1//===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains routines that help analyze properties that chains of
10// computations have.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_VALUETRACKING_H
15#define LLVM_ANALYSIS_VALUETRACKING_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Intrinsics.h"
24#include <cassert>
25#include <cstdint>
26
27namespace llvm {
28
29class AddOperator;
30class APInt;
31class AssumptionCache;
32class DominatorTree;
33class GEPOperator;
34class IntrinsicInst;
35class LoadInst;
36class WithOverflowInst;
37struct KnownBits;
38class Loop;
39class LoopInfo;
40class MDNode;
41class OptimizationRemarkEmitter;
42class StringRef;
43class TargetLibraryInfo;
44class Value;
45
46  /// Determine which bits of V are known to be either zero or one and return
47  /// them in the KnownZero/KnownOne bit sets.
48  ///
49  /// This function is defined on values with integer type, values with pointer
50  /// type, and vectors of integers.  In the case
51  /// where V is a vector, the known zero and known one values are the
52  /// same width as the vector element, and the bit is set only if it is true
53  /// for all of the elements in the vector.
54  void computeKnownBits(const Value *V, KnownBits &Known,
55                        const DataLayout &DL, unsigned Depth = 0,
56                        AssumptionCache *AC = nullptr,
57                        const Instruction *CxtI = nullptr,
58                        const DominatorTree *DT = nullptr,
59                        OptimizationRemarkEmitter *ORE = nullptr,
60                        bool UseInstrInfo = true);
61
62  /// Determine which bits of V are known to be either zero or one and return
63  /// them in the KnownZero/KnownOne bit sets.
64  ///
65  /// This function is defined on values with integer type, values with pointer
66  /// type, and vectors of integers.  In the case
67  /// where V is a vector, the known zero and known one values are the
68  /// same width as the vector element, and the bit is set only if it is true
69  /// for all of the demanded elements in the vector.
70  void computeKnownBits(const Value *V, const APInt &DemandedElts,
71                        KnownBits &Known, const DataLayout &DL,
72                        unsigned Depth = 0, AssumptionCache *AC = nullptr,
73                        const Instruction *CxtI = nullptr,
74                        const DominatorTree *DT = nullptr,
75                        OptimizationRemarkEmitter *ORE = nullptr,
76                        bool UseInstrInfo = true);
77
78  /// Returns the known bits rather than passing by reference.
79  KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
80                             unsigned Depth = 0, AssumptionCache *AC = nullptr,
81                             const Instruction *CxtI = nullptr,
82                             const DominatorTree *DT = nullptr,
83                             OptimizationRemarkEmitter *ORE = nullptr,
84                             bool UseInstrInfo = true);
85
86  /// Returns the known bits rather than passing by reference.
87  KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
88                             const DataLayout &DL, unsigned Depth = 0,
89                             AssumptionCache *AC = nullptr,
90                             const Instruction *CxtI = nullptr,
91                             const DominatorTree *DT = nullptr,
92                             OptimizationRemarkEmitter *ORE = nullptr,
93                             bool UseInstrInfo = true);
94
95  /// Compute known bits from the range metadata.
96  /// \p KnownZero the set of bits that are known to be zero
97  /// \p KnownOne the set of bits that are known to be one
98  void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
99                                         KnownBits &Known);
100
101  /// Return true if LHS and RHS have no common bits set.
102  bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
103                           const DataLayout &DL,
104                           AssumptionCache *AC = nullptr,
105                           const Instruction *CxtI = nullptr,
106                           const DominatorTree *DT = nullptr,
107                           bool UseInstrInfo = true);
108
109  /// Return true if the given value is known to have exactly one bit set when
110  /// defined. For vectors return true if every element is known to be a power
111  /// of two when defined. Supports values with integer or pointer type and
112  /// vectors of integers. If 'OrZero' is set, then return true if the given
113  /// value is either a power of two or zero.
114  bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
115                              bool OrZero = false, unsigned Depth = 0,
116                              AssumptionCache *AC = nullptr,
117                              const Instruction *CxtI = nullptr,
118                              const DominatorTree *DT = nullptr,
119                              bool UseInstrInfo = true);
120
121  bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
122
123  /// Return true if the given value is known to be non-zero when defined. For
124  /// vectors, return true if every element is known to be non-zero when
125  /// defined. For pointers, if the context instruction and dominator tree are
126  /// specified, perform context-sensitive analysis and return true if the
127  /// pointer couldn't possibly be null at the specified instruction.
128  /// Supports values with integer or pointer type and vectors of integers.
129  bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
130                      AssumptionCache *AC = nullptr,
131                      const Instruction *CxtI = nullptr,
132                      const DominatorTree *DT = nullptr,
133                      bool UseInstrInfo = true);
134
135  /// Return true if the two given values are negation.
136  /// Currently can recoginze Value pair:
137  /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
138  /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
139  bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
140
141  /// Returns true if the give value is known to be non-negative.
142  bool isKnownNonNegative(const Value *V, const DataLayout &DL,
143                          unsigned Depth = 0,
144                          AssumptionCache *AC = nullptr,
145                          const Instruction *CxtI = nullptr,
146                          const DominatorTree *DT = nullptr,
147                          bool UseInstrInfo = true);
148
149  /// Returns true if the given value is known be positive (i.e. non-negative
150  /// and non-zero).
151  bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
152                       AssumptionCache *AC = nullptr,
153                       const Instruction *CxtI = nullptr,
154                       const DominatorTree *DT = nullptr,
155                       bool UseInstrInfo = true);
156
157  /// Returns true if the given value is known be negative (i.e. non-positive
158  /// and non-zero).
159  bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
160                       AssumptionCache *AC = nullptr,
161                       const Instruction *CxtI = nullptr,
162                       const DominatorTree *DT = nullptr,
163                       bool UseInstrInfo = true);
164
165  /// Return true if the given values are known to be non-equal when defined.
166  /// Supports scalar integer types only.
167  bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
168                       AssumptionCache *AC = nullptr,
169                       const Instruction *CxtI = nullptr,
170                       const DominatorTree *DT = nullptr,
171                       bool UseInstrInfo = true);
172
173  /// Return true if 'V & Mask' is known to be zero. We use this predicate to
174  /// simplify operations downstream. Mask is known to be zero for bits that V
175  /// cannot have.
176  ///
177  /// This function is defined on values with integer type, values with pointer
178  /// type, and vectors of integers.  In the case
179  /// where V is a vector, the mask, known zero, and known one values are the
180  /// same width as the vector element, and the bit is set only if it is true
181  /// for all of the elements in the vector.
182  bool MaskedValueIsZero(const Value *V, const APInt &Mask,
183                         const DataLayout &DL,
184                         unsigned Depth = 0, AssumptionCache *AC = nullptr,
185                         const Instruction *CxtI = nullptr,
186                         const DominatorTree *DT = nullptr,
187                         bool UseInstrInfo = true);
188
189  /// Return the number of times the sign bit of the register is replicated into
190  /// the other bits. We know that at least 1 bit is always equal to the sign
191  /// bit (itself), but other cases can give us information. For example,
192  /// immediately after an "ashr X, 2", we know that the top 3 bits are all
193  /// equal to each other, so we return 3. For vectors, return the number of
194  /// sign bits for the vector element with the mininum number of known sign
195  /// bits.
196  unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
197                              unsigned Depth = 0, AssumptionCache *AC = nullptr,
198                              const Instruction *CxtI = nullptr,
199                              const DominatorTree *DT = nullptr,
200                              bool UseInstrInfo = true);
201
202  /// This function computes the integer multiple of Base that equals V. If
203  /// successful, it returns true and returns the multiple in Multiple. If
204  /// unsuccessful, it returns false. Also, if V can be simplified to an
205  /// integer, then the simplified V is returned in Val. Look through sext only
206  /// if LookThroughSExt=true.
207  bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
208                       bool LookThroughSExt = false,
209                       unsigned Depth = 0);
210
211  /// Map a call instruction to an intrinsic ID.  Libcalls which have equivalent
212  /// intrinsics are treated as-if they were intrinsics.
213  Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB,
214                                        const TargetLibraryInfo *TLI);
215
216  /// Return true if we can prove that the specified FP value is never equal to
217  /// -0.0.
218  bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
219                            unsigned Depth = 0);
220
221  /// Return true if we can prove that the specified FP value is either NaN or
222  /// never less than -0.0.
223  ///
224  ///      NaN --> true
225  ///       +0 --> true
226  ///       -0 --> true
227  ///   x > +0 --> true
228  ///   x < -0 --> false
229  bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
230
231  /// Return true if the floating-point scalar value is not an infinity or if
232  /// the floating-point vector value has no infinities. Return false if a value
233  /// could ever be infinity.
234  bool isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
235                            unsigned Depth = 0);
236
237  /// Return true if the floating-point scalar value is not a NaN or if the
238  /// floating-point vector value has no NaN elements. Return false if a value
239  /// could ever be NaN.
240  bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
241                       unsigned Depth = 0);
242
243  /// Return true if we can prove that the specified FP value's sign bit is 0.
244  ///
245  ///      NaN --> true/false (depending on the NaN's sign bit)
246  ///       +0 --> true
247  ///       -0 --> false
248  ///   x > +0 --> true
249  ///   x < -0 --> false
250  bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
251
252  /// If the specified value can be set by repeating the same byte in memory,
253  /// return the i8 value that it is represented with. This is true for all i8
254  /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
255  /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
256  /// i16 0x1234), return null. If the value is entirely undef and padding,
257  /// return undef.
258  Value *isBytewiseValue(Value *V, const DataLayout &DL);
259
260  /// Given an aggregate and an sequence of indices, see if the scalar value
261  /// indexed is already around as a register, for example if it were inserted
262  /// directly into the aggregate.
263  ///
264  /// If InsertBefore is not null, this function will duplicate (modified)
265  /// insertvalues when a part of a nested struct is extracted.
266  Value *FindInsertedValue(Value *V,
267                           ArrayRef<unsigned> idx_range,
268                           Instruction *InsertBefore = nullptr);
269
270  /// Analyze the specified pointer to see if it can be expressed as a base
271  /// pointer plus a constant offset. Return the base and offset to the caller.
272  ///
273  /// This is a wrapper around Value::stripAndAccumulateConstantOffsets that
274  /// creates and later unpacks the required APInt.
275  inline Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
276                                                 const DataLayout &DL,
277                                                 bool AllowNonInbounds = true) {
278    APInt OffsetAPInt(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
279    Value *Base =
280        Ptr->stripAndAccumulateConstantOffsets(DL, OffsetAPInt, AllowNonInbounds);
281
282    Offset = OffsetAPInt.getSExtValue();
283    return Base;
284  }
285  inline const Value *
286  GetPointerBaseWithConstantOffset(const Value *Ptr, int64_t &Offset,
287                                   const DataLayout &DL,
288                                   bool AllowNonInbounds = true) {
289    return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset, DL,
290                                            AllowNonInbounds);
291  }
292
293  /// Returns true if the GEP is based on a pointer to a string (array of
294  // \p CharSize integers) and is indexing into this string.
295  bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
296                                   unsigned CharSize = 8);
297
298  /// Represents offset+length into a ConstantDataArray.
299  struct ConstantDataArraySlice {
300    /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
301    /// initializer, it just doesn't fit the ConstantDataArray interface).
302    const ConstantDataArray *Array;
303
304    /// Slice starts at this Offset.
305    uint64_t Offset;
306
307    /// Length of the slice.
308    uint64_t Length;
309
310    /// Moves the Offset and adjusts Length accordingly.
311    void move(uint64_t Delta) {
312      assert(Delta < Length);
313      Offset += Delta;
314      Length -= Delta;
315    }
316
317    /// Convenience accessor for elements in the slice.
318    uint64_t operator[](unsigned I) const {
319      return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
320    }
321  };
322
323  /// Returns true if the value \p V is a pointer into a ConstantDataArray.
324  /// If successful \p Slice will point to a ConstantDataArray info object
325  /// with an appropriate offset.
326  bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
327                                unsigned ElementSize, uint64_t Offset = 0);
328
329  /// This function computes the length of a null-terminated C string pointed to
330  /// by V. If successful, it returns true and returns the string in Str. If
331  /// unsuccessful, it returns false. This does not include the trailing null
332  /// character by default. If TrimAtNul is set to false, then this returns any
333  /// trailing null characters as well as any other characters that come after
334  /// it.
335  bool getConstantStringInfo(const Value *V, StringRef &Str,
336                             uint64_t Offset = 0, bool TrimAtNul = true);
337
338  /// If we can compute the length of the string pointed to by the specified
339  /// pointer, return 'len+1'.  If we can't, return 0.
340  uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
341
342  /// This function returns call pointer argument that is considered the same by
343  /// aliasing rules. You CAN'T use it to replace one value with another. If
344  /// \p MustPreserveNullness is true, the call must preserve the nullness of
345  /// the pointer.
346  const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call,
347                                                    bool MustPreserveNullness);
348  inline Value *
349  getArgumentAliasingToReturnedPointer(CallBase *Call,
350                                       bool MustPreserveNullness) {
351    return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
352        const_cast<const CallBase *>(Call), MustPreserveNullness));
353  }
354
355  /// {launder,strip}.invariant.group returns pointer that aliases its argument,
356  /// and it only captures pointer by returning it.
357  /// These intrinsics are not marked as nocapture, because returning is
358  /// considered as capture. The arguments are not marked as returned neither,
359  /// because it would make it useless. If \p MustPreserveNullness is true,
360  /// the intrinsic must preserve the nullness of the pointer.
361  bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
362      const CallBase *Call, bool MustPreserveNullness);
363
364  /// This method strips off any GEP address adjustments and pointer casts from
365  /// the specified value, returning the original object being addressed. Note
366  /// that the returned value has pointer type if the specified value does. If
367  /// the MaxLookup value is non-zero, it limits the number of instructions to
368  /// be stripped off.
369  Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
370                             unsigned MaxLookup = 6);
371  inline const Value *GetUnderlyingObject(const Value *V, const DataLayout &DL,
372                                          unsigned MaxLookup = 6) {
373    return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
374  }
375
376  /// This method is similar to GetUnderlyingObject except that it can
377  /// look through phi and select instructions and return multiple objects.
378  ///
379  /// If LoopInfo is passed, loop phis are further analyzed.  If a pointer
380  /// accesses different objects in each iteration, we don't look through the
381  /// phi node. E.g. consider this loop nest:
382  ///
383  ///   int **A;
384  ///   for (i)
385  ///     for (j) {
386  ///        A[i][j] = A[i-1][j] * B[j]
387  ///     }
388  ///
389  /// This is transformed by Load-PRE to stash away A[i] for the next iteration
390  /// of the outer loop:
391  ///
392  ///   Curr = A[0];          // Prev_0
393  ///   for (i: 1..N) {
394  ///     Prev = Curr;        // Prev = PHI (Prev_0, Curr)
395  ///     Curr = A[i];
396  ///     for (j: 0..N) {
397  ///        Curr[j] = Prev[j] * B[j]
398  ///     }
399  ///   }
400  ///
401  /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
402  /// should not assume that Curr and Prev share the same underlying object thus
403  /// it shouldn't look through the phi above.
404  void GetUnderlyingObjects(const Value *V,
405                            SmallVectorImpl<const Value *> &Objects,
406                            const DataLayout &DL, LoopInfo *LI = nullptr,
407                            unsigned MaxLookup = 6);
408
409  /// This is a wrapper around GetUnderlyingObjects and adds support for basic
410  /// ptrtoint+arithmetic+inttoptr sequences.
411  bool getUnderlyingObjectsForCodeGen(const Value *V,
412                            SmallVectorImpl<Value *> &Objects,
413                            const DataLayout &DL);
414
415  /// Return true if the only users of this pointer are lifetime markers.
416  bool onlyUsedByLifetimeMarkers(const Value *V);
417
418  /// Return true if speculation of the given load must be suppressed to avoid
419  /// ordering or interfering with an active sanitizer.  If not suppressed,
420  /// dereferenceability and alignment must be proven separately.  Note: This
421  /// is only needed for raw reasoning; if you use the interface below
422  /// (isSafeToSpeculativelyExecute), this is handled internally.
423  bool mustSuppressSpeculation(const LoadInst &LI);
424
425  /// Return true if the instruction does not have any effects besides
426  /// calculating the result and does not have undefined behavior.
427  ///
428  /// This method never returns true for an instruction that returns true for
429  /// mayHaveSideEffects; however, this method also does some other checks in
430  /// addition. It checks for undefined behavior, like dividing by zero or
431  /// loading from an invalid pointer (but not for undefined results, like a
432  /// shift with a shift amount larger than the width of the result). It checks
433  /// for malloc and alloca because speculatively executing them might cause a
434  /// memory leak. It also returns false for instructions related to control
435  /// flow, specifically terminators and PHI nodes.
436  ///
437  /// If the CtxI is specified this method performs context-sensitive analysis
438  /// and returns true if it is safe to execute the instruction immediately
439  /// before the CtxI.
440  ///
441  /// If the CtxI is NOT specified this method only looks at the instruction
442  /// itself and its operands, so if this method returns true, it is safe to
443  /// move the instruction as long as the correct dominance relationships for
444  /// the operands and users hold.
445  ///
446  /// This method can return true for instructions that read memory;
447  /// for such instructions, moving them may change the resulting value.
448  bool isSafeToSpeculativelyExecute(const Value *V,
449                                    const Instruction *CtxI = nullptr,
450                                    const DominatorTree *DT = nullptr);
451
452  /// Returns true if the result or effects of the given instructions \p I
453  /// depend on or influence global memory.
454  /// Memory dependence arises for example if the instruction reads from
455  /// memory or may produce effects or undefined behaviour. Memory dependent
456  /// instructions generally cannot be reorderd with respect to other memory
457  /// dependent instructions or moved into non-dominated basic blocks.
458  /// Instructions which just compute a value based on the values of their
459  /// operands are not memory dependent.
460  bool mayBeMemoryDependent(const Instruction &I);
461
462  /// Return true if it is an intrinsic that cannot be speculated but also
463  /// cannot trap.
464  bool isAssumeLikeIntrinsic(const Instruction *I);
465
466  /// Return true if it is valid to use the assumptions provided by an
467  /// assume intrinsic, I, at the point in the control-flow identified by the
468  /// context instruction, CxtI.
469  bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
470                               const DominatorTree *DT = nullptr);
471
472  enum class OverflowResult {
473    /// Always overflows in the direction of signed/unsigned min value.
474    AlwaysOverflowsLow,
475    /// Always overflows in the direction of signed/unsigned max value.
476    AlwaysOverflowsHigh,
477    /// May or may not overflow.
478    MayOverflow,
479    /// Never overflows.
480    NeverOverflows,
481  };
482
483  OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
484                                               const Value *RHS,
485                                               const DataLayout &DL,
486                                               AssumptionCache *AC,
487                                               const Instruction *CxtI,
488                                               const DominatorTree *DT,
489                                               bool UseInstrInfo = true);
490  OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
491                                             const DataLayout &DL,
492                                             AssumptionCache *AC,
493                                             const Instruction *CxtI,
494                                             const DominatorTree *DT,
495                                             bool UseInstrInfo = true);
496  OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
497                                               const Value *RHS,
498                                               const DataLayout &DL,
499                                               AssumptionCache *AC,
500                                               const Instruction *CxtI,
501                                               const DominatorTree *DT,
502                                               bool UseInstrInfo = true);
503  OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
504                                             const DataLayout &DL,
505                                             AssumptionCache *AC = nullptr,
506                                             const Instruction *CxtI = nullptr,
507                                             const DominatorTree *DT = nullptr);
508  /// This version also leverages the sign bit of Add if known.
509  OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
510                                             const DataLayout &DL,
511                                             AssumptionCache *AC = nullptr,
512                                             const Instruction *CxtI = nullptr,
513                                             const DominatorTree *DT = nullptr);
514  OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
515                                               const DataLayout &DL,
516                                               AssumptionCache *AC,
517                                               const Instruction *CxtI,
518                                               const DominatorTree *DT);
519  OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
520                                             const DataLayout &DL,
521                                             AssumptionCache *AC,
522                                             const Instruction *CxtI,
523                                             const DominatorTree *DT);
524
525  /// Returns true if the arithmetic part of the \p WO 's result is
526  /// used only along the paths control dependent on the computation
527  /// not overflowing, \p WO being an <op>.with.overflow intrinsic.
528  bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
529                                 const DominatorTree &DT);
530
531
532  /// Determine the possible constant range of an integer or vector of integer
533  /// value. This is intended as a cheap, non-recursive check.
534  ConstantRange computeConstantRange(const Value *V, bool UseInstrInfo = true,
535                                     AssumptionCache *AC = nullptr,
536                                     const Instruction *CtxI = nullptr,
537                                     unsigned Depth = 0);
538
539  /// Return true if this function can prove that the instruction I will
540  /// always transfer execution to one of its successors (including the next
541  /// instruction that follows within a basic block). E.g. this is not
542  /// guaranteed for function calls that could loop infinitely.
543  ///
544  /// In other words, this function returns false for instructions that may
545  /// transfer execution or fail to transfer execution in a way that is not
546  /// captured in the CFG nor in the sequence of instructions within a basic
547  /// block.
548  ///
549  /// Undefined behavior is assumed not to happen, so e.g. division is
550  /// guaranteed to transfer execution to the following instruction even
551  /// though division by zero might cause undefined behavior.
552  bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
553
554  /// Returns true if this block does not contain a potential implicit exit.
555  /// This is equivelent to saying that all instructions within the basic block
556  /// are guaranteed to transfer execution to their successor within the basic
557  /// block. This has the same assumptions w.r.t. undefined behavior as the
558  /// instruction variant of this function.
559  bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
560
561  /// Return true if this function can prove that the instruction I
562  /// is executed for every iteration of the loop L.
563  ///
564  /// Note that this currently only considers the loop header.
565  bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
566                                              const Loop *L);
567
568  /// Return true if I yields poison or raises UB if any of its operands is
569  /// poison.
570  /// Formally, given I = `r = op v1 v2 .. vN`, propagatesPoison returns true
571  /// if, for all i, r is evaluated to poison or op raises UB if vi = poison.
572  /// To filter out operands that raise UB on poison, you can use
573  /// getGuaranteedNonPoisonOp.
574  bool propagatesPoison(const Instruction *I);
575
576  /// Return either nullptr or an operand of I such that I will trigger
577  /// undefined behavior if I is executed and that operand has a poison
578  /// value.
579  const Value *getGuaranteedNonPoisonOp(const Instruction *I);
580
581  /// Return true if the given instruction must trigger undefined behavior.
582  /// when I is executed with any operands which appear in KnownPoison holding
583  /// a poison value at the point of execution.
584  bool mustTriggerUB(const Instruction *I,
585                     const SmallSet<const Value *, 16>& KnownPoison);
586
587  /// Return true if this function can prove that if PoisonI is executed
588  /// and yields a poison value, then that will trigger undefined behavior.
589  ///
590  /// Note that this currently only considers the basic block that is
591  /// the parent of I.
592  bool programUndefinedIfPoison(const Instruction *PoisonI);
593
594  /// Return true if I can create poison from non-poison operands.
595  /// For vectors, canCreatePoison returns true if there is potential poison in
596  /// any element of the result when vectors without poison are given as
597  /// operands.
598  /// For example, given `I = shl <2 x i32> %x, <0, 32>`, this function returns
599  /// true. If I raises immediate UB but never creates poison (e.g. sdiv I, 0),
600  /// canCreatePoison returns false.
601  bool canCreatePoison(const Instruction *I);
602
603  /// Return true if this function can prove that V is never undef value
604  /// or poison value.
605  //
606  /// If CtxI and DT are specified this method performs flow-sensitive analysis
607  /// and returns true if it is guaranteed to be never undef or poison
608  /// immediately before the CtxI.
609  bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
610                                        const Instruction *CtxI = nullptr,
611                                        const DominatorTree *DT = nullptr,
612                                        unsigned Depth = 0);
613
614  /// Specific patterns of select instructions we can match.
615  enum SelectPatternFlavor {
616    SPF_UNKNOWN = 0,
617    SPF_SMIN,                   /// Signed minimum
618    SPF_UMIN,                   /// Unsigned minimum
619    SPF_SMAX,                   /// Signed maximum
620    SPF_UMAX,                   /// Unsigned maximum
621    SPF_FMINNUM,                /// Floating point minnum
622    SPF_FMAXNUM,                /// Floating point maxnum
623    SPF_ABS,                    /// Absolute value
624    SPF_NABS                    /// Negated absolute value
625  };
626
627  /// Behavior when a floating point min/max is given one NaN and one
628  /// non-NaN as input.
629  enum SelectPatternNaNBehavior {
630    SPNB_NA = 0,                /// NaN behavior not applicable.
631    SPNB_RETURNS_NAN,           /// Given one NaN input, returns the NaN.
632    SPNB_RETURNS_OTHER,         /// Given one NaN input, returns the non-NaN.
633    SPNB_RETURNS_ANY            /// Given one NaN input, can return either (or
634                                /// it has been determined that no operands can
635                                /// be NaN).
636  };
637
638  struct SelectPatternResult {
639    SelectPatternFlavor Flavor;
640    SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
641                                          /// SPF_FMINNUM or SPF_FMAXNUM.
642    bool Ordered;               /// When implementing this min/max pattern as
643                                /// fcmp; select, does the fcmp have to be
644                                /// ordered?
645
646    /// Return true if \p SPF is a min or a max pattern.
647    static bool isMinOrMax(SelectPatternFlavor SPF) {
648      return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
649    }
650  };
651
652  /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
653  /// and providing the out parameter results if we successfully match.
654  ///
655  /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
656  /// the negation instruction from the idiom.
657  ///
658  /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
659  /// not match that of the original select. If this is the case, the cast
660  /// operation (one of Trunc,SExt,Zext) that must be done to transform the
661  /// type of LHS and RHS into the type of V is returned in CastOp.
662  ///
663  /// For example:
664  ///   %1 = icmp slt i32 %a, i32 4
665  ///   %2 = sext i32 %a to i64
666  ///   %3 = select i1 %1, i64 %2, i64 4
667  ///
668  /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
669  ///
670  SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
671                                         Instruction::CastOps *CastOp = nullptr,
672                                         unsigned Depth = 0);
673
674  inline SelectPatternResult
675  matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS) {
676    Value *L = const_cast<Value *>(LHS);
677    Value *R = const_cast<Value *>(RHS);
678    auto Result = matchSelectPattern(const_cast<Value *>(V), L, R);
679    LHS = L;
680    RHS = R;
681    return Result;
682  }
683
684  /// Determine the pattern that a select with the given compare as its
685  /// predicate and given values as its true/false operands would match.
686  SelectPatternResult matchDecomposedSelectPattern(
687      CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
688      Instruction::CastOps *CastOp = nullptr, unsigned Depth = 0);
689
690  /// Return the canonical comparison predicate for the specified
691  /// minimum/maximum flavor.
692  CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF,
693                                   bool Ordered = false);
694
695  /// Return the inverse minimum/maximum flavor of the specified flavor.
696  /// For example, signed minimum is the inverse of signed maximum.
697  SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
698
699  /// Return the canonical inverse comparison predicate for the specified
700  /// minimum/maximum flavor.
701  CmpInst::Predicate getInverseMinMaxPred(SelectPatternFlavor SPF);
702
703  /// Return true if RHS is known to be implied true by LHS.  Return false if
704  /// RHS is known to be implied false by LHS.  Otherwise, return None if no
705  /// implication can be made.
706  /// A & B must be i1 (boolean) values or a vector of such values. Note that
707  /// the truth table for implication is the same as <=u on i1 values (but not
708  /// <=s!).  The truth table for both is:
709  ///    | T | F (B)
710  ///  T | T | F
711  ///  F | T | T
712  /// (A)
713  Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
714                                    const DataLayout &DL, bool LHSIsTrue = true,
715                                    unsigned Depth = 0);
716  Optional<bool> isImpliedCondition(const Value *LHS,
717                                    CmpInst::Predicate RHSPred,
718                                    const Value *RHSOp0, const Value *RHSOp1,
719                                    const DataLayout &DL, bool LHSIsTrue = true,
720                                    unsigned Depth = 0);
721
722  /// Return the boolean condition value in the context of the given instruction
723  /// if it is known based on dominating conditions.
724  Optional<bool> isImpliedByDomCondition(const Value *Cond,
725                                         const Instruction *ContextI,
726                                         const DataLayout &DL);
727  Optional<bool> isImpliedByDomCondition(CmpInst::Predicate Pred,
728                                         const Value *LHS, const Value *RHS,
729                                         const Instruction *ContextI,
730                                         const DataLayout &DL);
731
732  /// If Ptr1 is provably equal to Ptr2 plus a constant offset, return that
733  /// offset. For example, Ptr1 might be &A[42], and Ptr2 might be &A[40]. In
734  /// this case offset would be -8.
735  Optional<int64_t> isPointerOffset(const Value *Ptr1, const Value *Ptr2,
736                                    const DataLayout &DL);
737} // end namespace llvm
738
739#endif // LLVM_ANALYSIS_VALUETRACKING_H
740