if we have a dirty entry, we know we can start the scan at that
638  // instruction, which may save us some work.
639  if (Instruction *Inst = LocalCache.getInst()) {
640    ScanPos = Inst;
641
642    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
643  }
644
645  BasicBlock *QueryParent = QueryInst->getParent();
646
647  // Do the scan.
648  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
649    // No dependence found. If this is the entry block of the function, it is
650    // unknown, otherwise it is non-local.
651    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
652      LocalCache = MemDepResult::getNonLocal();
653    else
654      LocalCache = MemDepResult::getNonFuncLocal();
655  } else {
656    MemoryLocation MemLoc;
657    ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
658    if (MemLoc.Ptr) {
659      // If we can do a pointer scan, make it happen.
660      bool isLoad = !isModSet(MR);
661      if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
662        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
663
664      LocalCache =
665          getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
666                                   QueryParent, QueryInst, nullptr);
667    } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
668      bool isReadOnly = AA.onlyReadsMemory(QueryCall);
669      LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
670                                         ScanPos->getIterator(), QueryParent);
671    } else
672      // Non-memory instruction.
673      LocalCache = MemDepResult::getUnknown();
674  }
675
676  // Remember the result!
677  if (Instruction *I = LocalCache.getInst())
678    ReverseLocalDeps[I].insert(QueryInst);
679
680  return LocalCache;
681}
682
683#ifndef NDEBUG
684/// This method is used when -debug is specified to verify that cache arrays
685/// are properly kept sorted.
686static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
687                         int Count = -1) {
688  if (Count == -1)
689    Count = Cache.size();
690  assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
691         "Cache isn't sorted!");
692}
693#endif
694
695const MemoryDependenceResults::NonLocalDepInfo &
696MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
697  assert(getDependency(QueryCall).isNonLocal() &&
698         "getNonLocalCallDependency should only be used on calls with "
699         "non-local deps!");
700  PerInstNLInfo &CacheP = NonLocalDeps[QueryCall];
701  NonLocalDepInfo &Cache = CacheP.first;
702
703  // This is the set of blocks that need to be recomputed.  In the cached case,
704  // this can happen due to instructions being deleted etc. In the uncached
705  // case, this starts out as the set of predecessors we care about.
706  SmallVector<BasicBlock *, 32> DirtyBlocks;
707
708  if (!Cache.empty()) {
709    // Okay, we have a cache entry.  If we know it is not dirty, just return it
710    // with no computation.
711    if (!CacheP.second) {
712      ++NumCacheNonLocal;
713      return Cache;
714    }
715
716    // If we already have a partially computed set of results, scan them to
717    // determine what is dirty, seeding our initial DirtyBlocks worklist.
718    for (auto &Entry : Cache)
719      if (Entry.getResult().isDirty())
720        DirtyBlocks.push_back(Entry.getBB());
721
722    // Sort the cache so that we can do fast binary search lookups below.
723    llvm::sort(Cache);
724
725    ++NumCacheDirtyNonLocal;
726    // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
727    //     << Cache.size() << " cached: " << *QueryInst;
728  } else {
729    // Seed DirtyBlocks with each of the preds of QueryInst's block.
730    BasicBlock *QueryBB = QueryCall->getParent();
731    for (BasicBlock *Pred : PredCache.get(QueryBB))
732      DirtyBlocks.push_back(Pred);
733    ++NumUncacheNonLocal;
734  }
735
736  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
737  bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
738
739  SmallPtrSet<BasicBlock *, 32> Visited;
740
741  unsigned NumSortedEntries = Cache.size();
742  LLVM_DEBUG(AssertSorted(Cache));
743
744  // Iterate while we still have blocks to update.
745  while (!DirtyBlocks.empty()) {
746    BasicBlock *DirtyBB = DirtyBlocks.back();
747    DirtyBlocks.pop_back();
748
749    // Already processed this block?
750    if (!Visited.insert(DirtyBB).second)
751      continue;
752
753    // Do a binary search to see if we already have an entry for this block in
754    // the cache set.  If so, find it.
755    LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
756    NonLocalDepInfo::iterator Entry =
757        std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
758                         NonLocalDepEntry(DirtyBB));
759    if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
760      --Entry;
761
762    NonLocalDepEntry *ExistingResult = nullptr;
763    if (Entry != Cache.begin() + NumSortedEntries &&
764        Entry->getBB() == DirtyBB) {
765      // If we already have an entry, and if it isn't already dirty, the block
766      // is done.
767      if (!Entry->getResult().isDirty())
768        continue;
769
770      // Otherwise, remember this slot so we can update the value.
771      ExistingResult = &*Entry;
772    }
773
774    // If the dirty entry has a pointer, start scanning from it so we don't have
775    // to rescan the entire block.
776    BasicBlock::iterator ScanPos = DirtyBB->end();
777    if (ExistingResult) {
778      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
779        ScanPos = Inst->getIterator();
780        // We're removing QueryInst's use of Inst.
781        RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
782                                            QueryCall);
783      }
784    }
785
786    // Find out if this block has a local dependency for QueryInst.
787    MemDepResult Dep;
788
789    if (ScanPos != DirtyBB->begin()) {
790      Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
791    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
792      // No dependence found.  If this is the entry block of the function, it is
793      // a clobber, otherwise it is unknown.
794      Dep = MemDepResult::getNonLocal();
795    } else {
796      Dep = MemDepResult::getNonFuncLocal();
797    }
798
799    // If we had a dirty entry for the block, update it.  Otherwise, just add
800    // a new entry.
801    if (ExistingResult)
802      ExistingResult->setResult(Dep);
803    else
804      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
805
806    // If the block has a dependency (i.e. it isn't completely transparent to
807    // the value), remember the association!
808    if (!Dep.isNonLocal()) {
809      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
810      // update this when we remove instructions.
811      if (Instruction *Inst = Dep.getInst())
812        ReverseNonLocalDeps[Inst].insert(QueryCall);
813    } else {
814
815      // If the block *is* completely transparent to the load, we need to check
816      // the predecessors of this block.  Add them to our worklist.
817      for (BasicBlock *Pred : PredCache.get(DirtyBB))
818        DirtyBlocks.push_back(Pred);
819    }
820  }
821
822  return Cache;
823}
824
825void MemoryDependenceResults::getNonLocalPointerDependency(
826    Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
827  const MemoryLocation Loc = MemoryLocation::get(QueryInst);
828  bool isLoad = isa<LoadInst>(QueryInst);
829  BasicBlock *FromBB = QueryInst->getParent();
830  assert(FromBB);
831
832  assert(Loc.Ptr->getType()->isPointerTy() &&
833         "Can't get pointer deps of a non-pointer!");
834  Result.clear();
835  {
836    // Check if there is cached Def with invariant.group.
837    auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
838    if (NonLocalDefIt != NonLocalDefsCache.end()) {
839      Result.push_back(NonLocalDefIt->second);
840      ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
841          .erase(QueryInst);
842      NonLocalDefsCache.erase(NonLocalDefIt);
843      return;
844    }
845  }
846  // This routine does not expect to deal with volatile instructions.
847  // Doing so would require piping through the QueryInst all the way through.
848  // TODO: volatiles can't be elided, but they can be reordered with other
849  // non-volatile accesses.
850
851  // We currently give up on any instruction which is ordered, but we do handle
852  // atomic instructions which are unordered.
853  // TODO: Handle ordered instructions
854  auto isOrdered = [](Instruction *Inst) {
855    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
856      return !LI->isUnordered();
857    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
858      return !SI->isUnordered();
859    }
860    return false;
861  };
862  if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
863    Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
864                                       const_cast<Value *>(Loc.Ptr)));
865    return;
866  }
867  const DataLayout &DL = FromBB->getModule()->getDataLayout();
868  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
869
870  // This is the set of blocks we've inspected, and the pointer we consider in
871  // each block.  Because of critical edges, we currently bail out if querying
872  // a block with multiple different pointers.  This can happen during PHI
873  // translation.
874  DenseMap<BasicBlock *, Value *> Visited;
875  if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
876                                   Result, Visited, true))
877    return;
878  Result.clear();
879  Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
880                                     const_cast<Value *>(Loc.Ptr)));
881}
882
883/// Compute the memdep value for BB with Pointer/PointeeSize using either
884/// cached information in Cache or by doing a lookup (which may use dirty cache
885/// info if available).
886///
887/// If we do a lookup, add the result to the cache.
888MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
889    Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
890    BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
891
892  bool isInvariantLoad = false;
893
894  if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
895    isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
896
897  // Do a binary search to see if we already have an entry for this block in
898  // the cache set.  If so, find it.
899  NonLocalDepInfo::iterator Entry = std::upper_bound(
900      Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
901  if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
902    --Entry;
903
904  NonLocalDepEntry *ExistingResult = nullptr;
905  if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
906    ExistingResult = &*Entry;
907
908  // Use cached result for invariant load only if there is no dependency for non
909  // invariant load. In this case invariant load can not have any dependency as
910  // well.
911  if (ExistingResult && isInvariantLoad &&
912      !ExistingResult->getResult().isNonFuncLocal())
913    ExistingResult = nullptr;
914
915  // If we have a cached entry, and it is non-dirty, use it as the value for
916  // this dependency.
917  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
918    ++NumCacheNonLocalPtr;
919    return ExistingResult->getResult();
920  }
921
922  // Otherwise, we have to scan for the value.  If we have a dirty cache
923  // entry, start scanning from its position, otherwise we scan from the end
924  // of the block.
925  BasicBlock::iterator ScanPos = BB->end();
926  if (ExistingResult && ExistingResult->getResult().getInst()) {
927    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
928           "Instruction invalidated?");
929    ++NumCacheDirtyNonLocalPtr;
930    ScanPos = ExistingResult->getResult().getInst()->getIterator();
931
932    // Eliminating the dirty entry from 'Cache', so update the reverse info.
933    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
934    RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
935  } else {
936    ++NumUncacheNonLocalPtr;
937  }
938
939  // Scan the block for the dependency.
940  MemDepResult Dep =
941      getPointerDependencyFrom(Loc, isLoad, ScanPos, BB, QueryInst);
942
943  // Don't cache results for invariant load.
944  if (isInvariantLoad)
945    return Dep;
946
947  // If we had a dirty entry for the block, update it.  Otherwise, just add
948  // a new entry.
949  if (ExistingResult)
950    ExistingResult->setResult(Dep);
951  else
952    Cache->push_back(NonLocalDepEntry(BB, Dep));
953
954  // If the block has a dependency (i.e. it isn't completely transparent to
955  // the value), remember the reverse association because we just added it
956  // to Cache!
957  if (!Dep.isDef() && !Dep.isClobber())
958    return Dep;
959
960  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
961  // update MemDep when we remove instructions.
962  Instruction *Inst = Dep.getInst();
963  assert(Inst && "Didn't depend on anything?");
964  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
965  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
966  return Dep;
967}
968
969/// Sort the NonLocalDepInfo cache, given a certain number of elements in the
970/// array that are already properly ordered.
971///
972/// This is optimized for the case when only a few entries are added.
973static void
974SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
975                         unsigned NumSortedEntries) {
976  switch (Cache.size() - NumSortedEntries) {
977  case 0:
978    // done, no new entries.
979    break;
980  case 2: {
981    // Two new entries, insert the last one into place.
982    NonLocalDepEntry Val = Cache.back();
983    Cache.pop_back();
984    MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
985        std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
986    Cache.insert(Entry, Val);
987    LLVM_FALLTHROUGH;
988  }
989  case 1:
990    // One new entry, Just insert the new value at the appropriate position.
991    if (Cache.size() != 1) {
992      NonLocalDepEntry Val = Cache.back();
993      Cache.pop_back();
994      MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
995          std::upper_bound(Cache.begin(), Cache.end(), Val);
996      Cache.insert(Entry, Val);
997    }
998    break;
999  default:
1000    // Added many values, do a full scale sort.
1001    llvm::sort(Cache);
1002    break;
1003  }
1004}
1005
1006/// Perform a dependency query based on pointer/pointeesize starting at the end
1007/// of StartBB.
1008///
1009/// Add any clobber/def results to the results vector and keep track of which
1010/// blocks are visited in 'Visited'.
1011///
1012/// This has special behavior for the first block queries (when SkipFirstBlock
1013/// is true).  In this special case, it ignores the contents of the specified
1014/// block and starts returning dependence info for its predecessors.
1015///
1016/// This function returns true on success, or false to indicate that it could
1017/// not compute dependence information for some reason.  This should be treated
1018/// as a clobber dependence on the first instruction in the predecessor block.
1019bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1020    Instruction *QueryInst, const PHITransAddr &Pointer,
1021    const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1022    SmallVectorImpl<NonLocalDepResult> &Result,
1023    DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1024    bool IsIncomplete) {
1025  // Look up the cached info for Pointer.
1026  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1027
1028  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1029  // CacheKey, this value will be inserted as the associated value. Otherwise,
1030  // it'll be ignored, and we'll have to check to see if the cached size and
1031  // aa tags are consistent with the current query.
1032  NonLocalPointerInfo InitialNLPI;
1033  InitialNLPI.Size = Loc.Size;
1034  InitialNLPI.AATags = Loc.AATags;
1035
1036  bool isInvariantLoad = false;
1037  if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1038    isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1039
1040  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1041  // already have one.
1042  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1043      NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1044  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1045
1046  // If we already have a cache entry for this CacheKey, we may need to do some
1047  // work to reconcile the cache entry and the current query.
1048  // Invariant loads don't participate in caching. Thus no need to reconcile.
1049  if (!isInvariantLoad && !Pair.second) {
1050    if (CacheInfo->Size != Loc.Size) {
1051      bool ThrowOutEverything;
1052      if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1053        // FIXME: We may be able to do better in the face of results with mixed
1054        // precision. We don't appear to get them in practice, though, so just
1055        // be conservative.
1056        ThrowOutEverything =
1057            CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1058            CacheInfo->Size.getValue() < Loc.Size.getValue();
1059      } else {
1060        // For our purposes, unknown size > all others.
1061        ThrowOutEverything = !Loc.Size.hasValue();
1062      }
1063
1064      if (ThrowOutEverything) {
1065        // The query's Size is greater than the cached one. Throw out the
1066        // cached data and proceed with the query at the greater size.
1067        CacheInfo->Pair = BBSkipFirstBlockPair();
1068        CacheInfo->Size = Loc.Size;
1069        for (auto &Entry : CacheInfo->NonLocalDeps)
1070          if (Instruction *Inst = Entry.getResult().getInst())
1071            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1072        CacheInfo->NonLocalDeps.clear();
1073        // The cache is cleared (in the above line) so we will have lost
1074        // information about blocks we have already visited. We therefore must
1075        // assume that the cache information is incomplete.
1076        IsIncomplete = true;
1077      } else {
1078        // This query's Size is less than the cached one. Conservatively restart
1079        // the query using the greater size.
1080        return getNonLocalPointerDepFromBB(
1081            QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1082            StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1083      }
1084    }
1085
1086    // If the query's AATags are inconsistent with the cached one,
1087    // conservatively throw out the cached data and restart the query with
1088    // no tag if needed.
1089    if (CacheInfo->AATags != Loc.AATags) {
1090      if (CacheInfo->AATags) {
1091        CacheInfo->Pair = BBSkipFirstBlockPair();
1092        CacheInfo->AATags = AAMDNodes();
1093        for (auto &Entry : CacheInfo->NonLocalDeps)
1094          if (Instruction *Inst = Entry.getResult().getInst())
1095            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1096        CacheInfo->NonLocalDeps.clear();
1097        // The cache is cleared (in the above line) so we will have lost
1098        // information about blocks we have already visited. We therefore must
1099        // assume that the cache information is incomplete.
1100        IsIncomplete = true;
1101      }
1102      if (Loc.AATags)
1103        return getNonLocalPointerDepFromBB(
1104            QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1105            Visited, SkipFirstBlock, IsIncomplete);
1106    }
1107  }
1108
1109  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1110
1111  // If we have valid cached information for exactly the block we are
1112  // investigating, just return it with no recomputation.
1113  // Don't use cached information for invariant loads since it is valid for
1114  // non-invariant loads only.
1115  //
1116  // Don't use cached information for invariant loads since it is valid for
1117  // non-invariant loads only.
1118  if (!IsIncomplete && !isInvariantLoad &&
1119      CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1120    // We have a fully cached result for this query then we can just return the
1121    // cached results and populate the visited set.  However, we have to verify
1122    // that we don't already have conflicting results for these blocks.  Check
1123    // to ensure that if a block in the results set is in the visited set that
1124    // it was for the same pointer query.
1125    if (!Visited.empty()) {
1126      for (auto &Entry : *Cache) {
1127        DenseMap<BasicBlock *, Value *>::iterator VI =
1128            Visited.find(Entry.getBB());
1129        if (VI == Visited.end() || VI->second == Pointer.getAddr())
1130          continue;
1131
1132        // We have a pointer mismatch in a block.  Just return false, saying
1133        // that something was clobbered in this result.  We could also do a
1134        // non-fully cached query, but there is little point in doing this.
1135        return false;
1136      }
1137    }
1138
1139    Value *Addr = Pointer.getAddr();
1140    for (auto &Entry : *Cache) {
1141      Visited.insert(std::make_pair(Entry.getBB(), Addr));
1142      if (Entry.getResult().isNonLocal()) {
1143        continue;
1144      }
1145
1146      if (DT.isReachableFromEntry(Entry.getBB())) {
1147        Result.push_back(
1148            NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1149      }
1150    }
1151    ++NumCacheCompleteNonLocalPtr;
1152    return true;
1153  }
1154
1155  // Otherwise, either this is a new block, a block with an invalid cache
1156  // pointer or one that we're about to invalidate by putting more info into
1157  // it than its valid cache info.  If empty and not explicitly indicated as
1158  // incomplete, the result will be valid cache info, otherwise it isn't.
1159  //
1160  // Invariant loads don't affect cache in any way thus no need to update
1161  // CacheInfo as well.
1162  if (!isInvariantLoad) {
1163    if (!IsIncomplete && Cache->empty())
1164      CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1165    else
1166      CacheInfo->Pair = BBSkipFirstBlockPair();
1167  }
1168
1169  SmallVector<BasicBlock *, 32> Worklist;
1170  Worklist.push_back(StartBB);
1171
1172  // PredList used inside loop.
1173  SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1174
1175  // Keep track of the entries that we know are sorted.  Previously cached
1176  // entries will all be sorted.  The entries we add we only sort on demand (we
1177  // don't insert every element into its sorted position).  We know that we
1178  // won't get any reuse from currently inserted values, because we don't
1179  // revisit blocks after we insert info for them.
1180  unsigned NumSortedEntries = Cache->size();
1181  unsigned WorklistEntries = BlockNumberLimit;
1182  bool GotWorklistLimit = false;
1183  LLVM_DEBUG(AssertSorted(*Cache));
1184
1185  while (!Worklist.empty()) {
1186    BasicBlock *BB = Worklist.pop_back_val();
1187
1188    // If we do process a large number of blocks it becomes very expensive and
1189    // likely it isn't worth worrying about
1190    if (Result.size() > NumResultsLimit) {
1191      Worklist.clear();
1192      // Sort it now (if needed) so that recursive invocations of
1193      // getNonLocalPointerDepFromBB and other routines that could reuse the
1194      // cache value will only see properly sorted cache arrays.
1195      if (Cache && NumSortedEntries != Cache->size()) {
1196        SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1197      }
1198      // Since we bail out, the "Cache" set won't contain all of the
1199      // results for the query.  This is ok (we can still use it to accelerate
1200      // specific block queries) but we can't do the fastpath "return all
1201      // results from the set".  Clear out the indicator for this.
1202      CacheInfo->Pair = BBSkipFirstBlockPair();
1203      return false;
1204    }
1205
1206    // Skip the first block if we have it.
1207    if (!SkipFirstBlock) {
1208      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1209      // been here.
1210      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1211
1212      // Get the dependency info for Pointer in BB.  If we have cached
1213      // information, we will use it, otherwise we compute it.
1214      LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1215      MemDepResult Dep = GetNonLocalInfoForBlock(QueryInst, Loc, isLoad, BB,
1216                                                 Cache, NumSortedEntries);
1217
1218      // If we got a Def or Clobber, add this to the list of results.
1219      if (!Dep.isNonLocal()) {
1220        if (DT.isReachableFromEntry(BB)) {
1221          Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1222          continue;
1223        }
1224      }
1225    }
1226
1227    // If 'Pointer' is an instruction defined in this block, then we need to do
1228    // phi translation to change it into a value live in the predecessor block.
1229    // If not, we just add the predecessors to the worklist and scan them with
1230    // the same Pointer.
1231    if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1232      SkipFirstBlock = false;
1233      SmallVector<BasicBlock *, 16> NewBlocks;
1234      for (BasicBlock *Pred : PredCache.get(BB)) {
1235        // Verify that we haven't looked at this block yet.
1236        std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1237            Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1238        if (InsertRes.second) {
1239          // First time we've looked at *PI.
1240          NewBlocks.push_back(Pred);
1241          continue;
1242        }
1243
1244        // If we have seen this block before, but it was with a different
1245        // pointer then we have a phi translation failure and we have to treat
1246        // this as a clobber.
1247        if (InsertRes.first->second != Pointer.getAddr()) {
1248          // Make sure to clean up the Visited map before continuing on to
1249          // PredTranslationFailure.
1250          for (unsigned i = 0; i < NewBlocks.size(); i++)
1251            Visited.erase(NewBlocks[i]);
1252          goto PredTranslationFailure;
1253        }
1254      }
1255      if (NewBlocks.size() > WorklistEntries) {
1256        // Make sure to clean up the Visited map before continuing on to
1257        // PredTranslationFailure.
1258        for (unsigned i = 0; i < NewBlocks.size(); i++)
1259          Visited.erase(NewBlocks[i]);
1260        GotWorklistLimit = true;
1261        goto PredTranslationFailure;
1262      }
1263      WorklistEntries -= NewBlocks.size();
1264      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1265      continue;
1266    }
1267
1268    // We do need to do phi translation, if we know ahead of time we can't phi
1269    // translate this value, don't even try.
1270    if (!Pointer.IsPotentiallyPHITranslatable())
1271      goto PredTranslationFailure;
1272
1273    // We may have added values to the cache list before this PHI translation.
1274    // If so, we haven't done anything to ensure that the cache remains sorted.
1275    // Sort it now (if needed) so that recursive invocations of
1276    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1277    // value will only see properly sorted cache arrays.
1278    if (Cache && NumSortedEntries != Cache->size()) {
1279      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1280      NumSortedEntries = Cache->size();
1281    }
1282    Cache = nullptr;
1283
1284    PredList.clear();
1285    for (BasicBlock *Pred : PredCache.get(BB)) {
1286      PredList.push_back(std::make_pair(Pred, Pointer));
1287
1288      // Get the PHI translated pointer in this predecessor.  This can fail if
1289      // not translatable, in which case the getAddr() returns null.
1290      PHITransAddr &PredPointer = PredList.back().second;
1291      PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1292      Value *PredPtrVal = PredPointer.getAddr();
1293
1294      // Check to see if we have already visited this pred block with another
1295      // pointer.  If so, we can't do this lookup.  This failure can occur
1296      // with PHI translation when a critical edge exists and the PHI node in
1297      // the successor translates to a pointer value different than the
1298      // pointer the block was first analyzed with.
1299      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1300          Visited.insert(std::make_pair(Pred, PredPtrVal));
1301
1302      if (!InsertRes.second) {
1303        // We found the pred; take it off the list of preds to visit.
1304        PredList.pop_back();
1305
1306        // If the predecessor was visited with PredPtr, then we already did
1307        // the analysis and can ignore it.
1308        if (InsertRes.first->second == PredPtrVal)
1309          continue;
1310
1311        // Otherwise, the block was previously analyzed with a different
1312        // pointer.  We can't represent the result of this case, so we just
1313        // treat this as a phi translation failure.
1314
1315        // Make sure to clean up the Visited map before continuing on to
1316        // PredTranslationFailure.
1317        for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1318          Visited.erase(PredList[i].first);
1319
1320        goto PredTranslationFailure;
1321      }
1322    }
1323
1324    // Actually process results here; this need to be a separate loop to avoid
1325    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1326    // any results for.  (getNonLocalPointerDepFromBB will modify our
1327    // datastructures in ways the code after the PredTranslationFailure label
1328    // doesn't expect.)
1329    for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1330      BasicBlock *Pred = PredList[i].first;
1331      PHITransAddr &PredPointer = PredList[i].second;
1332      Value *PredPtrVal = PredPointer.getAddr();
1333
1334      bool CanTranslate = true;
1335      // If PHI translation was unable to find an available pointer in this
1336      // predecessor, then we have to assume that the pointer is clobbered in
1337      // that predecessor.  We can still do PRE of the load, which would insert
1338      // a computation of the pointer in this predecessor.
1339      if (!PredPtrVal)
1340        CanTranslate = false;
1341
1342      // FIXME: it is entirely possible that PHI translating will end up with
1343      // the same value.  Consider PHI translating something like:
1344      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1345      // to recurse here, pedantically speaking.
1346
1347      // If getNonLocalPointerDepFromBB fails here, that means the cached
1348      // result conflicted with the Visited list; we have to conservatively
1349      // assume it is unknown, but this also does not block PRE of the load.
1350      if (!CanTranslate ||
1351          !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1352                                      Loc.getWithNewPtr(PredPtrVal), isLoad,
1353                                      Pred, Result, Visited)) {
1354        // Add the entry to the Result list.
1355        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1356        Result.push_back(Entry);
1357
1358        // Since we had a phi translation failure, the cache for CacheKey won't
1359        // include all of the entries that we need to immediately satisfy future
1360        // queries.  Mark this in NonLocalPointerDeps by setting the
1361        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1362        // cached value to do more work but not miss the phi trans failure.
1363        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1364        NLPI.Pair = BBSkipFirstBlockPair();
1365        continue;
1366      }
1367    }
1368
1369    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1370    CacheInfo = &NonLocalPointerDeps[CacheKey];
1371    Cache = &CacheInfo->NonLocalDeps;
1372    NumSortedEntries = Cache->size();
1373
1374    // Since we did phi translation, the "Cache" set won't contain all of the
1375    // results for the query.  This is ok (we can still use it to accelerate
1376    // specific block queries) but we can't do the fastpath "return all
1377    // results from the set"  Clear out the indicator for this.
1378    CacheInfo->Pair = BBSkipFirstBlockPair();
1379    SkipFirstBlock = false;
1380    continue;
1381
1382  PredTranslationFailure:
1383    // The following code is "failure"; we can't produce a sane translation
1384    // for the given block.  It assumes that we haven't modified any of
1385    // our datastructures while processing the current block.
1386
1387    if (!Cache) {
1388      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1389      CacheInfo = &NonLocalPointerDeps[CacheKey];
1390      Cache = &CacheInfo->NonLocalDeps;
1391      NumSortedEntries = Cache->size();
1392    }
1393
1394    // Since we failed phi translation, the "Cache" set won't contain all of the
1395    // results for the query.  This is ok (we can still use it to accelerate
1396    // specific block queries) but we can't do the fastpath "return all
1397    // results from the set".  Clear out the indicator for this.
1398    CacheInfo->Pair = BBSkipFirstBlockPair();
1399
1400    // If *nothing* works, mark the pointer as unknown.
1401    //
1402    // If this is the magic first block, return this as a clobber of the whole
1403    // incoming value.  Since we can't phi translate to one of the predecessors,
1404    // we have to bail out.
1405    if (SkipFirstBlock)
1406      return false;
1407
1408    // Results of invariant loads are not cached thus no need to update cached
1409    // information.
1410    if (!isInvariantLoad) {
1411      for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1412        if (I.getBB() != BB)
1413          continue;
1414
1415        assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1416                !DT.isReachableFromEntry(BB)) &&
1417               "Should only be here with transparent block");
1418
1419        I.setResult(MemDepResult::getUnknown());
1420
1421
1422        break;
1423      }
1424    }
1425    (void)GotWorklistLimit;
1426    // Go ahead and report unknown dependence.
1427    Result.push_back(
1428        NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1429  }
1430
1431  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1432  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1433  LLVM_DEBUG(AssertSorted(*Cache));
1434  return true;
1435}
1436
1437/// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1438void MemoryDependenceResults::RemoveCachedNonLocalPointerDependencies(
1439    ValueIsLoadPair P) {
1440
1441  // Most of the time this cache is empty.
1442  if (!NonLocalDefsCache.empty()) {
1443    auto it = NonLocalDefsCache.find(P.getPointer());
1444    if (it != NonLocalDefsCache.end()) {
1445      RemoveFromReverseMap(ReverseNonLocalDefsCache,
1446                           it->second.getResult().getInst(), P.getPointer());
1447      NonLocalDefsCache.erase(it);
1448    }
1449
1450    if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1451      auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1452      if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1453        for (const auto *entry : toRemoveIt->second)
1454          NonLocalDefsCache.erase(entry);
1455        ReverseNonLocalDefsCache.erase(toRemoveIt);
1456      }
1457    }
1458  }
1459
1460  CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1461  if (It == NonLocalPointerDeps.end())
1462    return;
1463
1464  // Remove all of the entries in the BB->val map.  This involves removing
1465  // instructions from the reverse map.
1466  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1467
1468  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1469    Instruction *Target = PInfo[i].getResult().getInst();
1470    if (!Target)
1471      continue; // Ignore non-local dep results.
1472    assert(Target->getParent() == PInfo[i].getBB());
1473
1474    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1475    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1476  }
1477
1478  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1479  NonLocalPointerDeps.erase(It);
1480}
1481
1482void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1483  // If Ptr isn't really a pointer, just ignore it.
1484  if (!Ptr->getType()->isPointerTy())
1485    return;
1486  // Flush store info for the pointer.
1487  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1488  // Flush load info for the pointer.
1489  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1490  // Invalidate phis that use the pointer.
1491  PV.invalidateValue(Ptr);
1492}
1493
1494void MemoryDependenceResults::invalidateCachedPredecessors() {
1495  PredCache.clear();
1496}
1497
1498void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1499  // Walk through the Non-local dependencies, removing this one as the value
1500  // for any cached queries.
1501  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1502  if (NLDI != NonLocalDeps.end()) {
1503    NonLocalDepInfo &BlockMap = NLDI->second.first;
1504    for (auto &Entry : BlockMap)
1505      if (Instruction *Inst = Entry.getResult().getInst())
1506        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1507    NonLocalDeps.erase(NLDI);
1508  }
1509
1510  // If we have a cached local dependence query for this instruction, remove it.
1511  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1512  if (LocalDepEntry != LocalDeps.end()) {
1513    // Remove us from DepInst's reverse set now that the local dep info is gone.
1514    if (Instruction *Inst = LocalDepEntry->second.getInst())
1515      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1516
1517    // Remove this local dependency info.
1518    LocalDeps.erase(LocalDepEntry);
1519  }
1520
1521  // If we have any cached dependencies on this instruction, remove
1522  // them.
1523
1524  // If the instruction is a pointer, remove it from both the load info and the
1525  // store info.
1526  if (RemInst->getType()->isPointerTy()) {
1527    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1528    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1529  } else {
1530    // Otherwise, if the instructions is in the map directly, it must be a load.
1531    // Remove it.
1532    auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1533    if (toRemoveIt != NonLocalDefsCache.end()) {
1534      assert(isa<LoadInst>(RemInst) &&
1535             "only load instructions should be added directly");
1536      const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1537      ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1538      NonLocalDefsCache.erase(toRemoveIt);
1539    }
1540  }
1541
1542  // Loop over all of the things that depend on the instruction we're removing.
1543  SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1544
1545  // If we find RemInst as a clobber or Def in any of the maps for other values,
1546  // we need to replace its entry with a dirty version of the instruction after
1547  // it.  If RemInst is a terminator, we use a null dirty value.
1548  //
1549  // Using a dirty version of the instruction after RemInst saves having to scan
1550  // the entire block to get to this point.
1551  MemDepResult NewDirtyVal;
1552  if (!RemInst->isTerminator())
1553    NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1554
1555  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1556  if (ReverseDepIt != ReverseLocalDeps.end()) {
1557    // RemInst can't be the terminator if it has local stuff depending on it.
1558    assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1559           "Nothing can locally depend on a terminator");
1560
1561    for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1562      assert(InstDependingOnRemInst != RemInst &&
1563             "Already removed our local dep info");
1564
1565      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1566
1567      // Make sure to remember that new things depend on NewDepInst.
1568      assert(NewDirtyVal.getInst() &&
1569             "There is no way something else can have "
1570             "a local dep on this if it is a terminator!");
1571      ReverseDepsToAdd.push_back(
1572          std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1573    }
1574
1575    ReverseLocalDeps.erase(ReverseDepIt);
1576
1577    // Add new reverse deps after scanning the set, to avoid invalidating the
1578    // 'ReverseDeps' reference.
1579    while (!ReverseDepsToAdd.empty()) {
1580      ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1581          ReverseDepsToAdd.back().second);
1582      ReverseDepsToAdd.pop_back();
1583    }
1584  }
1585
1586  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1587  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1588    for (Instruction *I : ReverseDepIt->second) {
1589      assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1590
1591      PerInstNLInfo &INLD = NonLocalDeps[I];
1592      // The information is now dirty!
1593      INLD.second = true;
1594
1595      for (auto &Entry : INLD.first) {
1596        if (Entry.getResult().getInst() != RemInst)
1597          continue;
1598
1599        // Convert to a dirty entry for the subsequent instruction.
1600        Entry.setResult(NewDirtyVal);
1601
1602        if (Instruction *NextI = NewDirtyVal.getInst())
1603          ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1604      }
1605    }
1606
1607    ReverseNonLocalDeps.erase(ReverseDepIt);
1608
1609    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1610    while (!ReverseDepsToAdd.empty()) {
1611      ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1612          ReverseDepsToAdd.back().second);
1613      ReverseDepsToAdd.pop_back();
1614    }
1615  }
1616
1617  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1618  // value in the NonLocalPointerDeps info.
1619  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1620      ReverseNonLocalPtrDeps.find(RemInst);
1621  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1622    SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1623        ReversePtrDepsToAdd;
1624
1625    for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1626      assert(P.getPointer() != RemInst &&
1627             "Already removed NonLocalPointerDeps info for RemInst");
1628
1629      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1630
1631      // The cache is not valid for any specific block anymore.
1632      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1633
1634      // Update any entries for RemInst to use the instruction after it.
1635      for (auto &Entry : NLPDI) {
1636        if (Entry.getResult().getInst() != RemInst)
1637          continue;
1638
1639        // Convert to a dirty entry for the subsequent instruction.
1640        Entry.setResult(NewDirtyVal);
1641
1642        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1643          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1644      }
1645
1646      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1647      // subsequent value may invalidate the sortedness.
1648      llvm::sort(NLPDI);
1649    }
1650
1651    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1652
1653    while (!ReversePtrDepsToAdd.empty()) {
1654      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1655          ReversePtrDepsToAdd.back().second);
1656      ReversePtrDepsToAdd.pop_back();
1657    }
1658  }
1659
1660  // Invalidate phis that use the removed instruction.
1661  PV.invalidateValue(RemInst);
1662
1663  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1664  LLVM_DEBUG(verifyRemoved(RemInst));
1665}
1666
1667/// Verify that the specified instruction does not occur in our internal data
1668/// structures.
1669///
1670/// This function verifies by asserting in debug builds.
1671void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1672#ifndef NDEBUG
1673  for (const auto &DepKV : LocalDeps) {
1674    assert(DepKV.first != D && "Inst occurs in data structures");
1675    assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1676  }
1677
1678  for (const auto &DepKV : NonLocalPointerDeps) {
1679    assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1680    for (const auto &Entry : DepKV.second.NonLocalDeps)
1681      assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1682  }
1683
1684  for (const auto &DepKV : NonLocalDeps) {
1685    assert(DepKV.first != D && "Inst occurs in data structures");
1686    const PerInstNLInfo &INLD = DepKV.second;
1687    for (const auto &Entry : INLD.first)
1688      assert(Entry.getResult().getInst() != D &&
1689             "Inst occurs in data structures");
1690  }
1691
1692  for (const auto &DepKV : ReverseLocalDeps) {
1693    assert(DepKV.first != D && "Inst occurs in data structures");
1694    for (Instruction *Inst : DepKV.second)
1695      assert(Inst != D && "Inst occurs in data structures");
1696  }
1697
1698  for (const auto &DepKV : ReverseNonLocalDeps) {
1699    assert(DepKV.first != D && "Inst occurs in data structures");
1700    for (Instruction *Inst : DepKV.second)
1701      assert(Inst != D && "Inst occurs in data structures");
1702  }
1703
1704  for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1705    assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1706
1707    for (ValueIsLoadPair P : DepKV.second)
1708      assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1709             "Inst occurs in ReverseNonLocalPtrDeps map");
1710  }
1711#endif
1712}
1713
1714AnalysisKey MemoryDependenceAnalysis::Key;
1715
1716MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1717    : DefaultBlockScanLimit(BlockScanLimit) {}
1718
1719MemoryDependenceResults
1720MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1721  auto &AA = AM.getResult<AAManager>(F);
1722  auto &AC = AM.getResult<AssumptionAnalysis>(F);
1723  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1724  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1725  auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1726  return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1727}
1728
1729char MemoryDependenceWrapperPass::ID = 0;
1730
1731INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1732                      "Memory Dependence Analysis", false, true)
1733INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1734INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1735INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1736INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1737INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1738INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1739                    "Memory Dependence Analysis", false, true)
1740
1741MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1742  initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1743}
1744
1745MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1746
1747void MemoryDependenceWrapperPass::releaseMemory() {
1748  MemDep.reset();
1749}
1750
1751void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1752  AU.setPreservesAll();
1753  AU.addRequired<AssumptionCacheTracker>();
1754  AU.addRequired<DominatorTreeWrapperPass>();
1755  AU.addRequired<PhiValuesWrapperPass>();
1756  AU.addRequiredTransitive<AAResultsWrapperPass>();
1757  AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1758}
1759
1760bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1761                               FunctionAnalysisManager::Invalidator &Inv) {
1762  // Check whether our analysis is preserved.
1763  auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1764  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1765    // If not, give up now.
1766    return true;
1767
1768  // Check whether the analyses we depend on became invalid for any reason.
1769  if (Inv.invalidate<AAManager>(F, PA) ||
1770      Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1771      Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1772      Inv.invalidate<PhiValuesAnalysis>(F, PA))
1773    return true;
1774
1775  // Otherwise this analysis result remains valid.
1776  return false;
1777}
1778
1779unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1780  return DefaultBlockScanLimit;
1781}
1782
1783bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1784  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1785  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1786  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1787  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1788  auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1789  MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1790  return false;
1791}
1792