1//===-- tsan_rtl.cpp ------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of ThreadSanitizer (TSan), a race detector.
10//
11// Main file (entry points) for the TSan run-time.
12//===----------------------------------------------------------------------===//
13
14#include "sanitizer_common/sanitizer_atomic.h"
15#include "sanitizer_common/sanitizer_common.h"
16#include "sanitizer_common/sanitizer_file.h"
17#include "sanitizer_common/sanitizer_libc.h"
18#include "sanitizer_common/sanitizer_stackdepot.h"
19#include "sanitizer_common/sanitizer_placement_new.h"
20#include "sanitizer_common/sanitizer_symbolizer.h"
21#include "tsan_defs.h"
22#include "tsan_platform.h"
23#include "tsan_rtl.h"
24#include "tsan_mman.h"
25#include "tsan_suppressions.h"
26#include "tsan_symbolize.h"
27#include "ubsan/ubsan_init.h"
28
29#ifdef __SSE3__
30// <emmintrin.h> transitively includes <stdlib.h>,
31// and it's prohibited to include std headers into tsan runtime.
32// So we do this dirty trick.
33#define _MM_MALLOC_H_INCLUDED
34#define __MM_MALLOC_H
35#include <emmintrin.h>
36typedef __m128i m128;
37#endif
38
39volatile int __tsan_resumed = 0;
40
41extern "C" void __tsan_resume() {
42  __tsan_resumed = 1;
43}
44
45namespace __tsan {
46
47#if !SANITIZER_GO && !SANITIZER_MAC
48__attribute__((tls_model("initial-exec")))
49THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
50#endif
51static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
52Context *ctx;
53
54// Can be overriden by a front-end.
55#ifdef TSAN_EXTERNAL_HOOKS
56bool OnFinalize(bool failed);
57void OnInitialize();
58#else
59SANITIZER_WEAK_CXX_DEFAULT_IMPL
60bool OnFinalize(bool failed) {
61  return failed;
62}
63SANITIZER_WEAK_CXX_DEFAULT_IMPL
64void OnInitialize() {}
65#endif
66
67static char thread_registry_placeholder[sizeof(ThreadRegistry)];
68
69static ThreadContextBase *CreateThreadContext(u32 tid) {
70  // Map thread trace when context is created.
71  char name[50];
72  internal_snprintf(name, sizeof(name), "trace %u", tid);
73  MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
74  const uptr hdr = GetThreadTraceHeader(tid);
75  internal_snprintf(name, sizeof(name), "trace header %u", tid);
76  MapThreadTrace(hdr, sizeof(Trace), name);
77  new((void*)hdr) Trace();
78  // We are going to use only a small part of the trace with the default
79  // value of history_size. However, the constructor writes to the whole trace.
80  // Unmap the unused part.
81  uptr hdr_end = hdr + sizeof(Trace);
82  hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
83  hdr_end = RoundUp(hdr_end, GetPageSizeCached());
84  if (hdr_end < hdr + sizeof(Trace))
85    UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
86  void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
87  return new(mem) ThreadContext(tid);
88}
89
90#if !SANITIZER_GO
91static const u32 kThreadQuarantineSize = 16;
92#else
93static const u32 kThreadQuarantineSize = 64;
94#endif
95
96Context::Context()
97  : initialized()
98  , report_mtx(MutexTypeReport, StatMtxReport)
99  , nreported()
100  , nmissed_expected()
101  , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
102      CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
103  , racy_mtx(MutexTypeRacy, StatMtxRacy)
104  , racy_stacks()
105  , racy_addresses()
106  , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
107  , clock_alloc("clock allocator") {
108  fired_suppressions.reserve(8);
109}
110
111// The objects are allocated in TLS, so one may rely on zero-initialization.
112ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
113                         unsigned reuse_count,
114                         uptr stk_addr, uptr stk_size,
115                         uptr tls_addr, uptr tls_size)
116  : fast_state(tid, epoch)
117  // Do not touch these, rely on zero initialization,
118  // they may be accessed before the ctor.
119  // , ignore_reads_and_writes()
120  // , ignore_interceptors()
121  , clock(tid, reuse_count)
122#if !SANITIZER_GO
123  , jmp_bufs()
124#endif
125  , tid(tid)
126  , unique_id(unique_id)
127  , stk_addr(stk_addr)
128  , stk_size(stk_size)
129  , tls_addr(tls_addr)
130  , tls_size(tls_size)
131#if !SANITIZER_GO
132  , last_sleep_clock(tid)
133#endif
134{
135}
136
137#if !SANITIZER_GO
138static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
139  uptr n_threads;
140  uptr n_running_threads;
141  ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
142  InternalMmapVector<char> buf(4096);
143  WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
144  WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
145}
146
147static void *BackgroundThread(void *arg) {
148  // This is a non-initialized non-user thread, nothing to see here.
149  // We don't use ScopedIgnoreInterceptors, because we want ignores to be
150  // enabled even when the thread function exits (e.g. during pthread thread
151  // shutdown code).
152  cur_thread_init();
153  cur_thread()->ignore_interceptors++;
154  const u64 kMs2Ns = 1000 * 1000;
155
156  fd_t mprof_fd = kInvalidFd;
157  if (flags()->profile_memory && flags()->profile_memory[0]) {
158    if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
159      mprof_fd = 1;
160    } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
161      mprof_fd = 2;
162    } else {
163      InternalScopedString filename(kMaxPathLength);
164      filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
165      fd_t fd = OpenFile(filename.data(), WrOnly);
166      if (fd == kInvalidFd) {
167        Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
168            &filename[0]);
169      } else {
170        mprof_fd = fd;
171      }
172    }
173  }
174
175  u64 last_flush = NanoTime();
176  uptr last_rss = 0;
177  for (int i = 0;
178      atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
179      i++) {
180    SleepForMillis(100);
181    u64 now = NanoTime();
182
183    // Flush memory if requested.
184    if (flags()->flush_memory_ms > 0) {
185      if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
186        VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
187        FlushShadowMemory();
188        last_flush = NanoTime();
189      }
190    }
191    // GetRSS can be expensive on huge programs, so don't do it every 100ms.
192    if (flags()->memory_limit_mb > 0) {
193      uptr rss = GetRSS();
194      uptr limit = uptr(flags()->memory_limit_mb) << 20;
195      VPrintf(1, "ThreadSanitizer: memory flush check"
196                 " RSS=%llu LAST=%llu LIMIT=%llu\n",
197              (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
198      if (2 * rss > limit + last_rss) {
199        VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
200        FlushShadowMemory();
201        rss = GetRSS();
202        VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
203      }
204      last_rss = rss;
205    }
206
207    // Write memory profile if requested.
208    if (mprof_fd != kInvalidFd)
209      MemoryProfiler(ctx, mprof_fd, i);
210
211    // Flush symbolizer cache if requested.
212    if (flags()->flush_symbolizer_ms > 0) {
213      u64 last = atomic_load(&ctx->last_symbolize_time_ns,
214                             memory_order_relaxed);
215      if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
216        Lock l(&ctx->report_mtx);
217        ScopedErrorReportLock l2;
218        SymbolizeFlush();
219        atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
220      }
221    }
222  }
223  return nullptr;
224}
225
226static void StartBackgroundThread() {
227  ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
228}
229
230#ifndef __mips__
231static void StopBackgroundThread() {
232  atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
233  internal_join_thread(ctx->background_thread);
234  ctx->background_thread = 0;
235}
236#endif
237#endif
238
239void DontNeedShadowFor(uptr addr, uptr size) {
240  ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size));
241}
242
243#if !SANITIZER_GO
244void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
245  if (size == 0) return;
246  DontNeedShadowFor(addr, size);
247  ScopedGlobalProcessor sgp;
248  ctx->metamap.ResetRange(thr->proc(), addr, size);
249}
250#endif
251
252void MapShadow(uptr addr, uptr size) {
253  // Global data is not 64K aligned, but there are no adjacent mappings,
254  // so we can get away with unaligned mapping.
255  // CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
256  const uptr kPageSize = GetPageSizeCached();
257  uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
258  uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
259  if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
260    Die();
261
262  // Meta shadow is 2:1, so tread carefully.
263  static bool data_mapped = false;
264  static uptr mapped_meta_end = 0;
265  uptr meta_begin = (uptr)MemToMeta(addr);
266  uptr meta_end = (uptr)MemToMeta(addr + size);
267  meta_begin = RoundDownTo(meta_begin, 64 << 10);
268  meta_end = RoundUpTo(meta_end, 64 << 10);
269  if (!data_mapped) {
270    // First call maps data+bss.
271    data_mapped = true;
272    if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
273      Die();
274  } else {
275    // Mapping continous heap.
276    // Windows wants 64K alignment.
277    meta_begin = RoundDownTo(meta_begin, 64 << 10);
278    meta_end = RoundUpTo(meta_end, 64 << 10);
279    if (meta_end <= mapped_meta_end)
280      return;
281    if (meta_begin < mapped_meta_end)
282      meta_begin = mapped_meta_end;
283    if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
284      Die();
285    mapped_meta_end = meta_end;
286  }
287  VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
288      addr, addr+size, meta_begin, meta_end);
289}
290
291void MapThreadTrace(uptr addr, uptr size, const char *name) {
292  DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
293  CHECK_GE(addr, TraceMemBeg());
294  CHECK_LE(addr + size, TraceMemEnd());
295  CHECK_EQ(addr, addr & ~((64 << 10) - 1));  // windows wants 64K alignment
296  if (!MmapFixedNoReserve(addr, size, name)) {
297    Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n",
298        addr, size);
299    Die();
300  }
301}
302
303static void CheckShadowMapping() {
304  uptr beg, end;
305  for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
306    // Skip cases for empty regions (heap definition for architectures that
307    // do not use 64-bit allocator).
308    if (beg == end)
309      continue;
310    VPrintf(3, "checking shadow region %p-%p\n", beg, end);
311    uptr prev = 0;
312    for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
313      for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
314        const uptr p = RoundDown(p0 + x, kShadowCell);
315        if (p < beg || p >= end)
316          continue;
317        const uptr s = MemToShadow(p);
318        const uptr m = (uptr)MemToMeta(p);
319        VPrintf(3, "  checking pointer %p: shadow=%p meta=%p\n", p, s, m);
320        CHECK(IsAppMem(p));
321        CHECK(IsShadowMem(s));
322        CHECK_EQ(p, ShadowToMem(s));
323        CHECK(IsMetaMem(m));
324        if (prev) {
325          // Ensure that shadow and meta mappings are linear within a single
326          // user range. Lots of code that processes memory ranges assumes it.
327          const uptr prev_s = MemToShadow(prev);
328          const uptr prev_m = (uptr)MemToMeta(prev);
329          CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
330          CHECK_EQ((m - prev_m) / kMetaShadowSize,
331                   (p - prev) / kMetaShadowCell);
332        }
333        prev = p;
334      }
335    }
336  }
337}
338
339#if !SANITIZER_GO
340static void OnStackUnwind(const SignalContext &sig, const void *,
341                          BufferedStackTrace *stack) {
342  stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
343                common_flags()->fast_unwind_on_fatal);
344}
345
346static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
347  HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
348}
349#endif
350
351void Initialize(ThreadState *thr) {
352  // Thread safe because done before all threads exist.
353  static bool is_initialized = false;
354  if (is_initialized)
355    return;
356  is_initialized = true;
357  // We are not ready to handle interceptors yet.
358  ScopedIgnoreInterceptors ignore;
359  SanitizerToolName = "ThreadSanitizer";
360  // Install tool-specific callbacks in sanitizer_common.
361  SetCheckFailedCallback(TsanCheckFailed);
362
363  ctx = new(ctx_placeholder) Context;
364  const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
365  const char *options = GetEnv(env_name);
366  CacheBinaryName();
367  CheckASLR();
368  InitializeFlags(&ctx->flags, options, env_name);
369  AvoidCVE_2016_2143();
370  __sanitizer::InitializePlatformEarly();
371  __tsan::InitializePlatformEarly();
372
373#if !SANITIZER_GO
374  // Re-exec ourselves if we need to set additional env or command line args.
375  MaybeReexec();
376
377  InitializeAllocator();
378  ReplaceSystemMalloc();
379#endif
380  if (common_flags()->detect_deadlocks)
381    ctx->dd = DDetector::Create(flags());
382  Processor *proc = ProcCreate();
383  ProcWire(proc, thr);
384  InitializeInterceptors();
385  CheckShadowMapping();
386  InitializePlatform();
387  InitializeMutex();
388  InitializeDynamicAnnotations();
389#if !SANITIZER_GO
390  InitializeShadowMemory();
391  InitializeAllocatorLate();
392  InstallDeadlySignalHandlers(TsanOnDeadlySignal);
393#endif
394  // Setup correct file descriptor for error reports.
395  __sanitizer_set_report_path(common_flags()->log_path);
396  InitializeSuppressions();
397#if !SANITIZER_GO
398  InitializeLibIgnore();
399  Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
400#endif
401
402  VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
403          (int)internal_getpid());
404
405  // Initialize thread 0.
406  int tid = ThreadCreate(thr, 0, 0, true);
407  CHECK_EQ(tid, 0);
408  ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
409#if TSAN_CONTAINS_UBSAN
410  __ubsan::InitAsPlugin();
411#endif
412  ctx->initialized = true;
413
414#if !SANITIZER_GO
415  Symbolizer::LateInitialize();
416#endif
417
418  if (flags()->stop_on_start) {
419    Printf("ThreadSanitizer is suspended at startup (pid %d)."
420           " Call __tsan_resume().\n",
421           (int)internal_getpid());
422    while (__tsan_resumed == 0) {}
423  }
424
425  OnInitialize();
426}
427
428void MaybeSpawnBackgroundThread() {
429  // On MIPS, TSan initialization is run before
430  // __pthread_initialize_minimal_internal() is finished, so we can not spawn
431  // new threads.
432#if !SANITIZER_GO && !defined(__mips__)
433  static atomic_uint32_t bg_thread = {};
434  if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
435      atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
436    StartBackgroundThread();
437    SetSandboxingCallback(StopBackgroundThread);
438  }
439#endif
440}
441
442
443int Finalize(ThreadState *thr) {
444  bool failed = false;
445
446  if (common_flags()->print_module_map == 1) PrintModuleMap();
447
448  if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
449    SleepForMillis(flags()->atexit_sleep_ms);
450
451  // Wait for pending reports.
452  ctx->report_mtx.Lock();
453  { ScopedErrorReportLock l; }
454  ctx->report_mtx.Unlock();
455
456#if !SANITIZER_GO
457  if (Verbosity()) AllocatorPrintStats();
458#endif
459
460  ThreadFinalize(thr);
461
462  if (ctx->nreported) {
463    failed = true;
464#if !SANITIZER_GO
465    Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
466#else
467    Printf("Found %d data race(s)\n", ctx->nreported);
468#endif
469  }
470
471  if (ctx->nmissed_expected) {
472    failed = true;
473    Printf("ThreadSanitizer: missed %d expected races\n",
474        ctx->nmissed_expected);
475  }
476
477  if (common_flags()->print_suppressions)
478    PrintMatchedSuppressions();
479#if !SANITIZER_GO
480  if (flags()->print_benign)
481    PrintMatchedBenignRaces();
482#endif
483
484  failed = OnFinalize(failed);
485
486#if TSAN_COLLECT_STATS
487  StatAggregate(ctx->stat, thr->stat);
488  StatOutput(ctx->stat);
489#endif
490
491  return failed ? common_flags()->exitcode : 0;
492}
493
494#if !SANITIZER_GO
495void ForkBefore(ThreadState *thr, uptr pc) {
496  ctx->thread_registry->Lock();
497  ctx->report_mtx.Lock();
498  // Ignore memory accesses in the pthread_atfork callbacks.
499  // If any of them triggers a data race we will deadlock
500  // on the report_mtx.
501  // We could ignore interceptors and sync operations as well,
502  // but so far it's unclear if it will do more good or harm.
503  // Unnecessarily ignoring things can lead to false positives later.
504  ThreadIgnoreBegin(thr, pc);
505}
506
507void ForkParentAfter(ThreadState *thr, uptr pc) {
508  ThreadIgnoreEnd(thr, pc);  // Begin is in ForkBefore.
509  ctx->report_mtx.Unlock();
510  ctx->thread_registry->Unlock();
511}
512
513void ForkChildAfter(ThreadState *thr, uptr pc) {
514  ThreadIgnoreEnd(thr, pc);  // Begin is in ForkBefore.
515  ctx->report_mtx.Unlock();
516  ctx->thread_registry->Unlock();
517
518  uptr nthread = 0;
519  ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
520  VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
521      " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
522  if (nthread == 1) {
523    StartBackgroundThread();
524  } else {
525    // We've just forked a multi-threaded process. We cannot reasonably function
526    // after that (some mutexes may be locked before fork). So just enable
527    // ignores for everything in the hope that we will exec soon.
528    ctx->after_multithreaded_fork = true;
529    thr->ignore_interceptors++;
530    ThreadIgnoreBegin(thr, pc);
531    ThreadIgnoreSyncBegin(thr, pc);
532  }
533}
534#endif
535
536#if SANITIZER_GO
537NOINLINE
538void GrowShadowStack(ThreadState *thr) {
539  const int sz = thr->shadow_stack_end - thr->shadow_stack;
540  const int newsz = 2 * sz;
541  uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
542      newsz * sizeof(uptr));
543  internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
544  internal_free(thr->shadow_stack);
545  thr->shadow_stack = newstack;
546  thr->shadow_stack_pos = newstack + sz;
547  thr->shadow_stack_end = newstack + newsz;
548}
549#endif
550
551u32 CurrentStackId(ThreadState *thr, uptr pc) {
552  if (!thr->is_inited)  // May happen during bootstrap.
553    return 0;
554  if (pc != 0) {
555#if !SANITIZER_GO
556    DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
557#else
558    if (thr->shadow_stack_pos == thr->shadow_stack_end)
559      GrowShadowStack(thr);
560#endif
561    thr->shadow_stack_pos[0] = pc;
562    thr->shadow_stack_pos++;
563  }
564  u32 id = StackDepotPut(
565      StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
566  if (pc != 0)
567    thr->shadow_stack_pos--;
568  return id;
569}
570
571void TraceSwitch(ThreadState *thr) {
572#if !SANITIZER_GO
573  if (ctx->after_multithreaded_fork)
574    return;
575#endif
576  thr->nomalloc++;
577  Trace *thr_trace = ThreadTrace(thr->tid);
578  Lock l(&thr_trace->mtx);
579  unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
580  TraceHeader *hdr = &thr_trace->headers[trace];
581  hdr->epoch0 = thr->fast_state.epoch();
582  ObtainCurrentStack(thr, 0, &hdr->stack0);
583  hdr->mset0 = thr->mset;
584  thr->nomalloc--;
585}
586
587Trace *ThreadTrace(int tid) {
588  return (Trace*)GetThreadTraceHeader(tid);
589}
590
591uptr TraceTopPC(ThreadState *thr) {
592  Event *events = (Event*)GetThreadTrace(thr->tid);
593  uptr pc = events[thr->fast_state.GetTracePos()];
594  return pc;
595}
596
597uptr TraceSize() {
598  return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
599}
600
601uptr TraceParts() {
602  return TraceSize() / kTracePartSize;
603}
604
605#if !SANITIZER_GO
606extern "C" void __tsan_trace_switch() {
607  TraceSwitch(cur_thread());
608}
609
610extern "C" void __tsan_report_race() {
611  ReportRace(cur_thread());
612}
613#endif
614
615ALWAYS_INLINE
616Shadow LoadShadow(u64 *p) {
617  u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
618  return Shadow(raw);
619}
620
621ALWAYS_INLINE
622void StoreShadow(u64 *sp, u64 s) {
623  atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
624}
625
626ALWAYS_INLINE
627void StoreIfNotYetStored(u64 *sp, u64 *s) {
628  StoreShadow(sp, *s);
629  *s = 0;
630}
631
632ALWAYS_INLINE
633void HandleRace(ThreadState *thr, u64 *shadow_mem,
634                              Shadow cur, Shadow old) {
635  thr->racy_state[0] = cur.raw();
636  thr->racy_state[1] = old.raw();
637  thr->racy_shadow_addr = shadow_mem;
638#if !SANITIZER_GO
639  HACKY_CALL(__tsan_report_race);
640#else
641  ReportRace(thr);
642#endif
643}
644
645static inline bool HappensBefore(Shadow old, ThreadState *thr) {
646  return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
647}
648
649ALWAYS_INLINE
650void MemoryAccessImpl1(ThreadState *thr, uptr addr,
651    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
652    u64 *shadow_mem, Shadow cur) {
653  StatInc(thr, StatMop);
654  StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
655  StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
656
657  // This potentially can live in an MMX/SSE scratch register.
658  // The required intrinsics are:
659  // __m128i _mm_move_epi64(__m128i*);
660  // _mm_storel_epi64(u64*, __m128i);
661  u64 store_word = cur.raw();
662  bool stored = false;
663
664  // scan all the shadow values and dispatch to 4 categories:
665  // same, replace, candidate and race (see comments below).
666  // we consider only 3 cases regarding access sizes:
667  // equal, intersect and not intersect. initially I considered
668  // larger and smaller as well, it allowed to replace some
669  // 'candidates' with 'same' or 'replace', but I think
670  // it's just not worth it (performance- and complexity-wise).
671
672  Shadow old(0);
673
674  // It release mode we manually unroll the loop,
675  // because empirically gcc generates better code this way.
676  // However, we can't afford unrolling in debug mode, because the function
677  // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
678  // threads, which is not enough for the unrolled loop.
679#if SANITIZER_DEBUG
680  for (int idx = 0; idx < 4; idx++) {
681#include "tsan_update_shadow_word_inl.h"
682  }
683#else
684  int idx = 0;
685#include "tsan_update_shadow_word_inl.h"
686  idx = 1;
687  if (stored) {
688#include "tsan_update_shadow_word_inl.h"
689  } else {
690#include "tsan_update_shadow_word_inl.h"
691  }
692  idx = 2;
693  if (stored) {
694#include "tsan_update_shadow_word_inl.h"
695  } else {
696#include "tsan_update_shadow_word_inl.h"
697  }
698  idx = 3;
699  if (stored) {
700#include "tsan_update_shadow_word_inl.h"
701  } else {
702#include "tsan_update_shadow_word_inl.h"
703  }
704#endif
705
706  // we did not find any races and had already stored
707  // the current access info, so we are done
708  if (LIKELY(stored))
709    return;
710  // choose a random candidate slot and replace it
711  StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
712  StatInc(thr, StatShadowReplace);
713  return;
714 RACE:
715  HandleRace(thr, shadow_mem, cur, old);
716  return;
717}
718
719void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
720    int size, bool kAccessIsWrite, bool kIsAtomic) {
721  while (size) {
722    int size1 = 1;
723    int kAccessSizeLog = kSizeLog1;
724    if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
725      size1 = 8;
726      kAccessSizeLog = kSizeLog8;
727    } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
728      size1 = 4;
729      kAccessSizeLog = kSizeLog4;
730    } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
731      size1 = 2;
732      kAccessSizeLog = kSizeLog2;
733    }
734    MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
735    addr += size1;
736    size -= size1;
737  }
738}
739
740ALWAYS_INLINE
741bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
742  Shadow cur(a);
743  for (uptr i = 0; i < kShadowCnt; i++) {
744    Shadow old(LoadShadow(&s[i]));
745    if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
746        old.TidWithIgnore() == cur.TidWithIgnore() &&
747        old.epoch() > sync_epoch &&
748        old.IsAtomic() == cur.IsAtomic() &&
749        old.IsRead() <= cur.IsRead())
750      return true;
751  }
752  return false;
753}
754
755#if defined(__SSE3__)
756#define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
757    _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
758    (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
759ALWAYS_INLINE
760bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
761  // This is an optimized version of ContainsSameAccessSlow.
762  // load current access into access[0:63]
763  const m128 access     = _mm_cvtsi64_si128(a);
764  // duplicate high part of access in addr0:
765  // addr0[0:31]        = access[32:63]
766  // addr0[32:63]       = access[32:63]
767  // addr0[64:95]       = access[32:63]
768  // addr0[96:127]      = access[32:63]
769  const m128 addr0      = SHUF(access, access, 1, 1, 1, 1);
770  // load 4 shadow slots
771  const m128 shadow0    = _mm_load_si128((__m128i*)s);
772  const m128 shadow1    = _mm_load_si128((__m128i*)s + 1);
773  // load high parts of 4 shadow slots into addr_vect:
774  // addr_vect[0:31]    = shadow0[32:63]
775  // addr_vect[32:63]   = shadow0[96:127]
776  // addr_vect[64:95]   = shadow1[32:63]
777  // addr_vect[96:127]  = shadow1[96:127]
778  m128 addr_vect        = SHUF(shadow0, shadow1, 1, 3, 1, 3);
779  if (!is_write) {
780    // set IsRead bit in addr_vect
781    const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
782    const m128 rw_mask  = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
783    addr_vect           = _mm_or_si128(addr_vect, rw_mask);
784  }
785  // addr0 == addr_vect?
786  const m128 addr_res   = _mm_cmpeq_epi32(addr0, addr_vect);
787  // epoch1[0:63]       = sync_epoch
788  const m128 epoch1     = _mm_cvtsi64_si128(sync_epoch);
789  // epoch[0:31]        = sync_epoch[0:31]
790  // epoch[32:63]       = sync_epoch[0:31]
791  // epoch[64:95]       = sync_epoch[0:31]
792  // epoch[96:127]      = sync_epoch[0:31]
793  const m128 epoch      = SHUF(epoch1, epoch1, 0, 0, 0, 0);
794  // load low parts of shadow cell epochs into epoch_vect:
795  // epoch_vect[0:31]   = shadow0[0:31]
796  // epoch_vect[32:63]  = shadow0[64:95]
797  // epoch_vect[64:95]  = shadow1[0:31]
798  // epoch_vect[96:127] = shadow1[64:95]
799  const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
800  // epoch_vect >= sync_epoch?
801  const m128 epoch_res  = _mm_cmpgt_epi32(epoch_vect, epoch);
802  // addr_res & epoch_res
803  const m128 res        = _mm_and_si128(addr_res, epoch_res);
804  // mask[0] = res[7]
805  // mask[1] = res[15]
806  // ...
807  // mask[15] = res[127]
808  const int mask        = _mm_movemask_epi8(res);
809  return mask != 0;
810}
811#endif
812
813ALWAYS_INLINE
814bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
815#if defined(__SSE3__)
816  bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
817  // NOTE: this check can fail if the shadow is concurrently mutated
818  // by other threads. But it still can be useful if you modify
819  // ContainsSameAccessFast and want to ensure that it's not completely broken.
820  // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
821  return res;
822#else
823  return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
824#endif
825}
826
827ALWAYS_INLINE USED
828void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
829    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
830  u64 *shadow_mem = (u64*)MemToShadow(addr);
831  DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
832      " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
833      (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
834      (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
835      (uptr)shadow_mem[0], (uptr)shadow_mem[1],
836      (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
837#if SANITIZER_DEBUG
838  if (!IsAppMem(addr)) {
839    Printf("Access to non app mem %zx\n", addr);
840    DCHECK(IsAppMem(addr));
841  }
842  if (!IsShadowMem((uptr)shadow_mem)) {
843    Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
844    DCHECK(IsShadowMem((uptr)shadow_mem));
845  }
846#endif
847
848  if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
849    // Access to .rodata section, no races here.
850    // Measurements show that it can be 10-20% of all memory accesses.
851    StatInc(thr, StatMop);
852    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
853    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
854    StatInc(thr, StatMopRodata);
855    return;
856  }
857
858  FastState fast_state = thr->fast_state;
859  if (UNLIKELY(fast_state.GetIgnoreBit())) {
860    StatInc(thr, StatMop);
861    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
862    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
863    StatInc(thr, StatMopIgnored);
864    return;
865  }
866
867  Shadow cur(fast_state);
868  cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
869  cur.SetWrite(kAccessIsWrite);
870  cur.SetAtomic(kIsAtomic);
871
872  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
873      thr->fast_synch_epoch, kAccessIsWrite))) {
874    StatInc(thr, StatMop);
875    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
876    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
877    StatInc(thr, StatMopSame);
878    return;
879  }
880
881  if (kCollectHistory) {
882    fast_state.IncrementEpoch();
883    thr->fast_state = fast_state;
884    TraceAddEvent(thr, fast_state, EventTypeMop, pc);
885    cur.IncrementEpoch();
886  }
887
888  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
889      shadow_mem, cur);
890}
891
892// Called by MemoryAccessRange in tsan_rtl_thread.cpp
893ALWAYS_INLINE USED
894void MemoryAccessImpl(ThreadState *thr, uptr addr,
895    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
896    u64 *shadow_mem, Shadow cur) {
897  if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
898      thr->fast_synch_epoch, kAccessIsWrite))) {
899    StatInc(thr, StatMop);
900    StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
901    StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
902    StatInc(thr, StatMopSame);
903    return;
904  }
905
906  MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
907      shadow_mem, cur);
908}
909
910static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
911                           u64 val) {
912  (void)thr;
913  (void)pc;
914  if (size == 0)
915    return;
916  // FIXME: fix me.
917  uptr offset = addr % kShadowCell;
918  if (offset) {
919    offset = kShadowCell - offset;
920    if (size <= offset)
921      return;
922    addr += offset;
923    size -= offset;
924  }
925  DCHECK_EQ(addr % 8, 0);
926  // If a user passes some insane arguments (memset(0)),
927  // let it just crash as usual.
928  if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
929    return;
930  // Don't want to touch lots of shadow memory.
931  // If a program maps 10MB stack, there is no need reset the whole range.
932  size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
933  // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
934  if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
935    u64 *p = (u64*)MemToShadow(addr);
936    CHECK(IsShadowMem((uptr)p));
937    CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
938    // FIXME: may overwrite a part outside the region
939    for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
940      p[i++] = val;
941      for (uptr j = 1; j < kShadowCnt; j++)
942        p[i++] = 0;
943    }
944  } else {
945    // The region is big, reset only beginning and end.
946    const uptr kPageSize = GetPageSizeCached();
947    u64 *begin = (u64*)MemToShadow(addr);
948    u64 *end = begin + size / kShadowCell * kShadowCnt;
949    u64 *p = begin;
950    // Set at least first kPageSize/2 to page boundary.
951    while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
952      *p++ = val;
953      for (uptr j = 1; j < kShadowCnt; j++)
954        *p++ = 0;
955    }
956    // Reset middle part.
957    u64 *p1 = p;
958    p = RoundDown(end, kPageSize);
959    UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
960    if (!MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1))
961      Die();
962    // Set the ending.
963    while (p < end) {
964      *p++ = val;
965      for (uptr j = 1; j < kShadowCnt; j++)
966        *p++ = 0;
967    }
968  }
969}
970
971void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
972  MemoryRangeSet(thr, pc, addr, size, 0);
973}
974
975void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
976  // Processing more than 1k (4k of shadow) is expensive,
977  // can cause excessive memory consumption (user does not necessary touch
978  // the whole range) and most likely unnecessary.
979  if (size > 1024)
980    size = 1024;
981  CHECK_EQ(thr->is_freeing, false);
982  thr->is_freeing = true;
983  MemoryAccessRange(thr, pc, addr, size, true);
984  thr->is_freeing = false;
985  if (kCollectHistory) {
986    thr->fast_state.IncrementEpoch();
987    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
988  }
989  Shadow s(thr->fast_state);
990  s.ClearIgnoreBit();
991  s.MarkAsFreed();
992  s.SetWrite(true);
993  s.SetAddr0AndSizeLog(0, 3);
994  MemoryRangeSet(thr, pc, addr, size, s.raw());
995}
996
997void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
998  if (kCollectHistory) {
999    thr->fast_state.IncrementEpoch();
1000    TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
1001  }
1002  Shadow s(thr->fast_state);
1003  s.ClearIgnoreBit();
1004  s.SetWrite(true);
1005  s.SetAddr0AndSizeLog(0, 3);
1006  MemoryRangeSet(thr, pc, addr, size, s.raw());
1007}
1008
1009void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
1010                                         uptr size) {
1011  if (thr->ignore_reads_and_writes == 0)
1012    MemoryRangeImitateWrite(thr, pc, addr, size);
1013  else
1014    MemoryResetRange(thr, pc, addr, size);
1015}
1016
1017ALWAYS_INLINE USED
1018void FuncEntry(ThreadState *thr, uptr pc) {
1019  StatInc(thr, StatFuncEnter);
1020  DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
1021  if (kCollectHistory) {
1022    thr->fast_state.IncrementEpoch();
1023    TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
1024  }
1025
1026  // Shadow stack maintenance can be replaced with
1027  // stack unwinding during trace switch (which presumably must be faster).
1028  DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
1029#if !SANITIZER_GO
1030  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
1031#else
1032  if (thr->shadow_stack_pos == thr->shadow_stack_end)
1033    GrowShadowStack(thr);
1034#endif
1035  thr->shadow_stack_pos[0] = pc;
1036  thr->shadow_stack_pos++;
1037}
1038
1039ALWAYS_INLINE USED
1040void FuncExit(ThreadState *thr) {
1041  StatInc(thr, StatFuncExit);
1042  DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
1043  if (kCollectHistory) {
1044    thr->fast_state.IncrementEpoch();
1045    TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
1046  }
1047
1048  DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
1049#if !SANITIZER_GO
1050  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
1051#endif
1052  thr->shadow_stack_pos--;
1053}
1054
1055void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) {
1056  DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
1057  thr->ignore_reads_and_writes++;
1058  CHECK_GT(thr->ignore_reads_and_writes, 0);
1059  thr->fast_state.SetIgnoreBit();
1060#if !SANITIZER_GO
1061  if (save_stack && !ctx->after_multithreaded_fork)
1062    thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
1063#endif
1064}
1065
1066void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
1067  DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
1068  CHECK_GT(thr->ignore_reads_and_writes, 0);
1069  thr->ignore_reads_and_writes--;
1070  if (thr->ignore_reads_and_writes == 0) {
1071    thr->fast_state.ClearIgnoreBit();
1072#if !SANITIZER_GO
1073    thr->mop_ignore_set.Reset();
1074#endif
1075  }
1076}
1077
1078#if !SANITIZER_GO
1079extern "C" SANITIZER_INTERFACE_ATTRIBUTE
1080uptr __tsan_testonly_shadow_stack_current_size() {
1081  ThreadState *thr = cur_thread();
1082  return thr->shadow_stack_pos - thr->shadow_stack;
1083}
1084#endif
1085
1086void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) {
1087  DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
1088  thr->ignore_sync++;
1089  CHECK_GT(thr->ignore_sync, 0);
1090#if !SANITIZER_GO
1091  if (save_stack && !ctx->after_multithreaded_fork)
1092    thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
1093#endif
1094}
1095
1096void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
1097  DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
1098  CHECK_GT(thr->ignore_sync, 0);
1099  thr->ignore_sync--;
1100#if !SANITIZER_GO
1101  if (thr->ignore_sync == 0)
1102    thr->sync_ignore_set.Reset();
1103#endif
1104}
1105
1106bool MD5Hash::operator==(const MD5Hash &other) const {
1107  return hash[0] == other.hash[0] && hash[1] == other.hash[1];
1108}
1109
1110#if SANITIZER_DEBUG
1111void build_consistency_debug() {}
1112#else
1113void build_consistency_release() {}
1114#endif
1115
1116#if TSAN_COLLECT_STATS
1117void build_consistency_stats() {}
1118#else
1119void build_consistency_nostats() {}
1120#endif
1121
1122}  // namespace __tsan
1123
1124#if !SANITIZER_GO
1125// Must be included in this file to make sure everything is inlined.
1126#include "tsan_interface_inl.h"
1127#endif
1128