1//===- ICF.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// ICF is short for Identical Code Folding. That is a size optimization to
10// identify and merge two or more read-only sections (typically functions)
11// that happened to have the same contents. It usually reduces output size
12// by a few percent.
13//
14// On Windows, ICF is enabled by default.
15//
16// See ELF/ICF.cpp for the details about the algorithm.
17//
18//===----------------------------------------------------------------------===//
19
20#include "ICF.h"
21#include "Chunks.h"
22#include "Symbols.h"
23#include "lld/Common/ErrorHandler.h"
24#include "lld/Common/Timer.h"
25#include "llvm/ADT/Hashing.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/Parallel.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Support/xxhash.h"
30#include <algorithm>
31#include <atomic>
32#include <vector>
33
34using namespace llvm;
35
36namespace lld {
37namespace coff {
38
39static Timer icfTimer("ICF", Timer::root());
40
41class ICF {
42public:
43  void run(ArrayRef<Chunk *> v);
44
45private:
46  void segregate(size_t begin, size_t end, bool constant);
47
48  bool assocEquals(const SectionChunk *a, const SectionChunk *b);
49
50  bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
51  bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
52
53  bool isEligible(SectionChunk *c);
54
55  size_t findBoundary(size_t begin, size_t end);
56
57  void forEachClassRange(size_t begin, size_t end,
58                         std::function<void(size_t, size_t)> fn);
59
60  void forEachClass(std::function<void(size_t, size_t)> fn);
61
62  std::vector<SectionChunk *> chunks;
63  int cnt = 0;
64  std::atomic<bool> repeat = {false};
65};
66
67// Returns true if section S is subject of ICF.
68//
69// Microsoft's documentation
70// (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
71// 2017) says that /opt:icf folds both functions and read-only data.
72// Despite that, the MSVC linker folds only functions. We found
73// a few instances of programs that are not safe for data merging.
74// Therefore, we merge only functions just like the MSVC tool. However, we also
75// merge read-only sections in a couple of cases where the address of the
76// section is insignificant to the user program and the behaviour matches that
77// of the Visual C++ linker.
78bool ICF::isEligible(SectionChunk *c) {
79  // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
80  bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
81  if (!c->isCOMDAT() || !c->live || writable)
82    return false;
83
84  // Code sections are eligible.
85  if (c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
86    return true;
87
88  // .pdata and .xdata unwind info sections are eligible.
89  StringRef outSecName = c->getSectionName().split('$').first;
90  if (outSecName == ".pdata" || outSecName == ".xdata")
91    return true;
92
93  // So are vtables.
94  if (c->sym && c->sym->getName().startswith("??_7"))
95    return true;
96
97  // Anything else not in an address-significance table is eligible.
98  return !c->keepUnique;
99}
100
101// Split an equivalence class into smaller classes.
102void ICF::segregate(size_t begin, size_t end, bool constant) {
103  while (begin < end) {
104    // Divide [Begin, End) into two. Let Mid be the start index of the
105    // second group.
106    auto bound = std::stable_partition(
107        chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
108          if (constant)
109            return equalsConstant(chunks[begin], s);
110          return equalsVariable(chunks[begin], s);
111        });
112    size_t mid = bound - chunks.begin();
113
114    // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
115    // equivalence class ID because every group ends with a unique index.
116    for (size_t i = begin; i < mid; ++i)
117      chunks[i]->eqClass[(cnt + 1) % 2] = mid;
118
119    // If we created a group, we need to iterate the main loop again.
120    if (mid != end)
121      repeat = true;
122
123    begin = mid;
124  }
125}
126
127// Returns true if two sections' associative children are equal.
128bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
129  // Ignore associated metadata sections that don't participate in ICF, such as
130  // debug info and CFGuard metadata.
131  auto considerForICF = [](const SectionChunk &assoc) {
132    StringRef Name = assoc.getSectionName();
133    return !(Name.startswith(".debug") || Name == ".gfids$y" ||
134             Name == ".gljmp$y");
135  };
136  auto ra = make_filter_range(a->children(), considerForICF);
137  auto rb = make_filter_range(b->children(), considerForICF);
138  return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(),
139                    [&](const SectionChunk &ia, const SectionChunk &ib) {
140                      return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2];
141                    });
142}
143
144// Compare "non-moving" part of two sections, namely everything
145// except relocation targets.
146bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
147  if (a->relocsSize != b->relocsSize)
148    return false;
149
150  // Compare relocations.
151  auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
152    if (r1.Type != r2.Type ||
153        r1.VirtualAddress != r2.VirtualAddress) {
154      return false;
155    }
156    Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
157    Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
158    if (b1 == b2)
159      return true;
160    if (auto *d1 = dyn_cast<DefinedRegular>(b1))
161      if (auto *d2 = dyn_cast<DefinedRegular>(b2))
162        return d1->getValue() == d2->getValue() &&
163               d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
164    return false;
165  };
166  if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
167                  b->getRelocs().begin(), eq))
168    return false;
169
170  // Compare section attributes and contents.
171  return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
172         a->getSectionName() == b->getSectionName() &&
173         a->header->SizeOfRawData == b->header->SizeOfRawData &&
174         a->checksum == b->checksum && a->getContents() == b->getContents() &&
175         assocEquals(a, b);
176}
177
178// Compare "moving" part of two sections, namely relocation targets.
179bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
180  // Compare relocations.
181  auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
182    Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
183    Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
184    if (b1 == b2)
185      return true;
186    if (auto *d1 = dyn_cast<DefinedRegular>(b1))
187      if (auto *d2 = dyn_cast<DefinedRegular>(b2))
188        return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
189    return false;
190  };
191  return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
192                    b->getRelocs().begin(), eq) &&
193         assocEquals(a, b);
194}
195
196// Find the first Chunk after Begin that has a different class from Begin.
197size_t ICF::findBoundary(size_t begin, size_t end) {
198  for (size_t i = begin + 1; i < end; ++i)
199    if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
200      return i;
201  return end;
202}
203
204void ICF::forEachClassRange(size_t begin, size_t end,
205                            std::function<void(size_t, size_t)> fn) {
206  while (begin < end) {
207    size_t mid = findBoundary(begin, end);
208    fn(begin, mid);
209    begin = mid;
210  }
211}
212
213// Call Fn on each class group.
214void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
215  // If the number of sections are too small to use threading,
216  // call Fn sequentially.
217  if (chunks.size() < 1024) {
218    forEachClassRange(0, chunks.size(), fn);
219    ++cnt;
220    return;
221  }
222
223  // Shard into non-overlapping intervals, and call Fn in parallel.
224  // The sharding must be completed before any calls to Fn are made
225  // so that Fn can modify the Chunks in its shard without causing data
226  // races.
227  const size_t numShards = 256;
228  size_t step = chunks.size() / numShards;
229  size_t boundaries[numShards + 1];
230  boundaries[0] = 0;
231  boundaries[numShards] = chunks.size();
232  parallelForEachN(1, numShards, [&](size_t i) {
233    boundaries[i] = findBoundary((i - 1) * step, chunks.size());
234  });
235  parallelForEachN(1, numShards + 1, [&](size_t i) {
236    if (boundaries[i - 1] < boundaries[i]) {
237      forEachClassRange(boundaries[i - 1], boundaries[i], fn);
238    }
239  });
240  ++cnt;
241}
242
243// Merge identical COMDAT sections.
244// Two sections are considered the same if their section headers,
245// contents and relocations are all the same.
246void ICF::run(ArrayRef<Chunk *> vec) {
247  ScopedTimer t(icfTimer);
248
249  // Collect only mergeable sections and group by hash value.
250  uint32_t nextId = 1;
251  for (Chunk *c : vec) {
252    if (auto *sc = dyn_cast<SectionChunk>(c)) {
253      if (isEligible(sc))
254        chunks.push_back(sc);
255      else
256        sc->eqClass[0] = nextId++;
257    }
258  }
259
260  // Make sure that ICF doesn't merge sections that are being handled by string
261  // tail merging.
262  for (MergeChunk *mc : MergeChunk::instances)
263    if (mc)
264      for (SectionChunk *sc : mc->sections)
265        sc->eqClass[0] = nextId++;
266
267  // Initially, we use hash values to partition sections.
268  parallelForEach(chunks, [&](SectionChunk *sc) {
269    sc->eqClass[0] = xxHash64(sc->getContents());
270  });
271
272  // Combine the hashes of the sections referenced by each section into its
273  // hash.
274  for (unsigned cnt = 0; cnt != 2; ++cnt) {
275    parallelForEach(chunks, [&](SectionChunk *sc) {
276      uint32_t hash = sc->eqClass[cnt % 2];
277      for (Symbol *b : sc->symbols())
278        if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
279          hash += sym->getChunk()->eqClass[cnt % 2];
280      // Set MSB to 1 to avoid collisions with non-hash classes.
281      sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
282    });
283  }
284
285  // From now on, sections in Chunks are ordered so that sections in
286  // the same group are consecutive in the vector.
287  llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
288    return a->eqClass[0] < b->eqClass[0];
289  });
290
291  // Compare static contents and assign unique IDs for each static content.
292  forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
293
294  // Split groups by comparing relocations until convergence is obtained.
295  do {
296    repeat = false;
297    forEachClass(
298        [&](size_t begin, size_t end) { segregate(begin, end, false); });
299  } while (repeat);
300
301  log("ICF needed " + Twine(cnt) + " iterations");
302
303  // Merge sections in the same classes.
304  forEachClass([&](size_t begin, size_t end) {
305    if (end - begin == 1)
306      return;
307
308    log("Selected " + chunks[begin]->getDebugName());
309    for (size_t i = begin + 1; i < end; ++i) {
310      log("  Removed " + chunks[i]->getDebugName());
311      chunks[begin]->replace(chunks[i]);
312    }
313  });
314}
315
316// Entry point to ICF.
317void doICF(ArrayRef<Chunk *> chunks) { ICF().run(chunks); }
318
319} // namespace coff
320} // namespace lld
321