1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the primary stateless implementation of the
10// Alias Analysis interface that implements identities (two different
11// globals cannot alias, etc), but does no stateful analysis.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/BasicAliasAnalysis.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/AssumptionCache.h"
22#include "llvm/Analysis/CFG.h"
23#include "llvm/Analysis/CaptureTracking.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/MemoryBuiltins.h"
27#include "llvm/Analysis/MemoryLocation.h"
28#include "llvm/Analysis/PhiValues.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/Argument.h"
32#include "llvm/IR/Attributes.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/Dominators.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/GetElementPtrTypeIterator.h"
40#include "llvm/IR/GlobalAlias.h"
41#include "llvm/IR/GlobalVariable.h"
42#include "llvm/IR/InstrTypes.h"
43#include "llvm/IR/Instruction.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/Metadata.h"
48#include "llvm/IR/Operator.h"
49#include "llvm/IR/Type.h"
50#include "llvm/IR/User.h"
51#include "llvm/IR/Value.h"
52#include "llvm/InitializePasses.h"
53#include "llvm/Pass.h"
54#include "llvm/Support/Casting.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Compiler.h"
57#include "llvm/Support/KnownBits.h"
58#include <cassert>
59#include <cstdint>
60#include <cstdlib>
61#include <utility>
62
63#define DEBUG_TYPE "basicaa"
64
65using namespace llvm;
66
67/// Enable analysis of recursive PHI nodes.
68static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69                                          cl::init(false));
70
71/// By default, even on 32-bit architectures we use 64-bit integers for
72/// calculations. This will allow us to more-aggressively decompose indexing
73/// expressions calculated using i64 values (e.g., long long in C) which is
74/// common enough to worry about.
75static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
76                                        cl::Hidden, cl::init(true));
77static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
78                                    cl::Hidden, cl::init(false));
79
80/// SearchLimitReached / SearchTimes shows how often the limit of
81/// to decompose GEPs is reached. It will affect the precision
82/// of basic alias analysis.
83STATISTIC(SearchLimitReached, "Number of times the limit to "
84                              "decompose GEPs is reached");
85STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86
87/// Cutoff after which to stop analysing a set of phi nodes potentially involved
88/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
89/// careful with value equivalence. We use reachability to make sure a value
90/// cannot be involved in a cycle.
91const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92
93// The max limit of the search depth in DecomposeGEPExpression() and
94// GetUnderlyingObject(), both functions need to use the same search
95// depth otherwise the algorithm in aliasGEP will assert.
96static const unsigned MaxLookupSearchDepth = 6;
97
98bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
99                               FunctionAnalysisManager::Invalidator &Inv) {
100  // We don't care if this analysis itself is preserved, it has no state. But
101  // we need to check that the analyses it depends on have been. Note that we
102  // may be created without handles to some analyses and in that case don't
103  // depend on them.
104  if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
105      (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
106      (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
107      (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
108    return true;
109
110  // Otherwise this analysis result remains valid.
111  return false;
112}
113
114//===----------------------------------------------------------------------===//
115// Useful predicates
116//===----------------------------------------------------------------------===//
117
118/// Returns true if the pointer is to a function-local object that never
119/// escapes from the function.
120static bool isNonEscapingLocalObject(
121    const Value *V,
122    SmallDenseMap<const Value *, bool, 8> *IsCapturedCache = nullptr) {
123  SmallDenseMap<const Value *, bool, 8>::iterator CacheIt;
124  if (IsCapturedCache) {
125    bool Inserted;
126    std::tie(CacheIt, Inserted) = IsCapturedCache->insert({V, false});
127    if (!Inserted)
128      // Found cached result, return it!
129      return CacheIt->second;
130  }
131
132  // If this is a local allocation, check to see if it escapes.
133  if (isa<AllocaInst>(V) || isNoAliasCall(V)) {
134    // Set StoreCaptures to True so that we can assume in our callers that the
135    // pointer is not the result of a load instruction. Currently
136    // PointerMayBeCaptured doesn't have any special analysis for the
137    // StoreCaptures=false case; if it did, our callers could be refined to be
138    // more precise.
139    auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
140    if (IsCapturedCache)
141      CacheIt->second = Ret;
142    return Ret;
143  }
144
145  // If this is an argument that corresponds to a byval or noalias argument,
146  // then it has not escaped before entering the function.  Check if it escapes
147  // inside the function.
148  if (const Argument *A = dyn_cast<Argument>(V))
149    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
150      // Note even if the argument is marked nocapture, we still need to check
151      // for copies made inside the function. The nocapture attribute only
152      // specifies that there are no copies made that outlive the function.
153      auto Ret = !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
154      if (IsCapturedCache)
155        CacheIt->second = Ret;
156      return Ret;
157    }
158
159  return false;
160}
161
162/// Returns true if the pointer is one which would have been considered an
163/// escape by isNonEscapingLocalObject.
164static bool isEscapeSource(const Value *V) {
165  if (isa<CallBase>(V))
166    return true;
167
168  if (isa<Argument>(V))
169    return true;
170
171  // The load case works because isNonEscapingLocalObject considers all
172  // stores to be escapes (it passes true for the StoreCaptures argument
173  // to PointerMayBeCaptured).
174  if (isa<LoadInst>(V))
175    return true;
176
177  return false;
178}
179
180/// Returns the size of the object specified by V or UnknownSize if unknown.
181static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
182                              const TargetLibraryInfo &TLI,
183                              bool NullIsValidLoc,
184                              bool RoundToAlign = false) {
185  uint64_t Size;
186  ObjectSizeOpts Opts;
187  Opts.RoundToAlign = RoundToAlign;
188  Opts.NullIsUnknownSize = NullIsValidLoc;
189  if (getObjectSize(V, Size, DL, &TLI, Opts))
190    return Size;
191  return MemoryLocation::UnknownSize;
192}
193
194/// Returns true if we can prove that the object specified by V is smaller than
195/// Size.
196static bool isObjectSmallerThan(const Value *V, uint64_t Size,
197                                const DataLayout &DL,
198                                const TargetLibraryInfo &TLI,
199                                bool NullIsValidLoc) {
200  // Note that the meanings of the "object" are slightly different in the
201  // following contexts:
202  //    c1: llvm::getObjectSize()
203  //    c2: llvm.objectsize() intrinsic
204  //    c3: isObjectSmallerThan()
205  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
206  // refers to the "entire object".
207  //
208  //  Consider this example:
209  //     char *p = (char*)malloc(100)
210  //     char *q = p+80;
211  //
212  //  In the context of c1 and c2, the "object" pointed by q refers to the
213  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
214  //
215  //  However, in the context of c3, the "object" refers to the chunk of memory
216  // being allocated. So, the "object" has 100 bytes, and q points to the middle
217  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
218  // parameter, before the llvm::getObjectSize() is called to get the size of
219  // entire object, we should:
220  //    - either rewind the pointer q to the base-address of the object in
221  //      question (in this case rewind to p), or
222  //    - just give up. It is up to caller to make sure the pointer is pointing
223  //      to the base address the object.
224  //
225  // We go for 2nd option for simplicity.
226  if (!isIdentifiedObject(V))
227    return false;
228
229  // This function needs to use the aligned object size because we allow
230  // reads a bit past the end given sufficient alignment.
231  uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
232                                      /*RoundToAlign*/ true);
233
234  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
235}
236
237/// Return the minimal extent from \p V to the end of the underlying object,
238/// assuming the result is used in an aliasing query. E.g., we do use the query
239/// location size and the fact that null pointers cannot alias here.
240static uint64_t getMinimalExtentFrom(const Value &V,
241                                     const LocationSize &LocSize,
242                                     const DataLayout &DL,
243                                     bool NullIsValidLoc) {
244  // If we have dereferenceability information we know a lower bound for the
245  // extent as accesses for a lower offset would be valid. We need to exclude
246  // the "or null" part if null is a valid pointer.
247  bool CanBeNull;
248  uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
249  DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
250  // If queried with a precise location size, we assume that location size to be
251  // accessed, thus valid.
252  if (LocSize.isPrecise())
253    DerefBytes = std::max(DerefBytes, LocSize.getValue());
254  return DerefBytes;
255}
256
257/// Returns true if we can prove that the object specified by V has size Size.
258static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
259                         const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
260  uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
261  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
262}
263
264//===----------------------------------------------------------------------===//
265// GetElementPtr Instruction Decomposition and Analysis
266//===----------------------------------------------------------------------===//
267
268/// Analyzes the specified value as a linear expression: "A*V + B", where A and
269/// B are constant integers.
270///
271/// Returns the scale and offset values as APInts and return V as a Value*, and
272/// return whether we looked through any sign or zero extends.  The incoming
273/// Value is known to have IntegerType, and it may already be sign or zero
274/// extended.
275///
276/// Note that this looks through extends, so the high bits may not be
277/// represented in the result.
278/*static*/ const Value *BasicAAResult::GetLinearExpression(
279    const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
280    unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
281    AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
282  assert(V->getType()->isIntegerTy() && "Not an integer value");
283
284  // Limit our recursion depth.
285  if (Depth == 6) {
286    Scale = 1;
287    Offset = 0;
288    return V;
289  }
290
291  if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
292    // If it's a constant, just convert it to an offset and remove the variable.
293    // If we've been called recursively, the Offset bit width will be greater
294    // than the constant's (the Offset's always as wide as the outermost call),
295    // so we'll zext here and process any extension in the isa<SExtInst> &
296    // isa<ZExtInst> cases below.
297    Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
298    assert(Scale == 0 && "Constant values don't have a scale");
299    return V;
300  }
301
302  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
303    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
304      // If we've been called recursively, then Offset and Scale will be wider
305      // than the BOp operands. We'll always zext it here as we'll process sign
306      // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
307      APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
308
309      switch (BOp->getOpcode()) {
310      default:
311        // We don't understand this instruction, so we can't decompose it any
312        // further.
313        Scale = 1;
314        Offset = 0;
315        return V;
316      case Instruction::Or:
317        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
318        // analyze it.
319        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
320                               BOp, DT)) {
321          Scale = 1;
322          Offset = 0;
323          return V;
324        }
325        LLVM_FALLTHROUGH;
326      case Instruction::Add:
327        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
328                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
329        Offset += RHS;
330        break;
331      case Instruction::Sub:
332        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
333                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
334        Offset -= RHS;
335        break;
336      case Instruction::Mul:
337        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
338                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
339        Offset *= RHS;
340        Scale *= RHS;
341        break;
342      case Instruction::Shl:
343        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
344                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
345
346        // We're trying to linearize an expression of the kind:
347        //   shl i8 -128, 36
348        // where the shift count exceeds the bitwidth of the type.
349        // We can't decompose this further (the expression would return
350        // a poison value).
351        if (Offset.getBitWidth() < RHS.getLimitedValue() ||
352            Scale.getBitWidth() < RHS.getLimitedValue()) {
353          Scale = 1;
354          Offset = 0;
355          return V;
356        }
357
358        Offset <<= RHS.getLimitedValue();
359        Scale <<= RHS.getLimitedValue();
360        // the semantics of nsw and nuw for left shifts don't match those of
361        // multiplications, so we won't propagate them.
362        NSW = NUW = false;
363        return V;
364      }
365
366      if (isa<OverflowingBinaryOperator>(BOp)) {
367        NUW &= BOp->hasNoUnsignedWrap();
368        NSW &= BOp->hasNoSignedWrap();
369      }
370      return V;
371    }
372  }
373
374  // Since GEP indices are sign extended anyway, we don't care about the high
375  // bits of a sign or zero extended value - just scales and offsets.  The
376  // extensions have to be consistent though.
377  if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
378    Value *CastOp = cast<CastInst>(V)->getOperand(0);
379    unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
380    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
381    unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
382    const Value *Result =
383        GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
384                            Depth + 1, AC, DT, NSW, NUW);
385
386    // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
387    // by just incrementing the number of bits we've extended by.
388    unsigned ExtendedBy = NewWidth - SmallWidth;
389
390    if (isa<SExtInst>(V) && ZExtBits == 0) {
391      // sext(sext(%x, a), b) == sext(%x, a + b)
392
393      if (NSW) {
394        // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
395        // into sext(%x) + sext(c). We'll sext the Offset ourselves:
396        unsigned OldWidth = Offset.getBitWidth();
397        Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
398      } else {
399        // We may have signed-wrapped, so don't decompose sext(%x + c) into
400        // sext(%x) + sext(c)
401        Scale = 1;
402        Offset = 0;
403        Result = CastOp;
404        ZExtBits = OldZExtBits;
405        SExtBits = OldSExtBits;
406      }
407      SExtBits += ExtendedBy;
408    } else {
409      // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
410
411      if (!NUW) {
412        // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
413        // zext(%x) + zext(c)
414        Scale = 1;
415        Offset = 0;
416        Result = CastOp;
417        ZExtBits = OldZExtBits;
418        SExtBits = OldSExtBits;
419      }
420      ZExtBits += ExtendedBy;
421    }
422
423    return Result;
424  }
425
426  Scale = 1;
427  Offset = 0;
428  return V;
429}
430
431/// To ensure a pointer offset fits in an integer of size PointerSize
432/// (in bits) when that size is smaller than the maximum pointer size. This is
433/// an issue, for example, in particular for 32b pointers with negative indices
434/// that rely on two's complement wrap-arounds for precise alias information
435/// where the maximum pointer size is 64b.
436static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
437  assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
438  unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
439  return (Offset << ShiftBits).ashr(ShiftBits);
440}
441
442static unsigned getMaxPointerSize(const DataLayout &DL) {
443  unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
444  if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
445  if (DoubleCalcBits) MaxPointerSize *= 2;
446
447  return MaxPointerSize;
448}
449
450/// If V is a symbolic pointer expression, decompose it into a base pointer
451/// with a constant offset and a number of scaled symbolic offsets.
452///
453/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
454/// in the VarIndices vector) are Value*'s that are known to be scaled by the
455/// specified amount, but which may have other unrepresented high bits. As
456/// such, the gep cannot necessarily be reconstructed from its decomposed form.
457///
458/// When DataLayout is around, this function is capable of analyzing everything
459/// that GetUnderlyingObject can look through. To be able to do that
460/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
461/// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
462/// through pointer casts.
463bool BasicAAResult::DecomposeGEPExpression(const Value *V,
464       DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
465       DominatorTree *DT) {
466  // Limit recursion depth to limit compile time in crazy cases.
467  unsigned MaxLookup = MaxLookupSearchDepth;
468  SearchTimes++;
469
470  unsigned MaxPointerSize = getMaxPointerSize(DL);
471  Decomposed.VarIndices.clear();
472  do {
473    // See if this is a bitcast or GEP.
474    const Operator *Op = dyn_cast<Operator>(V);
475    if (!Op) {
476      // The only non-operator case we can handle are GlobalAliases.
477      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
478        if (!GA->isInterposable()) {
479          V = GA->getAliasee();
480          continue;
481        }
482      }
483      Decomposed.Base = V;
484      return false;
485    }
486
487    if (Op->getOpcode() == Instruction::BitCast ||
488        Op->getOpcode() == Instruction::AddrSpaceCast) {
489      V = Op->getOperand(0);
490      continue;
491    }
492
493    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
494    if (!GEPOp) {
495      if (const auto *PHI = dyn_cast<PHINode>(V)) {
496        // Look through single-arg phi nodes created by LCSSA.
497        if (PHI->getNumIncomingValues() == 1) {
498          V = PHI->getIncomingValue(0);
499          continue;
500        }
501      } else if (const auto *Call = dyn_cast<CallBase>(V)) {
502        // CaptureTracking can know about special capturing properties of some
503        // intrinsics like launder.invariant.group, that can't be expressed with
504        // the attributes, but have properties like returning aliasing pointer.
505        // Because some analysis may assume that nocaptured pointer is not
506        // returned from some special intrinsic (because function would have to
507        // be marked with returns attribute), it is crucial to use this function
508        // because it should be in sync with CaptureTracking. Not using it may
509        // cause weird miscompilations where 2 aliasing pointers are assumed to
510        // noalias.
511        if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
512          V = RP;
513          continue;
514        }
515      }
516
517      Decomposed.Base = V;
518      return false;
519    }
520
521    // Don't attempt to analyze GEPs over unsized objects.
522    if (!GEPOp->getSourceElementType()->isSized()) {
523      Decomposed.Base = V;
524      return false;
525    }
526
527    // Don't attempt to analyze GEPs if index scale is not a compile-time
528    // constant.
529    if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
530      Decomposed.Base = V;
531      Decomposed.HasCompileTimeConstantScale = false;
532      return false;
533    }
534
535    unsigned AS = GEPOp->getPointerAddressSpace();
536    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
537    gep_type_iterator GTI = gep_type_begin(GEPOp);
538    unsigned PointerSize = DL.getPointerSizeInBits(AS);
539    // Assume all GEP operands are constants until proven otherwise.
540    bool GepHasConstantOffset = true;
541    for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
542         I != E; ++I, ++GTI) {
543      const Value *Index = *I;
544      // Compute the (potentially symbolic) offset in bytes for this index.
545      if (StructType *STy = GTI.getStructTypeOrNull()) {
546        // For a struct, add the member offset.
547        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
548        if (FieldNo == 0)
549          continue;
550
551        Decomposed.StructOffset +=
552          DL.getStructLayout(STy)->getElementOffset(FieldNo);
553        continue;
554      }
555
556      // For an array/pointer, add the element offset, explicitly scaled.
557      if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
558        if (CIdx->isZero())
559          continue;
560        Decomposed.OtherOffset +=
561            (DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
562             CIdx->getValue().sextOrSelf(MaxPointerSize))
563                .sextOrTrunc(MaxPointerSize);
564        continue;
565      }
566
567      GepHasConstantOffset = false;
568
569      APInt Scale(MaxPointerSize,
570                  DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
571      unsigned ZExtBits = 0, SExtBits = 0;
572
573      // If the integer type is smaller than the pointer size, it is implicitly
574      // sign extended to pointer size.
575      unsigned Width = Index->getType()->getIntegerBitWidth();
576      if (PointerSize > Width)
577        SExtBits += PointerSize - Width;
578
579      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
580      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
581      bool NSW = true, NUW = true;
582      const Value *OrigIndex = Index;
583      Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
584                                  SExtBits, DL, 0, AC, DT, NSW, NUW);
585
586      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
587      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
588
589      // It can be the case that, even through C1*V+C2 does not overflow for
590      // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
591      // decompose the expression in this way.
592      //
593      // FIXME: C1*Scale and the other operations in the decomposed
594      // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
595      // possibility.
596      APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
597                                 Scale.sext(MaxPointerSize*2);
598      if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
599        Index = OrigIndex;
600        IndexScale = 1;
601        IndexOffset = 0;
602
603        ZExtBits = SExtBits = 0;
604        if (PointerSize > Width)
605          SExtBits += PointerSize - Width;
606      } else {
607        Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
608        Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
609      }
610
611      // If we already had an occurrence of this index variable, merge this
612      // scale into it.  For example, we want to handle:
613      //   A[x][x] -> x*16 + x*4 -> x*20
614      // This also ensures that 'x' only appears in the index list once.
615      for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
616        if (Decomposed.VarIndices[i].V == Index &&
617            Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
618            Decomposed.VarIndices[i].SExtBits == SExtBits) {
619          Scale += Decomposed.VarIndices[i].Scale;
620          Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
621          break;
622        }
623      }
624
625      // Make sure that we have a scale that makes sense for this target's
626      // pointer size.
627      Scale = adjustToPointerSize(Scale, PointerSize);
628
629      if (!!Scale) {
630        VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
631        Decomposed.VarIndices.push_back(Entry);
632      }
633    }
634
635    // Take care of wrap-arounds
636    if (GepHasConstantOffset) {
637      Decomposed.StructOffset =
638          adjustToPointerSize(Decomposed.StructOffset, PointerSize);
639      Decomposed.OtherOffset =
640          adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
641    }
642
643    // Analyze the base pointer next.
644    V = GEPOp->getOperand(0);
645  } while (--MaxLookup);
646
647  // If the chain of expressions is too deep, just return early.
648  Decomposed.Base = V;
649  SearchLimitReached++;
650  return true;
651}
652
653/// Returns whether the given pointer value points to memory that is local to
654/// the function, with global constants being considered local to all
655/// functions.
656bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
657                                           AAQueryInfo &AAQI, bool OrLocal) {
658  assert(Visited.empty() && "Visited must be cleared after use!");
659
660  unsigned MaxLookup = 8;
661  SmallVector<const Value *, 16> Worklist;
662  Worklist.push_back(Loc.Ptr);
663  do {
664    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
665    if (!Visited.insert(V).second) {
666      Visited.clear();
667      return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
668    }
669
670    // An alloca instruction defines local memory.
671    if (OrLocal && isa<AllocaInst>(V))
672      continue;
673
674    // A global constant counts as local memory for our purposes.
675    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
676      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
677      // global to be marked constant in some modules and non-constant in
678      // others.  GV may even be a declaration, not a definition.
679      if (!GV->isConstant()) {
680        Visited.clear();
681        return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
682      }
683      continue;
684    }
685
686    // If both select values point to local memory, then so does the select.
687    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
688      Worklist.push_back(SI->getTrueValue());
689      Worklist.push_back(SI->getFalseValue());
690      continue;
691    }
692
693    // If all values incoming to a phi node point to local memory, then so does
694    // the phi.
695    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
696      // Don't bother inspecting phi nodes with many operands.
697      if (PN->getNumIncomingValues() > MaxLookup) {
698        Visited.clear();
699        return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
700      }
701      for (Value *IncValue : PN->incoming_values())
702        Worklist.push_back(IncValue);
703      continue;
704    }
705
706    // Otherwise be conservative.
707    Visited.clear();
708    return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
709  } while (!Worklist.empty() && --MaxLookup);
710
711  Visited.clear();
712  return Worklist.empty();
713}
714
715/// Returns the behavior when calling the given call site.
716FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
717  if (Call->doesNotAccessMemory())
718    // Can't do better than this.
719    return FMRB_DoesNotAccessMemory;
720
721  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
722
723  // If the callsite knows it only reads memory, don't return worse
724  // than that.
725  if (Call->onlyReadsMemory())
726    Min = FMRB_OnlyReadsMemory;
727  else if (Call->doesNotReadMemory())
728    Min = FMRB_OnlyWritesMemory;
729
730  if (Call->onlyAccessesArgMemory())
731    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
732  else if (Call->onlyAccessesInaccessibleMemory())
733    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
734  else if (Call->onlyAccessesInaccessibleMemOrArgMem())
735    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
736
737  // If the call has operand bundles then aliasing attributes from the function
738  // it calls do not directly apply to the call.  This can be made more precise
739  // in the future.
740  if (!Call->hasOperandBundles())
741    if (const Function *F = Call->getCalledFunction())
742      Min =
743          FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
744
745  return Min;
746}
747
748/// Returns the behavior when calling the given function. For use when the call
749/// site is not known.
750FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
751  // If the function declares it doesn't access memory, we can't do better.
752  if (F->doesNotAccessMemory())
753    return FMRB_DoesNotAccessMemory;
754
755  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
756
757  // If the function declares it only reads memory, go with that.
758  if (F->onlyReadsMemory())
759    Min = FMRB_OnlyReadsMemory;
760  else if (F->doesNotReadMemory())
761    Min = FMRB_OnlyWritesMemory;
762
763  if (F->onlyAccessesArgMemory())
764    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
765  else if (F->onlyAccessesInaccessibleMemory())
766    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
767  else if (F->onlyAccessesInaccessibleMemOrArgMem())
768    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
769
770  return Min;
771}
772
773/// Returns true if this is a writeonly (i.e Mod only) parameter.
774static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
775                             const TargetLibraryInfo &TLI) {
776  if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
777    return true;
778
779  // We can bound the aliasing properties of memset_pattern16 just as we can
780  // for memcpy/memset.  This is particularly important because the
781  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
782  // whenever possible.
783  // FIXME Consider handling this in InferFunctionAttr.cpp together with other
784  // attributes.
785  LibFunc F;
786  if (Call->getCalledFunction() &&
787      TLI.getLibFunc(*Call->getCalledFunction(), F) &&
788      F == LibFunc_memset_pattern16 && TLI.has(F))
789    if (ArgIdx == 0)
790      return true;
791
792  // TODO: memset_pattern4, memset_pattern8
793  // TODO: _chk variants
794  // TODO: strcmp, strcpy
795
796  return false;
797}
798
799ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
800                                           unsigned ArgIdx) {
801  // Checking for known builtin intrinsics and target library functions.
802  if (isWriteOnlyParam(Call, ArgIdx, TLI))
803    return ModRefInfo::Mod;
804
805  if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
806    return ModRefInfo::Ref;
807
808  if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
809    return ModRefInfo::NoModRef;
810
811  return AAResultBase::getArgModRefInfo(Call, ArgIdx);
812}
813
814static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
815  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
816  return II && II->getIntrinsicID() == IID;
817}
818
819#ifndef NDEBUG
820static const Function *getParent(const Value *V) {
821  if (const Instruction *inst = dyn_cast<Instruction>(V)) {
822    if (!inst->getParent())
823      return nullptr;
824    return inst->getParent()->getParent();
825  }
826
827  if (const Argument *arg = dyn_cast<Argument>(V))
828    return arg->getParent();
829
830  return nullptr;
831}
832
833static bool notDifferentParent(const Value *O1, const Value *O2) {
834
835  const Function *F1 = getParent(O1);
836  const Function *F2 = getParent(O2);
837
838  return !F1 || !F2 || F1 == F2;
839}
840#endif
841
842AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
843                                 const MemoryLocation &LocB,
844                                 AAQueryInfo &AAQI) {
845  assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
846         "BasicAliasAnalysis doesn't support interprocedural queries.");
847
848  // If we have a directly cached entry for these locations, we have recursed
849  // through this once, so just return the cached results. Notably, when this
850  // happens, we don't clear the cache.
851  auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
852  if (CacheIt != AAQI.AliasCache.end())
853    return CacheIt->second;
854
855  CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
856  if (CacheIt != AAQI.AliasCache.end())
857    return CacheIt->second;
858
859  AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
860                                 LocB.Size, LocB.AATags, AAQI);
861
862  VisitedPhiBBs.clear();
863  return Alias;
864}
865
866/// Checks to see if the specified callsite can clobber the specified memory
867/// object.
868///
869/// Since we only look at local properties of this function, we really can't
870/// say much about this query.  We do, however, use simple "address taken"
871/// analysis on local objects.
872ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
873                                        const MemoryLocation &Loc,
874                                        AAQueryInfo &AAQI) {
875  assert(notDifferentParent(Call, Loc.Ptr) &&
876         "AliasAnalysis query involving multiple functions!");
877
878  const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
879
880  // Calls marked 'tail' cannot read or write allocas from the current frame
881  // because the current frame might be destroyed by the time they run. However,
882  // a tail call may use an alloca with byval. Calling with byval copies the
883  // contents of the alloca into argument registers or stack slots, so there is
884  // no lifetime issue.
885  if (isa<AllocaInst>(Object))
886    if (const CallInst *CI = dyn_cast<CallInst>(Call))
887      if (CI->isTailCall() &&
888          !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
889        return ModRefInfo::NoModRef;
890
891  // Stack restore is able to modify unescaped dynamic allocas. Assume it may
892  // modify them even though the alloca is not escaped.
893  if (auto *AI = dyn_cast<AllocaInst>(Object))
894    if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
895      return ModRefInfo::Mod;
896
897  // If the pointer is to a locally allocated object that does not escape,
898  // then the call can not mod/ref the pointer unless the call takes the pointer
899  // as an argument, and itself doesn't capture it.
900  if (!isa<Constant>(Object) && Call != Object &&
901      isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
902
903    // Optimistically assume that call doesn't touch Object and check this
904    // assumption in the following loop.
905    ModRefInfo Result = ModRefInfo::NoModRef;
906    bool IsMustAlias = true;
907
908    unsigned OperandNo = 0;
909    for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
910         CI != CE; ++CI, ++OperandNo) {
911      // Only look at the no-capture or byval pointer arguments.  If this
912      // pointer were passed to arguments that were neither of these, then it
913      // couldn't be no-capture.
914      if (!(*CI)->getType()->isPointerTy() ||
915          (!Call->doesNotCapture(OperandNo) &&
916           OperandNo < Call->getNumArgOperands() &&
917           !Call->isByValArgument(OperandNo)))
918        continue;
919
920      // Call doesn't access memory through this operand, so we don't care
921      // if it aliases with Object.
922      if (Call->doesNotAccessMemory(OperandNo))
923        continue;
924
925      // If this is a no-capture pointer argument, see if we can tell that it
926      // is impossible to alias the pointer we're checking.
927      AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
928                                                MemoryLocation(Object), AAQI);
929      if (AR != MustAlias)
930        IsMustAlias = false;
931      // Operand doesn't alias 'Object', continue looking for other aliases
932      if (AR == NoAlias)
933        continue;
934      // Operand aliases 'Object', but call doesn't modify it. Strengthen
935      // initial assumption and keep looking in case if there are more aliases.
936      if (Call->onlyReadsMemory(OperandNo)) {
937        Result = setRef(Result);
938        continue;
939      }
940      // Operand aliases 'Object' but call only writes into it.
941      if (Call->doesNotReadMemory(OperandNo)) {
942        Result = setMod(Result);
943        continue;
944      }
945      // This operand aliases 'Object' and call reads and writes into it.
946      // Setting ModRef will not yield an early return below, MustAlias is not
947      // used further.
948      Result = ModRefInfo::ModRef;
949      break;
950    }
951
952    // No operand aliases, reset Must bit. Add below if at least one aliases
953    // and all aliases found are MustAlias.
954    if (isNoModRef(Result))
955      IsMustAlias = false;
956
957    // Early return if we improved mod ref information
958    if (!isModAndRefSet(Result)) {
959      if (isNoModRef(Result))
960        return ModRefInfo::NoModRef;
961      return IsMustAlias ? setMust(Result) : clearMust(Result);
962    }
963  }
964
965  // If the call is malloc/calloc like, we can assume that it doesn't
966  // modify any IR visible value.  This is only valid because we assume these
967  // routines do not read values visible in the IR.  TODO: Consider special
968  // casing realloc and strdup routines which access only their arguments as
969  // well.  Or alternatively, replace all of this with inaccessiblememonly once
970  // that's implemented fully.
971  if (isMallocOrCallocLikeFn(Call, &TLI)) {
972    // Be conservative if the accessed pointer may alias the allocation -
973    // fallback to the generic handling below.
974    if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
975      return ModRefInfo::NoModRef;
976  }
977
978  // The semantics of memcpy intrinsics forbid overlap between their respective
979  // operands, i.e., source and destination of any given memcpy must no-alias.
980  // If Loc must-aliases either one of these two locations, then it necessarily
981  // no-aliases the other.
982  if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
983    AliasResult SrcAA, DestAA;
984
985    if ((SrcAA = getBestAAResults().alias(MemoryLocation::getForSource(Inst),
986                                          Loc, AAQI)) == MustAlias)
987      // Loc is exactly the memcpy source thus disjoint from memcpy dest.
988      return ModRefInfo::Ref;
989    if ((DestAA = getBestAAResults().alias(MemoryLocation::getForDest(Inst),
990                                           Loc, AAQI)) == MustAlias)
991      // The converse case.
992      return ModRefInfo::Mod;
993
994    // It's also possible for Loc to alias both src and dest, or neither.
995    ModRefInfo rv = ModRefInfo::NoModRef;
996    if (SrcAA != NoAlias)
997      rv = setRef(rv);
998    if (DestAA != NoAlias)
999      rv = setMod(rv);
1000    return rv;
1001  }
1002
1003  // While the assume intrinsic is marked as arbitrarily writing so that
1004  // proper control dependencies will be maintained, it never aliases any
1005  // particular memory location.
1006  if (isIntrinsicCall(Call, Intrinsic::assume))
1007    return ModRefInfo::NoModRef;
1008
1009  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1010  // that proper control dependencies are maintained but they never mods any
1011  // particular memory location.
1012  //
1013  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1014  // heap state at the point the guard is issued needs to be consistent in case
1015  // the guard invokes the "deopt" continuation.
1016  if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
1017    return ModRefInfo::Ref;
1018
1019  // Like assumes, invariant.start intrinsics were also marked as arbitrarily
1020  // writing so that proper control dependencies are maintained but they never
1021  // mod any particular memory location visible to the IR.
1022  // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1023  // intrinsic is now modeled as reading memory. This prevents hoisting the
1024  // invariant.start intrinsic over stores. Consider:
1025  // *ptr = 40;
1026  // *ptr = 50;
1027  // invariant_start(ptr)
1028  // int val = *ptr;
1029  // print(val);
1030  //
1031  // This cannot be transformed to:
1032  //
1033  // *ptr = 40;
1034  // invariant_start(ptr)
1035  // *ptr = 50;
1036  // int val = *ptr;
1037  // print(val);
1038  //
1039  // The transformation will cause the second store to be ignored (based on
1040  // rules of invariant.start)  and print 40, while the first program always
1041  // prints 50.
1042  if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1043    return ModRefInfo::Ref;
1044
1045  // The AAResultBase base class has some smarts, lets use them.
1046  return AAResultBase::getModRefInfo(Call, Loc, AAQI);
1047}
1048
1049ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1050                                        const CallBase *Call2,
1051                                        AAQueryInfo &AAQI) {
1052  // While the assume intrinsic is marked as arbitrarily writing so that
1053  // proper control dependencies will be maintained, it never aliases any
1054  // particular memory location.
1055  if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1056      isIntrinsicCall(Call2, Intrinsic::assume))
1057    return ModRefInfo::NoModRef;
1058
1059  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1060  // that proper control dependencies are maintained but they never mod any
1061  // particular memory location.
1062  //
1063  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1064  // heap state at the point the guard is issued needs to be consistent in case
1065  // the guard invokes the "deopt" continuation.
1066
1067  // NB! This function is *not* commutative, so we special case two
1068  // possibilities for guard intrinsics.
1069
1070  if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1071    return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1072               ? ModRefInfo::Ref
1073               : ModRefInfo::NoModRef;
1074
1075  if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1076    return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1077               ? ModRefInfo::Mod
1078               : ModRefInfo::NoModRef;
1079
1080  // The AAResultBase base class has some smarts, lets use them.
1081  return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1082}
1083
1084/// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1085/// both having the exact same pointer operand.
1086static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1087                                            LocationSize MaybeV1Size,
1088                                            const GEPOperator *GEP2,
1089                                            LocationSize MaybeV2Size,
1090                                            const DataLayout &DL) {
1091  assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1092             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1093         GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1094         "Expected GEPs with the same pointer operand");
1095
1096  // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1097  // such that the struct field accesses provably cannot alias.
1098  // We also need at least two indices (the pointer, and the struct field).
1099  if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1100      GEP1->getNumIndices() < 2)
1101    return MayAlias;
1102
1103  // If we don't know the size of the accesses through both GEPs, we can't
1104  // determine whether the struct fields accessed can't alias.
1105  if (MaybeV1Size == LocationSize::unknown() ||
1106      MaybeV2Size == LocationSize::unknown())
1107    return MayAlias;
1108
1109  const uint64_t V1Size = MaybeV1Size.getValue();
1110  const uint64_t V2Size = MaybeV2Size.getValue();
1111
1112  ConstantInt *C1 =
1113      dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1114  ConstantInt *C2 =
1115      dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1116
1117  // If the last (struct) indices are constants and are equal, the other indices
1118  // might be also be dynamically equal, so the GEPs can alias.
1119  if (C1 && C2) {
1120    unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1121    if (C1->getValue().sextOrSelf(BitWidth) ==
1122        C2->getValue().sextOrSelf(BitWidth))
1123      return MayAlias;
1124  }
1125
1126  // Find the last-indexed type of the GEP, i.e., the type you'd get if
1127  // you stripped the last index.
1128  // On the way, look at each indexed type.  If there's something other
1129  // than an array, different indices can lead to different final types.
1130  SmallVector<Value *, 8> IntermediateIndices;
1131
1132  // Insert the first index; we don't need to check the type indexed
1133  // through it as it only drops the pointer indirection.
1134  assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1135  IntermediateIndices.push_back(GEP1->getOperand(1));
1136
1137  // Insert all the remaining indices but the last one.
1138  // Also, check that they all index through arrays.
1139  for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1140    if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1141            GEP1->getSourceElementType(), IntermediateIndices)))
1142      return MayAlias;
1143    IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1144  }
1145
1146  auto *Ty = GetElementPtrInst::getIndexedType(
1147    GEP1->getSourceElementType(), IntermediateIndices);
1148  StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1149
1150  if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
1151    // We know that:
1152    // - both GEPs begin indexing from the exact same pointer;
1153    // - the last indices in both GEPs are constants, indexing into a sequential
1154    //   type (array or vector);
1155    // - both GEPs only index through arrays prior to that.
1156    //
1157    // Because array indices greater than the number of elements are valid in
1158    // GEPs, unless we know the intermediate indices are identical between
1159    // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1160    // partially overlap. We also need to check that the loaded size matches
1161    // the element size, otherwise we could still have overlap.
1162    Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1163    const uint64_t ElementSize =
1164        DL.getTypeStoreSize(LastElementTy).getFixedSize();
1165    if (V1Size != ElementSize || V2Size != ElementSize)
1166      return MayAlias;
1167
1168    for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1169      if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1170        return MayAlias;
1171
1172    // Now we know that the array/pointer that GEP1 indexes into and that
1173    // that GEP2 indexes into must either precisely overlap or be disjoint.
1174    // Because they cannot partially overlap and because fields in an array
1175    // cannot overlap, if we can prove the final indices are different between
1176    // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1177
1178    // If the last indices are constants, we've already checked they don't
1179    // equal each other so we can exit early.
1180    if (C1 && C2)
1181      return NoAlias;
1182    {
1183      Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1184      Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1185      if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1186        // If one of the indices is a PHI node, be safe and only use
1187        // computeKnownBits so we don't make any assumptions about the
1188        // relationships between the two indices. This is important if we're
1189        // asking about values from different loop iterations. See PR32314.
1190        // TODO: We may be able to change the check so we only do this when
1191        // we definitely looked through a PHINode.
1192        if (GEP1LastIdx != GEP2LastIdx &&
1193            GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1194          KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1195          KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1196          if (Known1.Zero.intersects(Known2.One) ||
1197              Known1.One.intersects(Known2.Zero))
1198            return NoAlias;
1199        }
1200      } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1201        return NoAlias;
1202    }
1203    return MayAlias;
1204  } else if (!LastIndexedStruct || !C1 || !C2) {
1205    return MayAlias;
1206  }
1207
1208  if (C1->getValue().getActiveBits() > 64 ||
1209      C2->getValue().getActiveBits() > 64)
1210    return MayAlias;
1211
1212  // We know that:
1213  // - both GEPs begin indexing from the exact same pointer;
1214  // - the last indices in both GEPs are constants, indexing into a struct;
1215  // - said indices are different, hence, the pointed-to fields are different;
1216  // - both GEPs only index through arrays prior to that.
1217  //
1218  // This lets us determine that the struct that GEP1 indexes into and the
1219  // struct that GEP2 indexes into must either precisely overlap or be
1220  // completely disjoint.  Because they cannot partially overlap, indexing into
1221  // different non-overlapping fields of the struct will never alias.
1222
1223  // Therefore, the only remaining thing needed to show that both GEPs can't
1224  // alias is that the fields are not overlapping.
1225  const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1226  const uint64_t StructSize = SL->getSizeInBytes();
1227  const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1228  const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1229
1230  auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1231                                      uint64_t V2Off, uint64_t V2Size) {
1232    return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1233           ((V2Off + V2Size <= StructSize) ||
1234            (V2Off + V2Size - StructSize <= V1Off));
1235  };
1236
1237  if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1238      EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1239    return NoAlias;
1240
1241  return MayAlias;
1242}
1243
1244// If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1245// beginning of the object the GEP points would have a negative offset with
1246// repsect to the alloca, that means the GEP can not alias pointer (b).
1247// Note that the pointer based on the alloca may not be a GEP. For
1248// example, it may be the alloca itself.
1249// The same applies if (b) is based on a GlobalVariable. Note that just being
1250// based on isIdentifiedObject() is not enough - we need an identified object
1251// that does not permit access to negative offsets. For example, a negative
1252// offset from a noalias argument or call can be inbounds w.r.t the actual
1253// underlying object.
1254//
1255// For example, consider:
1256//
1257//   struct { int f0, int f1, ...} foo;
1258//   foo alloca;
1259//   foo* random = bar(alloca);
1260//   int *f0 = &alloca.f0
1261//   int *f1 = &random->f1;
1262//
1263// Which is lowered, approximately, to:
1264//
1265//  %alloca = alloca %struct.foo
1266//  %random = call %struct.foo* @random(%struct.foo* %alloca)
1267//  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1268//  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1269//
1270// Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1271// by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1272// point into the same object. But since %f0 points to the beginning of %alloca,
1273// the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1274// than (%alloca - 1), and so is not inbounds, a contradiction.
1275bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1276      const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1277      LocationSize MaybeObjectAccessSize) {
1278  // If the object access size is unknown, or the GEP isn't inbounds, bail.
1279  if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1280    return false;
1281
1282  const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1283
1284  // We need the object to be an alloca or a globalvariable, and want to know
1285  // the offset of the pointer from the object precisely, so no variable
1286  // indices are allowed.
1287  if (!(isa<AllocaInst>(DecompObject.Base) ||
1288        isa<GlobalVariable>(DecompObject.Base)) ||
1289      !DecompObject.VarIndices.empty())
1290    return false;
1291
1292  APInt ObjectBaseOffset = DecompObject.StructOffset +
1293                           DecompObject.OtherOffset;
1294
1295  // If the GEP has no variable indices, we know the precise offset
1296  // from the base, then use it. If the GEP has variable indices,
1297  // we can't get exact GEP offset to identify pointer alias. So return
1298  // false in that case.
1299  if (!DecompGEP.VarIndices.empty())
1300    return false;
1301
1302  APInt GEPBaseOffset = DecompGEP.StructOffset;
1303  GEPBaseOffset += DecompGEP.OtherOffset;
1304
1305  return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
1306}
1307
1308/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1309/// another pointer.
1310///
1311/// We know that V1 is a GEP, but we don't know anything about V2.
1312/// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
1313/// V2.
1314AliasResult BasicAAResult::aliasGEP(
1315    const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1316    const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1317    const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1318  DecomposedGEP DecompGEP1, DecompGEP2;
1319  unsigned MaxPointerSize = getMaxPointerSize(DL);
1320  DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
1321  DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
1322  DecompGEP1.HasCompileTimeConstantScale =
1323      DecompGEP2.HasCompileTimeConstantScale = true;
1324
1325  bool GEP1MaxLookupReached =
1326    DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1327  bool GEP2MaxLookupReached =
1328    DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1329
1330  // Don't attempt to analyze the decomposed GEP if index scale is not a
1331  // compile-time constant.
1332  if (!DecompGEP1.HasCompileTimeConstantScale ||
1333      !DecompGEP2.HasCompileTimeConstantScale)
1334    return MayAlias;
1335
1336  APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1337  APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1338
1339  assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1340         "DecomposeGEPExpression returned a result different from "
1341         "GetUnderlyingObject");
1342
1343  // If the GEP's offset relative to its base is such that the base would
1344  // fall below the start of the object underlying V2, then the GEP and V2
1345  // cannot alias.
1346  if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1347      isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1348    return NoAlias;
1349  // If we have two gep instructions with must-alias or not-alias'ing base
1350  // pointers, figure out if the indexes to the GEP tell us anything about the
1351  // derived pointer.
1352  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1353    // Check for the GEP base being at a negative offset, this time in the other
1354    // direction.
1355    if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1356        isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1357      return NoAlias;
1358    // Do the base pointers alias?
1359    AliasResult BaseAlias =
1360        aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1361                   UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
1362
1363    // Check for geps of non-aliasing underlying pointers where the offsets are
1364    // identical.
1365    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
1366      // Do the base pointers alias assuming type and size.
1367      AliasResult PreciseBaseAlias = aliasCheck(
1368          UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1369      if (PreciseBaseAlias == NoAlias) {
1370        // See if the computed offset from the common pointer tells us about the
1371        // relation of the resulting pointer.
1372        // If the max search depth is reached the result is undefined
1373        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1374          return MayAlias;
1375
1376        // Same offsets.
1377        if (GEP1BaseOffset == GEP2BaseOffset &&
1378            DecompGEP1.VarIndices == DecompGEP2.VarIndices)
1379          return NoAlias;
1380      }
1381    }
1382
1383    // If we get a No or May, then return it immediately, no amount of analysis
1384    // will improve this situation.
1385    if (BaseAlias != MustAlias) {
1386      assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1387      return BaseAlias;
1388    }
1389
1390    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1391    // exactly, see if the computed offset from the common pointer tells us
1392    // about the relation of the resulting pointer.
1393    // If we know the two GEPs are based off of the exact same pointer (and not
1394    // just the same underlying object), see if that tells us anything about
1395    // the resulting pointers.
1396    if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1397            GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1398        GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1399      AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1400      // If we couldn't find anything interesting, don't abandon just yet.
1401      if (R != MayAlias)
1402        return R;
1403    }
1404
1405    // If the max search depth is reached, the result is undefined
1406    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1407      return MayAlias;
1408
1409    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1410    // symbolic difference.
1411    GEP1BaseOffset -= GEP2BaseOffset;
1412    GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1413
1414  } else {
1415    // Check to see if these two pointers are related by the getelementptr
1416    // instruction.  If one pointer is a GEP with a non-zero index of the other
1417    // pointer, we know they cannot alias.
1418
1419    // If both accesses are unknown size, we can't do anything useful here.
1420    if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1421      return MayAlias;
1422
1423    AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
1424                               AAMDNodes(), V2, LocationSize::unknown(),
1425                               V2AAInfo, AAQI, nullptr, UnderlyingV2);
1426    if (R != MustAlias) {
1427      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1428      // If V2 is known not to alias GEP base pointer, then the two values
1429      // cannot alias per GEP semantics: "Any memory access must be done through
1430      // a pointer value associated with an address range of the memory access,
1431      // otherwise the behavior is undefined.".
1432      assert(R == NoAlias || R == MayAlias);
1433      return R;
1434    }
1435
1436    // If the max search depth is reached the result is undefined
1437    if (GEP1MaxLookupReached)
1438      return MayAlias;
1439  }
1440
1441  // In the two GEP Case, if there is no difference in the offsets of the
1442  // computed pointers, the resultant pointers are a must alias.  This
1443  // happens when we have two lexically identical GEP's (for example).
1444  //
1445  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1446  // must aliases the GEP, the end result is a must alias also.
1447  if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1448    return MustAlias;
1449
1450  // If there is a constant difference between the pointers, but the difference
1451  // is less than the size of the associated memory object, then we know
1452  // that the objects are partially overlapping.  If the difference is
1453  // greater, we know they do not overlap.
1454  if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1455    if (GEP1BaseOffset.sge(0)) {
1456      if (V2Size != LocationSize::unknown()) {
1457        if (GEP1BaseOffset.ult(V2Size.getValue()))
1458          return PartialAlias;
1459        return NoAlias;
1460      }
1461    } else {
1462      // We have the situation where:
1463      // +                +
1464      // | BaseOffset     |
1465      // ---------------->|
1466      // |-->V1Size       |-------> V2Size
1467      // GEP1             V2
1468      // We need to know that V2Size is not unknown, otherwise we might have
1469      // stripped a gep with negative index ('gep <ptr>, -1, ...).
1470      if (V1Size != LocationSize::unknown() &&
1471          V2Size != LocationSize::unknown()) {
1472        if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1473          return PartialAlias;
1474        return NoAlias;
1475      }
1476    }
1477  }
1478
1479  if (!DecompGEP1.VarIndices.empty()) {
1480    APInt Modulo(MaxPointerSize, 0);
1481    bool AllPositive = true;
1482    for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1483
1484      // Try to distinguish something like &A[i][1] against &A[42][0].
1485      // Grab the least significant bit set in any of the scales. We
1486      // don't need std::abs here (even if the scale's negative) as we'll
1487      // be ^'ing Modulo with itself later.
1488      Modulo |= DecompGEP1.VarIndices[i].Scale;
1489
1490      if (AllPositive) {
1491        // If the Value could change between cycles, then any reasoning about
1492        // the Value this cycle may not hold in the next cycle. We'll just
1493        // give up if we can't determine conditions that hold for every cycle:
1494        const Value *V = DecompGEP1.VarIndices[i].V;
1495
1496        KnownBits Known =
1497            computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
1498        bool SignKnownZero = Known.isNonNegative();
1499        bool SignKnownOne = Known.isNegative();
1500
1501        // Zero-extension widens the variable, and so forces the sign
1502        // bit to zero.
1503        bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1504        SignKnownZero |= IsZExt;
1505        SignKnownOne &= !IsZExt;
1506
1507        // If the variable begins with a zero then we know it's
1508        // positive, regardless of whether the value is signed or
1509        // unsigned.
1510        APInt Scale = DecompGEP1.VarIndices[i].Scale;
1511        AllPositive =
1512            (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1513      }
1514    }
1515
1516    Modulo = Modulo ^ (Modulo & (Modulo - 1));
1517
1518    // We can compute the difference between the two addresses
1519    // mod Modulo. Check whether that difference guarantees that the
1520    // two locations do not alias.
1521    APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1522    if (V1Size != LocationSize::unknown() &&
1523        V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1524        (Modulo - ModOffset).uge(V1Size.getValue()))
1525      return NoAlias;
1526
1527    // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1528    // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1529    // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1530    if (AllPositive && GEP1BaseOffset.sgt(0) &&
1531        V2Size != LocationSize::unknown() &&
1532        GEP1BaseOffset.uge(V2Size.getValue()))
1533      return NoAlias;
1534
1535    if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1536                                GEP1BaseOffset, &AC, DT))
1537      return NoAlias;
1538  }
1539
1540  // Statically, we can see that the base objects are the same, but the
1541  // pointers have dynamic offsets which we can't resolve. And none of our
1542  // little tricks above worked.
1543  return MayAlias;
1544}
1545
1546static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1547  // If the results agree, take it.
1548  if (A == B)
1549    return A;
1550  // A mix of PartialAlias and MustAlias is PartialAlias.
1551  if ((A == PartialAlias && B == MustAlias) ||
1552      (B == PartialAlias && A == MustAlias))
1553    return PartialAlias;
1554  // Otherwise, we don't know anything.
1555  return MayAlias;
1556}
1557
1558/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1559/// against another.
1560AliasResult
1561BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1562                           const AAMDNodes &SIAAInfo, const Value *V2,
1563                           LocationSize V2Size, const AAMDNodes &V2AAInfo,
1564                           const Value *UnderV2, AAQueryInfo &AAQI) {
1565  // If the values are Selects with the same condition, we can do a more precise
1566  // check: just check for aliases between the values on corresponding arms.
1567  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1568    if (SI->getCondition() == SI2->getCondition()) {
1569      AliasResult Alias =
1570          aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1571                     V2Size, V2AAInfo, AAQI);
1572      if (Alias == MayAlias)
1573        return MayAlias;
1574      AliasResult ThisAlias =
1575          aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1576                     SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1577      return MergeAliasResults(ThisAlias, Alias);
1578    }
1579
1580  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1581  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1582  AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1583                                 SISize, SIAAInfo, AAQI, UnderV2);
1584  if (Alias == MayAlias)
1585    return MayAlias;
1586
1587  AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1588                                     SISize, SIAAInfo, AAQI, UnderV2);
1589  return MergeAliasResults(ThisAlias, Alias);
1590}
1591
1592/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1593/// another.
1594AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1595                                    const AAMDNodes &PNAAInfo, const Value *V2,
1596                                    LocationSize V2Size,
1597                                    const AAMDNodes &V2AAInfo,
1598                                    const Value *UnderV2, AAQueryInfo &AAQI) {
1599  // Track phi nodes we have visited. We use this information when we determine
1600  // value equivalence.
1601  VisitedPhiBBs.insert(PN->getParent());
1602
1603  // If the values are PHIs in the same block, we can do a more precise
1604  // as well as efficient check: just check for aliases between the values
1605  // on corresponding edges.
1606  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1607    if (PN2->getParent() == PN->getParent()) {
1608      AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1609                                MemoryLocation(V2, V2Size, V2AAInfo));
1610      if (PN > V2)
1611        std::swap(Locs.first, Locs.second);
1612      // Analyse the PHIs' inputs under the assumption that the PHIs are
1613      // NoAlias.
1614      // If the PHIs are May/MustAlias there must be (recursively) an input
1615      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1616      // there must be an operation on the PHIs within the PHIs' value cycle
1617      // that causes a MayAlias.
1618      // Pretend the phis do not alias.
1619      AliasResult Alias = NoAlias;
1620      AliasResult OrigAliasResult;
1621      {
1622        // Limited lifetime iterator invalidated by the aliasCheck call below.
1623        auto CacheIt = AAQI.AliasCache.find(Locs);
1624        assert((CacheIt != AAQI.AliasCache.end()) &&
1625               "There must exist an entry for the phi node");
1626        OrigAliasResult = CacheIt->second;
1627        CacheIt->second = NoAlias;
1628      }
1629
1630      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1631        AliasResult ThisAlias =
1632            aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1633                       PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1634                       V2Size, V2AAInfo, AAQI);
1635        Alias = MergeAliasResults(ThisAlias, Alias);
1636        if (Alias == MayAlias)
1637          break;
1638      }
1639
1640      // Reset if speculation failed.
1641      if (Alias != NoAlias) {
1642        auto Pair =
1643            AAQI.AliasCache.insert(std::make_pair(Locs, OrigAliasResult));
1644        assert(!Pair.second && "Entry must have existed");
1645        Pair.first->second = OrigAliasResult;
1646      }
1647      return Alias;
1648    }
1649
1650  SmallVector<Value *, 4> V1Srcs;
1651  // For a recursive phi, that recurses through a contant gep, we can perform
1652  // aliasing calculations using the other phi operands with an unknown size to
1653  // specify that an unknown number of elements after the initial value are
1654  // potentially accessed.
1655  bool isRecursive = false;
1656  auto CheckForRecPhi = [&](Value *PV) {
1657    if (!EnableRecPhiAnalysis)
1658      return false;
1659    if (GEPOperator *PVGEP = dyn_cast<GEPOperator>(PV)) {
1660      // Check whether the incoming value is a GEP that advances the pointer
1661      // result of this PHI node (e.g. in a loop). If this is the case, we
1662      // would recurse and always get a MayAlias. Handle this case specially
1663      // below. We need to ensure that the phi is inbounds and has a constant
1664      // positive operand so that we can check for alias with the initial value
1665      // and an unknown but positive size.
1666      if (PVGEP->getPointerOperand() == PN && PVGEP->isInBounds() &&
1667          PVGEP->getNumIndices() == 1 && isa<ConstantInt>(PVGEP->idx_begin()) &&
1668          !cast<ConstantInt>(PVGEP->idx_begin())->isNegative()) {
1669        isRecursive = true;
1670        return true;
1671      }
1672    }
1673    return false;
1674  };
1675
1676  if (PV) {
1677    // If we have PhiValues then use it to get the underlying phi values.
1678    const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1679    // If we have more phi values than the search depth then return MayAlias
1680    // conservatively to avoid compile time explosion. The worst possible case
1681    // is if both sides are PHI nodes. In which case, this is O(m x n) time
1682    // where 'm' and 'n' are the number of PHI sources.
1683    if (PhiValueSet.size() > MaxLookupSearchDepth)
1684      return MayAlias;
1685    // Add the values to V1Srcs
1686    for (Value *PV1 : PhiValueSet) {
1687      if (CheckForRecPhi(PV1))
1688        continue;
1689      V1Srcs.push_back(PV1);
1690    }
1691  } else {
1692    // If we don't have PhiInfo then just look at the operands of the phi itself
1693    // FIXME: Remove this once we can guarantee that we have PhiInfo always
1694    SmallPtrSet<Value *, 4> UniqueSrc;
1695    for (Value *PV1 : PN->incoming_values()) {
1696      if (isa<PHINode>(PV1))
1697        // If any of the source itself is a PHI, return MayAlias conservatively
1698        // to avoid compile time explosion. The worst possible case is if both
1699        // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1700        // and 'n' are the number of PHI sources.
1701        return MayAlias;
1702
1703      if (CheckForRecPhi(PV1))
1704        continue;
1705
1706      if (UniqueSrc.insert(PV1).second)
1707        V1Srcs.push_back(PV1);
1708    }
1709  }
1710
1711  // If V1Srcs is empty then that means that the phi has no underlying non-phi
1712  // value. This should only be possible in blocks unreachable from the entry
1713  // block, but return MayAlias just in case.
1714  if (V1Srcs.empty())
1715    return MayAlias;
1716
1717  // If this PHI node is recursive, set the size of the accessed memory to
1718  // unknown to represent all the possible values the GEP could advance the
1719  // pointer to.
1720  if (isRecursive)
1721    PNSize = LocationSize::unknown();
1722
1723  AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1724                                 PNAAInfo, AAQI, UnderV2);
1725
1726  // Early exit if the check of the first PHI source against V2 is MayAlias.
1727  // Other results are not possible.
1728  if (Alias == MayAlias)
1729    return MayAlias;
1730  // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1731  // remain valid to all elements and needs to conservatively return MayAlias.
1732  if (isRecursive && Alias != NoAlias)
1733    return MayAlias;
1734
1735  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1736  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1737  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1738    Value *V = V1Srcs[i];
1739
1740    AliasResult ThisAlias =
1741        aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
1742    Alias = MergeAliasResults(ThisAlias, Alias);
1743    if (Alias == MayAlias)
1744      break;
1745  }
1746
1747  return Alias;
1748}
1749
1750/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1751/// array references.
1752AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1753                                      AAMDNodes V1AAInfo, const Value *V2,
1754                                      LocationSize V2Size, AAMDNodes V2AAInfo,
1755                                      AAQueryInfo &AAQI, const Value *O1,
1756                                      const Value *O2) {
1757  // If either of the memory references is empty, it doesn't matter what the
1758  // pointer values are.
1759  if (V1Size.isZero() || V2Size.isZero())
1760    return NoAlias;
1761
1762  // Strip off any casts if they exist.
1763  V1 = V1->stripPointerCastsAndInvariantGroups();
1764  V2 = V2->stripPointerCastsAndInvariantGroups();
1765
1766  // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1767  // value for undef that aliases nothing in the program.
1768  if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1769    return NoAlias;
1770
1771  // Are we checking for alias of the same value?
1772  // Because we look 'through' phi nodes, we could look at "Value" pointers from
1773  // different iterations. We must therefore make sure that this is not the
1774  // case. The function isValueEqualInPotentialCycles ensures that this cannot
1775  // happen by looking at the visited phi nodes and making sure they cannot
1776  // reach the value.
1777  if (isValueEqualInPotentialCycles(V1, V2))
1778    return MustAlias;
1779
1780  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1781    return NoAlias; // Scalars cannot alias each other
1782
1783  // Figure out what objects these things are pointing to if we can.
1784  if (O1 == nullptr)
1785    O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
1786
1787  if (O2 == nullptr)
1788    O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
1789
1790  // Null values in the default address space don't point to any object, so they
1791  // don't alias any other pointer.
1792  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1793    if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1794      return NoAlias;
1795  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1796    if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1797      return NoAlias;
1798
1799  if (O1 != O2) {
1800    // If V1/V2 point to two different objects, we know that we have no alias.
1801    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1802      return NoAlias;
1803
1804    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1805    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1806        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1807      return NoAlias;
1808
1809    // Function arguments can't alias with things that are known to be
1810    // unambigously identified at the function level.
1811    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1812        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1813      return NoAlias;
1814
1815    // If one pointer is the result of a call/invoke or load and the other is a
1816    // non-escaping local object within the same function, then we know the
1817    // object couldn't escape to a point where the call could return it.
1818    //
1819    // Note that if the pointers are in different functions, there are a
1820    // variety of complications. A call with a nocapture argument may still
1821    // temporary store the nocapture argument's value in a temporary memory
1822    // location if that memory location doesn't escape. Or it may pass a
1823    // nocapture value to other functions as long as they don't capture it.
1824    if (isEscapeSource(O1) &&
1825        isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1826      return NoAlias;
1827    if (isEscapeSource(O2) &&
1828        isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1829      return NoAlias;
1830  }
1831
1832  // If the size of one access is larger than the entire object on the other
1833  // side, then we know such behavior is undefined and can assume no alias.
1834  bool NullIsValidLocation = NullPointerIsDefined(&F);
1835  if ((isObjectSmallerThan(
1836          O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1837          TLI, NullIsValidLocation)) ||
1838      (isObjectSmallerThan(
1839          O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1840          TLI, NullIsValidLocation)))
1841    return NoAlias;
1842
1843  // Check the cache before climbing up use-def chains. This also terminates
1844  // otherwise infinitely recursive queries.
1845  AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1846                            MemoryLocation(V2, V2Size, V2AAInfo));
1847  if (V1 > V2)
1848    std::swap(Locs.first, Locs.second);
1849  std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1850      AAQI.AliasCache.try_emplace(Locs, MayAlias);
1851  if (!Pair.second)
1852    return Pair.first->second;
1853
1854  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1855  // GEP can't simplify, we don't even look at the PHI cases.
1856  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1857    std::swap(V1, V2);
1858    std::swap(V1Size, V2Size);
1859    std::swap(O1, O2);
1860    std::swap(V1AAInfo, V2AAInfo);
1861  }
1862  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1863    AliasResult Result =
1864        aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1865    if (Result != MayAlias) {
1866      auto ItInsPair = AAQI.AliasCache.insert(std::make_pair(Locs, Result));
1867      assert(!ItInsPair.second && "Entry must have existed");
1868      ItInsPair.first->second = Result;
1869      return Result;
1870    }
1871  }
1872
1873  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1874    std::swap(V1, V2);
1875    std::swap(O1, O2);
1876    std::swap(V1Size, V2Size);
1877    std::swap(V1AAInfo, V2AAInfo);
1878  }
1879  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1880    AliasResult Result =
1881        aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1882    if (Result != MayAlias) {
1883      Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1884      assert(!Pair.second && "Entry must have existed");
1885      return Pair.first->second = Result;
1886    }
1887  }
1888
1889  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1890    std::swap(V1, V2);
1891    std::swap(O1, O2);
1892    std::swap(V1Size, V2Size);
1893    std::swap(V1AAInfo, V2AAInfo);
1894  }
1895  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1896    AliasResult Result =
1897        aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1898    if (Result != MayAlias) {
1899      Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1900      assert(!Pair.second && "Entry must have existed");
1901      return Pair.first->second = Result;
1902    }
1903  }
1904
1905  // If both pointers are pointing into the same object and one of them
1906  // accesses the entire object, then the accesses must overlap in some way.
1907  if (O1 == O2)
1908    if (V1Size.isPrecise() && V2Size.isPrecise() &&
1909        (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1910         isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) {
1911      Pair = AAQI.AliasCache.try_emplace(Locs, PartialAlias);
1912      assert(!Pair.second && "Entry must have existed");
1913      return Pair.first->second = PartialAlias;
1914    }
1915
1916  // Recurse back into the best AA results we have, potentially with refined
1917  // memory locations. We have already ensured that BasicAA has a MayAlias
1918  // cache result for these, so any recursion back into BasicAA won't loop.
1919  AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1920  Pair = AAQI.AliasCache.try_emplace(Locs, Result);
1921  assert(!Pair.second && "Entry must have existed");
1922  return Pair.first->second = Result;
1923}
1924
1925/// Check whether two Values can be considered equivalent.
1926///
1927/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1928/// they can not be part of a cycle in the value graph by looking at all
1929/// visited phi nodes an making sure that the phis cannot reach the value. We
1930/// have to do this because we are looking through phi nodes (That is we say
1931/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1932bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1933                                                  const Value *V2) {
1934  if (V != V2)
1935    return false;
1936
1937  const Instruction *Inst = dyn_cast<Instruction>(V);
1938  if (!Inst)
1939    return true;
1940
1941  if (VisitedPhiBBs.empty())
1942    return true;
1943
1944  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1945    return false;
1946
1947  // Make sure that the visited phis cannot reach the Value. This ensures that
1948  // the Values cannot come from different iterations of a potential cycle the
1949  // phi nodes could be involved in.
1950  for (auto *P : VisitedPhiBBs)
1951    if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1952      return false;
1953
1954  return true;
1955}
1956
1957/// Computes the symbolic difference between two de-composed GEPs.
1958///
1959/// Dest and Src are the variable indices from two decomposed GetElementPtr
1960/// instructions GEP1 and GEP2 which have common base pointers.
1961void BasicAAResult::GetIndexDifference(
1962    SmallVectorImpl<VariableGEPIndex> &Dest,
1963    const SmallVectorImpl<VariableGEPIndex> &Src) {
1964  if (Src.empty())
1965    return;
1966
1967  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1968    const Value *V = Src[i].V;
1969    unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1970    APInt Scale = Src[i].Scale;
1971
1972    // Find V in Dest.  This is N^2, but pointer indices almost never have more
1973    // than a few variable indexes.
1974    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1975      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1976          Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1977        continue;
1978
1979      // If we found it, subtract off Scale V's from the entry in Dest.  If it
1980      // goes to zero, remove the entry.
1981      if (Dest[j].Scale != Scale)
1982        Dest[j].Scale -= Scale;
1983      else
1984        Dest.erase(Dest.begin() + j);
1985      Scale = 0;
1986      break;
1987    }
1988
1989    // If we didn't consume this entry, add it to the end of the Dest list.
1990    if (!!Scale) {
1991      VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1992      Dest.push_back(Entry);
1993    }
1994  }
1995}
1996
1997bool BasicAAResult::constantOffsetHeuristic(
1998    const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1999    LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
2000    AssumptionCache *AC, DominatorTree *DT) {
2001  if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
2002      MaybeV2Size == LocationSize::unknown())
2003    return false;
2004
2005  const uint64_t V1Size = MaybeV1Size.getValue();
2006  const uint64_t V2Size = MaybeV2Size.getValue();
2007
2008  const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
2009
2010  if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
2011      Var0.Scale != -Var1.Scale)
2012    return false;
2013
2014  unsigned Width = Var1.V->getType()->getIntegerBitWidth();
2015
2016  // We'll strip off the Extensions of Var0 and Var1 and do another round
2017  // of GetLinearExpression decomposition. In the example above, if Var0
2018  // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
2019
2020  APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
2021      V1Offset(Width, 0);
2022  bool NSW = true, NUW = true;
2023  unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
2024  const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
2025                                        V0SExtBits, DL, 0, AC, DT, NSW, NUW);
2026  NSW = true;
2027  NUW = true;
2028  const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
2029                                        V1SExtBits, DL, 0, AC, DT, NSW, NUW);
2030
2031  if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
2032      V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
2033    return false;
2034
2035  // We have a hit - Var0 and Var1 only differ by a constant offset!
2036
2037  // If we've been sext'ed then zext'd the maximum difference between Var0 and
2038  // Var1 is possible to calculate, but we're just interested in the absolute
2039  // minimum difference between the two. The minimum distance may occur due to
2040  // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
2041  // the minimum distance between %i and %i + 5 is 3.
2042  APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
2043  MinDiff = APIntOps::umin(MinDiff, Wrapped);
2044  APInt MinDiffBytes =
2045    MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
2046
2047  // We can't definitely say whether GEP1 is before or after V2 due to wrapping
2048  // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
2049  // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
2050  // V2Size can fit in the MinDiffBytes gap.
2051  return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
2052         MinDiffBytes.uge(V2Size + BaseOffset.abs());
2053}
2054
2055//===----------------------------------------------------------------------===//
2056// BasicAliasAnalysis Pass
2057//===----------------------------------------------------------------------===//
2058
2059AnalysisKey BasicAA::Key;
2060
2061BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
2062  return BasicAAResult(F.getParent()->getDataLayout(),
2063                       F,
2064                       AM.getResult<TargetLibraryAnalysis>(F),
2065                       AM.getResult<AssumptionAnalysis>(F),
2066                       &AM.getResult<DominatorTreeAnalysis>(F),
2067                       AM.getCachedResult<LoopAnalysis>(F),
2068                       AM.getCachedResult<PhiValuesAnalysis>(F));
2069}
2070
2071BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
2072  initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
2073}
2074
2075char BasicAAWrapperPass::ID = 0;
2076
2077void BasicAAWrapperPass::anchor() {}
2078
2079INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
2080                      "Basic Alias Analysis (stateless AA impl)", true, true)
2081INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2082INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2083INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2084INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
2085INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
2086                    "Basic Alias Analysis (stateless AA impl)", true, true)
2087
2088FunctionPass *llvm::createBasicAAWrapperPass() {
2089  return new BasicAAWrapperPass();
2090}
2091
2092bool BasicAAWrapperPass::runOnFunction(Function &F) {
2093  auto &ACT = getAnalysis<AssumptionCacheTracker>();
2094  auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2095  auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2096  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2097  auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2098
2099  Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
2100                                 TLIWP.getTLI(F), ACT.getAssumptionCache(F),
2101                                 &DTWP.getDomTree(),
2102                                 LIWP ? &LIWP->getLoopInfo() : nullptr,
2103                                 PVWP ? &PVWP->getResult() : nullptr));
2104
2105  return false;
2106}
2107
2108void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2109  AU.setPreservesAll();
2110  AU.addRequired<AssumptionCacheTracker>();
2111  AU.addRequired<DominatorTreeWrapperPass>();
2112  AU.addRequired<TargetLibraryInfoWrapperPass>();
2113  AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2114}
2115
2116BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2117  return BasicAAResult(
2118      F.getParent()->getDataLayout(), F,
2119      P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2120      P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
2121}
2122