1//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass statically checks for common and easily-identified constructs
10// which produce undefined or likely unintended behavior in LLVM IR.
11//
12// It is not a guarantee of correctness, in two ways. First, it isn't
13// comprehensive. There are checks which could be done statically which are
14// not yet implemented. Some of these are indicated by TODO comments, but
15// those aren't comprehensive either. Second, many conditions cannot be
16// checked statically. This pass does no dynamic instrumentation, so it
17// can't check for all possible problems.
18//
19// Another limitation is that it assumes all code will be executed. A store
20// through a null pointer in a basic block which is never reached is harmless,
21// but this pass will warn about it anyway. This is the main reason why most
22// of these checks live here instead of in the Verifier pass.
23//
24// Optimization passes may make conditions that this pass checks for more or
25// less obvious. If an optimization pass appears to be introducing a warning,
26// it may be that the optimization pass is merely exposing an existing
27// condition in the code.
28//
29// This code may be run before instcombine. In many cases, instcombine checks
30// for the same kinds of things and turns instructions with undefined behavior
31// into unreachable (or equivalent). Because of this, this pass makes some
32// effort to look through bitcasts and so on.
33//
34//===----------------------------------------------------------------------===//
35
36#include "llvm/Analysis/Lint.h"
37#include "llvm/ADT/APInt.h"
38#include "llvm/ADT/ArrayRef.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/Twine.h"
41#include "llvm/Analysis/AliasAnalysis.h"
42#include "llvm/Analysis/AssumptionCache.h"
43#include "llvm/Analysis/ConstantFolding.h"
44#include "llvm/Analysis/InstructionSimplify.h"
45#include "llvm/Analysis/Loads.h"
46#include "llvm/Analysis/MemoryLocation.h"
47#include "llvm/Analysis/Passes.h"
48#include "llvm/Analysis/TargetLibraryInfo.h"
49#include "llvm/Analysis/ValueTracking.h"
50#include "llvm/IR/Argument.h"
51#include "llvm/IR/BasicBlock.h"
52#include "llvm/IR/Constant.h"
53#include "llvm/IR/Constants.h"
54#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DerivedTypes.h"
56#include "llvm/IR/Dominators.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/GlobalVariable.h"
59#include "llvm/IR/InstVisitor.h"
60#include "llvm/IR/InstrTypes.h"
61#include "llvm/IR/Instruction.h"
62#include "llvm/IR/Instructions.h"
63#include "llvm/IR/IntrinsicInst.h"
64#include "llvm/IR/LegacyPassManager.h"
65#include "llvm/IR/Module.h"
66#include "llvm/IR/Type.h"
67#include "llvm/IR/Value.h"
68#include "llvm/InitializePasses.h"
69#include "llvm/Pass.h"
70#include "llvm/Support/Casting.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/KnownBits.h"
73#include "llvm/Support/MathExtras.h"
74#include "llvm/Support/raw_ostream.h"
75#include <cassert>
76#include <cstdint>
77#include <iterator>
78#include <string>
79
80using namespace llvm;
81
82namespace {
83  namespace MemRef {
84    static const unsigned Read     = 1;
85    static const unsigned Write    = 2;
86    static const unsigned Callee   = 4;
87    static const unsigned Branchee = 8;
88  } // end namespace MemRef
89
90  class Lint : public FunctionPass, public InstVisitor<Lint> {
91    friend class InstVisitor<Lint>;
92
93    void visitFunction(Function &F);
94
95    void visitCallBase(CallBase &CB);
96    void visitMemoryReference(Instruction &I, Value *Ptr, uint64_t Size,
97                              MaybeAlign Alignment, Type *Ty, unsigned Flags);
98    void visitEHBeginCatch(IntrinsicInst *II);
99    void visitEHEndCatch(IntrinsicInst *II);
100
101    void visitReturnInst(ReturnInst &I);
102    void visitLoadInst(LoadInst &I);
103    void visitStoreInst(StoreInst &I);
104    void visitXor(BinaryOperator &I);
105    void visitSub(BinaryOperator &I);
106    void visitLShr(BinaryOperator &I);
107    void visitAShr(BinaryOperator &I);
108    void visitShl(BinaryOperator &I);
109    void visitSDiv(BinaryOperator &I);
110    void visitUDiv(BinaryOperator &I);
111    void visitSRem(BinaryOperator &I);
112    void visitURem(BinaryOperator &I);
113    void visitAllocaInst(AllocaInst &I);
114    void visitVAArgInst(VAArgInst &I);
115    void visitIndirectBrInst(IndirectBrInst &I);
116    void visitExtractElementInst(ExtractElementInst &I);
117    void visitInsertElementInst(InsertElementInst &I);
118    void visitUnreachableInst(UnreachableInst &I);
119
120    Value *findValue(Value *V, bool OffsetOk) const;
121    Value *findValueImpl(Value *V, bool OffsetOk,
122                         SmallPtrSetImpl<Value *> &Visited) const;
123
124  public:
125    Module *Mod;
126    const DataLayout *DL;
127    AliasAnalysis *AA;
128    AssumptionCache *AC;
129    DominatorTree *DT;
130    TargetLibraryInfo *TLI;
131
132    std::string Messages;
133    raw_string_ostream MessagesStr;
134
135    static char ID; // Pass identification, replacement for typeid
136    Lint() : FunctionPass(ID), MessagesStr(Messages) {
137      initializeLintPass(*PassRegistry::getPassRegistry());
138    }
139
140    bool runOnFunction(Function &F) override;
141
142    void getAnalysisUsage(AnalysisUsage &AU) const override {
143      AU.setPreservesAll();
144      AU.addRequired<AAResultsWrapperPass>();
145      AU.addRequired<AssumptionCacheTracker>();
146      AU.addRequired<TargetLibraryInfoWrapperPass>();
147      AU.addRequired<DominatorTreeWrapperPass>();
148    }
149    void print(raw_ostream &O, const Module *M) const override {}
150
151    void WriteValues(ArrayRef<const Value *> Vs) {
152      for (const Value *V : Vs) {
153        if (!V)
154          continue;
155        if (isa<Instruction>(V)) {
156          MessagesStr << *V << '\n';
157        } else {
158          V->printAsOperand(MessagesStr, true, Mod);
159          MessagesStr << '\n';
160        }
161      }
162    }
163
164    /// A check failed, so printout out the condition and the message.
165    ///
166    /// This provides a nice place to put a breakpoint if you want to see why
167    /// something is not correct.
168    void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
169
170    /// A check failed (with values to print).
171    ///
172    /// This calls the Message-only version so that the above is easier to set
173    /// a breakpoint on.
174    template <typename T1, typename... Ts>
175    void CheckFailed(const Twine &Message, const T1 &V1, const Ts &...Vs) {
176      CheckFailed(Message);
177      WriteValues({V1, Vs...});
178    }
179  };
180} // end anonymous namespace
181
182char Lint::ID = 0;
183INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
184                      false, true)
185INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
186INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
187INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
188INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
189INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
190                    false, true)
191
192// Assert - We know that cond should be true, if not print an error message.
193#define Assert(C, ...) \
194    do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
195
196// Lint::run - This is the main Analysis entry point for a
197// function.
198//
199bool Lint::runOnFunction(Function &F) {
200  Mod = F.getParent();
201  DL = &F.getParent()->getDataLayout();
202  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
203  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
204  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
205  TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
206  visit(F);
207  dbgs() << MessagesStr.str();
208  Messages.clear();
209  return false;
210}
211
212void Lint::visitFunction(Function &F) {
213  // This isn't undefined behavior, it's just a little unusual, and it's a
214  // fairly common mistake to neglect to name a function.
215  Assert(F.hasName() || F.hasLocalLinkage(),
216         "Unusual: Unnamed function with non-local linkage", &F);
217
218  // TODO: Check for irreducible control flow.
219}
220
221void Lint::visitCallBase(CallBase &I) {
222  Value *Callee = I.getCalledOperand();
223
224  visitMemoryReference(I, Callee, MemoryLocation::UnknownSize, None, nullptr,
225                       MemRef::Callee);
226
227  if (Function *F = dyn_cast<Function>(findValue(Callee,
228                                                 /*OffsetOk=*/false))) {
229    Assert(I.getCallingConv() == F->getCallingConv(),
230           "Undefined behavior: Caller and callee calling convention differ",
231           &I);
232
233    FunctionType *FT = F->getFunctionType();
234    unsigned NumActualArgs = I.arg_size();
235
236    Assert(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
237                          : FT->getNumParams() == NumActualArgs,
238           "Undefined behavior: Call argument count mismatches callee "
239           "argument count",
240           &I);
241
242    Assert(FT->getReturnType() == I.getType(),
243           "Undefined behavior: Call return type mismatches "
244           "callee return type",
245           &I);
246
247    // Check argument types (in case the callee was casted) and attributes.
248    // TODO: Verify that caller and callee attributes are compatible.
249    Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
250    auto AI = I.arg_begin(), AE = I.arg_end();
251    for (; AI != AE; ++AI) {
252      Value *Actual = *AI;
253      if (PI != PE) {
254        Argument *Formal = &*PI++;
255        Assert(Formal->getType() == Actual->getType(),
256               "Undefined behavior: Call argument type mismatches "
257               "callee parameter type",
258               &I);
259
260        // Check that noalias arguments don't alias other arguments. This is
261        // not fully precise because we don't know the sizes of the dereferenced
262        // memory regions.
263        if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
264          AttributeList PAL = I.getAttributes();
265          unsigned ArgNo = 0;
266          for (auto BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) {
267            // Skip ByVal arguments since they will be memcpy'd to the callee's
268            // stack so we're not really passing the pointer anyway.
269            if (PAL.hasParamAttribute(ArgNo, Attribute::ByVal))
270              continue;
271            // If both arguments are readonly, they have no dependence.
272            if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo))
273              continue;
274            if (AI != BI && (*BI)->getType()->isPointerTy()) {
275              AliasResult Result = AA->alias(*AI, *BI);
276              Assert(Result != MustAlias && Result != PartialAlias,
277                     "Unusual: noalias argument aliases another argument", &I);
278            }
279          }
280        }
281
282        // Check that an sret argument points to valid memory.
283        if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
284          Type *Ty =
285            cast<PointerType>(Formal->getType())->getElementType();
286          visitMemoryReference(I, Actual, DL->getTypeStoreSize(Ty),
287                               DL->getABITypeAlign(Ty), Ty,
288                               MemRef::Read | MemRef::Write);
289        }
290      }
291    }
292  }
293
294  if (const auto *CI = dyn_cast<CallInst>(&I)) {
295    if (CI->isTailCall()) {
296      const AttributeList &PAL = CI->getAttributes();
297      unsigned ArgNo = 0;
298      for (Value *Arg : I.args()) {
299        // Skip ByVal arguments since they will be memcpy'd to the callee's
300        // stack anyway.
301        if (PAL.hasParamAttribute(ArgNo++, Attribute::ByVal))
302          continue;
303        Value *Obj = findValue(Arg, /*OffsetOk=*/true);
304        Assert(!isa<AllocaInst>(Obj),
305               "Undefined behavior: Call with \"tail\" keyword references "
306               "alloca",
307               &I);
308      }
309    }
310  }
311
312
313  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
314    switch (II->getIntrinsicID()) {
315    default: break;
316
317    // TODO: Check more intrinsics
318
319    case Intrinsic::memcpy: {
320      MemCpyInst *MCI = cast<MemCpyInst>(&I);
321      // TODO: If the size is known, use it.
322      visitMemoryReference(I, MCI->getDest(), MemoryLocation::UnknownSize,
323                           MCI->getDestAlign(), nullptr, MemRef::Write);
324      visitMemoryReference(I, MCI->getSource(), MemoryLocation::UnknownSize,
325                           MCI->getSourceAlign(), nullptr, MemRef::Read);
326
327      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
328      // isn't expressive enough for what we really want to do. Known partial
329      // overlap is not distinguished from the case where nothing is known.
330      auto Size = LocationSize::unknown();
331      if (const ConstantInt *Len =
332              dyn_cast<ConstantInt>(findValue(MCI->getLength(),
333                                              /*OffsetOk=*/false)))
334        if (Len->getValue().isIntN(32))
335          Size = LocationSize::precise(Len->getValue().getZExtValue());
336      Assert(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
337                 MustAlias,
338             "Undefined behavior: memcpy source and destination overlap", &I);
339      break;
340    }
341    case Intrinsic::memcpy_inline: {
342      MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I);
343      const uint64_t Size = MCII->getLength()->getValue().getLimitedValue();
344      visitMemoryReference(I, MCII->getDest(), Size, MCII->getDestAlign(),
345                           nullptr, MemRef::Write);
346      visitMemoryReference(I, MCII->getSource(), Size, MCII->getSourceAlign(),
347                           nullptr, MemRef::Read);
348
349      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
350      // isn't expressive enough for what we really want to do. Known partial
351      // overlap is not distinguished from the case where nothing is known.
352      const LocationSize LS = LocationSize::precise(Size);
353      Assert(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) != MustAlias,
354             "Undefined behavior: memcpy source and destination overlap", &I);
355      break;
356    }
357    case Intrinsic::memmove: {
358      MemMoveInst *MMI = cast<MemMoveInst>(&I);
359      // TODO: If the size is known, use it.
360      visitMemoryReference(I, MMI->getDest(), MemoryLocation::UnknownSize,
361                           MMI->getDestAlign(), nullptr, MemRef::Write);
362      visitMemoryReference(I, MMI->getSource(), MemoryLocation::UnknownSize,
363                           MMI->getSourceAlign(), nullptr, MemRef::Read);
364      break;
365    }
366    case Intrinsic::memset: {
367      MemSetInst *MSI = cast<MemSetInst>(&I);
368      // TODO: If the size is known, use it.
369      visitMemoryReference(I, MSI->getDest(), MemoryLocation::UnknownSize,
370                           MSI->getDestAlign(), nullptr, MemRef::Write);
371      break;
372    }
373
374    case Intrinsic::vastart:
375      Assert(I.getParent()->getParent()->isVarArg(),
376             "Undefined behavior: va_start called in a non-varargs function",
377             &I);
378
379      visitMemoryReference(I, I.getArgOperand(0), MemoryLocation::UnknownSize,
380                           None, nullptr, MemRef::Read | MemRef::Write);
381      break;
382    case Intrinsic::vacopy:
383      visitMemoryReference(I, I.getArgOperand(0), MemoryLocation::UnknownSize,
384                           None, nullptr, MemRef::Write);
385      visitMemoryReference(I, I.getArgOperand(1), MemoryLocation::UnknownSize,
386                           None, nullptr, MemRef::Read);
387      break;
388    case Intrinsic::vaend:
389      visitMemoryReference(I, I.getArgOperand(0), MemoryLocation::UnknownSize,
390                           None, nullptr, MemRef::Read | MemRef::Write);
391      break;
392
393    case Intrinsic::stackrestore:
394      // Stackrestore doesn't read or write memory, but it sets the
395      // stack pointer, which the compiler may read from or write to
396      // at any time, so check it for both readability and writeability.
397      visitMemoryReference(I, I.getArgOperand(0), MemoryLocation::UnknownSize,
398                           None, nullptr, MemRef::Read | MemRef::Write);
399      break;
400    }
401}
402
403void Lint::visitReturnInst(ReturnInst &I) {
404  Function *F = I.getParent()->getParent();
405  Assert(!F->doesNotReturn(),
406         "Unusual: Return statement in function with noreturn attribute", &I);
407
408  if (Value *V = I.getReturnValue()) {
409    Value *Obj = findValue(V, /*OffsetOk=*/true);
410    Assert(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
411  }
412}
413
414// TODO: Check that the reference is in bounds.
415// TODO: Check readnone/readonly function attributes.
416void Lint::visitMemoryReference(Instruction &I, Value *Ptr, uint64_t Size,
417                                MaybeAlign Align, Type *Ty, unsigned Flags) {
418  // If no memory is being referenced, it doesn't matter if the pointer
419  // is valid.
420  if (Size == 0)
421    return;
422
423  Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
424  Assert(!isa<ConstantPointerNull>(UnderlyingObject),
425         "Undefined behavior: Null pointer dereference", &I);
426  Assert(!isa<UndefValue>(UnderlyingObject),
427         "Undefined behavior: Undef pointer dereference", &I);
428  Assert(!isa<ConstantInt>(UnderlyingObject) ||
429             !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
430         "Unusual: All-ones pointer dereference", &I);
431  Assert(!isa<ConstantInt>(UnderlyingObject) ||
432             !cast<ConstantInt>(UnderlyingObject)->isOne(),
433         "Unusual: Address one pointer dereference", &I);
434
435  if (Flags & MemRef::Write) {
436    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
437      Assert(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
438             &I);
439    Assert(!isa<Function>(UnderlyingObject) &&
440               !isa<BlockAddress>(UnderlyingObject),
441           "Undefined behavior: Write to text section", &I);
442  }
443  if (Flags & MemRef::Read) {
444    Assert(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
445           &I);
446    Assert(!isa<BlockAddress>(UnderlyingObject),
447           "Undefined behavior: Load from block address", &I);
448  }
449  if (Flags & MemRef::Callee) {
450    Assert(!isa<BlockAddress>(UnderlyingObject),
451           "Undefined behavior: Call to block address", &I);
452  }
453  if (Flags & MemRef::Branchee) {
454    Assert(!isa<Constant>(UnderlyingObject) ||
455               isa<BlockAddress>(UnderlyingObject),
456           "Undefined behavior: Branch to non-blockaddress", &I);
457  }
458
459  // Check for buffer overflows and misalignment.
460  // Only handles memory references that read/write something simple like an
461  // alloca instruction or a global variable.
462  int64_t Offset = 0;
463  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
464    // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
465    // something we can handle and if so extract the size of this base object
466    // along with its alignment.
467    uint64_t BaseSize = MemoryLocation::UnknownSize;
468    MaybeAlign BaseAlign;
469
470    if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
471      Type *ATy = AI->getAllocatedType();
472      if (!AI->isArrayAllocation() && ATy->isSized())
473        BaseSize = DL->getTypeAllocSize(ATy);
474      BaseAlign = AI->getAlign();
475    } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
476      // If the global may be defined differently in another compilation unit
477      // then don't warn about funky memory accesses.
478      if (GV->hasDefinitiveInitializer()) {
479        Type *GTy = GV->getValueType();
480        if (GTy->isSized())
481          BaseSize = DL->getTypeAllocSize(GTy);
482        BaseAlign = GV->getAlign();
483        if (!BaseAlign && GTy->isSized())
484          BaseAlign = DL->getABITypeAlign(GTy);
485      }
486    }
487
488    // Accesses from before the start or after the end of the object are not
489    // defined.
490    Assert(Size == MemoryLocation::UnknownSize ||
491               BaseSize == MemoryLocation::UnknownSize ||
492               (Offset >= 0 && Offset + Size <= BaseSize),
493           "Undefined behavior: Buffer overflow", &I);
494
495    // Accesses that say that the memory is more aligned than it is are not
496    // defined.
497    if (!Align && Ty && Ty->isSized())
498      Align = DL->getABITypeAlign(Ty);
499    if (BaseAlign && Align)
500      Assert(*Align <= commonAlignment(*BaseAlign, Offset),
501             "Undefined behavior: Memory reference address is misaligned", &I);
502  }
503}
504
505void Lint::visitLoadInst(LoadInst &I) {
506  visitMemoryReference(I, I.getPointerOperand(),
507                       DL->getTypeStoreSize(I.getType()), I.getAlign(),
508                       I.getType(), MemRef::Read);
509}
510
511void Lint::visitStoreInst(StoreInst &I) {
512  visitMemoryReference(I, I.getPointerOperand(),
513                       DL->getTypeStoreSize(I.getOperand(0)->getType()),
514                       I.getAlign(), I.getOperand(0)->getType(), MemRef::Write);
515}
516
517void Lint::visitXor(BinaryOperator &I) {
518  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
519         "Undefined result: xor(undef, undef)", &I);
520}
521
522void Lint::visitSub(BinaryOperator &I) {
523  Assert(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
524         "Undefined result: sub(undef, undef)", &I);
525}
526
527void Lint::visitLShr(BinaryOperator &I) {
528  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
529                                                        /*OffsetOk=*/false)))
530    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
531           "Undefined result: Shift count out of range", &I);
532}
533
534void Lint::visitAShr(BinaryOperator &I) {
535  if (ConstantInt *CI =
536          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
537    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
538           "Undefined result: Shift count out of range", &I);
539}
540
541void Lint::visitShl(BinaryOperator &I) {
542  if (ConstantInt *CI =
543          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
544    Assert(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
545           "Undefined result: Shift count out of range", &I);
546}
547
548static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
549                   AssumptionCache *AC) {
550  // Assume undef could be zero.
551  if (isa<UndefValue>(V))
552    return true;
553
554  VectorType *VecTy = dyn_cast<VectorType>(V->getType());
555  if (!VecTy) {
556    KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
557    return Known.isZero();
558  }
559
560  // Per-component check doesn't work with zeroinitializer
561  Constant *C = dyn_cast<Constant>(V);
562  if (!C)
563    return false;
564
565  if (C->isZeroValue())
566    return true;
567
568  // For a vector, KnownZero will only be true if all values are zero, so check
569  // this per component
570  for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
571    Constant *Elem = C->getAggregateElement(I);
572    if (isa<UndefValue>(Elem))
573      return true;
574
575    KnownBits Known = computeKnownBits(Elem, DL);
576    if (Known.isZero())
577      return true;
578  }
579
580  return false;
581}
582
583void Lint::visitSDiv(BinaryOperator &I) {
584  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
585         "Undefined behavior: Division by zero", &I);
586}
587
588void Lint::visitUDiv(BinaryOperator &I) {
589  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
590         "Undefined behavior: Division by zero", &I);
591}
592
593void Lint::visitSRem(BinaryOperator &I) {
594  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
595         "Undefined behavior: Division by zero", &I);
596}
597
598void Lint::visitURem(BinaryOperator &I) {
599  Assert(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
600         "Undefined behavior: Division by zero", &I);
601}
602
603void Lint::visitAllocaInst(AllocaInst &I) {
604  if (isa<ConstantInt>(I.getArraySize()))
605    // This isn't undefined behavior, it's just an obvious pessimization.
606    Assert(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
607           "Pessimization: Static alloca outside of entry block", &I);
608
609  // TODO: Check for an unusual size (MSB set?)
610}
611
612void Lint::visitVAArgInst(VAArgInst &I) {
613  visitMemoryReference(I, I.getOperand(0), MemoryLocation::UnknownSize, None,
614                       nullptr, MemRef::Read | MemRef::Write);
615}
616
617void Lint::visitIndirectBrInst(IndirectBrInst &I) {
618  visitMemoryReference(I, I.getAddress(), MemoryLocation::UnknownSize, None,
619                       nullptr, MemRef::Branchee);
620
621  Assert(I.getNumDestinations() != 0,
622         "Undefined behavior: indirectbr with no destinations", &I);
623}
624
625void Lint::visitExtractElementInst(ExtractElementInst &I) {
626  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
627                                                        /*OffsetOk=*/false)))
628    Assert(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
629           "Undefined result: extractelement index out of range", &I);
630}
631
632void Lint::visitInsertElementInst(InsertElementInst &I) {
633  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
634                                                        /*OffsetOk=*/false)))
635    Assert(CI->getValue().ult(I.getType()->getNumElements()),
636           "Undefined result: insertelement index out of range", &I);
637}
638
639void Lint::visitUnreachableInst(UnreachableInst &I) {
640  // This isn't undefined behavior, it's merely suspicious.
641  Assert(&I == &I.getParent()->front() ||
642             std::prev(I.getIterator())->mayHaveSideEffects(),
643         "Unusual: unreachable immediately preceded by instruction without "
644         "side effects",
645         &I);
646}
647
648/// findValue - Look through bitcasts and simple memory reference patterns
649/// to identify an equivalent, but more informative, value.  If OffsetOk
650/// is true, look through getelementptrs with non-zero offsets too.
651///
652/// Most analysis passes don't require this logic, because instcombine
653/// will simplify most of these kinds of things away. But it's a goal of
654/// this Lint pass to be useful even on non-optimized IR.
655Value *Lint::findValue(Value *V, bool OffsetOk) const {
656  SmallPtrSet<Value *, 4> Visited;
657  return findValueImpl(V, OffsetOk, Visited);
658}
659
660/// findValueImpl - Implementation helper for findValue.
661Value *Lint::findValueImpl(Value *V, bool OffsetOk,
662                           SmallPtrSetImpl<Value *> &Visited) const {
663  // Detect self-referential values.
664  if (!Visited.insert(V).second)
665    return UndefValue::get(V->getType());
666
667  // TODO: Look through sext or zext cast, when the result is known to
668  // be interpreted as signed or unsigned, respectively.
669  // TODO: Look through eliminable cast pairs.
670  // TODO: Look through calls with unique return values.
671  // TODO: Look through vector insert/extract/shuffle.
672  V = OffsetOk ? GetUnderlyingObject(V, *DL) : V->stripPointerCasts();
673  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
674    BasicBlock::iterator BBI = L->getIterator();
675    BasicBlock *BB = L->getParent();
676    SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
677    for (;;) {
678      if (!VisitedBlocks.insert(BB).second)
679        break;
680      if (Value *U =
681          FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
682        return findValueImpl(U, OffsetOk, Visited);
683      if (BBI != BB->begin()) break;
684      BB = BB->getUniquePredecessor();
685      if (!BB) break;
686      BBI = BB->end();
687    }
688  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
689    if (Value *W = PN->hasConstantValue())
690      return findValueImpl(W, OffsetOk, Visited);
691  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
692    if (CI->isNoopCast(*DL))
693      return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
694  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
695    if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
696                                     Ex->getIndices()))
697      if (W != V)
698        return findValueImpl(W, OffsetOk, Visited);
699  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
700    // Same as above, but for ConstantExpr instead of Instruction.
701    if (Instruction::isCast(CE->getOpcode())) {
702      if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
703                               CE->getOperand(0)->getType(), CE->getType(),
704                               *DL))
705        return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
706    } else if (CE->getOpcode() == Instruction::ExtractValue) {
707      ArrayRef<unsigned> Indices = CE->getIndices();
708      if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
709        if (W != V)
710          return findValueImpl(W, OffsetOk, Visited);
711    }
712  }
713
714  // As a last resort, try SimplifyInstruction or constant folding.
715  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
716    if (Value *W = SimplifyInstruction(Inst, {*DL, TLI, DT, AC}))
717      return findValueImpl(W, OffsetOk, Visited);
718  } else if (auto *C = dyn_cast<Constant>(V)) {
719    Value *W = ConstantFoldConstant(C, *DL, TLI);
720    if (W != V)
721      return findValueImpl(W, OffsetOk, Visited);
722  }
723
724  return V;
725}
726
727//===----------------------------------------------------------------------===//
728//  Implement the public interfaces to this file...
729//===----------------------------------------------------------------------===//
730
731FunctionPass *llvm::createLintPass() {
732  return new Lint();
733}
734
735/// lintFunction - Check a function for errors, printing messages on stderr.
736///
737void llvm::lintFunction(const Function &f) {
738  Function &F = const_cast<Function&>(f);
739  assert(!F.isDeclaration() && "Cannot lint external functions");
740
741  legacy::FunctionPassManager FPM(F.getParent());
742  Lint *V = new Lint();
743  FPM.add(V);
744  FPM.run(F);
745}
746
747/// lintModule - Check a module for errors, printing messages on stderr.
748///
749void llvm::lintModule(const Module &M) {
750  legacy::PassManager PM;
751  Lint *V = new Lint();
752  PM.add(V);
753  PM.run(const_cast<Module&>(M));
754}
755