1//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// @file
10/// This file contains the declarations for metadata subclasses.
11/// They represent the different flavors of metadata that live in LLVM.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_METADATA_H
16#define LLVM_IR_METADATA_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/DenseMapInfo.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/PointerUnion.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringMap.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/ilist_node.h"
28#include "llvm/ADT/iterator_range.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/IR/Value.h"
32#include "llvm/Support/CBindingWrapping.h"
33#include "llvm/Support/Casting.h"
34#include "llvm/Support/ErrorHandling.h"
35#include <cassert>
36#include <cstddef>
37#include <cstdint>
38#include <iterator>
39#include <memory>
40#include <string>
41#include <type_traits>
42#include <utility>
43
44namespace llvm {
45
46class Module;
47class ModuleSlotTracker;
48class raw_ostream;
49class Type;
50
51enum LLVMConstants : uint32_t {
52  DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53};
54
55/// Root of the metadata hierarchy.
56///
57/// This is a root class for typeless data in the IR.
58class Metadata {
59  friend class ReplaceableMetadataImpl;
60
61  /// RTTI.
62  const unsigned char SubclassID;
63
64protected:
65  /// Active type of storage.
66  enum StorageType { Uniqued, Distinct, Temporary };
67
68  /// Storage flag for non-uniqued, otherwise unowned, metadata.
69  unsigned char Storage : 7;
70  // TODO: expose remaining bits to subclasses.
71
72  unsigned char ImplicitCode : 1;
73
74  unsigned short SubclassData16 = 0;
75  unsigned SubclassData32 = 0;
76
77public:
78  enum MetadataKind {
79#define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
80#include "llvm/IR/Metadata.def"
81  };
82
83protected:
84  Metadata(unsigned ID, StorageType Storage)
85      : SubclassID(ID), Storage(Storage), ImplicitCode(false) {
86    static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
87  }
88
89  ~Metadata() = default;
90
91  /// Default handling of a changed operand, which asserts.
92  ///
93  /// If subclasses pass themselves in as owners to a tracking node reference,
94  /// they must provide an implementation of this method.
95  void handleChangedOperand(void *, Metadata *) {
96    llvm_unreachable("Unimplemented in Metadata subclass");
97  }
98
99public:
100  unsigned getMetadataID() const { return SubclassID; }
101
102  /// User-friendly dump.
103  ///
104  /// If \c M is provided, metadata nodes will be numbered canonically;
105  /// otherwise, pointer addresses are substituted.
106  ///
107  /// Note: this uses an explicit overload instead of default arguments so that
108  /// the nullptr version is easy to call from a debugger.
109  ///
110  /// @{
111  void dump() const;
112  void dump(const Module *M) const;
113  /// @}
114
115  /// Print.
116  ///
117  /// Prints definition of \c this.
118  ///
119  /// If \c M is provided, metadata nodes will be numbered canonically;
120  /// otherwise, pointer addresses are substituted.
121  /// @{
122  void print(raw_ostream &OS, const Module *M = nullptr,
123             bool IsForDebug = false) const;
124  void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
125             bool IsForDebug = false) const;
126  /// @}
127
128  /// Print as operand.
129  ///
130  /// Prints reference of \c this.
131  ///
132  /// If \c M is provided, metadata nodes will be numbered canonically;
133  /// otherwise, pointer addresses are substituted.
134  /// @{
135  void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
136  void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
137                      const Module *M = nullptr) const;
138  /// @}
139};
140
141// Create wrappers for C Binding types (see CBindingWrapping.h).
142DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
143
144// Specialized opaque metadata conversions.
145inline Metadata **unwrap(LLVMMetadataRef *MDs) {
146  return reinterpret_cast<Metadata**>(MDs);
147}
148
149#define HANDLE_METADATA(CLASS) class CLASS;
150#include "llvm/IR/Metadata.def"
151
152// Provide specializations of isa so that we don't need definitions of
153// subclasses to see if the metadata is a subclass.
154#define HANDLE_METADATA_LEAF(CLASS)                                            \
155  template <> struct isa_impl<CLASS, Metadata> {                               \
156    static inline bool doit(const Metadata &MD) {                              \
157      return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
158    }                                                                          \
159  };
160#include "llvm/IR/Metadata.def"
161
162inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
163  MD.print(OS);
164  return OS;
165}
166
167/// Metadata wrapper in the Value hierarchy.
168///
169/// A member of the \a Value hierarchy to represent a reference to metadata.
170/// This allows, e.g., instrinsics to have metadata as operands.
171///
172/// Notably, this is the only thing in either hierarchy that is allowed to
173/// reference \a LocalAsMetadata.
174class MetadataAsValue : public Value {
175  friend class ReplaceableMetadataImpl;
176  friend class LLVMContextImpl;
177
178  Metadata *MD;
179
180  MetadataAsValue(Type *Ty, Metadata *MD);
181
182  /// Drop use of metadata (during teardown).
183  void dropUse() { MD = nullptr; }
184
185public:
186  ~MetadataAsValue();
187
188  static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
189  static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
190
191  Metadata *getMetadata() const { return MD; }
192
193  static bool classof(const Value *V) {
194    return V->getValueID() == MetadataAsValueVal;
195  }
196
197private:
198  void handleChangedMetadata(Metadata *MD);
199  void track();
200  void untrack();
201};
202
203/// API for tracking metadata references through RAUW and deletion.
204///
205/// Shared API for updating \a Metadata pointers in subclasses that support
206/// RAUW.
207///
208/// This API is not meant to be used directly.  See \a TrackingMDRef for a
209/// user-friendly tracking reference.
210class MetadataTracking {
211public:
212  /// Track the reference to metadata.
213  ///
214  /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
215  /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
216  /// deleted, \c MD will be set to \c nullptr.
217  ///
218  /// If tracking isn't supported, \c *MD will not change.
219  ///
220  /// \return true iff tracking is supported by \c MD.
221  static bool track(Metadata *&MD) {
222    return track(&MD, *MD, static_cast<Metadata *>(nullptr));
223  }
224
225  /// Track the reference to metadata for \a Metadata.
226  ///
227  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
228  /// tell it that its operand changed.  This could trigger \c Owner being
229  /// re-uniqued.
230  static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
231    return track(Ref, MD, &Owner);
232  }
233
234  /// Track the reference to metadata for \a MetadataAsValue.
235  ///
236  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
237  /// tell it that its operand changed.  This could trigger \c Owner being
238  /// re-uniqued.
239  static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
240    return track(Ref, MD, &Owner);
241  }
242
243  /// Stop tracking a reference to metadata.
244  ///
245  /// Stops \c *MD from tracking \c MD.
246  static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
247  static void untrack(void *Ref, Metadata &MD);
248
249  /// Move tracking from one reference to another.
250  ///
251  /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
252  /// except that ownership callbacks are maintained.
253  ///
254  /// Note: it is an error if \c *MD does not equal \c New.
255  ///
256  /// \return true iff tracking is supported by \c MD.
257  static bool retrack(Metadata *&MD, Metadata *&New) {
258    return retrack(&MD, *MD, &New);
259  }
260  static bool retrack(void *Ref, Metadata &MD, void *New);
261
262  /// Check whether metadata is replaceable.
263  static bool isReplaceable(const Metadata &MD);
264
265  using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
266
267private:
268  /// Track a reference to metadata for an owner.
269  ///
270  /// Generalized version of tracking.
271  static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
272};
273
274/// Shared implementation of use-lists for replaceable metadata.
275///
276/// Most metadata cannot be RAUW'ed.  This is a shared implementation of
277/// use-lists and associated API for the two that support it (\a ValueAsMetadata
278/// and \a TempMDNode).
279class ReplaceableMetadataImpl {
280  friend class MetadataTracking;
281
282public:
283  using OwnerTy = MetadataTracking::OwnerTy;
284
285private:
286  LLVMContext &Context;
287  uint64_t NextIndex = 0;
288  SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
289
290public:
291  ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
292
293  ~ReplaceableMetadataImpl() {
294    assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
295  }
296
297  LLVMContext &getContext() const { return Context; }
298
299  /// Replace all uses of this with MD.
300  ///
301  /// Replace all uses of this with \c MD, which is allowed to be null.
302  void replaceAllUsesWith(Metadata *MD);
303
304  /// Resolve all uses of this.
305  ///
306  /// Resolve all uses of this, turning off RAUW permanently.  If \c
307  /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
308  /// is resolved.
309  void resolveAllUses(bool ResolveUsers = true);
310
311private:
312  void addRef(void *Ref, OwnerTy Owner);
313  void dropRef(void *Ref);
314  void moveRef(void *Ref, void *New, const Metadata &MD);
315
316  /// Lazily construct RAUW support on MD.
317  ///
318  /// If this is an unresolved MDNode, RAUW support will be created on-demand.
319  /// ValueAsMetadata always has RAUW support.
320  static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
321
322  /// Get RAUW support on MD, if it exists.
323  static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
324
325  /// Check whether this node will support RAUW.
326  ///
327  /// Returns \c true unless getOrCreate() would return null.
328  static bool isReplaceable(const Metadata &MD);
329};
330
331/// Value wrapper in the Metadata hierarchy.
332///
333/// This is a custom value handle that allows other metadata to refer to
334/// classes in the Value hierarchy.
335///
336/// Because of full uniquing support, each value is only wrapped by a single \a
337/// ValueAsMetadata object, so the lookup maps are far more efficient than
338/// those using ValueHandleBase.
339class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
340  friend class ReplaceableMetadataImpl;
341  friend class LLVMContextImpl;
342
343  Value *V;
344
345  /// Drop users without RAUW (during teardown).
346  void dropUsers() {
347    ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
348  }
349
350protected:
351  ValueAsMetadata(unsigned ID, Value *V)
352      : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
353    assert(V && "Expected valid value");
354  }
355
356  ~ValueAsMetadata() = default;
357
358public:
359  static ValueAsMetadata *get(Value *V);
360
361  static ConstantAsMetadata *getConstant(Value *C) {
362    return cast<ConstantAsMetadata>(get(C));
363  }
364
365  static LocalAsMetadata *getLocal(Value *Local) {
366    return cast<LocalAsMetadata>(get(Local));
367  }
368
369  static ValueAsMetadata *getIfExists(Value *V);
370
371  static ConstantAsMetadata *getConstantIfExists(Value *C) {
372    return cast_or_null<ConstantAsMetadata>(getIfExists(C));
373  }
374
375  static LocalAsMetadata *getLocalIfExists(Value *Local) {
376    return cast_or_null<LocalAsMetadata>(getIfExists(Local));
377  }
378
379  Value *getValue() const { return V; }
380  Type *getType() const { return V->getType(); }
381  LLVMContext &getContext() const { return V->getContext(); }
382
383  static void handleDeletion(Value *V);
384  static void handleRAUW(Value *From, Value *To);
385
386protected:
387  /// Handle collisions after \a Value::replaceAllUsesWith().
388  ///
389  /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
390  /// \a Value gets RAUW'ed and the target already exists, this is used to
391  /// merge the two metadata nodes.
392  void replaceAllUsesWith(Metadata *MD) {
393    ReplaceableMetadataImpl::replaceAllUsesWith(MD);
394  }
395
396public:
397  static bool classof(const Metadata *MD) {
398    return MD->getMetadataID() == LocalAsMetadataKind ||
399           MD->getMetadataID() == ConstantAsMetadataKind;
400  }
401};
402
403class ConstantAsMetadata : public ValueAsMetadata {
404  friend class ValueAsMetadata;
405
406  ConstantAsMetadata(Constant *C)
407      : ValueAsMetadata(ConstantAsMetadataKind, C) {}
408
409public:
410  static ConstantAsMetadata *get(Constant *C) {
411    return ValueAsMetadata::getConstant(C);
412  }
413
414  static ConstantAsMetadata *getIfExists(Constant *C) {
415    return ValueAsMetadata::getConstantIfExists(C);
416  }
417
418  Constant *getValue() const {
419    return cast<Constant>(ValueAsMetadata::getValue());
420  }
421
422  static bool classof(const Metadata *MD) {
423    return MD->getMetadataID() == ConstantAsMetadataKind;
424  }
425};
426
427class LocalAsMetadata : public ValueAsMetadata {
428  friend class ValueAsMetadata;
429
430  LocalAsMetadata(Value *Local)
431      : ValueAsMetadata(LocalAsMetadataKind, Local) {
432    assert(!isa<Constant>(Local) && "Expected local value");
433  }
434
435public:
436  static LocalAsMetadata *get(Value *Local) {
437    return ValueAsMetadata::getLocal(Local);
438  }
439
440  static LocalAsMetadata *getIfExists(Value *Local) {
441    return ValueAsMetadata::getLocalIfExists(Local);
442  }
443
444  static bool classof(const Metadata *MD) {
445    return MD->getMetadataID() == LocalAsMetadataKind;
446  }
447};
448
449/// Transitional API for extracting constants from Metadata.
450///
451/// This namespace contains transitional functions for metadata that points to
452/// \a Constants.
453///
454/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
455/// operands could refer to any \a Value.  There's was a lot of code like this:
456///
457/// \code
458///     MDNode *N = ...;
459///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
460/// \endcode
461///
462/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
463/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
464/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
465/// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
466/// requires subtle control flow changes.
467///
468/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
469/// so that metadata can refer to numbers without traversing a bridge to the \a
470/// Value hierarchy.  In this final state, the code above would look like this:
471///
472/// \code
473///     MDNode *N = ...;
474///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
475/// \endcode
476///
477/// The API in this namespace supports the transition.  \a MDInt doesn't exist
478/// yet, and even once it does, changing each metadata schema to use it is its
479/// own mini-project.  In the meantime this API prevents us from introducing
480/// complex and bug-prone control flow that will disappear in the end.  In
481/// particular, the above code looks like this:
482///
483/// \code
484///     MDNode *N = ...;
485///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
486/// \endcode
487///
488/// The full set of provided functions includes:
489///
490///   mdconst::hasa                <=> isa
491///   mdconst::extract             <=> cast
492///   mdconst::extract_or_null     <=> cast_or_null
493///   mdconst::dyn_extract         <=> dyn_cast
494///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
495///
496/// The target of the cast must be a subclass of \a Constant.
497namespace mdconst {
498
499namespace detail {
500
501template <class T> T &make();
502template <class T, class Result> struct HasDereference {
503  using Yes = char[1];
504  using No = char[2];
505  template <size_t N> struct SFINAE {};
506
507  template <class U, class V>
508  static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
509  template <class U, class V> static No &hasDereference(...);
510
511  static const bool value =
512      sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
513};
514template <class V, class M> struct IsValidPointer {
515  static const bool value = std::is_base_of<Constant, V>::value &&
516                            HasDereference<M, const Metadata &>::value;
517};
518template <class V, class M> struct IsValidReference {
519  static const bool value = std::is_base_of<Constant, V>::value &&
520                            std::is_convertible<M, const Metadata &>::value;
521};
522
523} // end namespace detail
524
525/// Check whether Metadata has a Value.
526///
527/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
528/// type \c X.
529template <class X, class Y>
530inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
531hasa(Y &&MD) {
532  assert(MD && "Null pointer sent into hasa");
533  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
534    return isa<X>(V->getValue());
535  return false;
536}
537template <class X, class Y>
538inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
539hasa(Y &MD) {
540  return hasa(&MD);
541}
542
543/// Extract a Value from Metadata.
544///
545/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
546template <class X, class Y>
547inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
548extract(Y &&MD) {
549  return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
550}
551template <class X, class Y>
552inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
553extract(Y &MD) {
554  return extract(&MD);
555}
556
557/// Extract a Value from Metadata, allowing null.
558///
559/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
560/// from \c MD, allowing \c MD to be null.
561template <class X, class Y>
562inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
563extract_or_null(Y &&MD) {
564  if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
565    return cast<X>(V->getValue());
566  return nullptr;
567}
568
569/// Extract a Value from Metadata, if any.
570///
571/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
572/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
573/// Value it does contain is of the wrong subclass.
574template <class X, class Y>
575inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
576dyn_extract(Y &&MD) {
577  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
578    return dyn_cast<X>(V->getValue());
579  return nullptr;
580}
581
582/// Extract a Value from Metadata, if any, allowing null.
583///
584/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
585/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
586/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
587template <class X, class Y>
588inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
589dyn_extract_or_null(Y &&MD) {
590  if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
591    return dyn_cast<X>(V->getValue());
592  return nullptr;
593}
594
595} // end namespace mdconst
596
597//===----------------------------------------------------------------------===//
598/// A single uniqued string.
599///
600/// These are used to efficiently contain a byte sequence for metadata.
601/// MDString is always unnamed.
602class MDString : public Metadata {
603  friend class StringMapEntryStorage<MDString>;
604
605  StringMapEntry<MDString> *Entry = nullptr;
606
607  MDString() : Metadata(MDStringKind, Uniqued) {}
608
609public:
610  MDString(const MDString &) = delete;
611  MDString &operator=(MDString &&) = delete;
612  MDString &operator=(const MDString &) = delete;
613
614  static MDString *get(LLVMContext &Context, StringRef Str);
615  static MDString *get(LLVMContext &Context, const char *Str) {
616    return get(Context, Str ? StringRef(Str) : StringRef());
617  }
618
619  StringRef getString() const;
620
621  unsigned getLength() const { return (unsigned)getString().size(); }
622
623  using iterator = StringRef::iterator;
624
625  /// Pointer to the first byte of the string.
626  iterator begin() const { return getString().begin(); }
627
628  /// Pointer to one byte past the end of the string.
629  iterator end() const { return getString().end(); }
630
631  const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
632  const unsigned char *bytes_end() const { return getString().bytes_end(); }
633
634  /// Methods for support type inquiry through isa, cast, and dyn_cast.
635  static bool classof(const Metadata *MD) {
636    return MD->getMetadataID() == MDStringKind;
637  }
638};
639
640/// A collection of metadata nodes that might be associated with a
641/// memory access used by the alias-analysis infrastructure.
642struct AAMDNodes {
643  explicit AAMDNodes() = default;
644  explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
645      : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
646
647  bool operator==(const AAMDNodes &A) const {
648    return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
649           NoAlias == A.NoAlias;
650  }
651
652  bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
653
654  explicit operator bool() const {
655    return TBAA || TBAAStruct || Scope || NoAlias;
656  }
657
658  /// The tag for type-based alias analysis.
659  MDNode *TBAA = nullptr;
660
661  /// The tag for type-based alias analysis (tbaa struct).
662  MDNode *TBAAStruct = nullptr;
663
664  /// The tag for alias scope specification (used with noalias).
665  MDNode *Scope = nullptr;
666
667  /// The tag specifying the noalias scope.
668  MDNode *NoAlias = nullptr;
669
670  /// Given two sets of AAMDNodes that apply to the same pointer,
671  /// give the best AAMDNodes that are compatible with both (i.e. a set of
672  /// nodes whose allowable aliasing conclusions are a subset of those
673  /// allowable by both of the inputs). However, for efficiency
674  /// reasons, do not create any new MDNodes.
675  AAMDNodes intersect(const AAMDNodes &Other) {
676    AAMDNodes Result;
677    Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
678    Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
679    Result.Scope = Other.Scope == Scope ? Scope : nullptr;
680    Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
681    return Result;
682  }
683};
684
685// Specialize DenseMapInfo for AAMDNodes.
686template<>
687struct DenseMapInfo<AAMDNodes> {
688  static inline AAMDNodes getEmptyKey() {
689    return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
690                     nullptr, nullptr, nullptr);
691  }
692
693  static inline AAMDNodes getTombstoneKey() {
694    return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
695                     nullptr, nullptr, nullptr);
696  }
697
698  static unsigned getHashValue(const AAMDNodes &Val) {
699    return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
700           DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
701           DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
702           DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
703  }
704
705  static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
706    return LHS == RHS;
707  }
708};
709
710/// Tracking metadata reference owned by Metadata.
711///
712/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
713/// of \a Metadata, which has the option of registering itself for callbacks to
714/// re-unique itself.
715///
716/// In particular, this is used by \a MDNode.
717class MDOperand {
718  Metadata *MD = nullptr;
719
720public:
721  MDOperand() = default;
722  MDOperand(MDOperand &&) = delete;
723  MDOperand(const MDOperand &) = delete;
724  MDOperand &operator=(MDOperand &&) = delete;
725  MDOperand &operator=(const MDOperand &) = delete;
726  ~MDOperand() { untrack(); }
727
728  Metadata *get() const { return MD; }
729  operator Metadata *() const { return get(); }
730  Metadata *operator->() const { return get(); }
731  Metadata &operator*() const { return *get(); }
732
733  void reset() {
734    untrack();
735    MD = nullptr;
736  }
737  void reset(Metadata *MD, Metadata *Owner) {
738    untrack();
739    this->MD = MD;
740    track(Owner);
741  }
742
743private:
744  void track(Metadata *Owner) {
745    if (MD) {
746      if (Owner)
747        MetadataTracking::track(this, *MD, *Owner);
748      else
749        MetadataTracking::track(MD);
750    }
751  }
752
753  void untrack() {
754    assert(static_cast<void *>(this) == &MD && "Expected same address");
755    if (MD)
756      MetadataTracking::untrack(MD);
757  }
758};
759
760template <> struct simplify_type<MDOperand> {
761  using SimpleType = Metadata *;
762
763  static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
764};
765
766template <> struct simplify_type<const MDOperand> {
767  using SimpleType = Metadata *;
768
769  static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
770};
771
772/// Pointer to the context, with optional RAUW support.
773///
774/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
775/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
776class ContextAndReplaceableUses {
777  PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
778
779public:
780  ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
781  ContextAndReplaceableUses(
782      std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
783      : Ptr(ReplaceableUses.release()) {
784    assert(getReplaceableUses() && "Expected non-null replaceable uses");
785  }
786  ContextAndReplaceableUses() = delete;
787  ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
788  ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
789  ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
790  ContextAndReplaceableUses &
791  operator=(const ContextAndReplaceableUses &) = delete;
792  ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
793
794  operator LLVMContext &() { return getContext(); }
795
796  /// Whether this contains RAUW support.
797  bool hasReplaceableUses() const {
798    return Ptr.is<ReplaceableMetadataImpl *>();
799  }
800
801  LLVMContext &getContext() const {
802    if (hasReplaceableUses())
803      return getReplaceableUses()->getContext();
804    return *Ptr.get<LLVMContext *>();
805  }
806
807  ReplaceableMetadataImpl *getReplaceableUses() const {
808    if (hasReplaceableUses())
809      return Ptr.get<ReplaceableMetadataImpl *>();
810    return nullptr;
811  }
812
813  /// Ensure that this has RAUW support, and then return it.
814  ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
815    if (!hasReplaceableUses())
816      makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
817    return getReplaceableUses();
818  }
819
820  /// Assign RAUW support to this.
821  ///
822  /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
823  /// not be null).
824  void
825  makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
826    assert(ReplaceableUses && "Expected non-null replaceable uses");
827    assert(&ReplaceableUses->getContext() == &getContext() &&
828           "Expected same context");
829    delete getReplaceableUses();
830    Ptr = ReplaceableUses.release();
831  }
832
833  /// Drop RAUW support.
834  ///
835  /// Cede ownership of RAUW support, returning it.
836  std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
837    assert(hasReplaceableUses() && "Expected to own replaceable uses");
838    std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
839        getReplaceableUses());
840    Ptr = &ReplaceableUses->getContext();
841    return ReplaceableUses;
842  }
843};
844
845struct TempMDNodeDeleter {
846  inline void operator()(MDNode *Node) const;
847};
848
849#define HANDLE_MDNODE_LEAF(CLASS)                                              \
850  using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
851#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
852#include "llvm/IR/Metadata.def"
853
854/// Metadata node.
855///
856/// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
857/// metadata nodes (with full support for RAUW) can be used to delay uniquing
858/// until forward references are known.  The basic metadata node is an \a
859/// MDTuple.
860///
861/// There is limited support for RAUW at construction time.  At construction
862/// time, if any operand is a temporary node (or an unresolved uniqued node,
863/// which indicates a transitive temporary operand), the node itself will be
864/// unresolved.  As soon as all operands become resolved, it will drop RAUW
865/// support permanently.
866///
867/// If an unresolved node is part of a cycle, \a resolveCycles() needs
868/// to be called on some member of the cycle once all temporary nodes have been
869/// replaced.
870class MDNode : public Metadata {
871  friend class ReplaceableMetadataImpl;
872  friend class LLVMContextImpl;
873
874  unsigned NumOperands;
875  unsigned NumUnresolved;
876
877  ContextAndReplaceableUses Context;
878
879protected:
880  MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
881         ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
882  ~MDNode() = default;
883
884  void *operator new(size_t Size, unsigned NumOps);
885  void operator delete(void *Mem);
886
887  /// Required by std, but never called.
888  void operator delete(void *, unsigned) {
889    llvm_unreachable("Constructor throws?");
890  }
891
892  /// Required by std, but never called.
893  void operator delete(void *, unsigned, bool) {
894    llvm_unreachable("Constructor throws?");
895  }
896
897  void dropAllReferences();
898
899  MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
900  MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
901
902  using mutable_op_range = iterator_range<MDOperand *>;
903
904  mutable_op_range mutable_operands() {
905    return mutable_op_range(mutable_begin(), mutable_end());
906  }
907
908public:
909  MDNode(const MDNode &) = delete;
910  void operator=(const MDNode &) = delete;
911  void *operator new(size_t) = delete;
912
913  static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
914  static inline MDTuple *getIfExists(LLVMContext &Context,
915                                     ArrayRef<Metadata *> MDs);
916  static inline MDTuple *getDistinct(LLVMContext &Context,
917                                     ArrayRef<Metadata *> MDs);
918  static inline TempMDTuple getTemporary(LLVMContext &Context,
919                                         ArrayRef<Metadata *> MDs);
920
921  /// Create a (temporary) clone of this.
922  TempMDNode clone() const;
923
924  /// Deallocate a node created by getTemporary.
925  ///
926  /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
927  /// references will be reset.
928  static void deleteTemporary(MDNode *N);
929
930  LLVMContext &getContext() const { return Context.getContext(); }
931
932  /// Replace a specific operand.
933  void replaceOperandWith(unsigned I, Metadata *New);
934
935  /// Check if node is fully resolved.
936  ///
937  /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
938  /// this always returns \c true.
939  ///
940  /// If \a isUniqued(), returns \c true if this has already dropped RAUW
941  /// support (because all operands are resolved).
942  ///
943  /// As forward declarations are resolved, their containers should get
944  /// resolved automatically.  However, if this (or one of its operands) is
945  /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
946  bool isResolved() const { return !isTemporary() && !NumUnresolved; }
947
948  bool isUniqued() const { return Storage == Uniqued; }
949  bool isDistinct() const { return Storage == Distinct; }
950  bool isTemporary() const { return Storage == Temporary; }
951
952  /// RAUW a temporary.
953  ///
954  /// \pre \a isTemporary() must be \c true.
955  void replaceAllUsesWith(Metadata *MD) {
956    assert(isTemporary() && "Expected temporary node");
957    if (Context.hasReplaceableUses())
958      Context.getReplaceableUses()->replaceAllUsesWith(MD);
959  }
960
961  /// Resolve cycles.
962  ///
963  /// Once all forward declarations have been resolved, force cycles to be
964  /// resolved.
965  ///
966  /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
967  void resolveCycles();
968
969  /// Resolve a unique, unresolved node.
970  void resolve();
971
972  /// Replace a temporary node with a permanent one.
973  ///
974  /// Try to create a uniqued version of \c N -- in place, if possible -- and
975  /// return it.  If \c N cannot be uniqued, return a distinct node instead.
976  template <class T>
977  static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
978  replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
979    return cast<T>(N.release()->replaceWithPermanentImpl());
980  }
981
982  /// Replace a temporary node with a uniqued one.
983  ///
984  /// Create a uniqued version of \c N -- in place, if possible -- and return
985  /// it.  Takes ownership of the temporary node.
986  ///
987  /// \pre N does not self-reference.
988  template <class T>
989  static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
990  replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
991    return cast<T>(N.release()->replaceWithUniquedImpl());
992  }
993
994  /// Replace a temporary node with a distinct one.
995  ///
996  /// Create a distinct version of \c N -- in place, if possible -- and return
997  /// it.  Takes ownership of the temporary node.
998  template <class T>
999  static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1000  replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1001    return cast<T>(N.release()->replaceWithDistinctImpl());
1002  }
1003
1004private:
1005  MDNode *replaceWithPermanentImpl();
1006  MDNode *replaceWithUniquedImpl();
1007  MDNode *replaceWithDistinctImpl();
1008
1009protected:
1010  /// Set an operand.
1011  ///
1012  /// Sets the operand directly, without worrying about uniquing.
1013  void setOperand(unsigned I, Metadata *New);
1014
1015  void storeDistinctInContext();
1016  template <class T, class StoreT>
1017  static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1018  template <class T> static T *storeImpl(T *N, StorageType Storage);
1019
1020private:
1021  void handleChangedOperand(void *Ref, Metadata *New);
1022
1023  /// Drop RAUW support, if any.
1024  void dropReplaceableUses();
1025
1026  void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1027  void decrementUnresolvedOperandCount();
1028  void countUnresolvedOperands();
1029
1030  /// Mutate this to be "uniqued".
1031  ///
1032  /// Mutate this so that \a isUniqued().
1033  /// \pre \a isTemporary().
1034  /// \pre already added to uniquing set.
1035  void makeUniqued();
1036
1037  /// Mutate this to be "distinct".
1038  ///
1039  /// Mutate this so that \a isDistinct().
1040  /// \pre \a isTemporary().
1041  void makeDistinct();
1042
1043  void deleteAsSubclass();
1044  MDNode *uniquify();
1045  void eraseFromStore();
1046
1047  template <class NodeTy> struct HasCachedHash;
1048  template <class NodeTy>
1049  static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1050    N->recalculateHash();
1051  }
1052  template <class NodeTy>
1053  static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1054  template <class NodeTy>
1055  static void dispatchResetHash(NodeTy *N, std::true_type) {
1056    N->setHash(0);
1057  }
1058  template <class NodeTy>
1059  static void dispatchResetHash(NodeTy *, std::false_type) {}
1060
1061public:
1062  using op_iterator = const MDOperand *;
1063  using op_range = iterator_range<op_iterator>;
1064
1065  op_iterator op_begin() const {
1066    return const_cast<MDNode *>(this)->mutable_begin();
1067  }
1068
1069  op_iterator op_end() const {
1070    return const_cast<MDNode *>(this)->mutable_end();
1071  }
1072
1073  op_range operands() const { return op_range(op_begin(), op_end()); }
1074
1075  const MDOperand &getOperand(unsigned I) const {
1076    assert(I < NumOperands && "Out of range");
1077    return op_begin()[I];
1078  }
1079
1080  /// Return number of MDNode operands.
1081  unsigned getNumOperands() const { return NumOperands; }
1082
1083  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1084  static bool classof(const Metadata *MD) {
1085    switch (MD->getMetadataID()) {
1086    default:
1087      return false;
1088#define HANDLE_MDNODE_LEAF(CLASS)                                              \
1089  case CLASS##Kind:                                                            \
1090    return true;
1091#include "llvm/IR/Metadata.def"
1092    }
1093  }
1094
1095  /// Check whether MDNode is a vtable access.
1096  bool isTBAAVtableAccess() const;
1097
1098  /// Methods for metadata merging.
1099  static MDNode *concatenate(MDNode *A, MDNode *B);
1100  static MDNode *intersect(MDNode *A, MDNode *B);
1101  static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1102  static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1103  static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1104  static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1105  static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1106};
1107
1108/// Tuple of metadata.
1109///
1110/// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1111/// default based on their operands.
1112class MDTuple : public MDNode {
1113  friend class LLVMContextImpl;
1114  friend class MDNode;
1115
1116  MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1117          ArrayRef<Metadata *> Vals)
1118      : MDNode(C, MDTupleKind, Storage, Vals) {
1119    setHash(Hash);
1120  }
1121
1122  ~MDTuple() { dropAllReferences(); }
1123
1124  void setHash(unsigned Hash) { SubclassData32 = Hash; }
1125  void recalculateHash();
1126
1127  static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1128                          StorageType Storage, bool ShouldCreate = true);
1129
1130  TempMDTuple cloneImpl() const {
1131    return getTemporary(getContext(),
1132                        SmallVector<Metadata *, 4>(op_begin(), op_end()));
1133  }
1134
1135public:
1136  /// Get the hash, if any.
1137  unsigned getHash() const { return SubclassData32; }
1138
1139  static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1140    return getImpl(Context, MDs, Uniqued);
1141  }
1142
1143  static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1144    return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1145  }
1146
1147  /// Return a distinct node.
1148  ///
1149  /// Return a distinct node -- i.e., a node that is not uniqued.
1150  static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1151    return getImpl(Context, MDs, Distinct);
1152  }
1153
1154  /// Return a temporary node.
1155  ///
1156  /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1157  /// not uniqued, may be RAUW'd, and must be manually deleted with
1158  /// deleteTemporary.
1159  static TempMDTuple getTemporary(LLVMContext &Context,
1160                                  ArrayRef<Metadata *> MDs) {
1161    return TempMDTuple(getImpl(Context, MDs, Temporary));
1162  }
1163
1164  /// Return a (temporary) clone of this.
1165  TempMDTuple clone() const { return cloneImpl(); }
1166
1167  static bool classof(const Metadata *MD) {
1168    return MD->getMetadataID() == MDTupleKind;
1169  }
1170};
1171
1172MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1173  return MDTuple::get(Context, MDs);
1174}
1175
1176MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1177  return MDTuple::getIfExists(Context, MDs);
1178}
1179
1180MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1181  return MDTuple::getDistinct(Context, MDs);
1182}
1183
1184TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1185                                 ArrayRef<Metadata *> MDs) {
1186  return MDTuple::getTemporary(Context, MDs);
1187}
1188
1189void TempMDNodeDeleter::operator()(MDNode *Node) const {
1190  MDNode::deleteTemporary(Node);
1191}
1192
1193/// Typed iterator through MDNode operands.
1194///
1195/// An iterator that transforms an \a MDNode::iterator into an iterator over a
1196/// particular Metadata subclass.
1197template <class T>
1198class TypedMDOperandIterator
1199    : public std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void,
1200                           T *> {
1201  MDNode::op_iterator I = nullptr;
1202
1203public:
1204  TypedMDOperandIterator() = default;
1205  explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1206
1207  T *operator*() const { return cast_or_null<T>(*I); }
1208
1209  TypedMDOperandIterator &operator++() {
1210    ++I;
1211    return *this;
1212  }
1213
1214  TypedMDOperandIterator operator++(int) {
1215    TypedMDOperandIterator Temp(*this);
1216    ++I;
1217    return Temp;
1218  }
1219
1220  bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1221  bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1222};
1223
1224/// Typed, array-like tuple of metadata.
1225///
1226/// This is a wrapper for \a MDTuple that makes it act like an array holding a
1227/// particular type of metadata.
1228template <class T> class MDTupleTypedArrayWrapper {
1229  const MDTuple *N = nullptr;
1230
1231public:
1232  MDTupleTypedArrayWrapper() = default;
1233  MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1234
1235  template <class U>
1236  MDTupleTypedArrayWrapper(
1237      const MDTupleTypedArrayWrapper<U> &Other,
1238      std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1239      : N(Other.get()) {}
1240
1241  template <class U>
1242  explicit MDTupleTypedArrayWrapper(
1243      const MDTupleTypedArrayWrapper<U> &Other,
1244      std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1245      : N(Other.get()) {}
1246
1247  explicit operator bool() const { return get(); }
1248  explicit operator MDTuple *() const { return get(); }
1249
1250  MDTuple *get() const { return const_cast<MDTuple *>(N); }
1251  MDTuple *operator->() const { return get(); }
1252  MDTuple &operator*() const { return *get(); }
1253
1254  // FIXME: Fix callers and remove condition on N.
1255  unsigned size() const { return N ? N->getNumOperands() : 0u; }
1256  bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1257  T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1258
1259  // FIXME: Fix callers and remove condition on N.
1260  using iterator = TypedMDOperandIterator<T>;
1261
1262  iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1263  iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1264};
1265
1266#define HANDLE_METADATA(CLASS)                                                 \
1267  using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1268#include "llvm/IR/Metadata.def"
1269
1270/// Placeholder metadata for operands of distinct MDNodes.
1271///
1272/// This is a lightweight placeholder for an operand of a distinct node.  It's
1273/// purpose is to help track forward references when creating a distinct node.
1274/// This allows distinct nodes involved in a cycle to be constructed before
1275/// their operands without requiring a heavyweight temporary node with
1276/// full-blown RAUW support.
1277///
1278/// Each placeholder supports only a single MDNode user.  Clients should pass
1279/// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1280/// should be replaced with.
1281///
1282/// While it would be possible to implement move operators, they would be
1283/// fairly expensive.  Leave them unimplemented to discourage their use
1284/// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1285class DistinctMDOperandPlaceholder : public Metadata {
1286  friend class MetadataTracking;
1287
1288  Metadata **Use = nullptr;
1289
1290public:
1291  explicit DistinctMDOperandPlaceholder(unsigned ID)
1292      : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1293    SubclassData32 = ID;
1294  }
1295
1296  DistinctMDOperandPlaceholder() = delete;
1297  DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1298  DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1299
1300  ~DistinctMDOperandPlaceholder() {
1301    if (Use)
1302      *Use = nullptr;
1303  }
1304
1305  unsigned getID() const { return SubclassData32; }
1306
1307  /// Replace the use of this with MD.
1308  void replaceUseWith(Metadata *MD) {
1309    if (!Use)
1310      return;
1311    *Use = MD;
1312
1313    if (*Use)
1314      MetadataTracking::track(*Use);
1315
1316    Metadata *T = cast<Metadata>(this);
1317    MetadataTracking::untrack(T);
1318    assert(!Use && "Use is still being tracked despite being untracked!");
1319  }
1320};
1321
1322//===----------------------------------------------------------------------===//
1323/// A tuple of MDNodes.
1324///
1325/// Despite its name, a NamedMDNode isn't itself an MDNode.
1326///
1327/// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1328///
1329/// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1330class NamedMDNode : public ilist_node<NamedMDNode> {
1331  friend class LLVMContextImpl;
1332  friend class Module;
1333
1334  std::string Name;
1335  Module *Parent = nullptr;
1336  void *Operands; // SmallVector<TrackingMDRef, 4>
1337
1338  void setParent(Module *M) { Parent = M; }
1339
1340  explicit NamedMDNode(const Twine &N);
1341
1342  template<class T1, class T2>
1343  class op_iterator_impl :
1344      public std::iterator<std::bidirectional_iterator_tag, T2> {
1345    friend class NamedMDNode;
1346
1347    const NamedMDNode *Node = nullptr;
1348    unsigned Idx = 0;
1349
1350    op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1351
1352  public:
1353    op_iterator_impl() = default;
1354
1355    bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1356    bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1357
1358    op_iterator_impl &operator++() {
1359      ++Idx;
1360      return *this;
1361    }
1362
1363    op_iterator_impl operator++(int) {
1364      op_iterator_impl tmp(*this);
1365      operator++();
1366      return tmp;
1367    }
1368
1369    op_iterator_impl &operator--() {
1370      --Idx;
1371      return *this;
1372    }
1373
1374    op_iterator_impl operator--(int) {
1375      op_iterator_impl tmp(*this);
1376      operator--();
1377      return tmp;
1378    }
1379
1380    T1 operator*() const { return Node->getOperand(Idx); }
1381  };
1382
1383public:
1384  NamedMDNode(const NamedMDNode &) = delete;
1385  ~NamedMDNode();
1386
1387  /// Drop all references and remove the node from parent module.
1388  void eraseFromParent();
1389
1390  /// Remove all uses and clear node vector.
1391  void dropAllReferences() { clearOperands(); }
1392  /// Drop all references to this node's operands.
1393  void clearOperands();
1394
1395  /// Get the module that holds this named metadata collection.
1396  inline Module *getParent() { return Parent; }
1397  inline const Module *getParent() const { return Parent; }
1398
1399  MDNode *getOperand(unsigned i) const;
1400  unsigned getNumOperands() const;
1401  void addOperand(MDNode *M);
1402  void setOperand(unsigned I, MDNode *New);
1403  StringRef getName() const;
1404  void print(raw_ostream &ROS, bool IsForDebug = false) const;
1405  void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1406             bool IsForDebug = false) const;
1407  void dump() const;
1408
1409  // ---------------------------------------------------------------------------
1410  // Operand Iterator interface...
1411  //
1412  using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1413
1414  op_iterator op_begin() { return op_iterator(this, 0); }
1415  op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1416
1417  using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1418
1419  const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1420  const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1421
1422  inline iterator_range<op_iterator>  operands() {
1423    return make_range(op_begin(), op_end());
1424  }
1425  inline iterator_range<const_op_iterator> operands() const {
1426    return make_range(op_begin(), op_end());
1427  }
1428};
1429
1430// Create wrappers for C Binding types (see CBindingWrapping.h).
1431DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1432
1433} // end namespace llvm
1434
1435#endif // LLVM_IR_METADATA_H
1436