1//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements semantic analysis for statements.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/Ownership.h"
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/Scope.h"
34#include "clang/Sema/ScopeInfo.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/DenseMap.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallString.h"
40#include "llvm/ADT/SmallVector.h"
41
42using namespace clang;
43using namespace sema;
44
45StmtResult Sema::ActOnExprStmt(ExprResult FE, bool DiscardedValue) {
46  if (FE.isInvalid())
47    return StmtError();
48
49  FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(), DiscardedValue);
50  if (FE.isInvalid())
51    return StmtError();
52
53  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
54  // void expression for its side effects.  Conversion to void allows any
55  // operand, even incomplete types.
56
57  // Same thing in for stmt first clause (when expr) and third clause.
58  return StmtResult(FE.getAs<Stmt>());
59}
60
61
62StmtResult Sema::ActOnExprStmtError() {
63  DiscardCleanupsInEvaluationContext();
64  return StmtError();
65}
66
67StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
68                               bool HasLeadingEmptyMacro) {
69  return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
70}
71
72StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
73                               SourceLocation EndLoc) {
74  DeclGroupRef DG = dg.get();
75
76  // If we have an invalid decl, just return an error.
77  if (DG.isNull()) return StmtError();
78
79  return new (Context) DeclStmt(DG, StartLoc, EndLoc);
80}
81
82void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
83  DeclGroupRef DG = dg.get();
84
85  // If we don't have a declaration, or we have an invalid declaration,
86  // just return.
87  if (DG.isNull() || !DG.isSingleDecl())
88    return;
89
90  Decl *decl = DG.getSingleDecl();
91  if (!decl || decl->isInvalidDecl())
92    return;
93
94  // Only variable declarations are permitted.
95  VarDecl *var = dyn_cast<VarDecl>(decl);
96  if (!var) {
97    Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
98    decl->setInvalidDecl();
99    return;
100  }
101
102  // foreach variables are never actually initialized in the way that
103  // the parser came up with.
104  var->setInit(nullptr);
105
106  // In ARC, we don't need to retain the iteration variable of a fast
107  // enumeration loop.  Rather than actually trying to catch that
108  // during declaration processing, we remove the consequences here.
109  if (getLangOpts().ObjCAutoRefCount) {
110    QualType type = var->getType();
111
112    // Only do this if we inferred the lifetime.  Inferred lifetime
113    // will show up as a local qualifier because explicit lifetime
114    // should have shown up as an AttributedType instead.
115    if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
116      // Add 'const' and mark the variable as pseudo-strong.
117      var->setType(type.withConst());
118      var->setARCPseudoStrong(true);
119    }
120  }
121}
122
123/// Diagnose unused comparisons, both builtin and overloaded operators.
124/// For '==' and '!=', suggest fixits for '=' or '|='.
125///
126/// Adding a cast to void (or other expression wrappers) will prevent the
127/// warning from firing.
128static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
129  SourceLocation Loc;
130  bool CanAssign;
131  enum { Equality, Inequality, Relational, ThreeWay } Kind;
132
133  if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
134    if (!Op->isComparisonOp())
135      return false;
136
137    if (Op->getOpcode() == BO_EQ)
138      Kind = Equality;
139    else if (Op->getOpcode() == BO_NE)
140      Kind = Inequality;
141    else if (Op->getOpcode() == BO_Cmp)
142      Kind = ThreeWay;
143    else {
144      assert(Op->isRelationalOp());
145      Kind = Relational;
146    }
147    Loc = Op->getOperatorLoc();
148    CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
149  } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
150    switch (Op->getOperator()) {
151    case OO_EqualEqual:
152      Kind = Equality;
153      break;
154    case OO_ExclaimEqual:
155      Kind = Inequality;
156      break;
157    case OO_Less:
158    case OO_Greater:
159    case OO_GreaterEqual:
160    case OO_LessEqual:
161      Kind = Relational;
162      break;
163    case OO_Spaceship:
164      Kind = ThreeWay;
165      break;
166    default:
167      return false;
168    }
169
170    Loc = Op->getOperatorLoc();
171    CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
172  } else {
173    // Not a typo-prone comparison.
174    return false;
175  }
176
177  // Suppress warnings when the operator, suspicious as it may be, comes from
178  // a macro expansion.
179  if (S.SourceMgr.isMacroBodyExpansion(Loc))
180    return false;
181
182  S.Diag(Loc, diag::warn_unused_comparison)
183    << (unsigned)Kind << E->getSourceRange();
184
185  // If the LHS is a plausible entity to assign to, provide a fixit hint to
186  // correct common typos.
187  if (CanAssign) {
188    if (Kind == Inequality)
189      S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
190        << FixItHint::CreateReplacement(Loc, "|=");
191    else if (Kind == Equality)
192      S.Diag(Loc, diag::note_equality_comparison_to_assign)
193        << FixItHint::CreateReplacement(Loc, "=");
194  }
195
196  return true;
197}
198
199static bool DiagnoseNoDiscard(Sema &S, const WarnUnusedResultAttr *A,
200                              SourceLocation Loc, SourceRange R1,
201                              SourceRange R2, bool IsCtor) {
202  if (!A)
203    return false;
204  StringRef Msg = A->getMessage();
205
206  if (Msg.empty()) {
207    if (IsCtor)
208      return S.Diag(Loc, diag::warn_unused_constructor) << A << R1 << R2;
209    return S.Diag(Loc, diag::warn_unused_result) << A << R1 << R2;
210  }
211
212  if (IsCtor)
213    return S.Diag(Loc, diag::warn_unused_constructor_msg) << A << Msg << R1
214                                                          << R2;
215  return S.Diag(Loc, diag::warn_unused_result_msg) << A << Msg << R1 << R2;
216}
217
218void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
219  if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
220    return DiagnoseUnusedExprResult(Label->getSubStmt());
221
222  const Expr *E = dyn_cast_or_null<Expr>(S);
223  if (!E)
224    return;
225
226  // If we are in an unevaluated expression context, then there can be no unused
227  // results because the results aren't expected to be used in the first place.
228  if (isUnevaluatedContext())
229    return;
230
231  SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
232  // In most cases, we don't want to warn if the expression is written in a
233  // macro body, or if the macro comes from a system header. If the offending
234  // expression is a call to a function with the warn_unused_result attribute,
235  // we warn no matter the location. Because of the order in which the various
236  // checks need to happen, we factor out the macro-related test here.
237  bool ShouldSuppress =
238      SourceMgr.isMacroBodyExpansion(ExprLoc) ||
239      SourceMgr.isInSystemMacro(ExprLoc);
240
241  const Expr *WarnExpr;
242  SourceLocation Loc;
243  SourceRange R1, R2;
244  if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
245    return;
246
247  // If this is a GNU statement expression expanded from a macro, it is probably
248  // unused because it is a function-like macro that can be used as either an
249  // expression or statement.  Don't warn, because it is almost certainly a
250  // false positive.
251  if (isa<StmtExpr>(E) && Loc.isMacroID())
252    return;
253
254  // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
255  // That macro is frequently used to suppress "unused parameter" warnings,
256  // but its implementation makes clang's -Wunused-value fire.  Prevent this.
257  if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
258    SourceLocation SpellLoc = Loc;
259    if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
260      return;
261  }
262
263  // Okay, we have an unused result.  Depending on what the base expression is,
264  // we might want to make a more specific diagnostic.  Check for one of these
265  // cases now.
266  unsigned DiagID = diag::warn_unused_expr;
267  if (const FullExpr *Temps = dyn_cast<FullExpr>(E))
268    E = Temps->getSubExpr();
269  if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
270    E = TempExpr->getSubExpr();
271
272  if (DiagnoseUnusedComparison(*this, E))
273    return;
274
275  E = WarnExpr;
276  if (const auto *Cast = dyn_cast<CastExpr>(E))
277    if (Cast->getCastKind() == CK_NoOp ||
278        Cast->getCastKind() == CK_ConstructorConversion)
279      E = Cast->getSubExpr()->IgnoreImpCasts();
280
281  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
282    if (E->getType()->isVoidType())
283      return;
284
285    if (DiagnoseNoDiscard(*this, cast_or_null<WarnUnusedResultAttr>(
286                                     CE->getUnusedResultAttr(Context)),
287                          Loc, R1, R2, /*isCtor=*/false))
288      return;
289
290    // If the callee has attribute pure, const, or warn_unused_result, warn with
291    // a more specific message to make it clear what is happening. If the call
292    // is written in a macro body, only warn if it has the warn_unused_result
293    // attribute.
294    if (const Decl *FD = CE->getCalleeDecl()) {
295      if (ShouldSuppress)
296        return;
297      if (FD->hasAttr<PureAttr>()) {
298        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
299        return;
300      }
301      if (FD->hasAttr<ConstAttr>()) {
302        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
303        return;
304      }
305    }
306  } else if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
307    if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
308      const auto *A = Ctor->getAttr<WarnUnusedResultAttr>();
309      A = A ? A : Ctor->getParent()->getAttr<WarnUnusedResultAttr>();
310      if (DiagnoseNoDiscard(*this, A, Loc, R1, R2, /*isCtor=*/true))
311        return;
312    }
313  } else if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
314    if (const TagDecl *TD = ILE->getType()->getAsTagDecl()) {
315
316      if (DiagnoseNoDiscard(*this, TD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
317                            R2, /*isCtor=*/false))
318        return;
319    }
320  } else if (ShouldSuppress)
321    return;
322
323  E = WarnExpr;
324  if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
325    if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
326      Diag(Loc, diag::err_arc_unused_init_message) << R1;
327      return;
328    }
329    const ObjCMethodDecl *MD = ME->getMethodDecl();
330    if (MD) {
331      if (DiagnoseNoDiscard(*this, MD->getAttr<WarnUnusedResultAttr>(), Loc, R1,
332                            R2, /*isCtor=*/false))
333        return;
334    }
335  } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
336    const Expr *Source = POE->getSyntacticForm();
337    // Handle the actually selected call of an OpenMP specialized call.
338    if (LangOpts.OpenMP && isa<CallExpr>(Source) &&
339        POE->getNumSemanticExprs() == 1 &&
340        isa<CallExpr>(POE->getSemanticExpr(0)))
341      return DiagnoseUnusedExprResult(POE->getSemanticExpr(0));
342    if (isa<ObjCSubscriptRefExpr>(Source))
343      DiagID = diag::warn_unused_container_subscript_expr;
344    else
345      DiagID = diag::warn_unused_property_expr;
346  } else if (const CXXFunctionalCastExpr *FC
347                                       = dyn_cast<CXXFunctionalCastExpr>(E)) {
348    const Expr *E = FC->getSubExpr();
349    if (const CXXBindTemporaryExpr *TE = dyn_cast<CXXBindTemporaryExpr>(E))
350      E = TE->getSubExpr();
351    if (isa<CXXTemporaryObjectExpr>(E))
352      return;
353    if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(E))
354      if (const CXXRecordDecl *RD = CE->getType()->getAsCXXRecordDecl())
355        if (!RD->getAttr<WarnUnusedAttr>())
356          return;
357  }
358  // Diagnose "(void*) blah" as a typo for "(void) blah".
359  else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
360    TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
361    QualType T = TI->getType();
362
363    // We really do want to use the non-canonical type here.
364    if (T == Context.VoidPtrTy) {
365      PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
366
367      Diag(Loc, diag::warn_unused_voidptr)
368        << FixItHint::CreateRemoval(TL.getStarLoc());
369      return;
370    }
371  }
372
373  // Tell the user to assign it into a variable to force a volatile load if this
374  // isn't an array.
375  if (E->isGLValue() && E->getType().isVolatileQualified() &&
376      !E->getType()->isArrayType()) {
377    Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
378    return;
379  }
380
381  DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
382}
383
384void Sema::ActOnStartOfCompoundStmt(bool IsStmtExpr) {
385  PushCompoundScope(IsStmtExpr);
386}
387
388void Sema::ActOnFinishOfCompoundStmt() {
389  PopCompoundScope();
390}
391
392sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
393  return getCurFunction()->CompoundScopes.back();
394}
395
396StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
397                                   ArrayRef<Stmt *> Elts, bool isStmtExpr) {
398  const unsigned NumElts = Elts.size();
399
400  // Mark the current function as usng floating point constrained intrinsics
401  if (getCurFPFeatures().isFPConstrained())
402    if (FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext))
403      F->setUsesFPIntrin(true);
404
405  // If we're in C89 mode, check that we don't have any decls after stmts.  If
406  // so, emit an extension diagnostic.
407  if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
408    // Note that __extension__ can be around a decl.
409    unsigned i = 0;
410    // Skip over all declarations.
411    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
412      /*empty*/;
413
414    // We found the end of the list or a statement.  Scan for another declstmt.
415    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
416      /*empty*/;
417
418    if (i != NumElts) {
419      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
420      Diag(D->getLocation(), diag::ext_mixed_decls_code);
421    }
422  }
423
424  // Check for suspicious empty body (null statement) in `for' and `while'
425  // statements.  Don't do anything for template instantiations, this just adds
426  // noise.
427  if (NumElts != 0 && !CurrentInstantiationScope &&
428      getCurCompoundScope().HasEmptyLoopBodies) {
429    for (unsigned i = 0; i != NumElts - 1; ++i)
430      DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
431  }
432
433  return CompoundStmt::Create(Context, Elts, L, R);
434}
435
436ExprResult
437Sema::ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val) {
438  if (!Val.get())
439    return Val;
440
441  if (DiagnoseUnexpandedParameterPack(Val.get()))
442    return ExprError();
443
444  // If we're not inside a switch, let the 'case' statement handling diagnose
445  // this. Just clean up after the expression as best we can.
446  if (getCurFunction()->SwitchStack.empty())
447    return ActOnFinishFullExpr(Val.get(), Val.get()->getExprLoc(), false,
448                               getLangOpts().CPlusPlus11);
449
450  Expr *CondExpr =
451      getCurFunction()->SwitchStack.back().getPointer()->getCond();
452  if (!CondExpr)
453    return ExprError();
454  QualType CondType = CondExpr->getType();
455
456  auto CheckAndFinish = [&](Expr *E) {
457    if (CondType->isDependentType() || E->isTypeDependent())
458      return ExprResult(E);
459
460    if (getLangOpts().CPlusPlus11) {
461      // C++11 [stmt.switch]p2: the constant-expression shall be a converted
462      // constant expression of the promoted type of the switch condition.
463      llvm::APSInt TempVal;
464      return CheckConvertedConstantExpression(E, CondType, TempVal,
465                                              CCEK_CaseValue);
466    }
467
468    ExprResult ER = E;
469    if (!E->isValueDependent())
470      ER = VerifyIntegerConstantExpression(E);
471    if (!ER.isInvalid())
472      ER = DefaultLvalueConversion(ER.get());
473    if (!ER.isInvalid())
474      ER = ImpCastExprToType(ER.get(), CondType, CK_IntegralCast);
475    if (!ER.isInvalid())
476      ER = ActOnFinishFullExpr(ER.get(), ER.get()->getExprLoc(), false);
477    return ER;
478  };
479
480  ExprResult Converted = CorrectDelayedTyposInExpr(
481      Val, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
482      CheckAndFinish);
483  if (Converted.get() == Val.get())
484    Converted = CheckAndFinish(Val.get());
485  return Converted;
486}
487
488StmtResult
489Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHSVal,
490                    SourceLocation DotDotDotLoc, ExprResult RHSVal,
491                    SourceLocation ColonLoc) {
492  assert((LHSVal.isInvalid() || LHSVal.get()) && "missing LHS value");
493  assert((DotDotDotLoc.isInvalid() ? RHSVal.isUnset()
494                                   : RHSVal.isInvalid() || RHSVal.get()) &&
495         "missing RHS value");
496
497  if (getCurFunction()->SwitchStack.empty()) {
498    Diag(CaseLoc, diag::err_case_not_in_switch);
499    return StmtError();
500  }
501
502  if (LHSVal.isInvalid() || RHSVal.isInvalid()) {
503    getCurFunction()->SwitchStack.back().setInt(true);
504    return StmtError();
505  }
506
507  auto *CS = CaseStmt::Create(Context, LHSVal.get(), RHSVal.get(),
508                              CaseLoc, DotDotDotLoc, ColonLoc);
509  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(CS);
510  return CS;
511}
512
513/// ActOnCaseStmtBody - This installs a statement as the body of a case.
514void Sema::ActOnCaseStmtBody(Stmt *S, Stmt *SubStmt) {
515  cast<CaseStmt>(S)->setSubStmt(SubStmt);
516}
517
518StmtResult
519Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
520                       Stmt *SubStmt, Scope *CurScope) {
521  if (getCurFunction()->SwitchStack.empty()) {
522    Diag(DefaultLoc, diag::err_default_not_in_switch);
523    return SubStmt;
524  }
525
526  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
527  getCurFunction()->SwitchStack.back().getPointer()->addSwitchCase(DS);
528  return DS;
529}
530
531StmtResult
532Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
533                     SourceLocation ColonLoc, Stmt *SubStmt) {
534  // If the label was multiply defined, reject it now.
535  if (TheDecl->getStmt()) {
536    Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
537    Diag(TheDecl->getLocation(), diag::note_previous_definition);
538    return SubStmt;
539  }
540
541  // Otherwise, things are good.  Fill in the declaration and return it.
542  LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
543  TheDecl->setStmt(LS);
544  if (!TheDecl->isGnuLocal()) {
545    TheDecl->setLocStart(IdentLoc);
546    if (!TheDecl->isMSAsmLabel()) {
547      // Don't update the location of MS ASM labels.  These will result in
548      // a diagnostic, and changing the location here will mess that up.
549      TheDecl->setLocation(IdentLoc);
550    }
551  }
552  return LS;
553}
554
555StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
556                                     ArrayRef<const Attr*> Attrs,
557                                     Stmt *SubStmt) {
558  // Fill in the declaration and return it.
559  AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
560  return LS;
561}
562
563namespace {
564class CommaVisitor : public EvaluatedExprVisitor<CommaVisitor> {
565  typedef EvaluatedExprVisitor<CommaVisitor> Inherited;
566  Sema &SemaRef;
567public:
568  CommaVisitor(Sema &SemaRef) : Inherited(SemaRef.Context), SemaRef(SemaRef) {}
569  void VisitBinaryOperator(BinaryOperator *E) {
570    if (E->getOpcode() == BO_Comma)
571      SemaRef.DiagnoseCommaOperator(E->getLHS(), E->getExprLoc());
572    EvaluatedExprVisitor<CommaVisitor>::VisitBinaryOperator(E);
573  }
574};
575}
576
577StmtResult
578Sema::ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr, Stmt *InitStmt,
579                  ConditionResult Cond,
580                  Stmt *thenStmt, SourceLocation ElseLoc,
581                  Stmt *elseStmt) {
582  if (Cond.isInvalid())
583    Cond = ConditionResult(
584        *this, nullptr,
585        MakeFullExpr(new (Context) OpaqueValueExpr(SourceLocation(),
586                                                   Context.BoolTy, VK_RValue),
587                     IfLoc),
588        false);
589
590  Expr *CondExpr = Cond.get().second;
591  // Only call the CommaVisitor when not C89 due to differences in scope flags.
592  if ((getLangOpts().C99 || getLangOpts().CPlusPlus) &&
593      !Diags.isIgnored(diag::warn_comma_operator, CondExpr->getExprLoc()))
594    CommaVisitor(*this).Visit(CondExpr);
595
596  if (!elseStmt)
597    DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), thenStmt,
598                          diag::warn_empty_if_body);
599
600  return BuildIfStmt(IfLoc, IsConstexpr, InitStmt, Cond, thenStmt, ElseLoc,
601                     elseStmt);
602}
603
604StmtResult Sema::BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
605                             Stmt *InitStmt, ConditionResult Cond,
606                             Stmt *thenStmt, SourceLocation ElseLoc,
607                             Stmt *elseStmt) {
608  if (Cond.isInvalid())
609    return StmtError();
610
611  if (IsConstexpr || isa<ObjCAvailabilityCheckExpr>(Cond.get().second))
612    setFunctionHasBranchProtectedScope();
613
614  return IfStmt::Create(Context, IfLoc, IsConstexpr, InitStmt, Cond.get().first,
615                        Cond.get().second, thenStmt, ElseLoc, elseStmt);
616}
617
618namespace {
619  struct CaseCompareFunctor {
620    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
621                    const llvm::APSInt &RHS) {
622      return LHS.first < RHS;
623    }
624    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
625                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
626      return LHS.first < RHS.first;
627    }
628    bool operator()(const llvm::APSInt &LHS,
629                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
630      return LHS < RHS.first;
631    }
632  };
633}
634
635/// CmpCaseVals - Comparison predicate for sorting case values.
636///
637static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
638                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
639  if (lhs.first < rhs.first)
640    return true;
641
642  if (lhs.first == rhs.first &&
643      lhs.second->getCaseLoc().getRawEncoding()
644       < rhs.second->getCaseLoc().getRawEncoding())
645    return true;
646  return false;
647}
648
649/// CmpEnumVals - Comparison predicate for sorting enumeration values.
650///
651static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
652                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
653{
654  return lhs.first < rhs.first;
655}
656
657/// EqEnumVals - Comparison preficate for uniqing enumeration values.
658///
659static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
660                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
661{
662  return lhs.first == rhs.first;
663}
664
665/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
666/// potentially integral-promoted expression @p expr.
667static QualType GetTypeBeforeIntegralPromotion(const Expr *&E) {
668  if (const auto *FE = dyn_cast<FullExpr>(E))
669    E = FE->getSubExpr();
670  while (const auto *ImpCast = dyn_cast<ImplicitCastExpr>(E)) {
671    if (ImpCast->getCastKind() != CK_IntegralCast) break;
672    E = ImpCast->getSubExpr();
673  }
674  return E->getType();
675}
676
677ExprResult Sema::CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond) {
678  class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
679    Expr *Cond;
680
681  public:
682    SwitchConvertDiagnoser(Expr *Cond)
683        : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
684          Cond(Cond) {}
685
686    SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
687                                         QualType T) override {
688      return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
689    }
690
691    SemaDiagnosticBuilder diagnoseIncomplete(
692        Sema &S, SourceLocation Loc, QualType T) override {
693      return S.Diag(Loc, diag::err_switch_incomplete_class_type)
694               << T << Cond->getSourceRange();
695    }
696
697    SemaDiagnosticBuilder diagnoseExplicitConv(
698        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
699      return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
700    }
701
702    SemaDiagnosticBuilder noteExplicitConv(
703        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
704      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
705        << ConvTy->isEnumeralType() << ConvTy;
706    }
707
708    SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
709                                            QualType T) override {
710      return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
711    }
712
713    SemaDiagnosticBuilder noteAmbiguous(
714        Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
715      return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
716      << ConvTy->isEnumeralType() << ConvTy;
717    }
718
719    SemaDiagnosticBuilder diagnoseConversion(
720        Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
721      llvm_unreachable("conversion functions are permitted");
722    }
723  } SwitchDiagnoser(Cond);
724
725  ExprResult CondResult =
726      PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
727  if (CondResult.isInvalid())
728    return ExprError();
729
730  // FIXME: PerformContextualImplicitConversion doesn't always tell us if it
731  // failed and produced a diagnostic.
732  Cond = CondResult.get();
733  if (!Cond->isTypeDependent() &&
734      !Cond->getType()->isIntegralOrEnumerationType())
735    return ExprError();
736
737  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
738  return UsualUnaryConversions(Cond);
739}
740
741StmtResult Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
742                                        Stmt *InitStmt, ConditionResult Cond) {
743  Expr *CondExpr = Cond.get().second;
744  assert((Cond.isInvalid() || CondExpr) && "switch with no condition");
745
746  if (CondExpr && !CondExpr->isTypeDependent()) {
747    // We have already converted the expression to an integral or enumeration
748    // type, when we parsed the switch condition. There are cases where we don't
749    // have an appropriate type, e.g. a typo-expr Cond was corrected to an
750    // inappropriate-type expr, we just return an error.
751    if (!CondExpr->getType()->isIntegralOrEnumerationType())
752      return StmtError();
753    if (CondExpr->isKnownToHaveBooleanValue()) {
754      // switch(bool_expr) {...} is often a programmer error, e.g.
755      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
756      // One can always use an if statement instead of switch(bool_expr).
757      Diag(SwitchLoc, diag::warn_bool_switch_condition)
758          << CondExpr->getSourceRange();
759    }
760  }
761
762  setFunctionHasBranchIntoScope();
763
764  auto *SS = SwitchStmt::Create(Context, InitStmt, Cond.get().first, CondExpr);
765  getCurFunction()->SwitchStack.push_back(
766      FunctionScopeInfo::SwitchInfo(SS, false));
767  return SS;
768}
769
770static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
771  Val = Val.extOrTrunc(BitWidth);
772  Val.setIsSigned(IsSigned);
773}
774
775/// Check the specified case value is in range for the given unpromoted switch
776/// type.
777static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
778                           unsigned UnpromotedWidth, bool UnpromotedSign) {
779  // In C++11 onwards, this is checked by the language rules.
780  if (S.getLangOpts().CPlusPlus11)
781    return;
782
783  // If the case value was signed and negative and the switch expression is
784  // unsigned, don't bother to warn: this is implementation-defined behavior.
785  // FIXME: Introduce a second, default-ignored warning for this case?
786  if (UnpromotedWidth < Val.getBitWidth()) {
787    llvm::APSInt ConvVal(Val);
788    AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
789    AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
790    // FIXME: Use different diagnostics for overflow  in conversion to promoted
791    // type versus "switch expression cannot have this value". Use proper
792    // IntRange checking rather than just looking at the unpromoted type here.
793    if (ConvVal != Val)
794      S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
795                                                  << ConvVal.toString(10);
796  }
797}
798
799typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
800
801/// Returns true if we should emit a diagnostic about this case expression not
802/// being a part of the enum used in the switch controlling expression.
803static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
804                                              const EnumDecl *ED,
805                                              const Expr *CaseExpr,
806                                              EnumValsTy::iterator &EI,
807                                              EnumValsTy::iterator &EIEnd,
808                                              const llvm::APSInt &Val) {
809  if (!ED->isClosed())
810    return false;
811
812  if (const DeclRefExpr *DRE =
813          dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
814    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
815      QualType VarType = VD->getType();
816      QualType EnumType = S.Context.getTypeDeclType(ED);
817      if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
818          S.Context.hasSameUnqualifiedType(EnumType, VarType))
819        return false;
820    }
821  }
822
823  if (ED->hasAttr<FlagEnumAttr>())
824    return !S.IsValueInFlagEnum(ED, Val, false);
825
826  while (EI != EIEnd && EI->first < Val)
827    EI++;
828
829  if (EI != EIEnd && EI->first == Val)
830    return false;
831
832  return true;
833}
834
835static void checkEnumTypesInSwitchStmt(Sema &S, const Expr *Cond,
836                                       const Expr *Case) {
837  QualType CondType = Cond->getType();
838  QualType CaseType = Case->getType();
839
840  const EnumType *CondEnumType = CondType->getAs<EnumType>();
841  const EnumType *CaseEnumType = CaseType->getAs<EnumType>();
842  if (!CondEnumType || !CaseEnumType)
843    return;
844
845  // Ignore anonymous enums.
846  if (!CondEnumType->getDecl()->getIdentifier() &&
847      !CondEnumType->getDecl()->getTypedefNameForAnonDecl())
848    return;
849  if (!CaseEnumType->getDecl()->getIdentifier() &&
850      !CaseEnumType->getDecl()->getTypedefNameForAnonDecl())
851    return;
852
853  if (S.Context.hasSameUnqualifiedType(CondType, CaseType))
854    return;
855
856  S.Diag(Case->getExprLoc(), diag::warn_comparison_of_mixed_enum_types_switch)
857      << CondType << CaseType << Cond->getSourceRange()
858      << Case->getSourceRange();
859}
860
861StmtResult
862Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
863                            Stmt *BodyStmt) {
864  SwitchStmt *SS = cast<SwitchStmt>(Switch);
865  bool CaseListIsIncomplete = getCurFunction()->SwitchStack.back().getInt();
866  assert(SS == getCurFunction()->SwitchStack.back().getPointer() &&
867         "switch stack missing push/pop!");
868
869  getCurFunction()->SwitchStack.pop_back();
870
871  if (!BodyStmt) return StmtError();
872  SS->setBody(BodyStmt, SwitchLoc);
873
874  Expr *CondExpr = SS->getCond();
875  if (!CondExpr) return StmtError();
876
877  QualType CondType = CondExpr->getType();
878
879  // C++ 6.4.2.p2:
880  // Integral promotions are performed (on the switch condition).
881  //
882  // A case value unrepresentable by the original switch condition
883  // type (before the promotion) doesn't make sense, even when it can
884  // be represented by the promoted type.  Therefore we need to find
885  // the pre-promotion type of the switch condition.
886  const Expr *CondExprBeforePromotion = CondExpr;
887  QualType CondTypeBeforePromotion =
888      GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
889
890  // Get the bitwidth of the switched-on value after promotions. We must
891  // convert the integer case values to this width before comparison.
892  bool HasDependentValue
893    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
894  unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
895  bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
896
897  // Get the width and signedness that the condition might actually have, for
898  // warning purposes.
899  // FIXME: Grab an IntRange for the condition rather than using the unpromoted
900  // type.
901  unsigned CondWidthBeforePromotion
902    = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
903  bool CondIsSignedBeforePromotion
904    = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
905
906  // Accumulate all of the case values in a vector so that we can sort them
907  // and detect duplicates.  This vector contains the APInt for the case after
908  // it has been converted to the condition type.
909  typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
910  CaseValsTy CaseVals;
911
912  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
913  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
914  CaseRangesTy CaseRanges;
915
916  DefaultStmt *TheDefaultStmt = nullptr;
917
918  bool CaseListIsErroneous = false;
919
920  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
921       SC = SC->getNextSwitchCase()) {
922
923    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
924      if (TheDefaultStmt) {
925        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
926        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
927
928        // FIXME: Remove the default statement from the switch block so that
929        // we'll return a valid AST.  This requires recursing down the AST and
930        // finding it, not something we are set up to do right now.  For now,
931        // just lop the entire switch stmt out of the AST.
932        CaseListIsErroneous = true;
933      }
934      TheDefaultStmt = DS;
935
936    } else {
937      CaseStmt *CS = cast<CaseStmt>(SC);
938
939      Expr *Lo = CS->getLHS();
940
941      if (Lo->isValueDependent()) {
942        HasDependentValue = true;
943        break;
944      }
945
946      // We already verified that the expression has a constant value;
947      // get that value (prior to conversions).
948      const Expr *LoBeforePromotion = Lo;
949      GetTypeBeforeIntegralPromotion(LoBeforePromotion);
950      llvm::APSInt LoVal = LoBeforePromotion->EvaluateKnownConstInt(Context);
951
952      // Check the unconverted value is within the range of possible values of
953      // the switch expression.
954      checkCaseValue(*this, Lo->getBeginLoc(), LoVal, CondWidthBeforePromotion,
955                     CondIsSignedBeforePromotion);
956
957      // FIXME: This duplicates the check performed for warn_not_in_enum below.
958      checkEnumTypesInSwitchStmt(*this, CondExprBeforePromotion,
959                                 LoBeforePromotion);
960
961      // Convert the value to the same width/sign as the condition.
962      AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
963
964      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
965      if (CS->getRHS()) {
966        if (CS->getRHS()->isValueDependent()) {
967          HasDependentValue = true;
968          break;
969        }
970        CaseRanges.push_back(std::make_pair(LoVal, CS));
971      } else
972        CaseVals.push_back(std::make_pair(LoVal, CS));
973    }
974  }
975
976  if (!HasDependentValue) {
977    // If we don't have a default statement, check whether the
978    // condition is constant.
979    llvm::APSInt ConstantCondValue;
980    bool HasConstantCond = false;
981    if (!TheDefaultStmt) {
982      Expr::EvalResult Result;
983      HasConstantCond = CondExpr->EvaluateAsInt(Result, Context,
984                                                Expr::SE_AllowSideEffects);
985      if (Result.Val.isInt())
986        ConstantCondValue = Result.Val.getInt();
987      assert(!HasConstantCond ||
988             (ConstantCondValue.getBitWidth() == CondWidth &&
989              ConstantCondValue.isSigned() == CondIsSigned));
990    }
991    bool ShouldCheckConstantCond = HasConstantCond;
992
993    // Sort all the scalar case values so we can easily detect duplicates.
994    llvm::stable_sort(CaseVals, CmpCaseVals);
995
996    if (!CaseVals.empty()) {
997      for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
998        if (ShouldCheckConstantCond &&
999            CaseVals[i].first == ConstantCondValue)
1000          ShouldCheckConstantCond = false;
1001
1002        if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
1003          // If we have a duplicate, report it.
1004          // First, determine if either case value has a name
1005          StringRef PrevString, CurrString;
1006          Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
1007          Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
1008          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
1009            PrevString = DeclRef->getDecl()->getName();
1010          }
1011          if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
1012            CurrString = DeclRef->getDecl()->getName();
1013          }
1014          SmallString<16> CaseValStr;
1015          CaseVals[i-1].first.toString(CaseValStr);
1016
1017          if (PrevString == CurrString)
1018            Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1019                 diag::err_duplicate_case)
1020                << (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
1021          else
1022            Diag(CaseVals[i].second->getLHS()->getBeginLoc(),
1023                 diag::err_duplicate_case_differing_expr)
1024                << (PrevString.empty() ? StringRef(CaseValStr) : PrevString)
1025                << (CurrString.empty() ? StringRef(CaseValStr) : CurrString)
1026                << CaseValStr;
1027
1028          Diag(CaseVals[i - 1].second->getLHS()->getBeginLoc(),
1029               diag::note_duplicate_case_prev);
1030          // FIXME: We really want to remove the bogus case stmt from the
1031          // substmt, but we have no way to do this right now.
1032          CaseListIsErroneous = true;
1033        }
1034      }
1035    }
1036
1037    // Detect duplicate case ranges, which usually don't exist at all in
1038    // the first place.
1039    if (!CaseRanges.empty()) {
1040      // Sort all the case ranges by their low value so we can easily detect
1041      // overlaps between ranges.
1042      llvm::stable_sort(CaseRanges);
1043
1044      // Scan the ranges, computing the high values and removing empty ranges.
1045      std::vector<llvm::APSInt> HiVals;
1046      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1047        llvm::APSInt &LoVal = CaseRanges[i].first;
1048        CaseStmt *CR = CaseRanges[i].second;
1049        Expr *Hi = CR->getRHS();
1050
1051        const Expr *HiBeforePromotion = Hi;
1052        GetTypeBeforeIntegralPromotion(HiBeforePromotion);
1053        llvm::APSInt HiVal = HiBeforePromotion->EvaluateKnownConstInt(Context);
1054
1055        // Check the unconverted value is within the range of possible values of
1056        // the switch expression.
1057        checkCaseValue(*this, Hi->getBeginLoc(), HiVal,
1058                       CondWidthBeforePromotion, CondIsSignedBeforePromotion);
1059
1060        // Convert the value to the same width/sign as the condition.
1061        AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
1062
1063        // If the low value is bigger than the high value, the case is empty.
1064        if (LoVal > HiVal) {
1065          Diag(CR->getLHS()->getBeginLoc(), diag::warn_case_empty_range)
1066              << SourceRange(CR->getLHS()->getBeginLoc(), Hi->getEndLoc());
1067          CaseRanges.erase(CaseRanges.begin()+i);
1068          --i;
1069          --e;
1070          continue;
1071        }
1072
1073        if (ShouldCheckConstantCond &&
1074            LoVal <= ConstantCondValue &&
1075            ConstantCondValue <= HiVal)
1076          ShouldCheckConstantCond = false;
1077
1078        HiVals.push_back(HiVal);
1079      }
1080
1081      // Rescan the ranges, looking for overlap with singleton values and other
1082      // ranges.  Since the range list is sorted, we only need to compare case
1083      // ranges with their neighbors.
1084      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
1085        llvm::APSInt &CRLo = CaseRanges[i].first;
1086        llvm::APSInt &CRHi = HiVals[i];
1087        CaseStmt *CR = CaseRanges[i].second;
1088
1089        // Check to see whether the case range overlaps with any
1090        // singleton cases.
1091        CaseStmt *OverlapStmt = nullptr;
1092        llvm::APSInt OverlapVal(32);
1093
1094        // Find the smallest value >= the lower bound.  If I is in the
1095        // case range, then we have overlap.
1096        CaseValsTy::iterator I =
1097            llvm::lower_bound(CaseVals, CRLo, CaseCompareFunctor());
1098        if (I != CaseVals.end() && I->first < CRHi) {
1099          OverlapVal  = I->first;   // Found overlap with scalar.
1100          OverlapStmt = I->second;
1101        }
1102
1103        // Find the smallest value bigger than the upper bound.
1104        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1105        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1106          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1107          OverlapStmt = (I-1)->second;
1108        }
1109
1110        // Check to see if this case stmt overlaps with the subsequent
1111        // case range.
1112        if (i && CRLo <= HiVals[i-1]) {
1113          OverlapVal  = HiVals[i-1];       // Found overlap with range.
1114          OverlapStmt = CaseRanges[i-1].second;
1115        }
1116
1117        if (OverlapStmt) {
1118          // If we have a duplicate, report it.
1119          Diag(CR->getLHS()->getBeginLoc(), diag::err_duplicate_case)
1120              << OverlapVal.toString(10);
1121          Diag(OverlapStmt->getLHS()->getBeginLoc(),
1122               diag::note_duplicate_case_prev);
1123          // FIXME: We really want to remove the bogus case stmt from the
1124          // substmt, but we have no way to do this right now.
1125          CaseListIsErroneous = true;
1126        }
1127      }
1128    }
1129
1130    // Complain if we have a constant condition and we didn't find a match.
1131    if (!CaseListIsErroneous && !CaseListIsIncomplete &&
1132        ShouldCheckConstantCond) {
1133      // TODO: it would be nice if we printed enums as enums, chars as
1134      // chars, etc.
1135      Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1136        << ConstantCondValue.toString(10)
1137        << CondExpr->getSourceRange();
1138    }
1139
1140    // Check to see if switch is over an Enum and handles all of its
1141    // values.  We only issue a warning if there is not 'default:', but
1142    // we still do the analysis to preserve this information in the AST
1143    // (which can be used by flow-based analyes).
1144    //
1145    const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1146
1147    // If switch has default case, then ignore it.
1148    if (!CaseListIsErroneous && !CaseListIsIncomplete && !HasConstantCond &&
1149        ET && ET->getDecl()->isCompleteDefinition()) {
1150      const EnumDecl *ED = ET->getDecl();
1151      EnumValsTy EnumVals;
1152
1153      // Gather all enum values, set their type and sort them,
1154      // allowing easier comparison with CaseVals.
1155      for (auto *EDI : ED->enumerators()) {
1156        llvm::APSInt Val = EDI->getInitVal();
1157        AdjustAPSInt(Val, CondWidth, CondIsSigned);
1158        EnumVals.push_back(std::make_pair(Val, EDI));
1159      }
1160      llvm::stable_sort(EnumVals, CmpEnumVals);
1161      auto EI = EnumVals.begin(), EIEnd =
1162        std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1163
1164      // See which case values aren't in enum.
1165      for (CaseValsTy::const_iterator CI = CaseVals.begin();
1166          CI != CaseVals.end(); CI++) {
1167        Expr *CaseExpr = CI->second->getLHS();
1168        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1169                                              CI->first))
1170          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1171            << CondTypeBeforePromotion;
1172      }
1173
1174      // See which of case ranges aren't in enum
1175      EI = EnumVals.begin();
1176      for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1177          RI != CaseRanges.end(); RI++) {
1178        Expr *CaseExpr = RI->second->getLHS();
1179        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1180                                              RI->first))
1181          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1182            << CondTypeBeforePromotion;
1183
1184        llvm::APSInt Hi =
1185          RI->second->getRHS()->EvaluateKnownConstInt(Context);
1186        AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1187
1188        CaseExpr = RI->second->getRHS();
1189        if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1190                                              Hi))
1191          Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1192            << CondTypeBeforePromotion;
1193      }
1194
1195      // Check which enum vals aren't in switch
1196      auto CI = CaseVals.begin();
1197      auto RI = CaseRanges.begin();
1198      bool hasCasesNotInSwitch = false;
1199
1200      SmallVector<DeclarationName,8> UnhandledNames;
1201
1202      for (EI = EnumVals.begin(); EI != EIEnd; EI++) {
1203        // Don't warn about omitted unavailable EnumConstantDecls.
1204        switch (EI->second->getAvailability()) {
1205        case AR_Deprecated:
1206          // Omitting a deprecated constant is ok; it should never materialize.
1207        case AR_Unavailable:
1208          continue;
1209
1210        case AR_NotYetIntroduced:
1211          // Partially available enum constants should be present. Note that we
1212          // suppress -Wunguarded-availability diagnostics for such uses.
1213        case AR_Available:
1214          break;
1215        }
1216
1217        if (EI->second->hasAttr<UnusedAttr>())
1218          continue;
1219
1220        // Drop unneeded case values
1221        while (CI != CaseVals.end() && CI->first < EI->first)
1222          CI++;
1223
1224        if (CI != CaseVals.end() && CI->first == EI->first)
1225          continue;
1226
1227        // Drop unneeded case ranges
1228        for (; RI != CaseRanges.end(); RI++) {
1229          llvm::APSInt Hi =
1230            RI->second->getRHS()->EvaluateKnownConstInt(Context);
1231          AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1232          if (EI->first <= Hi)
1233            break;
1234        }
1235
1236        if (RI == CaseRanges.end() || EI->first < RI->first) {
1237          hasCasesNotInSwitch = true;
1238          UnhandledNames.push_back(EI->second->getDeclName());
1239        }
1240      }
1241
1242      if (TheDefaultStmt && UnhandledNames.empty() && ED->isClosedNonFlag())
1243        Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1244
1245      // Produce a nice diagnostic if multiple values aren't handled.
1246      if (!UnhandledNames.empty()) {
1247        DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1248                                    TheDefaultStmt ? diag::warn_def_missing_case
1249                                                   : diag::warn_missing_case)
1250                               << (int)UnhandledNames.size();
1251
1252        for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1253             I != E; ++I)
1254          DB << UnhandledNames[I];
1255      }
1256
1257      if (!hasCasesNotInSwitch)
1258        SS->setAllEnumCasesCovered();
1259    }
1260  }
1261
1262  if (BodyStmt)
1263    DiagnoseEmptyStmtBody(CondExpr->getEndLoc(), BodyStmt,
1264                          diag::warn_empty_switch_body);
1265
1266  // FIXME: If the case list was broken is some way, we don't have a good system
1267  // to patch it up.  Instead, just return the whole substmt as broken.
1268  if (CaseListIsErroneous)
1269    return StmtError();
1270
1271  return SS;
1272}
1273
1274void
1275Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1276                             Expr *SrcExpr) {
1277  if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1278    return;
1279
1280  if (const EnumType *ET = DstType->getAs<EnumType>())
1281    if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1282        SrcType->isIntegerType()) {
1283      if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1284          SrcExpr->isIntegerConstantExpr(Context)) {
1285        // Get the bitwidth of the enum value before promotions.
1286        unsigned DstWidth = Context.getIntWidth(DstType);
1287        bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1288
1289        llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1290        AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1291        const EnumDecl *ED = ET->getDecl();
1292
1293        if (!ED->isClosed())
1294          return;
1295
1296        if (ED->hasAttr<FlagEnumAttr>()) {
1297          if (!IsValueInFlagEnum(ED, RhsVal, true))
1298            Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1299              << DstType.getUnqualifiedType();
1300        } else {
1301          typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1302              EnumValsTy;
1303          EnumValsTy EnumVals;
1304
1305          // Gather all enum values, set their type and sort them,
1306          // allowing easier comparison with rhs constant.
1307          for (auto *EDI : ED->enumerators()) {
1308            llvm::APSInt Val = EDI->getInitVal();
1309            AdjustAPSInt(Val, DstWidth, DstIsSigned);
1310            EnumVals.push_back(std::make_pair(Val, EDI));
1311          }
1312          if (EnumVals.empty())
1313            return;
1314          llvm::stable_sort(EnumVals, CmpEnumVals);
1315          EnumValsTy::iterator EIend =
1316              std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1317
1318          // See which values aren't in the enum.
1319          EnumValsTy::const_iterator EI = EnumVals.begin();
1320          while (EI != EIend && EI->first < RhsVal)
1321            EI++;
1322          if (EI == EIend || EI->first != RhsVal) {
1323            Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1324                << DstType.getUnqualifiedType();
1325          }
1326        }
1327      }
1328    }
1329}
1330
1331StmtResult Sema::ActOnWhileStmt(SourceLocation WhileLoc,
1332                                SourceLocation LParenLoc, ConditionResult Cond,
1333                                SourceLocation RParenLoc, Stmt *Body) {
1334  if (Cond.isInvalid())
1335    return StmtError();
1336
1337  auto CondVal = Cond.get();
1338  CheckBreakContinueBinding(CondVal.second);
1339
1340  if (CondVal.second &&
1341      !Diags.isIgnored(diag::warn_comma_operator, CondVal.second->getExprLoc()))
1342    CommaVisitor(*this).Visit(CondVal.second);
1343
1344  if (isa<NullStmt>(Body))
1345    getCurCompoundScope().setHasEmptyLoopBodies();
1346
1347  return WhileStmt::Create(Context, CondVal.first, CondVal.second, Body,
1348                           WhileLoc, LParenLoc, RParenLoc);
1349}
1350
1351StmtResult
1352Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1353                  SourceLocation WhileLoc, SourceLocation CondLParen,
1354                  Expr *Cond, SourceLocation CondRParen) {
1355  assert(Cond && "ActOnDoStmt(): missing expression");
1356
1357  CheckBreakContinueBinding(Cond);
1358  ExprResult CondResult = CheckBooleanCondition(DoLoc, Cond);
1359  if (CondResult.isInvalid())
1360    return StmtError();
1361  Cond = CondResult.get();
1362
1363  CondResult = ActOnFinishFullExpr(Cond, DoLoc, /*DiscardedValue*/ false);
1364  if (CondResult.isInvalid())
1365    return StmtError();
1366  Cond = CondResult.get();
1367
1368  // Only call the CommaVisitor for C89 due to differences in scope flags.
1369  if (Cond && !getLangOpts().C99 && !getLangOpts().CPlusPlus &&
1370      !Diags.isIgnored(diag::warn_comma_operator, Cond->getExprLoc()))
1371    CommaVisitor(*this).Visit(Cond);
1372
1373  return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1374}
1375
1376namespace {
1377  // Use SetVector since the diagnostic cares about the ordering of the Decl's.
1378  using DeclSetVector =
1379      llvm::SetVector<VarDecl *, llvm::SmallVector<VarDecl *, 8>,
1380                      llvm::SmallPtrSet<VarDecl *, 8>>;
1381
1382  // This visitor will traverse a conditional statement and store all
1383  // the evaluated decls into a vector.  Simple is set to true if none
1384  // of the excluded constructs are used.
1385  class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1386    DeclSetVector &Decls;
1387    SmallVectorImpl<SourceRange> &Ranges;
1388    bool Simple;
1389  public:
1390    typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1391
1392    DeclExtractor(Sema &S, DeclSetVector &Decls,
1393                  SmallVectorImpl<SourceRange> &Ranges) :
1394        Inherited(S.Context),
1395        Decls(Decls),
1396        Ranges(Ranges),
1397        Simple(true) {}
1398
1399    bool isSimple() { return Simple; }
1400
1401    // Replaces the method in EvaluatedExprVisitor.
1402    void VisitMemberExpr(MemberExpr* E) {
1403      Simple = false;
1404    }
1405
1406    // Any Stmt not explicitly listed will cause the condition to be marked
1407    // complex.
1408    void VisitStmt(Stmt *S) { Simple = false; }
1409
1410    void VisitBinaryOperator(BinaryOperator *E) {
1411      Visit(E->getLHS());
1412      Visit(E->getRHS());
1413    }
1414
1415    void VisitCastExpr(CastExpr *E) {
1416      Visit(E->getSubExpr());
1417    }
1418
1419    void VisitUnaryOperator(UnaryOperator *E) {
1420      // Skip checking conditionals with derefernces.
1421      if (E->getOpcode() == UO_Deref)
1422        Simple = false;
1423      else
1424        Visit(E->getSubExpr());
1425    }
1426
1427    void VisitConditionalOperator(ConditionalOperator *E) {
1428      Visit(E->getCond());
1429      Visit(E->getTrueExpr());
1430      Visit(E->getFalseExpr());
1431    }
1432
1433    void VisitParenExpr(ParenExpr *E) {
1434      Visit(E->getSubExpr());
1435    }
1436
1437    void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1438      Visit(E->getOpaqueValue()->getSourceExpr());
1439      Visit(E->getFalseExpr());
1440    }
1441
1442    void VisitIntegerLiteral(IntegerLiteral *E) { }
1443    void VisitFloatingLiteral(FloatingLiteral *E) { }
1444    void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
1445    void VisitCharacterLiteral(CharacterLiteral *E) { }
1446    void VisitGNUNullExpr(GNUNullExpr *E) { }
1447    void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1448
1449    void VisitDeclRefExpr(DeclRefExpr *E) {
1450      VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1451      if (!VD) {
1452        // Don't allow unhandled Decl types.
1453        Simple = false;
1454        return;
1455      }
1456
1457      Ranges.push_back(E->getSourceRange());
1458
1459      Decls.insert(VD);
1460    }
1461
1462  }; // end class DeclExtractor
1463
1464  // DeclMatcher checks to see if the decls are used in a non-evaluated
1465  // context.
1466  class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1467    DeclSetVector &Decls;
1468    bool FoundDecl;
1469
1470  public:
1471    typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1472
1473    DeclMatcher(Sema &S, DeclSetVector &Decls, Stmt *Statement) :
1474        Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1475      if (!Statement) return;
1476
1477      Visit(Statement);
1478    }
1479
1480    void VisitReturnStmt(ReturnStmt *S) {
1481      FoundDecl = true;
1482    }
1483
1484    void VisitBreakStmt(BreakStmt *S) {
1485      FoundDecl = true;
1486    }
1487
1488    void VisitGotoStmt(GotoStmt *S) {
1489      FoundDecl = true;
1490    }
1491
1492    void VisitCastExpr(CastExpr *E) {
1493      if (E->getCastKind() == CK_LValueToRValue)
1494        CheckLValueToRValueCast(E->getSubExpr());
1495      else
1496        Visit(E->getSubExpr());
1497    }
1498
1499    void CheckLValueToRValueCast(Expr *E) {
1500      E = E->IgnoreParenImpCasts();
1501
1502      if (isa<DeclRefExpr>(E)) {
1503        return;
1504      }
1505
1506      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1507        Visit(CO->getCond());
1508        CheckLValueToRValueCast(CO->getTrueExpr());
1509        CheckLValueToRValueCast(CO->getFalseExpr());
1510        return;
1511      }
1512
1513      if (BinaryConditionalOperator *BCO =
1514              dyn_cast<BinaryConditionalOperator>(E)) {
1515        CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1516        CheckLValueToRValueCast(BCO->getFalseExpr());
1517        return;
1518      }
1519
1520      Visit(E);
1521    }
1522
1523    void VisitDeclRefExpr(DeclRefExpr *E) {
1524      if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1525        if (Decls.count(VD))
1526          FoundDecl = true;
1527    }
1528
1529    void VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
1530      // Only need to visit the semantics for POE.
1531      // SyntaticForm doesn't really use the Decal.
1532      for (auto *S : POE->semantics()) {
1533        if (auto *OVE = dyn_cast<OpaqueValueExpr>(S))
1534          // Look past the OVE into the expression it binds.
1535          Visit(OVE->getSourceExpr());
1536        else
1537          Visit(S);
1538      }
1539    }
1540
1541    bool FoundDeclInUse() { return FoundDecl; }
1542
1543  };  // end class DeclMatcher
1544
1545  void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1546                                        Expr *Third, Stmt *Body) {
1547    // Condition is empty
1548    if (!Second) return;
1549
1550    if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1551                          Second->getBeginLoc()))
1552      return;
1553
1554    PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1555    DeclSetVector Decls;
1556    SmallVector<SourceRange, 10> Ranges;
1557    DeclExtractor DE(S, Decls, Ranges);
1558    DE.Visit(Second);
1559
1560    // Don't analyze complex conditionals.
1561    if (!DE.isSimple()) return;
1562
1563    // No decls found.
1564    if (Decls.size() == 0) return;
1565
1566    // Don't warn on volatile, static, or global variables.
1567    for (auto *VD : Decls)
1568      if (VD->getType().isVolatileQualified() || VD->hasGlobalStorage())
1569        return;
1570
1571    if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1572        DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1573        DeclMatcher(S, Decls, Body).FoundDeclInUse())
1574      return;
1575
1576    // Load decl names into diagnostic.
1577    if (Decls.size() > 4) {
1578      PDiag << 0;
1579    } else {
1580      PDiag << (unsigned)Decls.size();
1581      for (auto *VD : Decls)
1582        PDiag << VD->getDeclName();
1583    }
1584
1585    for (auto Range : Ranges)
1586      PDiag << Range;
1587
1588    S.Diag(Ranges.begin()->getBegin(), PDiag);
1589  }
1590
1591  // If Statement is an incemement or decrement, return true and sets the
1592  // variables Increment and DRE.
1593  bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1594                            DeclRefExpr *&DRE) {
1595    if (auto Cleanups = dyn_cast<ExprWithCleanups>(Statement))
1596      if (!Cleanups->cleanupsHaveSideEffects())
1597        Statement = Cleanups->getSubExpr();
1598
1599    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1600      switch (UO->getOpcode()) {
1601        default: return false;
1602        case UO_PostInc:
1603        case UO_PreInc:
1604          Increment = true;
1605          break;
1606        case UO_PostDec:
1607        case UO_PreDec:
1608          Increment = false;
1609          break;
1610      }
1611      DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1612      return DRE;
1613    }
1614
1615    if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1616      FunctionDecl *FD = Call->getDirectCallee();
1617      if (!FD || !FD->isOverloadedOperator()) return false;
1618      switch (FD->getOverloadedOperator()) {
1619        default: return false;
1620        case OO_PlusPlus:
1621          Increment = true;
1622          break;
1623        case OO_MinusMinus:
1624          Increment = false;
1625          break;
1626      }
1627      DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1628      return DRE;
1629    }
1630
1631    return false;
1632  }
1633
1634  // A visitor to determine if a continue or break statement is a
1635  // subexpression.
1636  class BreakContinueFinder : public ConstEvaluatedExprVisitor<BreakContinueFinder> {
1637    SourceLocation BreakLoc;
1638    SourceLocation ContinueLoc;
1639    bool InSwitch = false;
1640
1641  public:
1642    BreakContinueFinder(Sema &S, const Stmt* Body) :
1643        Inherited(S.Context) {
1644      Visit(Body);
1645    }
1646
1647    typedef ConstEvaluatedExprVisitor<BreakContinueFinder> Inherited;
1648
1649    void VisitContinueStmt(const ContinueStmt* E) {
1650      ContinueLoc = E->getContinueLoc();
1651    }
1652
1653    void VisitBreakStmt(const BreakStmt* E) {
1654      if (!InSwitch)
1655        BreakLoc = E->getBreakLoc();
1656    }
1657
1658    void VisitSwitchStmt(const SwitchStmt* S) {
1659      if (const Stmt *Init = S->getInit())
1660        Visit(Init);
1661      if (const Stmt *CondVar = S->getConditionVariableDeclStmt())
1662        Visit(CondVar);
1663      if (const Stmt *Cond = S->getCond())
1664        Visit(Cond);
1665
1666      // Don't return break statements from the body of a switch.
1667      InSwitch = true;
1668      if (const Stmt *Body = S->getBody())
1669        Visit(Body);
1670      InSwitch = false;
1671    }
1672
1673    void VisitForStmt(const ForStmt *S) {
1674      // Only visit the init statement of a for loop; the body
1675      // has a different break/continue scope.
1676      if (const Stmt *Init = S->getInit())
1677        Visit(Init);
1678    }
1679
1680    void VisitWhileStmt(const WhileStmt *) {
1681      // Do nothing; the children of a while loop have a different
1682      // break/continue scope.
1683    }
1684
1685    void VisitDoStmt(const DoStmt *) {
1686      // Do nothing; the children of a while loop have a different
1687      // break/continue scope.
1688    }
1689
1690    void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
1691      // Only visit the initialization of a for loop; the body
1692      // has a different break/continue scope.
1693      if (const Stmt *Init = S->getInit())
1694        Visit(Init);
1695      if (const Stmt *Range = S->getRangeStmt())
1696        Visit(Range);
1697      if (const Stmt *Begin = S->getBeginStmt())
1698        Visit(Begin);
1699      if (const Stmt *End = S->getEndStmt())
1700        Visit(End);
1701    }
1702
1703    void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
1704      // Only visit the initialization of a for loop; the body
1705      // has a different break/continue scope.
1706      if (const Stmt *Element = S->getElement())
1707        Visit(Element);
1708      if (const Stmt *Collection = S->getCollection())
1709        Visit(Collection);
1710    }
1711
1712    bool ContinueFound() { return ContinueLoc.isValid(); }
1713    bool BreakFound() { return BreakLoc.isValid(); }
1714    SourceLocation GetContinueLoc() { return ContinueLoc; }
1715    SourceLocation GetBreakLoc() { return BreakLoc; }
1716
1717  };  // end class BreakContinueFinder
1718
1719  // Emit a warning when a loop increment/decrement appears twice per loop
1720  // iteration.  The conditions which trigger this warning are:
1721  // 1) The last statement in the loop body and the third expression in the
1722  //    for loop are both increment or both decrement of the same variable
1723  // 2) No continue statements in the loop body.
1724  void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1725    // Return when there is nothing to check.
1726    if (!Body || !Third) return;
1727
1728    if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1729                          Third->getBeginLoc()))
1730      return;
1731
1732    // Get the last statement from the loop body.
1733    CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1734    if (!CS || CS->body_empty()) return;
1735    Stmt *LastStmt = CS->body_back();
1736    if (!LastStmt) return;
1737
1738    bool LoopIncrement, LastIncrement;
1739    DeclRefExpr *LoopDRE, *LastDRE;
1740
1741    if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1742    if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1743
1744    // Check that the two statements are both increments or both decrements
1745    // on the same variable.
1746    if (LoopIncrement != LastIncrement ||
1747        LoopDRE->getDecl() != LastDRE->getDecl()) return;
1748
1749    if (BreakContinueFinder(S, Body).ContinueFound()) return;
1750
1751    S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1752         << LastDRE->getDecl() << LastIncrement;
1753    S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1754         << LoopIncrement;
1755  }
1756
1757} // end namespace
1758
1759
1760void Sema::CheckBreakContinueBinding(Expr *E) {
1761  if (!E || getLangOpts().CPlusPlus)
1762    return;
1763  BreakContinueFinder BCFinder(*this, E);
1764  Scope *BreakParent = CurScope->getBreakParent();
1765  if (BCFinder.BreakFound() && BreakParent) {
1766    if (BreakParent->getFlags() & Scope::SwitchScope) {
1767      Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1768    } else {
1769      Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1770          << "break";
1771    }
1772  } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1773    Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1774        << "continue";
1775  }
1776}
1777
1778StmtResult Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1779                              Stmt *First, ConditionResult Second,
1780                              FullExprArg third, SourceLocation RParenLoc,
1781                              Stmt *Body) {
1782  if (Second.isInvalid())
1783    return StmtError();
1784
1785  if (!getLangOpts().CPlusPlus) {
1786    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1787      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1788      // declare identifiers for objects having storage class 'auto' or
1789      // 'register'.
1790      for (auto *DI : DS->decls()) {
1791        VarDecl *VD = dyn_cast<VarDecl>(DI);
1792        if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1793          VD = nullptr;
1794        if (!VD) {
1795          Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1796          DI->setInvalidDecl();
1797        }
1798      }
1799    }
1800  }
1801
1802  CheckBreakContinueBinding(Second.get().second);
1803  CheckBreakContinueBinding(third.get());
1804
1805  if (!Second.get().first)
1806    CheckForLoopConditionalStatement(*this, Second.get().second, third.get(),
1807                                     Body);
1808  CheckForRedundantIteration(*this, third.get(), Body);
1809
1810  if (Second.get().second &&
1811      !Diags.isIgnored(diag::warn_comma_operator,
1812                       Second.get().second->getExprLoc()))
1813    CommaVisitor(*this).Visit(Second.get().second);
1814
1815  Expr *Third  = third.release().getAs<Expr>();
1816  if (isa<NullStmt>(Body))
1817    getCurCompoundScope().setHasEmptyLoopBodies();
1818
1819  return new (Context)
1820      ForStmt(Context, First, Second.get().second, Second.get().first, Third,
1821              Body, ForLoc, LParenLoc, RParenLoc);
1822}
1823
1824/// In an Objective C collection iteration statement:
1825///   for (x in y)
1826/// x can be an arbitrary l-value expression.  Bind it up as a
1827/// full-expression.
1828StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1829  // Reduce placeholder expressions here.  Note that this rejects the
1830  // use of pseudo-object l-values in this position.
1831  ExprResult result = CheckPlaceholderExpr(E);
1832  if (result.isInvalid()) return StmtError();
1833  E = result.get();
1834
1835  ExprResult FullExpr = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
1836  if (FullExpr.isInvalid())
1837    return StmtError();
1838  return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1839}
1840
1841ExprResult
1842Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1843  if (!collection)
1844    return ExprError();
1845
1846  ExprResult result = CorrectDelayedTyposInExpr(collection);
1847  if (!result.isUsable())
1848    return ExprError();
1849  collection = result.get();
1850
1851  // Bail out early if we've got a type-dependent expression.
1852  if (collection->isTypeDependent()) return collection;
1853
1854  // Perform normal l-value conversion.
1855  result = DefaultFunctionArrayLvalueConversion(collection);
1856  if (result.isInvalid())
1857    return ExprError();
1858  collection = result.get();
1859
1860  // The operand needs to have object-pointer type.
1861  // TODO: should we do a contextual conversion?
1862  const ObjCObjectPointerType *pointerType =
1863    collection->getType()->getAs<ObjCObjectPointerType>();
1864  if (!pointerType)
1865    return Diag(forLoc, diag::err_collection_expr_type)
1866             << collection->getType() << collection->getSourceRange();
1867
1868  // Check that the operand provides
1869  //   - countByEnumeratingWithState:objects:count:
1870  const ObjCObjectType *objectType = pointerType->getObjectType();
1871  ObjCInterfaceDecl *iface = objectType->getInterface();
1872
1873  // If we have a forward-declared type, we can't do this check.
1874  // Under ARC, it is an error not to have a forward-declared class.
1875  if (iface &&
1876      (getLangOpts().ObjCAutoRefCount
1877           ? RequireCompleteType(forLoc, QualType(objectType, 0),
1878                                 diag::err_arc_collection_forward, collection)
1879           : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1880    // Otherwise, if we have any useful type information, check that
1881    // the type declares the appropriate method.
1882  } else if (iface || !objectType->qual_empty()) {
1883    IdentifierInfo *selectorIdents[] = {
1884      &Context.Idents.get("countByEnumeratingWithState"),
1885      &Context.Idents.get("objects"),
1886      &Context.Idents.get("count")
1887    };
1888    Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1889
1890    ObjCMethodDecl *method = nullptr;
1891
1892    // If there's an interface, look in both the public and private APIs.
1893    if (iface) {
1894      method = iface->lookupInstanceMethod(selector);
1895      if (!method) method = iface->lookupPrivateMethod(selector);
1896    }
1897
1898    // Also check protocol qualifiers.
1899    if (!method)
1900      method = LookupMethodInQualifiedType(selector, pointerType,
1901                                           /*instance*/ true);
1902
1903    // If we didn't find it anywhere, give up.
1904    if (!method) {
1905      Diag(forLoc, diag::warn_collection_expr_type)
1906        << collection->getType() << selector << collection->getSourceRange();
1907    }
1908
1909    // TODO: check for an incompatible signature?
1910  }
1911
1912  // Wrap up any cleanups in the expression.
1913  return collection;
1914}
1915
1916StmtResult
1917Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1918                                 Stmt *First, Expr *collection,
1919                                 SourceLocation RParenLoc) {
1920  setFunctionHasBranchProtectedScope();
1921
1922  ExprResult CollectionExprResult =
1923    CheckObjCForCollectionOperand(ForLoc, collection);
1924
1925  if (First) {
1926    QualType FirstType;
1927    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1928      if (!DS->isSingleDecl())
1929        return StmtError(Diag((*DS->decl_begin())->getLocation(),
1930                         diag::err_toomany_element_decls));
1931
1932      VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1933      if (!D || D->isInvalidDecl())
1934        return StmtError();
1935
1936      FirstType = D->getType();
1937      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1938      // declare identifiers for objects having storage class 'auto' or
1939      // 'register'.
1940      if (!D->hasLocalStorage())
1941        return StmtError(Diag(D->getLocation(),
1942                              diag::err_non_local_variable_decl_in_for));
1943
1944      // If the type contained 'auto', deduce the 'auto' to 'id'.
1945      if (FirstType->getContainedAutoType()) {
1946        OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1947                                 VK_RValue);
1948        Expr *DeducedInit = &OpaqueId;
1949        if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1950                DAR_Failed)
1951          DiagnoseAutoDeductionFailure(D, DeducedInit);
1952        if (FirstType.isNull()) {
1953          D->setInvalidDecl();
1954          return StmtError();
1955        }
1956
1957        D->setType(FirstType);
1958
1959        if (!inTemplateInstantiation()) {
1960          SourceLocation Loc =
1961              D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1962          Diag(Loc, diag::warn_auto_var_is_id)
1963            << D->getDeclName();
1964        }
1965      }
1966
1967    } else {
1968      Expr *FirstE = cast<Expr>(First);
1969      if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1970        return StmtError(
1971            Diag(First->getBeginLoc(), diag::err_selector_element_not_lvalue)
1972            << First->getSourceRange());
1973
1974      FirstType = static_cast<Expr*>(First)->getType();
1975      if (FirstType.isConstQualified())
1976        Diag(ForLoc, diag::err_selector_element_const_type)
1977          << FirstType << First->getSourceRange();
1978    }
1979    if (!FirstType->isDependentType() &&
1980        !FirstType->isObjCObjectPointerType() &&
1981        !FirstType->isBlockPointerType())
1982        return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1983                           << FirstType << First->getSourceRange());
1984  }
1985
1986  if (CollectionExprResult.isInvalid())
1987    return StmtError();
1988
1989  CollectionExprResult =
1990      ActOnFinishFullExpr(CollectionExprResult.get(), /*DiscardedValue*/ false);
1991  if (CollectionExprResult.isInvalid())
1992    return StmtError();
1993
1994  return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1995                                             nullptr, ForLoc, RParenLoc);
1996}
1997
1998/// Finish building a variable declaration for a for-range statement.
1999/// \return true if an error occurs.
2000static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
2001                                  SourceLocation Loc, int DiagID) {
2002  if (Decl->getType()->isUndeducedType()) {
2003    ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
2004    if (!Res.isUsable()) {
2005      Decl->setInvalidDecl();
2006      return true;
2007    }
2008    Init = Res.get();
2009  }
2010
2011  // Deduce the type for the iterator variable now rather than leaving it to
2012  // AddInitializerToDecl, so we can produce a more suitable diagnostic.
2013  QualType InitType;
2014  if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
2015      SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
2016          Sema::DAR_Failed)
2017    SemaRef.Diag(Loc, DiagID) << Init->getType();
2018  if (InitType.isNull()) {
2019    Decl->setInvalidDecl();
2020    return true;
2021  }
2022  Decl->setType(InitType);
2023
2024  // In ARC, infer lifetime.
2025  // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
2026  // we're doing the equivalent of fast iteration.
2027  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2028      SemaRef.inferObjCARCLifetime(Decl))
2029    Decl->setInvalidDecl();
2030
2031  SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false);
2032  SemaRef.FinalizeDeclaration(Decl);
2033  SemaRef.CurContext->addHiddenDecl(Decl);
2034  return false;
2035}
2036
2037namespace {
2038// An enum to represent whether something is dealing with a call to begin()
2039// or a call to end() in a range-based for loop.
2040enum BeginEndFunction {
2041  BEF_begin,
2042  BEF_end
2043};
2044
2045/// Produce a note indicating which begin/end function was implicitly called
2046/// by a C++11 for-range statement. This is often not obvious from the code,
2047/// nor from the diagnostics produced when analysing the implicit expressions
2048/// required in a for-range statement.
2049void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
2050                                  BeginEndFunction BEF) {
2051  CallExpr *CE = dyn_cast<CallExpr>(E);
2052  if (!CE)
2053    return;
2054  FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
2055  if (!D)
2056    return;
2057  SourceLocation Loc = D->getLocation();
2058
2059  std::string Description;
2060  bool IsTemplate = false;
2061  if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
2062    Description = SemaRef.getTemplateArgumentBindingsText(
2063      FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
2064    IsTemplate = true;
2065  }
2066
2067  SemaRef.Diag(Loc, diag::note_for_range_begin_end)
2068    << BEF << IsTemplate << Description << E->getType();
2069}
2070
2071/// Build a variable declaration for a for-range statement.
2072VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
2073                              QualType Type, StringRef Name) {
2074  DeclContext *DC = SemaRef.CurContext;
2075  IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
2076  TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
2077  VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
2078                                  TInfo, SC_None);
2079  Decl->setImplicit();
2080  return Decl;
2081}
2082
2083}
2084
2085static bool ObjCEnumerationCollection(Expr *Collection) {
2086  return !Collection->isTypeDependent()
2087          && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
2088}
2089
2090/// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
2091///
2092/// C++11 [stmt.ranged]:
2093///   A range-based for statement is equivalent to
2094///
2095///   {
2096///     auto && __range = range-init;
2097///     for ( auto __begin = begin-expr,
2098///           __end = end-expr;
2099///           __begin != __end;
2100///           ++__begin ) {
2101///       for-range-declaration = *__begin;
2102///       statement
2103///     }
2104///   }
2105///
2106/// The body of the loop is not available yet, since it cannot be analysed until
2107/// we have determined the type of the for-range-declaration.
2108StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
2109                                      SourceLocation CoawaitLoc, Stmt *InitStmt,
2110                                      Stmt *First, SourceLocation ColonLoc,
2111                                      Expr *Range, SourceLocation RParenLoc,
2112                                      BuildForRangeKind Kind) {
2113  if (!First)
2114    return StmtError();
2115
2116  if (Range && ObjCEnumerationCollection(Range)) {
2117    // FIXME: Support init-statements in Objective-C++20 ranged for statement.
2118    if (InitStmt)
2119      return Diag(InitStmt->getBeginLoc(), diag::err_objc_for_range_init_stmt)
2120                 << InitStmt->getSourceRange();
2121    return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
2122  }
2123
2124  DeclStmt *DS = dyn_cast<DeclStmt>(First);
2125  assert(DS && "first part of for range not a decl stmt");
2126
2127  if (!DS->isSingleDecl()) {
2128    Diag(DS->getBeginLoc(), diag::err_type_defined_in_for_range);
2129    return StmtError();
2130  }
2131
2132  // This function is responsible for attaching an initializer to LoopVar. We
2133  // must call ActOnInitializerError if we fail to do so.
2134  Decl *LoopVar = DS->getSingleDecl();
2135  if (LoopVar->isInvalidDecl() || !Range ||
2136      DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
2137    ActOnInitializerError(LoopVar);
2138    return StmtError();
2139  }
2140
2141  // Build the coroutine state immediately and not later during template
2142  // instantiation
2143  if (!CoawaitLoc.isInvalid()) {
2144    if (!ActOnCoroutineBodyStart(S, CoawaitLoc, "co_await")) {
2145      ActOnInitializerError(LoopVar);
2146      return StmtError();
2147    }
2148  }
2149
2150  // Build  auto && __range = range-init
2151  // Divide by 2, since the variables are in the inner scope (loop body).
2152  const auto DepthStr = std::to_string(S->getDepth() / 2);
2153  SourceLocation RangeLoc = Range->getBeginLoc();
2154  VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
2155                                           Context.getAutoRRefDeductType(),
2156                                           std::string("__range") + DepthStr);
2157  if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
2158                            diag::err_for_range_deduction_failure)) {
2159    ActOnInitializerError(LoopVar);
2160    return StmtError();
2161  }
2162
2163  // Claim the type doesn't contain auto: we've already done the checking.
2164  DeclGroupPtrTy RangeGroup =
2165      BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1));
2166  StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
2167  if (RangeDecl.isInvalid()) {
2168    ActOnInitializerError(LoopVar);
2169    return StmtError();
2170  }
2171
2172  StmtResult R = BuildCXXForRangeStmt(
2173      ForLoc, CoawaitLoc, InitStmt, ColonLoc, RangeDecl.get(),
2174      /*BeginStmt=*/nullptr, /*EndStmt=*/nullptr,
2175      /*Cond=*/nullptr, /*Inc=*/nullptr, DS, RParenLoc, Kind);
2176  if (R.isInvalid()) {
2177    ActOnInitializerError(LoopVar);
2178    return StmtError();
2179  }
2180
2181  return R;
2182}
2183
2184/// Create the initialization, compare, and increment steps for
2185/// the range-based for loop expression.
2186/// This function does not handle array-based for loops,
2187/// which are created in Sema::BuildCXXForRangeStmt.
2188///
2189/// \returns a ForRangeStatus indicating success or what kind of error occurred.
2190/// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2191/// CandidateSet and BEF are set and some non-success value is returned on
2192/// failure.
2193static Sema::ForRangeStatus
2194BuildNonArrayForRange(Sema &SemaRef, Expr *BeginRange, Expr *EndRange,
2195                      QualType RangeType, VarDecl *BeginVar, VarDecl *EndVar,
2196                      SourceLocation ColonLoc, SourceLocation CoawaitLoc,
2197                      OverloadCandidateSet *CandidateSet, ExprResult *BeginExpr,
2198                      ExprResult *EndExpr, BeginEndFunction *BEF) {
2199  DeclarationNameInfo BeginNameInfo(
2200      &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2201  DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2202                                  ColonLoc);
2203
2204  LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2205                                 Sema::LookupMemberName);
2206  LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2207
2208  auto BuildBegin = [&] {
2209    *BEF = BEF_begin;
2210    Sema::ForRangeStatus RangeStatus =
2211        SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2212                                          BeginMemberLookup, CandidateSet,
2213                                          BeginRange, BeginExpr);
2214
2215    if (RangeStatus != Sema::FRS_Success) {
2216      if (RangeStatus == Sema::FRS_DiagnosticIssued)
2217        SemaRef.Diag(BeginRange->getBeginLoc(), diag::note_in_for_range)
2218            << ColonLoc << BEF_begin << BeginRange->getType();
2219      return RangeStatus;
2220    }
2221    if (!CoawaitLoc.isInvalid()) {
2222      // FIXME: getCurScope() should not be used during template instantiation.
2223      // We should pick up the set of unqualified lookup results for operator
2224      // co_await during the initial parse.
2225      *BeginExpr = SemaRef.ActOnCoawaitExpr(SemaRef.getCurScope(), ColonLoc,
2226                                            BeginExpr->get());
2227      if (BeginExpr->isInvalid())
2228        return Sema::FRS_DiagnosticIssued;
2229    }
2230    if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2231                              diag::err_for_range_iter_deduction_failure)) {
2232      NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2233      return Sema::FRS_DiagnosticIssued;
2234    }
2235    return Sema::FRS_Success;
2236  };
2237
2238  auto BuildEnd = [&] {
2239    *BEF = BEF_end;
2240    Sema::ForRangeStatus RangeStatus =
2241        SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2242                                          EndMemberLookup, CandidateSet,
2243                                          EndRange, EndExpr);
2244    if (RangeStatus != Sema::FRS_Success) {
2245      if (RangeStatus == Sema::FRS_DiagnosticIssued)
2246        SemaRef.Diag(EndRange->getBeginLoc(), diag::note_in_for_range)
2247            << ColonLoc << BEF_end << EndRange->getType();
2248      return RangeStatus;
2249    }
2250    if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2251                              diag::err_for_range_iter_deduction_failure)) {
2252      NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2253      return Sema::FRS_DiagnosticIssued;
2254    }
2255    return Sema::FRS_Success;
2256  };
2257
2258  if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2259    // - if _RangeT is a class type, the unqualified-ids begin and end are
2260    //   looked up in the scope of class _RangeT as if by class member access
2261    //   lookup (3.4.5), and if either (or both) finds at least one
2262    //   declaration, begin-expr and end-expr are __range.begin() and
2263    //   __range.end(), respectively;
2264    SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2265    if (BeginMemberLookup.isAmbiguous())
2266      return Sema::FRS_DiagnosticIssued;
2267
2268    SemaRef.LookupQualifiedName(EndMemberLookup, D);
2269    if (EndMemberLookup.isAmbiguous())
2270      return Sema::FRS_DiagnosticIssued;
2271
2272    if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2273      // Look up the non-member form of the member we didn't find, first.
2274      // This way we prefer a "no viable 'end'" diagnostic over a "i found
2275      // a 'begin' but ignored it because there was no member 'end'"
2276      // diagnostic.
2277      auto BuildNonmember = [&](
2278          BeginEndFunction BEFFound, LookupResult &Found,
2279          llvm::function_ref<Sema::ForRangeStatus()> BuildFound,
2280          llvm::function_ref<Sema::ForRangeStatus()> BuildNotFound) {
2281        LookupResult OldFound = std::move(Found);
2282        Found.clear();
2283
2284        if (Sema::ForRangeStatus Result = BuildNotFound())
2285          return Result;
2286
2287        switch (BuildFound()) {
2288        case Sema::FRS_Success:
2289          return Sema::FRS_Success;
2290
2291        case Sema::FRS_NoViableFunction:
2292          CandidateSet->NoteCandidates(
2293              PartialDiagnosticAt(BeginRange->getBeginLoc(),
2294                                  SemaRef.PDiag(diag::err_for_range_invalid)
2295                                      << BeginRange->getType() << BEFFound),
2296              SemaRef, OCD_AllCandidates, BeginRange);
2297          LLVM_FALLTHROUGH;
2298
2299        case Sema::FRS_DiagnosticIssued:
2300          for (NamedDecl *D : OldFound) {
2301            SemaRef.Diag(D->getLocation(),
2302                         diag::note_for_range_member_begin_end_ignored)
2303                << BeginRange->getType() << BEFFound;
2304          }
2305          return Sema::FRS_DiagnosticIssued;
2306        }
2307        llvm_unreachable("unexpected ForRangeStatus");
2308      };
2309      if (BeginMemberLookup.empty())
2310        return BuildNonmember(BEF_end, EndMemberLookup, BuildEnd, BuildBegin);
2311      return BuildNonmember(BEF_begin, BeginMemberLookup, BuildBegin, BuildEnd);
2312    }
2313  } else {
2314    // - otherwise, begin-expr and end-expr are begin(__range) and
2315    //   end(__range), respectively, where begin and end are looked up with
2316    //   argument-dependent lookup (3.4.2). For the purposes of this name
2317    //   lookup, namespace std is an associated namespace.
2318  }
2319
2320  if (Sema::ForRangeStatus Result = BuildBegin())
2321    return Result;
2322  return BuildEnd();
2323}
2324
2325/// Speculatively attempt to dereference an invalid range expression.
2326/// If the attempt fails, this function will return a valid, null StmtResult
2327/// and emit no diagnostics.
2328static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2329                                                 SourceLocation ForLoc,
2330                                                 SourceLocation CoawaitLoc,
2331                                                 Stmt *InitStmt,
2332                                                 Stmt *LoopVarDecl,
2333                                                 SourceLocation ColonLoc,
2334                                                 Expr *Range,
2335                                                 SourceLocation RangeLoc,
2336                                                 SourceLocation RParenLoc) {
2337  // Determine whether we can rebuild the for-range statement with a
2338  // dereferenced range expression.
2339  ExprResult AdjustedRange;
2340  {
2341    Sema::SFINAETrap Trap(SemaRef);
2342
2343    AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2344    if (AdjustedRange.isInvalid())
2345      return StmtResult();
2346
2347    StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2348        S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2349        AdjustedRange.get(), RParenLoc, Sema::BFRK_Check);
2350    if (SR.isInvalid())
2351      return StmtResult();
2352  }
2353
2354  // The attempt to dereference worked well enough that it could produce a valid
2355  // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2356  // case there are any other (non-fatal) problems with it.
2357  SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2358    << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2359  return SemaRef.ActOnCXXForRangeStmt(
2360      S, ForLoc, CoawaitLoc, InitStmt, LoopVarDecl, ColonLoc,
2361      AdjustedRange.get(), RParenLoc, Sema::BFRK_Rebuild);
2362}
2363
2364/// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2365StmtResult Sema::BuildCXXForRangeStmt(SourceLocation ForLoc,
2366                                      SourceLocation CoawaitLoc, Stmt *InitStmt,
2367                                      SourceLocation ColonLoc, Stmt *RangeDecl,
2368                                      Stmt *Begin, Stmt *End, Expr *Cond,
2369                                      Expr *Inc, Stmt *LoopVarDecl,
2370                                      SourceLocation RParenLoc,
2371                                      BuildForRangeKind Kind) {
2372  // FIXME: This should not be used during template instantiation. We should
2373  // pick up the set of unqualified lookup results for the != and + operators
2374  // in the initial parse.
2375  //
2376  // Testcase (accepts-invalid):
2377  //   template<typename T> void f() { for (auto x : T()) {} }
2378  //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2379  //   bool operator!=(N::X, N::X); void operator++(N::X);
2380  //   void g() { f<N::X>(); }
2381  Scope *S = getCurScope();
2382
2383  DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2384  VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2385  QualType RangeVarType = RangeVar->getType();
2386
2387  DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2388  VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2389
2390  StmtResult BeginDeclStmt = Begin;
2391  StmtResult EndDeclStmt = End;
2392  ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2393
2394  if (RangeVarType->isDependentType()) {
2395    // The range is implicitly used as a placeholder when it is dependent.
2396    RangeVar->markUsed(Context);
2397
2398    // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2399    // them in properly when we instantiate the loop.
2400    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2401      if (auto *DD = dyn_cast<DecompositionDecl>(LoopVar))
2402        for (auto *Binding : DD->bindings())
2403          Binding->setType(Context.DependentTy);
2404      LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2405    }
2406  } else if (!BeginDeclStmt.get()) {
2407    SourceLocation RangeLoc = RangeVar->getLocation();
2408
2409    const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2410
2411    ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2412                                                VK_LValue, ColonLoc);
2413    if (BeginRangeRef.isInvalid())
2414      return StmtError();
2415
2416    ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2417                                              VK_LValue, ColonLoc);
2418    if (EndRangeRef.isInvalid())
2419      return StmtError();
2420
2421    QualType AutoType = Context.getAutoDeductType();
2422    Expr *Range = RangeVar->getInit();
2423    if (!Range)
2424      return StmtError();
2425    QualType RangeType = Range->getType();
2426
2427    if (RequireCompleteType(RangeLoc, RangeType,
2428                            diag::err_for_range_incomplete_type))
2429      return StmtError();
2430
2431    // Build auto __begin = begin-expr, __end = end-expr.
2432    // Divide by 2, since the variables are in the inner scope (loop body).
2433    const auto DepthStr = std::to_string(S->getDepth() / 2);
2434    VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2435                                             std::string("__begin") + DepthStr);
2436    VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2437                                           std::string("__end") + DepthStr);
2438
2439    // Build begin-expr and end-expr and attach to __begin and __end variables.
2440    ExprResult BeginExpr, EndExpr;
2441    if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2442      // - if _RangeT is an array type, begin-expr and end-expr are __range and
2443      //   __range + __bound, respectively, where __bound is the array bound. If
2444      //   _RangeT is an array of unknown size or an array of incomplete type,
2445      //   the program is ill-formed;
2446
2447      // begin-expr is __range.
2448      BeginExpr = BeginRangeRef;
2449      if (!CoawaitLoc.isInvalid()) {
2450        BeginExpr = ActOnCoawaitExpr(S, ColonLoc, BeginExpr.get());
2451        if (BeginExpr.isInvalid())
2452          return StmtError();
2453      }
2454      if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2455                                diag::err_for_range_iter_deduction_failure)) {
2456        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2457        return StmtError();
2458      }
2459
2460      // Find the array bound.
2461      ExprResult BoundExpr;
2462      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2463        BoundExpr = IntegerLiteral::Create(
2464            Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2465      else if (const VariableArrayType *VAT =
2466               dyn_cast<VariableArrayType>(UnqAT)) {
2467        // For a variably modified type we can't just use the expression within
2468        // the array bounds, since we don't want that to be re-evaluated here.
2469        // Rather, we need to determine what it was when the array was first
2470        // created - so we resort to using sizeof(vla)/sizeof(element).
2471        // For e.g.
2472        //  void f(int b) {
2473        //    int vla[b];
2474        //    b = -1;   <-- This should not affect the num of iterations below
2475        //    for (int &c : vla) { .. }
2476        //  }
2477
2478        // FIXME: This results in codegen generating IR that recalculates the
2479        // run-time number of elements (as opposed to just using the IR Value
2480        // that corresponds to the run-time value of each bound that was
2481        // generated when the array was created.) If this proves too embarrassing
2482        // even for unoptimized IR, consider passing a magic-value/cookie to
2483        // codegen that then knows to simply use that initial llvm::Value (that
2484        // corresponds to the bound at time of array creation) within
2485        // getelementptr.  But be prepared to pay the price of increasing a
2486        // customized form of coupling between the two components - which  could
2487        // be hard to maintain as the codebase evolves.
2488
2489        ExprResult SizeOfVLAExprR = ActOnUnaryExprOrTypeTraitExpr(
2490            EndVar->getLocation(), UETT_SizeOf,
2491            /*IsType=*/true,
2492            CreateParsedType(VAT->desugar(), Context.getTrivialTypeSourceInfo(
2493                                                 VAT->desugar(), RangeLoc))
2494                .getAsOpaquePtr(),
2495            EndVar->getSourceRange());
2496        if (SizeOfVLAExprR.isInvalid())
2497          return StmtError();
2498
2499        ExprResult SizeOfEachElementExprR = ActOnUnaryExprOrTypeTraitExpr(
2500            EndVar->getLocation(), UETT_SizeOf,
2501            /*IsType=*/true,
2502            CreateParsedType(VAT->desugar(),
2503                             Context.getTrivialTypeSourceInfo(
2504                                 VAT->getElementType(), RangeLoc))
2505                .getAsOpaquePtr(),
2506            EndVar->getSourceRange());
2507        if (SizeOfEachElementExprR.isInvalid())
2508          return StmtError();
2509
2510        BoundExpr =
2511            ActOnBinOp(S, EndVar->getLocation(), tok::slash,
2512                       SizeOfVLAExprR.get(), SizeOfEachElementExprR.get());
2513        if (BoundExpr.isInvalid())
2514          return StmtError();
2515
2516      } else {
2517        // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2518        // UnqAT is not incomplete and Range is not type-dependent.
2519        llvm_unreachable("Unexpected array type in for-range");
2520      }
2521
2522      // end-expr is __range + __bound.
2523      EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2524                           BoundExpr.get());
2525      if (EndExpr.isInvalid())
2526        return StmtError();
2527      if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2528                                diag::err_for_range_iter_deduction_failure)) {
2529        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2530        return StmtError();
2531      }
2532    } else {
2533      OverloadCandidateSet CandidateSet(RangeLoc,
2534                                        OverloadCandidateSet::CSK_Normal);
2535      BeginEndFunction BEFFailure;
2536      ForRangeStatus RangeStatus = BuildNonArrayForRange(
2537          *this, BeginRangeRef.get(), EndRangeRef.get(), RangeType, BeginVar,
2538          EndVar, ColonLoc, CoawaitLoc, &CandidateSet, &BeginExpr, &EndExpr,
2539          &BEFFailure);
2540
2541      if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2542          BEFFailure == BEF_begin) {
2543        // If the range is being built from an array parameter, emit a
2544        // a diagnostic that it is being treated as a pointer.
2545        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2546          if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2547            QualType ArrayTy = PVD->getOriginalType();
2548            QualType PointerTy = PVD->getType();
2549            if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2550              Diag(Range->getBeginLoc(), diag::err_range_on_array_parameter)
2551                  << RangeLoc << PVD << ArrayTy << PointerTy;
2552              Diag(PVD->getLocation(), diag::note_declared_at);
2553              return StmtError();
2554            }
2555          }
2556        }
2557
2558        // If building the range failed, try dereferencing the range expression
2559        // unless a diagnostic was issued or the end function is problematic.
2560        StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2561                                                       CoawaitLoc, InitStmt,
2562                                                       LoopVarDecl, ColonLoc,
2563                                                       Range, RangeLoc,
2564                                                       RParenLoc);
2565        if (SR.isInvalid() || SR.isUsable())
2566          return SR;
2567      }
2568
2569      // Otherwise, emit diagnostics if we haven't already.
2570      if (RangeStatus == FRS_NoViableFunction) {
2571        Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2572        CandidateSet.NoteCandidates(
2573            PartialDiagnosticAt(Range->getBeginLoc(),
2574                                PDiag(diag::err_for_range_invalid)
2575                                    << RangeLoc << Range->getType()
2576                                    << BEFFailure),
2577            *this, OCD_AllCandidates, Range);
2578      }
2579      // Return an error if no fix was discovered.
2580      if (RangeStatus != FRS_Success)
2581        return StmtError();
2582    }
2583
2584    assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2585           "invalid range expression in for loop");
2586
2587    // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2588    // C++1z removes this restriction.
2589    QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2590    if (!Context.hasSameType(BeginType, EndType)) {
2591      Diag(RangeLoc, getLangOpts().CPlusPlus17
2592                         ? diag::warn_for_range_begin_end_types_differ
2593                         : diag::ext_for_range_begin_end_types_differ)
2594          << BeginType << EndType;
2595      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2596      NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2597    }
2598
2599    BeginDeclStmt =
2600        ActOnDeclStmt(ConvertDeclToDeclGroup(BeginVar), ColonLoc, ColonLoc);
2601    EndDeclStmt =
2602        ActOnDeclStmt(ConvertDeclToDeclGroup(EndVar), ColonLoc, ColonLoc);
2603
2604    const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2605    ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2606                                           VK_LValue, ColonLoc);
2607    if (BeginRef.isInvalid())
2608      return StmtError();
2609
2610    ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2611                                         VK_LValue, ColonLoc);
2612    if (EndRef.isInvalid())
2613      return StmtError();
2614
2615    // Build and check __begin != __end expression.
2616    NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2617                           BeginRef.get(), EndRef.get());
2618    if (!NotEqExpr.isInvalid())
2619      NotEqExpr = CheckBooleanCondition(ColonLoc, NotEqExpr.get());
2620    if (!NotEqExpr.isInvalid())
2621      NotEqExpr =
2622          ActOnFinishFullExpr(NotEqExpr.get(), /*DiscardedValue*/ false);
2623    if (NotEqExpr.isInvalid()) {
2624      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2625        << RangeLoc << 0 << BeginRangeRef.get()->getType();
2626      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2627      if (!Context.hasSameType(BeginType, EndType))
2628        NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2629      return StmtError();
2630    }
2631
2632    // Build and check ++__begin expression.
2633    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2634                                VK_LValue, ColonLoc);
2635    if (BeginRef.isInvalid())
2636      return StmtError();
2637
2638    IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2639    if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2640      // FIXME: getCurScope() should not be used during template instantiation.
2641      // We should pick up the set of unqualified lookup results for operator
2642      // co_await during the initial parse.
2643      IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2644    if (!IncrExpr.isInvalid())
2645      IncrExpr = ActOnFinishFullExpr(IncrExpr.get(), /*DiscardedValue*/ false);
2646    if (IncrExpr.isInvalid()) {
2647      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2648        << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2649      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2650      return StmtError();
2651    }
2652
2653    // Build and check *__begin  expression.
2654    BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2655                                VK_LValue, ColonLoc);
2656    if (BeginRef.isInvalid())
2657      return StmtError();
2658
2659    ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2660    if (DerefExpr.isInvalid()) {
2661      Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2662        << RangeLoc << 1 << BeginRangeRef.get()->getType();
2663      NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2664      return StmtError();
2665    }
2666
2667    // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2668    // trying to determine whether this would be a valid range.
2669    if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2670      AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false);
2671      if (LoopVar->isInvalidDecl() ||
2672          (LoopVar->getInit() && LoopVar->getInit()->containsErrors()))
2673        NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2674    }
2675  }
2676
2677  // Don't bother to actually allocate the result if we're just trying to
2678  // determine whether it would be valid.
2679  if (Kind == BFRK_Check)
2680    return StmtResult();
2681
2682  // In OpenMP loop region loop control variable must be private. Perform
2683  // analysis of first part (if any).
2684  if (getLangOpts().OpenMP >= 50 && BeginDeclStmt.isUsable())
2685    ActOnOpenMPLoopInitialization(ForLoc, BeginDeclStmt.get());
2686
2687  return new (Context) CXXForRangeStmt(
2688      InitStmt, RangeDS, cast_or_null<DeclStmt>(BeginDeclStmt.get()),
2689      cast_or_null<DeclStmt>(EndDeclStmt.get()), NotEqExpr.get(),
2690      IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2691      ColonLoc, RParenLoc);
2692}
2693
2694/// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2695/// statement.
2696StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2697  if (!S || !B)
2698    return StmtError();
2699  ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2700
2701  ForStmt->setBody(B);
2702  return S;
2703}
2704
2705// Warn when the loop variable is a const reference that creates a copy.
2706// Suggest using the non-reference type for copies.  If a copy can be prevented
2707// suggest the const reference type that would do so.
2708// For instance, given "for (const &Foo : Range)", suggest
2709// "for (const Foo : Range)" to denote a copy is made for the loop.  If
2710// possible, also suggest "for (const &Bar : Range)" if this type prevents
2711// the copy altogether.
2712static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
2713                                                    const VarDecl *VD,
2714                                                    QualType RangeInitType) {
2715  const Expr *InitExpr = VD->getInit();
2716  if (!InitExpr)
2717    return;
2718
2719  QualType VariableType = VD->getType();
2720
2721  if (auto Cleanups = dyn_cast<ExprWithCleanups>(InitExpr))
2722    if (!Cleanups->cleanupsHaveSideEffects())
2723      InitExpr = Cleanups->getSubExpr();
2724
2725  const MaterializeTemporaryExpr *MTE =
2726      dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2727
2728  // No copy made.
2729  if (!MTE)
2730    return;
2731
2732  const Expr *E = MTE->getSubExpr()->IgnoreImpCasts();
2733
2734  // Searching for either UnaryOperator for dereference of a pointer or
2735  // CXXOperatorCallExpr for handling iterators.
2736  while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2737    if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2738      E = CCE->getArg(0);
2739    } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2740      const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2741      E = ME->getBase();
2742    } else {
2743      const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2744      E = MTE->getSubExpr();
2745    }
2746    E = E->IgnoreImpCasts();
2747  }
2748
2749  QualType ReferenceReturnType;
2750  if (isa<UnaryOperator>(E)) {
2751    ReferenceReturnType = SemaRef.Context.getLValueReferenceType(E->getType());
2752  } else {
2753    const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2754    const FunctionDecl *FD = Call->getDirectCallee();
2755    QualType ReturnType = FD->getReturnType();
2756    if (ReturnType->isReferenceType())
2757      ReferenceReturnType = ReturnType;
2758  }
2759
2760  if (!ReferenceReturnType.isNull()) {
2761    // Loop variable creates a temporary.  Suggest either to go with
2762    // non-reference loop variable to indicate a copy is made, or
2763    // the correct type to bind a const reference.
2764    SemaRef.Diag(VD->getLocation(),
2765                 diag::warn_for_range_const_ref_binds_temp_built_from_ref)
2766        << VD << VariableType << ReferenceReturnType;
2767    QualType NonReferenceType = VariableType.getNonReferenceType();
2768    NonReferenceType.removeLocalConst();
2769    QualType NewReferenceType =
2770        SemaRef.Context.getLValueReferenceType(E->getType().withConst());
2771    SemaRef.Diag(VD->getBeginLoc(), diag::note_use_type_or_non_reference)
2772        << NonReferenceType << NewReferenceType << VD->getSourceRange()
2773        << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
2774  } else if (!VariableType->isRValueReferenceType()) {
2775    // The range always returns a copy, so a temporary is always created.
2776    // Suggest removing the reference from the loop variable.
2777    // If the type is a rvalue reference do not warn since that changes the
2778    // semantic of the code.
2779    SemaRef.Diag(VD->getLocation(), diag::warn_for_range_ref_binds_ret_temp)
2780        << VD << RangeInitType;
2781    QualType NonReferenceType = VariableType.getNonReferenceType();
2782    NonReferenceType.removeLocalConst();
2783    SemaRef.Diag(VD->getBeginLoc(), diag::note_use_non_reference_type)
2784        << NonReferenceType << VD->getSourceRange()
2785        << FixItHint::CreateRemoval(VD->getTypeSpecEndLoc());
2786  }
2787}
2788
2789/// Determines whether the @p VariableType's declaration is a record with the
2790/// clang::trivial_abi attribute.
2791static bool hasTrivialABIAttr(QualType VariableType) {
2792  if (CXXRecordDecl *RD = VariableType->getAsCXXRecordDecl())
2793    return RD->hasAttr<TrivialABIAttr>();
2794
2795  return false;
2796}
2797
2798// Warns when the loop variable can be changed to a reference type to
2799// prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
2800// "for (const Foo &x : Range)" if this form does not make a copy.
2801static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
2802                                                const VarDecl *VD) {
2803  const Expr *InitExpr = VD->getInit();
2804  if (!InitExpr)
2805    return;
2806
2807  QualType VariableType = VD->getType();
2808
2809  if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2810    if (!CE->getConstructor()->isCopyConstructor())
2811      return;
2812  } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2813    if (CE->getCastKind() != CK_LValueToRValue)
2814      return;
2815  } else {
2816    return;
2817  }
2818
2819  // Small trivially copyable types are cheap to copy. Do not emit the
2820  // diagnostic for these instances. 64 bytes is a common size of a cache line.
2821  // (The function `getTypeSize` returns the size in bits.)
2822  ASTContext &Ctx = SemaRef.Context;
2823  if (Ctx.getTypeSize(VariableType) <= 64 * 8 &&
2824      (VariableType.isTriviallyCopyableType(Ctx) ||
2825       hasTrivialABIAttr(VariableType)))
2826    return;
2827
2828  // Suggest changing from a const variable to a const reference variable
2829  // if doing so will prevent a copy.
2830  SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2831      << VD << VariableType;
2832  SemaRef.Diag(VD->getBeginLoc(), diag::note_use_reference_type)
2833      << SemaRef.Context.getLValueReferenceType(VariableType)
2834      << VD->getSourceRange()
2835      << FixItHint::CreateInsertion(VD->getLocation(), "&");
2836}
2837
2838/// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2839/// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
2840///    using "const foo x" to show that a copy is made
2841/// 2) for (const bar &x : foos) where bar is a temporary initialized by bar.
2842///    Suggest either "const bar x" to keep the copying or "const foo& x" to
2843///    prevent the copy.
2844/// 3) for (const foo x : foos) where x is constructed from a reference foo.
2845///    Suggest "const foo &x" to prevent the copy.
2846static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
2847                                           const CXXForRangeStmt *ForStmt) {
2848  if (SemaRef.inTemplateInstantiation())
2849    return;
2850
2851  if (SemaRef.Diags.isIgnored(
2852          diag::warn_for_range_const_ref_binds_temp_built_from_ref,
2853          ForStmt->getBeginLoc()) &&
2854      SemaRef.Diags.isIgnored(diag::warn_for_range_ref_binds_ret_temp,
2855                              ForStmt->getBeginLoc()) &&
2856      SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2857                              ForStmt->getBeginLoc())) {
2858    return;
2859  }
2860
2861  const VarDecl *VD = ForStmt->getLoopVariable();
2862  if (!VD)
2863    return;
2864
2865  QualType VariableType = VD->getType();
2866
2867  if (VariableType->isIncompleteType())
2868    return;
2869
2870  const Expr *InitExpr = VD->getInit();
2871  if (!InitExpr)
2872    return;
2873
2874  if (InitExpr->getExprLoc().isMacroID())
2875    return;
2876
2877  if (VariableType->isReferenceType()) {
2878    DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
2879                                            ForStmt->getRangeInit()->getType());
2880  } else if (VariableType.isConstQualified()) {
2881    DiagnoseForRangeConstVariableCopies(SemaRef, VD);
2882  }
2883}
2884
2885/// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2886/// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2887/// body cannot be performed until after the type of the range variable is
2888/// determined.
2889StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2890  if (!S || !B)
2891    return StmtError();
2892
2893  if (isa<ObjCForCollectionStmt>(S))
2894    return FinishObjCForCollectionStmt(S, B);
2895
2896  CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2897  ForStmt->setBody(B);
2898
2899  DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2900                        diag::warn_empty_range_based_for_body);
2901
2902  DiagnoseForRangeVariableCopies(*this, ForStmt);
2903
2904  return S;
2905}
2906
2907StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2908                               SourceLocation LabelLoc,
2909                               LabelDecl *TheDecl) {
2910  setFunctionHasBranchIntoScope();
2911  TheDecl->markUsed(Context);
2912  return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2913}
2914
2915StmtResult
2916Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2917                            Expr *E) {
2918  // Convert operand to void*
2919  if (!E->isTypeDependent()) {
2920    QualType ETy = E->getType();
2921    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2922    ExprResult ExprRes = E;
2923    AssignConvertType ConvTy =
2924      CheckSingleAssignmentConstraints(DestTy, ExprRes);
2925    if (ExprRes.isInvalid())
2926      return StmtError();
2927    E = ExprRes.get();
2928    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2929      return StmtError();
2930  }
2931
2932  ExprResult ExprRes = ActOnFinishFullExpr(E, /*DiscardedValue*/ false);
2933  if (ExprRes.isInvalid())
2934    return StmtError();
2935  E = ExprRes.get();
2936
2937  setFunctionHasIndirectGoto();
2938
2939  return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2940}
2941
2942static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
2943                                     const Scope &DestScope) {
2944  if (!S.CurrentSEHFinally.empty() &&
2945      DestScope.Contains(*S.CurrentSEHFinally.back())) {
2946    S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2947  }
2948}
2949
2950StmtResult
2951Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2952  Scope *S = CurScope->getContinueParent();
2953  if (!S) {
2954    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2955    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2956  }
2957  CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2958
2959  return new (Context) ContinueStmt(ContinueLoc);
2960}
2961
2962StmtResult
2963Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2964  Scope *S = CurScope->getBreakParent();
2965  if (!S) {
2966    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2967    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2968  }
2969  if (S->isOpenMPLoopScope())
2970    return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2971                     << "break");
2972  CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2973
2974  return new (Context) BreakStmt(BreakLoc);
2975}
2976
2977/// Determine whether the given expression is a candidate for
2978/// copy elision in either a return statement or a throw expression.
2979///
2980/// \param ReturnType If we're determining the copy elision candidate for
2981/// a return statement, this is the return type of the function. If we're
2982/// determining the copy elision candidate for a throw expression, this will
2983/// be a NULL type.
2984///
2985/// \param E The expression being returned from the function or block, or
2986/// being thrown.
2987///
2988/// \param CESK Whether we allow function parameters or
2989/// id-expressions that could be moved out of the function to be considered NRVO
2990/// candidates. C++ prohibits these for NRVO itself, but we re-use this logic to
2991/// determine whether we should try to move as part of a return or throw (which
2992/// does allow function parameters).
2993///
2994/// \returns The NRVO candidate variable, if the return statement may use the
2995/// NRVO, or NULL if there is no such candidate.
2996VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType, Expr *E,
2997                                       CopyElisionSemanticsKind CESK) {
2998  // - in a return statement in a function [where] ...
2999  // ... the expression is the name of a non-volatile automatic object ...
3000  DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
3001  if (!DR || DR->refersToEnclosingVariableOrCapture())
3002    return nullptr;
3003  VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
3004  if (!VD)
3005    return nullptr;
3006
3007  if (isCopyElisionCandidate(ReturnType, VD, CESK))
3008    return VD;
3009  return nullptr;
3010}
3011
3012bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
3013                                  CopyElisionSemanticsKind CESK) {
3014  QualType VDType = VD->getType();
3015  // - in a return statement in a function with ...
3016  // ... a class return type ...
3017  if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
3018    if (!ReturnType->isRecordType())
3019      return false;
3020    // ... the same cv-unqualified type as the function return type ...
3021    // When considering moving this expression out, allow dissimilar types.
3022    if (!(CESK & CES_AllowDifferentTypes) && !VDType->isDependentType() &&
3023        !Context.hasSameUnqualifiedType(ReturnType, VDType))
3024      return false;
3025  }
3026
3027  // ...object (other than a function or catch-clause parameter)...
3028  if (VD->getKind() != Decl::Var &&
3029      !((CESK & CES_AllowParameters) && VD->getKind() == Decl::ParmVar))
3030    return false;
3031  if (!(CESK & CES_AllowExceptionVariables) && VD->isExceptionVariable())
3032    return false;
3033
3034  // ...automatic...
3035  if (!VD->hasLocalStorage()) return false;
3036
3037  // Return false if VD is a __block variable. We don't want to implicitly move
3038  // out of a __block variable during a return because we cannot assume the
3039  // variable will no longer be used.
3040  if (VD->hasAttr<BlocksAttr>()) return false;
3041
3042  if (CESK & CES_AllowDifferentTypes)
3043    return true;
3044
3045  // ...non-volatile...
3046  if (VD->getType().isVolatileQualified()) return false;
3047
3048  // Variables with higher required alignment than their type's ABI
3049  // alignment cannot use NRVO.
3050  if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
3051      Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
3052    return false;
3053
3054  return true;
3055}
3056
3057/// Try to perform the initialization of a potentially-movable value,
3058/// which is the operand to a return or throw statement.
3059///
3060/// This routine implements C++14 [class.copy]p32, which attempts to treat
3061/// returned lvalues as rvalues in certain cases (to prefer move construction),
3062/// then falls back to treating them as lvalues if that failed.
3063///
3064/// \param ConvertingConstructorsOnly If true, follow [class.copy]p32 and reject
3065/// resolutions that find non-constructors, such as derived-to-base conversions
3066/// or `operator T()&&` member functions. If false, do consider such
3067/// conversion sequences.
3068///
3069/// \param Res We will fill this in if move-initialization was possible.
3070/// If move-initialization is not possible, such that we must fall back to
3071/// treating the operand as an lvalue, we will leave Res in its original
3072/// invalid state.
3073static void TryMoveInitialization(Sema& S,
3074                                  const InitializedEntity &Entity,
3075                                  const VarDecl *NRVOCandidate,
3076                                  QualType ResultType,
3077                                  Expr *&Value,
3078                                  bool ConvertingConstructorsOnly,
3079                                  ExprResult &Res) {
3080  ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack, Value->getType(),
3081                            CK_NoOp, Value, VK_XValue);
3082
3083  Expr *InitExpr = &AsRvalue;
3084
3085  InitializationKind Kind = InitializationKind::CreateCopy(
3086      Value->getBeginLoc(), Value->getBeginLoc());
3087
3088  InitializationSequence Seq(S, Entity, Kind, InitExpr);
3089
3090  if (!Seq)
3091    return;
3092
3093  for (const InitializationSequence::Step &Step : Seq.steps()) {
3094    if (Step.Kind != InitializationSequence::SK_ConstructorInitialization &&
3095        Step.Kind != InitializationSequence::SK_UserConversion)
3096      continue;
3097
3098    FunctionDecl *FD = Step.Function.Function;
3099    if (ConvertingConstructorsOnly) {
3100      if (isa<CXXConstructorDecl>(FD)) {
3101        // C++14 [class.copy]p32:
3102        // [...] If the first overload resolution fails or was not performed,
3103        // or if the type of the first parameter of the selected constructor
3104        // is not an rvalue reference to the object's type (possibly
3105        // cv-qualified), overload resolution is performed again, considering
3106        // the object as an lvalue.
3107        const RValueReferenceType *RRefType =
3108            FD->getParamDecl(0)->getType()->getAs<RValueReferenceType>();
3109        if (!RRefType)
3110          break;
3111        if (!S.Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
3112                                              NRVOCandidate->getType()))
3113          break;
3114      } else {
3115        continue;
3116      }
3117    } else {
3118      if (isa<CXXConstructorDecl>(FD)) {
3119        // Check that overload resolution selected a constructor taking an
3120        // rvalue reference. If it selected an lvalue reference, then we
3121        // didn't need to cast this thing to an rvalue in the first place.
3122        if (!isa<RValueReferenceType>(FD->getParamDecl(0)->getType()))
3123          break;
3124      } else if (isa<CXXMethodDecl>(FD)) {
3125        // Check that overload resolution selected a conversion operator
3126        // taking an rvalue reference.
3127        if (cast<CXXMethodDecl>(FD)->getRefQualifier() != RQ_RValue)
3128          break;
3129      } else {
3130        continue;
3131      }
3132    }
3133
3134    // Promote "AsRvalue" to the heap, since we now need this
3135    // expression node to persist.
3136    Value = ImplicitCastExpr::Create(S.Context, Value->getType(), CK_NoOp,
3137                                     Value, nullptr, VK_XValue);
3138
3139    // Complete type-checking the initialization of the return type
3140    // using the constructor we found.
3141    Res = Seq.Perform(S, Entity, Kind, Value);
3142  }
3143}
3144
3145/// Perform the initialization of a potentially-movable value, which
3146/// is the result of return value.
3147///
3148/// This routine implements C++14 [class.copy]p32, which attempts to treat
3149/// returned lvalues as rvalues in certain cases (to prefer move construction),
3150/// then falls back to treating them as lvalues if that failed.
3151ExprResult
3152Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
3153                                      const VarDecl *NRVOCandidate,
3154                                      QualType ResultType,
3155                                      Expr *Value,
3156                                      bool AllowNRVO) {
3157  // C++14 [class.copy]p32:
3158  // When the criteria for elision of a copy/move operation are met, but not for
3159  // an exception-declaration, and the object to be copied is designated by an
3160  // lvalue, or when the expression in a return statement is a (possibly
3161  // parenthesized) id-expression that names an object with automatic storage
3162  // duration declared in the body or parameter-declaration-clause of the
3163  // innermost enclosing function or lambda-expression, overload resolution to
3164  // select the constructor for the copy is first performed as if the object
3165  // were designated by an rvalue.
3166  ExprResult Res = ExprError();
3167
3168  if (AllowNRVO) {
3169    bool AffectedByCWG1579 = false;
3170
3171    if (!NRVOCandidate) {
3172      NRVOCandidate = getCopyElisionCandidate(ResultType, Value, CES_Default);
3173      if (NRVOCandidate &&
3174          !getDiagnostics().isIgnored(diag::warn_return_std_move_in_cxx11,
3175                                      Value->getExprLoc())) {
3176        const VarDecl *NRVOCandidateInCXX11 =
3177            getCopyElisionCandidate(ResultType, Value, CES_FormerDefault);
3178        AffectedByCWG1579 = (!NRVOCandidateInCXX11);
3179      }
3180    }
3181
3182    if (NRVOCandidate) {
3183      TryMoveInitialization(*this, Entity, NRVOCandidate, ResultType, Value,
3184                            true, Res);
3185    }
3186
3187    if (!Res.isInvalid() && AffectedByCWG1579) {
3188      QualType QT = NRVOCandidate->getType();
3189      if (QT.getNonReferenceType()
3190                     .getUnqualifiedType()
3191                     .isTriviallyCopyableType(Context)) {
3192        // Adding 'std::move' around a trivially copyable variable is probably
3193        // pointless. Don't suggest it.
3194      } else {
3195        // Common cases for this are returning unique_ptr<Derived> from a
3196        // function of return type unique_ptr<Base>, or returning T from a
3197        // function of return type Expected<T>. This is totally fine in a
3198        // post-CWG1579 world, but was not fine before.
3199        assert(!ResultType.isNull());
3200        SmallString<32> Str;
3201        Str += "std::move(";
3202        Str += NRVOCandidate->getDeclName().getAsString();
3203        Str += ")";
3204        Diag(Value->getExprLoc(), diag::warn_return_std_move_in_cxx11)
3205            << Value->getSourceRange()
3206            << NRVOCandidate->getDeclName() << ResultType << QT;
3207        Diag(Value->getExprLoc(), diag::note_add_std_move_in_cxx11)
3208            << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3209      }
3210    } else if (Res.isInvalid() &&
3211               !getDiagnostics().isIgnored(diag::warn_return_std_move,
3212                                           Value->getExprLoc())) {
3213      const VarDecl *FakeNRVOCandidate =
3214          getCopyElisionCandidate(QualType(), Value, CES_AsIfByStdMove);
3215      if (FakeNRVOCandidate) {
3216        QualType QT = FakeNRVOCandidate->getType();
3217        if (QT->isLValueReferenceType()) {
3218          // Adding 'std::move' around an lvalue reference variable's name is
3219          // dangerous. Don't suggest it.
3220        } else if (QT.getNonReferenceType()
3221                       .getUnqualifiedType()
3222                       .isTriviallyCopyableType(Context)) {
3223          // Adding 'std::move' around a trivially copyable variable is probably
3224          // pointless. Don't suggest it.
3225        } else {
3226          ExprResult FakeRes = ExprError();
3227          Expr *FakeValue = Value;
3228          TryMoveInitialization(*this, Entity, FakeNRVOCandidate, ResultType,
3229                                FakeValue, false, FakeRes);
3230          if (!FakeRes.isInvalid()) {
3231            bool IsThrow =
3232                (Entity.getKind() == InitializedEntity::EK_Exception);
3233            SmallString<32> Str;
3234            Str += "std::move(";
3235            Str += FakeNRVOCandidate->getDeclName().getAsString();
3236            Str += ")";
3237            Diag(Value->getExprLoc(), diag::warn_return_std_move)
3238                << Value->getSourceRange()
3239                << FakeNRVOCandidate->getDeclName() << IsThrow;
3240            Diag(Value->getExprLoc(), diag::note_add_std_move)
3241                << FixItHint::CreateReplacement(Value->getSourceRange(), Str);
3242          }
3243        }
3244      }
3245    }
3246  }
3247
3248  // Either we didn't meet the criteria for treating an lvalue as an rvalue,
3249  // above, or overload resolution failed. Either way, we need to try
3250  // (again) now with the return value expression as written.
3251  if (Res.isInvalid())
3252    Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
3253
3254  return Res;
3255}
3256
3257/// Determine whether the declared return type of the specified function
3258/// contains 'auto'.
3259static bool hasDeducedReturnType(FunctionDecl *FD) {
3260  const FunctionProtoType *FPT =
3261      FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
3262  return FPT->getReturnType()->isUndeducedType();
3263}
3264
3265/// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
3266/// for capturing scopes.
3267///
3268StmtResult
3269Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3270  // If this is the first return we've seen, infer the return type.
3271  // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
3272  CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
3273  QualType FnRetType = CurCap->ReturnType;
3274  LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
3275  bool HasDeducedReturnType =
3276      CurLambda && hasDeducedReturnType(CurLambda->CallOperator);
3277
3278  if (ExprEvalContexts.back().Context ==
3279          ExpressionEvaluationContext::DiscardedStatement &&
3280      (HasDeducedReturnType || CurCap->HasImplicitReturnType)) {
3281    if (RetValExp) {
3282      ExprResult ER =
3283          ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3284      if (ER.isInvalid())
3285        return StmtError();
3286      RetValExp = ER.get();
3287    }
3288    return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3289                              /* NRVOCandidate=*/nullptr);
3290  }
3291
3292  if (HasDeducedReturnType) {
3293    // In C++1y, the return type may involve 'auto'.
3294    // FIXME: Blocks might have a return type of 'auto' explicitly specified.
3295    FunctionDecl *FD = CurLambda->CallOperator;
3296    if (CurCap->ReturnType.isNull())
3297      CurCap->ReturnType = FD->getReturnType();
3298
3299    AutoType *AT = CurCap->ReturnType->getContainedAutoType();
3300    assert(AT && "lost auto type from lambda return type");
3301    if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3302      FD->setInvalidDecl();
3303      // FIXME: preserve the ill-formed return expression.
3304      return StmtError();
3305    }
3306    CurCap->ReturnType = FnRetType = FD->getReturnType();
3307  } else if (CurCap->HasImplicitReturnType) {
3308    // For blocks/lambdas with implicit return types, we check each return
3309    // statement individually, and deduce the common return type when the block
3310    // or lambda is completed.
3311    // FIXME: Fold this into the 'auto' codepath above.
3312    if (RetValExp && !isa<InitListExpr>(RetValExp)) {
3313      ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
3314      if (Result.isInvalid())
3315        return StmtError();
3316      RetValExp = Result.get();
3317
3318      // DR1048: even prior to C++14, we should use the 'auto' deduction rules
3319      // when deducing a return type for a lambda-expression (or by extension
3320      // for a block). These rules differ from the stated C++11 rules only in
3321      // that they remove top-level cv-qualifiers.
3322      if (!CurContext->isDependentContext())
3323        FnRetType = RetValExp->getType().getUnqualifiedType();
3324      else
3325        FnRetType = CurCap->ReturnType = Context.DependentTy;
3326    } else {
3327      if (RetValExp) {
3328        // C++11 [expr.lambda.prim]p4 bans inferring the result from an
3329        // initializer list, because it is not an expression (even
3330        // though we represent it as one). We still deduce 'void'.
3331        Diag(ReturnLoc, diag::err_lambda_return_init_list)
3332          << RetValExp->getSourceRange();
3333      }
3334
3335      FnRetType = Context.VoidTy;
3336    }
3337
3338    // Although we'll properly infer the type of the block once it's completed,
3339    // make sure we provide a return type now for better error recovery.
3340    if (CurCap->ReturnType.isNull())
3341      CurCap->ReturnType = FnRetType;
3342  }
3343  assert(!FnRetType.isNull());
3344
3345  if (auto *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
3346    if (CurBlock->FunctionType->castAs<FunctionType>()->getNoReturnAttr()) {
3347      Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
3348      return StmtError();
3349    }
3350  } else if (auto *CurRegion = dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
3351    Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
3352    return StmtError();
3353  } else {
3354    assert(CurLambda && "unknown kind of captured scope");
3355    if (CurLambda->CallOperator->getType()
3356            ->castAs<FunctionType>()
3357            ->getNoReturnAttr()) {
3358      Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
3359      return StmtError();
3360    }
3361  }
3362
3363  // Otherwise, verify that this result type matches the previous one.  We are
3364  // pickier with blocks than for normal functions because we don't have GCC
3365  // compatibility to worry about here.
3366  const VarDecl *NRVOCandidate = nullptr;
3367  if (FnRetType->isDependentType()) {
3368    // Delay processing for now.  TODO: there are lots of dependent
3369    // types we can conclusively prove aren't void.
3370  } else if (FnRetType->isVoidType()) {
3371    if (RetValExp && !isa<InitListExpr>(RetValExp) &&
3372        !(getLangOpts().CPlusPlus &&
3373          (RetValExp->isTypeDependent() ||
3374           RetValExp->getType()->isVoidType()))) {
3375      if (!getLangOpts().CPlusPlus &&
3376          RetValExp->getType()->isVoidType())
3377        Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
3378      else {
3379        Diag(ReturnLoc, diag::err_return_block_has_expr);
3380        RetValExp = nullptr;
3381      }
3382    }
3383  } else if (!RetValExp) {
3384    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
3385  } else if (!RetValExp->isTypeDependent()) {
3386    // we have a non-void block with an expression, continue checking
3387
3388    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3389    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3390    // function return.
3391
3392    // In C++ the return statement is handled via a copy initialization.
3393    // the C version of which boils down to CheckSingleAssignmentConstraints.
3394    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3395    InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3396                                                                   FnRetType,
3397                                                      NRVOCandidate != nullptr);
3398    ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3399                                                     FnRetType, RetValExp);
3400    if (Res.isInvalid()) {
3401      // FIXME: Cleanup temporaries here, anyway?
3402      return StmtError();
3403    }
3404    RetValExp = Res.get();
3405    CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
3406  } else {
3407    NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3408  }
3409
3410  if (RetValExp) {
3411    ExprResult ER =
3412        ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3413    if (ER.isInvalid())
3414      return StmtError();
3415    RetValExp = ER.get();
3416  }
3417  auto *Result =
3418      ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3419
3420  // If we need to check for the named return value optimization,
3421  // or if we need to infer the return type,
3422  // save the return statement in our scope for later processing.
3423  if (CurCap->HasImplicitReturnType || NRVOCandidate)
3424    FunctionScopes.back()->Returns.push_back(Result);
3425
3426  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3427    FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3428
3429  return Result;
3430}
3431
3432namespace {
3433/// Marks all typedefs in all local classes in a type referenced.
3434///
3435/// In a function like
3436/// auto f() {
3437///   struct S { typedef int a; };
3438///   return S();
3439/// }
3440///
3441/// the local type escapes and could be referenced in some TUs but not in
3442/// others. Pretend that all local typedefs are always referenced, to not warn
3443/// on this. This isn't necessary if f has internal linkage, or the typedef
3444/// is private.
3445class LocalTypedefNameReferencer
3446    : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
3447public:
3448  LocalTypedefNameReferencer(Sema &S) : S(S) {}
3449  bool VisitRecordType(const RecordType *RT);
3450private:
3451  Sema &S;
3452};
3453bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
3454  auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
3455  if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
3456      R->isDependentType())
3457    return true;
3458  for (auto *TmpD : R->decls())
3459    if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
3460      if (T->getAccess() != AS_private || R->hasFriends())
3461        S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
3462  return true;
3463}
3464}
3465
3466TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
3467  return FD->getTypeSourceInfo()
3468      ->getTypeLoc()
3469      .getAsAdjusted<FunctionProtoTypeLoc>()
3470      .getReturnLoc();
3471}
3472
3473/// Deduce the return type for a function from a returned expression, per
3474/// C++1y [dcl.spec.auto]p6.
3475bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3476                                            SourceLocation ReturnLoc,
3477                                            Expr *&RetExpr,
3478                                            AutoType *AT) {
3479  // If this is the conversion function for a lambda, we choose to deduce it
3480  // type from the corresponding call operator, not from the synthesized return
3481  // statement within it. See Sema::DeduceReturnType.
3482  if (isLambdaConversionOperator(FD))
3483    return false;
3484
3485  TypeLoc OrigResultType = getReturnTypeLoc(FD);
3486  QualType Deduced;
3487
3488  if (RetExpr && isa<InitListExpr>(RetExpr)) {
3489    //  If the deduction is for a return statement and the initializer is
3490    //  a braced-init-list, the program is ill-formed.
3491    Diag(RetExpr->getExprLoc(),
3492         getCurLambda() ? diag::err_lambda_return_init_list
3493                        : diag::err_auto_fn_return_init_list)
3494        << RetExpr->getSourceRange();
3495    return true;
3496  }
3497
3498  if (FD->isDependentContext()) {
3499    // C++1y [dcl.spec.auto]p12:
3500    //   Return type deduction [...] occurs when the definition is
3501    //   instantiated even if the function body contains a return
3502    //   statement with a non-type-dependent operand.
3503    assert(AT->isDeduced() && "should have deduced to dependent type");
3504    return false;
3505  }
3506
3507  if (RetExpr) {
3508    //  Otherwise, [...] deduce a value for U using the rules of template
3509    //  argument deduction.
3510    DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3511
3512    if (DAR == DAR_Failed && !FD->isInvalidDecl())
3513      Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3514        << OrigResultType.getType() << RetExpr->getType();
3515
3516    if (DAR != DAR_Succeeded)
3517      return true;
3518
3519    // If a local type is part of the returned type, mark its fields as
3520    // referenced.
3521    LocalTypedefNameReferencer Referencer(*this);
3522    Referencer.TraverseType(RetExpr->getType());
3523  } else {
3524    //  In the case of a return with no operand, the initializer is considered
3525    //  to be void().
3526    //
3527    // Deduction here can only succeed if the return type is exactly 'cv auto'
3528    // or 'decltype(auto)', so just check for that case directly.
3529    if (!OrigResultType.getType()->getAs<AutoType>()) {
3530      Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3531        << OrigResultType.getType();
3532      return true;
3533    }
3534    // We always deduce U = void in this case.
3535    Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3536    if (Deduced.isNull())
3537      return true;
3538  }
3539
3540  // CUDA: Kernel function must have 'void' return type.
3541  if (getLangOpts().CUDA)
3542    if (FD->hasAttr<CUDAGlobalAttr>() && !Deduced->isVoidType()) {
3543      Diag(FD->getLocation(), diag::err_kern_type_not_void_return)
3544          << FD->getType() << FD->getSourceRange();
3545      return true;
3546    }
3547
3548  //  If a function with a declared return type that contains a placeholder type
3549  //  has multiple return statements, the return type is deduced for each return
3550  //  statement. [...] if the type deduced is not the same in each deduction,
3551  //  the program is ill-formed.
3552  QualType DeducedT = AT->getDeducedType();
3553  if (!DeducedT.isNull() && !FD->isInvalidDecl()) {
3554    AutoType *NewAT = Deduced->getContainedAutoType();
3555    // It is possible that NewAT->getDeducedType() is null. When that happens,
3556    // we should not crash, instead we ignore this deduction.
3557    if (NewAT->getDeducedType().isNull())
3558      return false;
3559
3560    CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3561                                   DeducedT);
3562    CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3563                                   NewAT->getDeducedType());
3564    if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3565      const LambdaScopeInfo *LambdaSI = getCurLambda();
3566      if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3567        Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3568          << NewAT->getDeducedType() << DeducedT
3569          << true /*IsLambda*/;
3570      } else {
3571        Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3572          << (AT->isDecltypeAuto() ? 1 : 0)
3573          << NewAT->getDeducedType() << DeducedT;
3574      }
3575      return true;
3576    }
3577  } else if (!FD->isInvalidDecl()) {
3578    // Update all declarations of the function to have the deduced return type.
3579    Context.adjustDeducedFunctionResultType(FD, Deduced);
3580  }
3581
3582  return false;
3583}
3584
3585StmtResult
3586Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3587                      Scope *CurScope) {
3588  // Correct typos, in case the containing function returns 'auto' and
3589  // RetValExp should determine the deduced type.
3590  ExprResult RetVal = CorrectDelayedTyposInExpr(RetValExp);
3591  if (RetVal.isInvalid())
3592    return StmtError();
3593  StmtResult R = BuildReturnStmt(ReturnLoc, RetVal.get());
3594  if (R.isInvalid() || ExprEvalContexts.back().Context ==
3595                           ExpressionEvaluationContext::DiscardedStatement)
3596    return R;
3597
3598  if (VarDecl *VD =
3599      const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3600    CurScope->addNRVOCandidate(VD);
3601  } else {
3602    CurScope->setNoNRVO();
3603  }
3604
3605  CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3606
3607  return R;
3608}
3609
3610StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3611  // Check for unexpanded parameter packs.
3612  if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3613    return StmtError();
3614
3615  if (isa<CapturingScopeInfo>(getCurFunction()))
3616    return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3617
3618  QualType FnRetType;
3619  QualType RelatedRetType;
3620  const AttrVec *Attrs = nullptr;
3621  bool isObjCMethod = false;
3622
3623  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3624    FnRetType = FD->getReturnType();
3625    if (FD->hasAttrs())
3626      Attrs = &FD->getAttrs();
3627    if (FD->isNoReturn())
3628      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3629        << FD->getDeclName();
3630    if (FD->isMain() && RetValExp)
3631      if (isa<CXXBoolLiteralExpr>(RetValExp))
3632        Diag(ReturnLoc, diag::warn_main_returns_bool_literal)
3633          << RetValExp->getSourceRange();
3634    if (FD->hasAttr<CmseNSEntryAttr>() && RetValExp) {
3635      if (const auto *RT = dyn_cast<RecordType>(FnRetType.getCanonicalType())) {
3636        if (RT->getDecl()->isOrContainsUnion())
3637          Diag(RetValExp->getBeginLoc(), diag::warn_cmse_nonsecure_union) << 1;
3638      }
3639    }
3640  } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3641    FnRetType = MD->getReturnType();
3642    isObjCMethod = true;
3643    if (MD->hasAttrs())
3644      Attrs = &MD->getAttrs();
3645    if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3646      // In the implementation of a method with a related return type, the
3647      // type used to type-check the validity of return statements within the
3648      // method body is a pointer to the type of the class being implemented.
3649      RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3650      RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3651    }
3652  } else // If we don't have a function/method context, bail.
3653    return StmtError();
3654
3655  // C++1z: discarded return statements are not considered when deducing a
3656  // return type.
3657  if (ExprEvalContexts.back().Context ==
3658          ExpressionEvaluationContext::DiscardedStatement &&
3659      FnRetType->getContainedAutoType()) {
3660    if (RetValExp) {
3661      ExprResult ER =
3662          ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3663      if (ER.isInvalid())
3664        return StmtError();
3665      RetValExp = ER.get();
3666    }
3667    return ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3668                              /* NRVOCandidate=*/nullptr);
3669  }
3670
3671  // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3672  // deduction.
3673  if (getLangOpts().CPlusPlus14) {
3674    if (AutoType *AT = FnRetType->getContainedAutoType()) {
3675      FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3676      if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3677        FD->setInvalidDecl();
3678        return StmtError();
3679      } else {
3680        FnRetType = FD->getReturnType();
3681      }
3682    }
3683  }
3684
3685  bool HasDependentReturnType = FnRetType->isDependentType();
3686
3687  ReturnStmt *Result = nullptr;
3688  if (FnRetType->isVoidType()) {
3689    if (RetValExp) {
3690      if (isa<InitListExpr>(RetValExp)) {
3691        // We simply never allow init lists as the return value of void
3692        // functions. This is compatible because this was never allowed before,
3693        // so there's no legacy code to deal with.
3694        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3695        int FunctionKind = 0;
3696        if (isa<ObjCMethodDecl>(CurDecl))
3697          FunctionKind = 1;
3698        else if (isa<CXXConstructorDecl>(CurDecl))
3699          FunctionKind = 2;
3700        else if (isa<CXXDestructorDecl>(CurDecl))
3701          FunctionKind = 3;
3702
3703        Diag(ReturnLoc, diag::err_return_init_list)
3704          << CurDecl->getDeclName() << FunctionKind
3705          << RetValExp->getSourceRange();
3706
3707        // Drop the expression.
3708        RetValExp = nullptr;
3709      } else if (!RetValExp->isTypeDependent()) {
3710        // C99 6.8.6.4p1 (ext_ since GCC warns)
3711        unsigned D = diag::ext_return_has_expr;
3712        if (RetValExp->getType()->isVoidType()) {
3713          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3714          if (isa<CXXConstructorDecl>(CurDecl) ||
3715              isa<CXXDestructorDecl>(CurDecl))
3716            D = diag::err_ctor_dtor_returns_void;
3717          else
3718            D = diag::ext_return_has_void_expr;
3719        }
3720        else {
3721          ExprResult Result = RetValExp;
3722          Result = IgnoredValueConversions(Result.get());
3723          if (Result.isInvalid())
3724            return StmtError();
3725          RetValExp = Result.get();
3726          RetValExp = ImpCastExprToType(RetValExp,
3727                                        Context.VoidTy, CK_ToVoid).get();
3728        }
3729        // return of void in constructor/destructor is illegal in C++.
3730        if (D == diag::err_ctor_dtor_returns_void) {
3731          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3732          Diag(ReturnLoc, D)
3733            << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3734            << RetValExp->getSourceRange();
3735        }
3736        // return (some void expression); is legal in C++.
3737        else if (D != diag::ext_return_has_void_expr ||
3738                 !getLangOpts().CPlusPlus) {
3739          NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3740
3741          int FunctionKind = 0;
3742          if (isa<ObjCMethodDecl>(CurDecl))
3743            FunctionKind = 1;
3744          else if (isa<CXXConstructorDecl>(CurDecl))
3745            FunctionKind = 2;
3746          else if (isa<CXXDestructorDecl>(CurDecl))
3747            FunctionKind = 3;
3748
3749          Diag(ReturnLoc, D)
3750            << CurDecl->getDeclName() << FunctionKind
3751            << RetValExp->getSourceRange();
3752        }
3753      }
3754
3755      if (RetValExp) {
3756        ExprResult ER =
3757            ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3758        if (ER.isInvalid())
3759          return StmtError();
3760        RetValExp = ER.get();
3761      }
3762    }
3763
3764    Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp,
3765                                /* NRVOCandidate=*/nullptr);
3766  } else if (!RetValExp && !HasDependentReturnType) {
3767    FunctionDecl *FD = getCurFunctionDecl();
3768
3769    unsigned DiagID;
3770    if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3771      // C++11 [stmt.return]p2
3772      DiagID = diag::err_constexpr_return_missing_expr;
3773      FD->setInvalidDecl();
3774    } else if (getLangOpts().C99) {
3775      // C99 6.8.6.4p1 (ext_ since GCC warns)
3776      DiagID = diag::ext_return_missing_expr;
3777    } else {
3778      // C90 6.6.6.4p4
3779      DiagID = diag::warn_return_missing_expr;
3780    }
3781
3782    if (FD)
3783      Diag(ReturnLoc, DiagID)
3784          << FD->getIdentifier() << 0 /*fn*/ << FD->isConsteval();
3785    else
3786      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3787
3788    Result = ReturnStmt::Create(Context, ReturnLoc, /* RetExpr=*/nullptr,
3789                                /* NRVOCandidate=*/nullptr);
3790  } else {
3791    assert(RetValExp || HasDependentReturnType);
3792    const VarDecl *NRVOCandidate = nullptr;
3793
3794    QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3795
3796    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3797    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3798    // function return.
3799
3800    // In C++ the return statement is handled via a copy initialization,
3801    // the C version of which boils down to CheckSingleAssignmentConstraints.
3802    if (RetValExp)
3803      NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, CES_Strict);
3804    if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3805      // we have a non-void function with an expression, continue checking
3806      InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3807                                                                     RetType,
3808                                                      NRVOCandidate != nullptr);
3809      ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3810                                                       RetType, RetValExp);
3811      if (Res.isInvalid()) {
3812        // FIXME: Clean up temporaries here anyway?
3813        return StmtError();
3814      }
3815      RetValExp = Res.getAs<Expr>();
3816
3817      // If we have a related result type, we need to implicitly
3818      // convert back to the formal result type.  We can't pretend to
3819      // initialize the result again --- we might end double-retaining
3820      // --- so instead we initialize a notional temporary.
3821      if (!RelatedRetType.isNull()) {
3822        Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3823                                                            FnRetType);
3824        Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3825        if (Res.isInvalid()) {
3826          // FIXME: Clean up temporaries here anyway?
3827          return StmtError();
3828        }
3829        RetValExp = Res.getAs<Expr>();
3830      }
3831
3832      CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3833                         getCurFunctionDecl());
3834    }
3835
3836    if (RetValExp) {
3837      ExprResult ER =
3838          ActOnFinishFullExpr(RetValExp, ReturnLoc, /*DiscardedValue*/ false);
3839      if (ER.isInvalid())
3840        return StmtError();
3841      RetValExp = ER.get();
3842    }
3843    Result = ReturnStmt::Create(Context, ReturnLoc, RetValExp, NRVOCandidate);
3844  }
3845
3846  // If we need to check for the named return value optimization, save the
3847  // return statement in our scope for later processing.
3848  if (Result->getNRVOCandidate())
3849    FunctionScopes.back()->Returns.push_back(Result);
3850
3851  if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3852    FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3853
3854  return Result;
3855}
3856
3857StmtResult
3858Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3859                           SourceLocation RParen, Decl *Parm,
3860                           Stmt *Body) {
3861  VarDecl *Var = cast_or_null<VarDecl>(Parm);
3862  if (Var && Var->isInvalidDecl())
3863    return StmtError();
3864
3865  return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3866}
3867
3868StmtResult
3869Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3870  return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3871}
3872
3873StmtResult
3874Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3875                         MultiStmtArg CatchStmts, Stmt *Finally) {
3876  if (!getLangOpts().ObjCExceptions)
3877    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3878
3879  setFunctionHasBranchProtectedScope();
3880  unsigned NumCatchStmts = CatchStmts.size();
3881  return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3882                               NumCatchStmts, Finally);
3883}
3884
3885StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3886  if (Throw) {
3887    ExprResult Result = DefaultLvalueConversion(Throw);
3888    if (Result.isInvalid())
3889      return StmtError();
3890
3891    Result = ActOnFinishFullExpr(Result.get(), /*DiscardedValue*/ false);
3892    if (Result.isInvalid())
3893      return StmtError();
3894    Throw = Result.get();
3895
3896    QualType ThrowType = Throw->getType();
3897    // Make sure the expression type is an ObjC pointer or "void *".
3898    if (!ThrowType->isDependentType() &&
3899        !ThrowType->isObjCObjectPointerType()) {
3900      const PointerType *PT = ThrowType->getAs<PointerType>();
3901      if (!PT || !PT->getPointeeType()->isVoidType())
3902        return StmtError(Diag(AtLoc, diag::err_objc_throw_expects_object)
3903                         << Throw->getType() << Throw->getSourceRange());
3904    }
3905  }
3906
3907  return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3908}
3909
3910StmtResult
3911Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3912                           Scope *CurScope) {
3913  if (!getLangOpts().ObjCExceptions)
3914    Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3915
3916  if (!Throw) {
3917    // @throw without an expression designates a rethrow (which must occur
3918    // in the context of an @catch clause).
3919    Scope *AtCatchParent = CurScope;
3920    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3921      AtCatchParent = AtCatchParent->getParent();
3922    if (!AtCatchParent)
3923      return StmtError(Diag(AtLoc, diag::err_rethrow_used_outside_catch));
3924  }
3925  return BuildObjCAtThrowStmt(AtLoc, Throw);
3926}
3927
3928ExprResult
3929Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3930  ExprResult result = DefaultLvalueConversion(operand);
3931  if (result.isInvalid())
3932    return ExprError();
3933  operand = result.get();
3934
3935  // Make sure the expression type is an ObjC pointer or "void *".
3936  QualType type = operand->getType();
3937  if (!type->isDependentType() &&
3938      !type->isObjCObjectPointerType()) {
3939    const PointerType *pointerType = type->getAs<PointerType>();
3940    if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3941      if (getLangOpts().CPlusPlus) {
3942        if (RequireCompleteType(atLoc, type,
3943                                diag::err_incomplete_receiver_type))
3944          return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3945                   << type << operand->getSourceRange();
3946
3947        ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3948        if (result.isInvalid())
3949          return ExprError();
3950        if (!result.isUsable())
3951          return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3952                   << type << operand->getSourceRange();
3953
3954        operand = result.get();
3955      } else {
3956          return Diag(atLoc, diag::err_objc_synchronized_expects_object)
3957                   << type << operand->getSourceRange();
3958      }
3959    }
3960  }
3961
3962  // The operand to @synchronized is a full-expression.
3963  return ActOnFinishFullExpr(operand, /*DiscardedValue*/ false);
3964}
3965
3966StmtResult
3967Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3968                                  Stmt *SyncBody) {
3969  // We can't jump into or indirect-jump out of a @synchronized block.
3970  setFunctionHasBranchProtectedScope();
3971  return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3972}
3973
3974/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3975/// and creates a proper catch handler from them.
3976StmtResult
3977Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3978                         Stmt *HandlerBlock) {
3979  // There's nothing to test that ActOnExceptionDecl didn't already test.
3980  return new (Context)
3981      CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3982}
3983
3984StmtResult
3985Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3986  setFunctionHasBranchProtectedScope();
3987  return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3988}
3989
3990namespace {
3991class CatchHandlerType {
3992  QualType QT;
3993  unsigned IsPointer : 1;
3994
3995  // This is a special constructor to be used only with DenseMapInfo's
3996  // getEmptyKey() and getTombstoneKey() functions.
3997  friend struct llvm::DenseMapInfo<CatchHandlerType>;
3998  enum Unique { ForDenseMap };
3999  CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
4000
4001public:
4002  /// Used when creating a CatchHandlerType from a handler type; will determine
4003  /// whether the type is a pointer or reference and will strip off the top
4004  /// level pointer and cv-qualifiers.
4005  CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
4006    if (QT->isPointerType())
4007      IsPointer = true;
4008
4009    if (IsPointer || QT->isReferenceType())
4010      QT = QT->getPointeeType();
4011    QT = QT.getUnqualifiedType();
4012  }
4013
4014  /// Used when creating a CatchHandlerType from a base class type; pretends the
4015  /// type passed in had the pointer qualifier, does not need to get an
4016  /// unqualified type.
4017  CatchHandlerType(QualType QT, bool IsPointer)
4018      : QT(QT), IsPointer(IsPointer) {}
4019
4020  QualType underlying() const { return QT; }
4021  bool isPointer() const { return IsPointer; }
4022
4023  friend bool operator==(const CatchHandlerType &LHS,
4024                         const CatchHandlerType &RHS) {
4025    // If the pointer qualification does not match, we can return early.
4026    if (LHS.IsPointer != RHS.IsPointer)
4027      return false;
4028    // Otherwise, check the underlying type without cv-qualifiers.
4029    return LHS.QT == RHS.QT;
4030  }
4031};
4032} // namespace
4033
4034namespace llvm {
4035template <> struct DenseMapInfo<CatchHandlerType> {
4036  static CatchHandlerType getEmptyKey() {
4037    return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
4038                       CatchHandlerType::ForDenseMap);
4039  }
4040
4041  static CatchHandlerType getTombstoneKey() {
4042    return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
4043                       CatchHandlerType::ForDenseMap);
4044  }
4045
4046  static unsigned getHashValue(const CatchHandlerType &Base) {
4047    return DenseMapInfo<QualType>::getHashValue(Base.underlying());
4048  }
4049
4050  static bool isEqual(const CatchHandlerType &LHS,
4051                      const CatchHandlerType &RHS) {
4052    return LHS == RHS;
4053  }
4054};
4055}
4056
4057namespace {
4058class CatchTypePublicBases {
4059  ASTContext &Ctx;
4060  const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
4061  const bool CheckAgainstPointer;
4062
4063  CXXCatchStmt *FoundHandler;
4064  CanQualType FoundHandlerType;
4065
4066public:
4067  CatchTypePublicBases(
4068      ASTContext &Ctx,
4069      const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
4070      : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
4071        FoundHandler(nullptr) {}
4072
4073  CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
4074  CanQualType getFoundHandlerType() const { return FoundHandlerType; }
4075
4076  bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
4077    if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
4078      CatchHandlerType Check(S->getType(), CheckAgainstPointer);
4079      const auto &M = TypesToCheck;
4080      auto I = M.find(Check);
4081      if (I != M.end()) {
4082        FoundHandler = I->second;
4083        FoundHandlerType = Ctx.getCanonicalType(S->getType());
4084        return true;
4085      }
4086    }
4087    return false;
4088  }
4089};
4090}
4091
4092/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
4093/// handlers and creates a try statement from them.
4094StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4095                                  ArrayRef<Stmt *> Handlers) {
4096  // Don't report an error if 'try' is used in system headers.
4097  if (!getLangOpts().CXXExceptions &&
4098      !getSourceManager().isInSystemHeader(TryLoc) && !getLangOpts().CUDA) {
4099    // Delay error emission for the OpenMP device code.
4100    targetDiag(TryLoc, diag::err_exceptions_disabled) << "try";
4101  }
4102
4103  // Exceptions aren't allowed in CUDA device code.
4104  if (getLangOpts().CUDA)
4105    CUDADiagIfDeviceCode(TryLoc, diag::err_cuda_device_exceptions)
4106        << "try" << CurrentCUDATarget();
4107
4108  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
4109    Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
4110
4111  sema::FunctionScopeInfo *FSI = getCurFunction();
4112
4113  // C++ try is incompatible with SEH __try.
4114  if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
4115    Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4116    Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
4117  }
4118
4119  const unsigned NumHandlers = Handlers.size();
4120  assert(!Handlers.empty() &&
4121         "The parser shouldn't call this if there are no handlers.");
4122
4123  llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
4124  for (unsigned i = 0; i < NumHandlers; ++i) {
4125    CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
4126
4127    // Diagnose when the handler is a catch-all handler, but it isn't the last
4128    // handler for the try block. [except.handle]p5. Also, skip exception
4129    // declarations that are invalid, since we can't usefully report on them.
4130    if (!H->getExceptionDecl()) {
4131      if (i < NumHandlers - 1)
4132        return StmtError(Diag(H->getBeginLoc(), diag::err_early_catch_all));
4133      continue;
4134    } else if (H->getExceptionDecl()->isInvalidDecl())
4135      continue;
4136
4137    // Walk the type hierarchy to diagnose when this type has already been
4138    // handled (duplication), or cannot be handled (derivation inversion). We
4139    // ignore top-level cv-qualifiers, per [except.handle]p3
4140    CatchHandlerType HandlerCHT =
4141        (QualType)Context.getCanonicalType(H->getCaughtType());
4142
4143    // We can ignore whether the type is a reference or a pointer; we need the
4144    // underlying declaration type in order to get at the underlying record
4145    // decl, if there is one.
4146    QualType Underlying = HandlerCHT.underlying();
4147    if (auto *RD = Underlying->getAsCXXRecordDecl()) {
4148      if (!RD->hasDefinition())
4149        continue;
4150      // Check that none of the public, unambiguous base classes are in the
4151      // map ([except.handle]p1). Give the base classes the same pointer
4152      // qualification as the original type we are basing off of. This allows
4153      // comparison against the handler type using the same top-level pointer
4154      // as the original type.
4155      CXXBasePaths Paths;
4156      Paths.setOrigin(RD);
4157      CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
4158      if (RD->lookupInBases(CTPB, Paths)) {
4159        const CXXCatchStmt *Problem = CTPB.getFoundHandler();
4160        if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
4161          Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4162               diag::warn_exception_caught_by_earlier_handler)
4163              << H->getCaughtType();
4164          Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4165                diag::note_previous_exception_handler)
4166              << Problem->getCaughtType();
4167        }
4168      }
4169    }
4170
4171    // Add the type the list of ones we have handled; diagnose if we've already
4172    // handled it.
4173    auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
4174    if (!R.second) {
4175      const CXXCatchStmt *Problem = R.first->second;
4176      Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
4177           diag::warn_exception_caught_by_earlier_handler)
4178          << H->getCaughtType();
4179      Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
4180           diag::note_previous_exception_handler)
4181          << Problem->getCaughtType();
4182    }
4183  }
4184
4185  FSI->setHasCXXTry(TryLoc);
4186
4187  return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
4188}
4189
4190StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
4191                                  Stmt *TryBlock, Stmt *Handler) {
4192  assert(TryBlock && Handler);
4193
4194  sema::FunctionScopeInfo *FSI = getCurFunction();
4195
4196  // SEH __try is incompatible with C++ try. Borland appears to support this,
4197  // however.
4198  if (!getLangOpts().Borland) {
4199    if (FSI->FirstCXXTryLoc.isValid()) {
4200      Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
4201      Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
4202    }
4203  }
4204
4205  FSI->setHasSEHTry(TryLoc);
4206
4207  // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
4208  // track if they use SEH.
4209  DeclContext *DC = CurContext;
4210  while (DC && !DC->isFunctionOrMethod())
4211    DC = DC->getParent();
4212  FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
4213  if (FD)
4214    FD->setUsesSEHTry(true);
4215  else
4216    Diag(TryLoc, diag::err_seh_try_outside_functions);
4217
4218  // Reject __try on unsupported targets.
4219  if (!Context.getTargetInfo().isSEHTrySupported())
4220    Diag(TryLoc, diag::err_seh_try_unsupported);
4221
4222  return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
4223}
4224
4225StmtResult Sema::ActOnSEHExceptBlock(SourceLocation Loc, Expr *FilterExpr,
4226                                     Stmt *Block) {
4227  assert(FilterExpr && Block);
4228  QualType FTy = FilterExpr->getType();
4229  if (!FTy->isIntegerType() && !FTy->isDependentType()) {
4230    return StmtError(
4231        Diag(FilterExpr->getExprLoc(), diag::err_filter_expression_integral)
4232        << FTy);
4233  }
4234  return SEHExceptStmt::Create(Context, Loc, FilterExpr, Block);
4235}
4236
4237void Sema::ActOnStartSEHFinallyBlock() {
4238  CurrentSEHFinally.push_back(CurScope);
4239}
4240
4241void Sema::ActOnAbortSEHFinallyBlock() {
4242  CurrentSEHFinally.pop_back();
4243}
4244
4245StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
4246  assert(Block);
4247  CurrentSEHFinally.pop_back();
4248  return SEHFinallyStmt::Create(Context, Loc, Block);
4249}
4250
4251StmtResult
4252Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
4253  Scope *SEHTryParent = CurScope;
4254  while (SEHTryParent && !SEHTryParent->isSEHTryScope())
4255    SEHTryParent = SEHTryParent->getParent();
4256  if (!SEHTryParent)
4257    return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
4258  CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
4259
4260  return new (Context) SEHLeaveStmt(Loc);
4261}
4262
4263StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
4264                                            bool IsIfExists,
4265                                            NestedNameSpecifierLoc QualifierLoc,
4266                                            DeclarationNameInfo NameInfo,
4267                                            Stmt *Nested)
4268{
4269  return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
4270                                             QualifierLoc, NameInfo,
4271                                             cast<CompoundStmt>(Nested));
4272}
4273
4274
4275StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
4276                                            bool IsIfExists,
4277                                            CXXScopeSpec &SS,
4278                                            UnqualifiedId &Name,
4279                                            Stmt *Nested) {
4280  return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
4281                                    SS.getWithLocInContext(Context),
4282                                    GetNameFromUnqualifiedId(Name),
4283                                    Nested);
4284}
4285
4286RecordDecl*
4287Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
4288                                   unsigned NumParams) {
4289  DeclContext *DC = CurContext;
4290  while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
4291    DC = DC->getParent();
4292
4293  RecordDecl *RD = nullptr;
4294  if (getLangOpts().CPlusPlus)
4295    RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
4296                               /*Id=*/nullptr);
4297  else
4298    RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
4299
4300  RD->setCapturedRecord();
4301  DC->addDecl(RD);
4302  RD->setImplicit();
4303  RD->startDefinition();
4304
4305  assert(NumParams > 0 && "CapturedStmt requires context parameter");
4306  CD = CapturedDecl::Create(Context, CurContext, NumParams);
4307  DC->addDecl(CD);
4308  return RD;
4309}
4310
4311static bool
4312buildCapturedStmtCaptureList(Sema &S, CapturedRegionScopeInfo *RSI,
4313                             SmallVectorImpl<CapturedStmt::Capture> &Captures,
4314                             SmallVectorImpl<Expr *> &CaptureInits) {
4315  for (const sema::Capture &Cap : RSI->Captures) {
4316    if (Cap.isInvalid())
4317      continue;
4318
4319    // Form the initializer for the capture.
4320    ExprResult Init = S.BuildCaptureInit(Cap, Cap.getLocation(),
4321                                         RSI->CapRegionKind == CR_OpenMP);
4322
4323    // FIXME: Bail out now if the capture is not used and the initializer has
4324    // no side-effects.
4325
4326    // Create a field for this capture.
4327    FieldDecl *Field = S.BuildCaptureField(RSI->TheRecordDecl, Cap);
4328
4329    // Add the capture to our list of captures.
4330    if (Cap.isThisCapture()) {
4331      Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4332                                               CapturedStmt::VCK_This));
4333    } else if (Cap.isVLATypeCapture()) {
4334      Captures.push_back(
4335          CapturedStmt::Capture(Cap.getLocation(), CapturedStmt::VCK_VLAType));
4336    } else {
4337      assert(Cap.isVariableCapture() && "unknown kind of capture");
4338
4339      if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP)
4340        S.setOpenMPCaptureKind(Field, Cap.getVariable(), RSI->OpenMPLevel);
4341
4342      Captures.push_back(CapturedStmt::Capture(Cap.getLocation(),
4343                                               Cap.isReferenceCapture()
4344                                                   ? CapturedStmt::VCK_ByRef
4345                                                   : CapturedStmt::VCK_ByCopy,
4346                                               Cap.getVariable()));
4347    }
4348    CaptureInits.push_back(Init.get());
4349  }
4350  return false;
4351}
4352
4353void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4354                                    CapturedRegionKind Kind,
4355                                    unsigned NumParams) {
4356  CapturedDecl *CD = nullptr;
4357  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
4358
4359  // Build the context parameter
4360  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4361  IdentifierInfo *ParamName = &Context.Idents.get("__context");
4362  QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4363  auto *Param =
4364      ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4365                                ImplicitParamDecl::CapturedContext);
4366  DC->addDecl(Param);
4367
4368  CD->setContextParam(0, Param);
4369
4370  // Enter the capturing scope for this captured region.
4371  PushCapturedRegionScope(CurScope, CD, RD, Kind);
4372
4373  if (CurScope)
4374    PushDeclContext(CurScope, CD);
4375  else
4376    CurContext = CD;
4377
4378  PushExpressionEvaluationContext(
4379      ExpressionEvaluationContext::PotentiallyEvaluated);
4380}
4381
4382void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4383                                    CapturedRegionKind Kind,
4384                                    ArrayRef<CapturedParamNameType> Params,
4385                                    unsigned OpenMPCaptureLevel) {
4386  CapturedDecl *CD = nullptr;
4387  RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
4388
4389  // Build the context parameter
4390  DeclContext *DC = CapturedDecl::castToDeclContext(CD);
4391  bool ContextIsFound = false;
4392  unsigned ParamNum = 0;
4393  for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
4394                                                 E = Params.end();
4395       I != E; ++I, ++ParamNum) {
4396    if (I->second.isNull()) {
4397      assert(!ContextIsFound &&
4398             "null type has been found already for '__context' parameter");
4399      IdentifierInfo *ParamName = &Context.Idents.get("__context");
4400      QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD))
4401                               .withConst()
4402                               .withRestrict();
4403      auto *Param =
4404          ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4405                                    ImplicitParamDecl::CapturedContext);
4406      DC->addDecl(Param);
4407      CD->setContextParam(ParamNum, Param);
4408      ContextIsFound = true;
4409    } else {
4410      IdentifierInfo *ParamName = &Context.Idents.get(I->first);
4411      auto *Param =
4412          ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second,
4413                                    ImplicitParamDecl::CapturedContext);
4414      DC->addDecl(Param);
4415      CD->setParam(ParamNum, Param);
4416    }
4417  }
4418  assert(ContextIsFound && "no null type for '__context' parameter");
4419  if (!ContextIsFound) {
4420    // Add __context implicitly if it is not specified.
4421    IdentifierInfo *ParamName = &Context.Idents.get("__context");
4422    QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
4423    auto *Param =
4424        ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType,
4425                                  ImplicitParamDecl::CapturedContext);
4426    DC->addDecl(Param);
4427    CD->setContextParam(ParamNum, Param);
4428  }
4429  // Enter the capturing scope for this captured region.
4430  PushCapturedRegionScope(CurScope, CD, RD, Kind, OpenMPCaptureLevel);
4431
4432  if (CurScope)
4433    PushDeclContext(CurScope, CD);
4434  else
4435    CurContext = CD;
4436
4437  PushExpressionEvaluationContext(
4438      ExpressionEvaluationContext::PotentiallyEvaluated);
4439}
4440
4441void Sema::ActOnCapturedRegionError() {
4442  DiscardCleanupsInEvaluationContext();
4443  PopExpressionEvaluationContext();
4444  PopDeclContext();
4445  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4446  CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4447
4448  RecordDecl *Record = RSI->TheRecordDecl;
4449  Record->setInvalidDecl();
4450
4451  SmallVector<Decl*, 4> Fields(Record->fields());
4452  ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
4453              SourceLocation(), SourceLocation(), ParsedAttributesView());
4454}
4455
4456StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
4457  // Leave the captured scope before we start creating captures in the
4458  // enclosing scope.
4459  DiscardCleanupsInEvaluationContext();
4460  PopExpressionEvaluationContext();
4461  PopDeclContext();
4462  PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo();
4463  CapturedRegionScopeInfo *RSI = cast<CapturedRegionScopeInfo>(ScopeRAII.get());
4464
4465  SmallVector<CapturedStmt::Capture, 4> Captures;
4466  SmallVector<Expr *, 4> CaptureInits;
4467  if (buildCapturedStmtCaptureList(*this, RSI, Captures, CaptureInits))
4468    return StmtError();
4469
4470  CapturedDecl *CD = RSI->TheCapturedDecl;
4471  RecordDecl *RD = RSI->TheRecordDecl;
4472
4473  CapturedStmt *Res = CapturedStmt::Create(
4474      getASTContext(), S, static_cast<CapturedRegionKind>(RSI->CapRegionKind),
4475      Captures, CaptureInits, CD, RD);
4476
4477  CD->setBody(Res->getCapturedStmt());
4478  RD->completeDefinition();
4479
4480  return Res;
4481}
4482