1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides Objective-C code generation targeting the GNU runtime.  The
10// class in this file generates structures used by the GNU Objective-C runtime
11// library.  These structures are defined in objc/objc.h and objc/objc-api.h in
12// the GNU runtime distribution.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CGCXXABI.h"
17#include "CGCleanup.h"
18#include "CGObjCRuntime.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Attr.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Basic/FileManager.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/CodeGen/ConstantInitBuilder.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringMap.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Module.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/ConvertUTF.h"
38#include <cctype>
39
40using namespace clang;
41using namespace CodeGen;
42
43namespace {
44
45std::string SymbolNameForMethod( StringRef ClassName,
46     StringRef CategoryName, const Selector MethodName,
47    bool isClassMethod) {
48  std::string MethodNameColonStripped = MethodName.getAsString();
49  std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
50      ':', '_');
51  return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
52    CategoryName + "_" + MethodNameColonStripped).str();
53}
54
55/// Class that lazily initialises the runtime function.  Avoids inserting the
56/// types and the function declaration into a module if they're not used, and
57/// avoids constructing the type more than once if it's used more than once.
58class LazyRuntimeFunction {
59  CodeGenModule *CGM;
60  llvm::FunctionType *FTy;
61  const char *FunctionName;
62  llvm::FunctionCallee Function;
63
64public:
65  /// Constructor leaves this class uninitialized, because it is intended to
66  /// be used as a field in another class and not all of the types that are
67  /// used as arguments will necessarily be available at construction time.
68  LazyRuntimeFunction()
69      : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
70
71  /// Initialises the lazy function with the name, return type, and the types
72  /// of the arguments.
73  template <typename... Tys>
74  void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy,
75            Tys *... Types) {
76    CGM = Mod;
77    FunctionName = name;
78    Function = nullptr;
79    if(sizeof...(Tys)) {
80      SmallVector<llvm::Type *, 8> ArgTys({Types...});
81      FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
82    }
83    else {
84      FTy = llvm::FunctionType::get(RetTy, None, false);
85    }
86  }
87
88  llvm::FunctionType *getType() { return FTy; }
89
90  /// Overloaded cast operator, allows the class to be implicitly cast to an
91  /// LLVM constant.
92  operator llvm::FunctionCallee() {
93    if (!Function) {
94      if (!FunctionName)
95        return nullptr;
96      Function = CGM->CreateRuntimeFunction(FTy, FunctionName);
97    }
98    return Function;
99  }
100};
101
102
103/// GNU Objective-C runtime code generation.  This class implements the parts of
104/// Objective-C support that are specific to the GNU family of runtimes (GCC,
105/// GNUstep and ObjFW).
106class CGObjCGNU : public CGObjCRuntime {
107protected:
108  /// The LLVM module into which output is inserted
109  llvm::Module &TheModule;
110  /// strut objc_super.  Used for sending messages to super.  This structure
111  /// contains the receiver (object) and the expected class.
112  llvm::StructType *ObjCSuperTy;
113  /// struct objc_super*.  The type of the argument to the superclass message
114  /// lookup functions.
115  llvm::PointerType *PtrToObjCSuperTy;
116  /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
117  /// SEL is included in a header somewhere, in which case it will be whatever
118  /// type is declared in that header, most likely {i8*, i8*}.
119  llvm::PointerType *SelectorTy;
120  /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
121  /// places where it's used
122  llvm::IntegerType *Int8Ty;
123  /// Pointer to i8 - LLVM type of char*, for all of the places where the
124  /// runtime needs to deal with C strings.
125  llvm::PointerType *PtrToInt8Ty;
126  /// struct objc_protocol type
127  llvm::StructType *ProtocolTy;
128  /// Protocol * type.
129  llvm::PointerType *ProtocolPtrTy;
130  /// Instance Method Pointer type.  This is a pointer to a function that takes,
131  /// at a minimum, an object and a selector, and is the generic type for
132  /// Objective-C methods.  Due to differences between variadic / non-variadic
133  /// calling conventions, it must always be cast to the correct type before
134  /// actually being used.
135  llvm::PointerType *IMPTy;
136  /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
137  /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
138  /// but if the runtime header declaring it is included then it may be a
139  /// pointer to a structure.
140  llvm::PointerType *IdTy;
141  /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
142  /// message lookup function and some GC-related functions.
143  llvm::PointerType *PtrToIdTy;
144  /// The clang type of id.  Used when using the clang CGCall infrastructure to
145  /// call Objective-C methods.
146  CanQualType ASTIdTy;
147  /// LLVM type for C int type.
148  llvm::IntegerType *IntTy;
149  /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
150  /// used in the code to document the difference between i8* meaning a pointer
151  /// to a C string and i8* meaning a pointer to some opaque type.
152  llvm::PointerType *PtrTy;
153  /// LLVM type for C long type.  The runtime uses this in a lot of places where
154  /// it should be using intptr_t, but we can't fix this without breaking
155  /// compatibility with GCC...
156  llvm::IntegerType *LongTy;
157  /// LLVM type for C size_t.  Used in various runtime data structures.
158  llvm::IntegerType *SizeTy;
159  /// LLVM type for C intptr_t.
160  llvm::IntegerType *IntPtrTy;
161  /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
162  llvm::IntegerType *PtrDiffTy;
163  /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
164  /// variables.
165  llvm::PointerType *PtrToIntTy;
166  /// LLVM type for Objective-C BOOL type.
167  llvm::Type *BoolTy;
168  /// 32-bit integer type, to save us needing to look it up every time it's used.
169  llvm::IntegerType *Int32Ty;
170  /// 64-bit integer type, to save us needing to look it up every time it's used.
171  llvm::IntegerType *Int64Ty;
172  /// The type of struct objc_property.
173  llvm::StructType *PropertyMetadataTy;
174  /// Metadata kind used to tie method lookups to message sends.  The GNUstep
175  /// runtime provides some LLVM passes that can use this to do things like
176  /// automatic IMP caching and speculative inlining.
177  unsigned msgSendMDKind;
178  /// Does the current target use SEH-based exceptions? False implies
179  /// Itanium-style DWARF unwinding.
180  bool usesSEHExceptions;
181
182  /// Helper to check if we are targeting a specific runtime version or later.
183  bool isRuntime(ObjCRuntime::Kind kind, unsigned major, unsigned minor=0) {
184    const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
185    return (R.getKind() == kind) &&
186      (R.getVersion() >= VersionTuple(major, minor));
187  }
188
189  std::string ManglePublicSymbol(StringRef Name) {
190    return (StringRef(CGM.getTriple().isOSBinFormatCOFF() ? "$_" : "._") + Name).str();
191  }
192
193  std::string SymbolForProtocol(Twine Name) {
194    return (ManglePublicSymbol("OBJC_PROTOCOL_") + Name).str();
195  }
196
197  std::string SymbolForProtocolRef(StringRef Name) {
198    return (ManglePublicSymbol("OBJC_REF_PROTOCOL_") + Name).str();
199  }
200
201
202  /// Helper function that generates a constant string and returns a pointer to
203  /// the start of the string.  The result of this function can be used anywhere
204  /// where the C code specifies const char*.
205  llvm::Constant *MakeConstantString(StringRef Str, const char *Name = "") {
206    ConstantAddress Array =
207        CGM.GetAddrOfConstantCString(std::string(Str), Name);
208    return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
209                                                Array.getPointer(), Zeros);
210  }
211
212  /// Emits a linkonce_odr string, whose name is the prefix followed by the
213  /// string value.  This allows the linker to combine the strings between
214  /// different modules.  Used for EH typeinfo names, selector strings, and a
215  /// few other things.
216  llvm::Constant *ExportUniqueString(const std::string &Str,
217                                     const std::string &prefix,
218                                     bool Private=false) {
219    std::string name = prefix + Str;
220    auto *ConstStr = TheModule.getGlobalVariable(name);
221    if (!ConstStr) {
222      llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
223      auto *GV = new llvm::GlobalVariable(TheModule, value->getType(), true,
224              llvm::GlobalValue::LinkOnceODRLinkage, value, name);
225      GV->setComdat(TheModule.getOrInsertComdat(name));
226      if (Private)
227        GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
228      ConstStr = GV;
229    }
230    return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
231                                                ConstStr, Zeros);
232  }
233
234  /// Returns a property name and encoding string.
235  llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
236                                             const Decl *Container) {
237    assert(!isRuntime(ObjCRuntime::GNUstep, 2));
238    if (isRuntime(ObjCRuntime::GNUstep, 1, 6)) {
239      std::string NameAndAttributes;
240      std::string TypeStr =
241        CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
242      NameAndAttributes += '\0';
243      NameAndAttributes += TypeStr.length() + 3;
244      NameAndAttributes += TypeStr;
245      NameAndAttributes += '\0';
246      NameAndAttributes += PD->getNameAsString();
247      return MakeConstantString(NameAndAttributes);
248    }
249    return MakeConstantString(PD->getNameAsString());
250  }
251
252  /// Push the property attributes into two structure fields.
253  void PushPropertyAttributes(ConstantStructBuilder &Fields,
254      const ObjCPropertyDecl *property, bool isSynthesized=true, bool
255      isDynamic=true) {
256    int attrs = property->getPropertyAttributes();
257    // For read-only properties, clear the copy and retain flags
258    if (attrs & ObjCPropertyAttribute::kind_readonly) {
259      attrs &= ~ObjCPropertyAttribute::kind_copy;
260      attrs &= ~ObjCPropertyAttribute::kind_retain;
261      attrs &= ~ObjCPropertyAttribute::kind_weak;
262      attrs &= ~ObjCPropertyAttribute::kind_strong;
263    }
264    // The first flags field has the same attribute values as clang uses internally
265    Fields.addInt(Int8Ty, attrs & 0xff);
266    attrs >>= 8;
267    attrs <<= 2;
268    // For protocol properties, synthesized and dynamic have no meaning, so we
269    // reuse these flags to indicate that this is a protocol property (both set
270    // has no meaning, as a property can't be both synthesized and dynamic)
271    attrs |= isSynthesized ? (1<<0) : 0;
272    attrs |= isDynamic ? (1<<1) : 0;
273    // The second field is the next four fields left shifted by two, with the
274    // low bit set to indicate whether the field is synthesized or dynamic.
275    Fields.addInt(Int8Ty, attrs & 0xff);
276    // Two padding fields
277    Fields.addInt(Int8Ty, 0);
278    Fields.addInt(Int8Ty, 0);
279  }
280
281  virtual llvm::Constant *GenerateCategoryProtocolList(const
282      ObjCCategoryDecl *OCD);
283  virtual ConstantArrayBuilder PushPropertyListHeader(ConstantStructBuilder &Fields,
284      int count) {
285      // int count;
286      Fields.addInt(IntTy, count);
287      // int size; (only in GNUstep v2 ABI.
288      if (isRuntime(ObjCRuntime::GNUstep, 2)) {
289        llvm::DataLayout td(&TheModule);
290        Fields.addInt(IntTy, td.getTypeSizeInBits(PropertyMetadataTy) /
291            CGM.getContext().getCharWidth());
292      }
293      // struct objc_property_list *next;
294      Fields.add(NULLPtr);
295      // struct objc_property properties[]
296      return Fields.beginArray(PropertyMetadataTy);
297  }
298  virtual void PushProperty(ConstantArrayBuilder &PropertiesArray,
299            const ObjCPropertyDecl *property,
300            const Decl *OCD,
301            bool isSynthesized=true, bool
302            isDynamic=true) {
303    auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
304    ASTContext &Context = CGM.getContext();
305    Fields.add(MakePropertyEncodingString(property, OCD));
306    PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
307    auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
308      if (accessor) {
309        std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
310        llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
311        Fields.add(MakeConstantString(accessor->getSelector().getAsString()));
312        Fields.add(TypeEncoding);
313      } else {
314        Fields.add(NULLPtr);
315        Fields.add(NULLPtr);
316      }
317    };
318    addPropertyMethod(property->getGetterMethodDecl());
319    addPropertyMethod(property->getSetterMethodDecl());
320    Fields.finishAndAddTo(PropertiesArray);
321  }
322
323  /// Ensures that the value has the required type, by inserting a bitcast if
324  /// required.  This function lets us avoid inserting bitcasts that are
325  /// redundant.
326  llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
327    if (V->getType() == Ty) return V;
328    return B.CreateBitCast(V, Ty);
329  }
330  Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) {
331    if (V.getType() == Ty) return V;
332    return B.CreateBitCast(V, Ty);
333  }
334
335  // Some zeros used for GEPs in lots of places.
336  llvm::Constant *Zeros[2];
337  /// Null pointer value.  Mainly used as a terminator in various arrays.
338  llvm::Constant *NULLPtr;
339  /// LLVM context.
340  llvm::LLVMContext &VMContext;
341
342protected:
343
344  /// Placeholder for the class.  Lots of things refer to the class before we've
345  /// actually emitted it.  We use this alias as a placeholder, and then replace
346  /// it with a pointer to the class structure before finally emitting the
347  /// module.
348  llvm::GlobalAlias *ClassPtrAlias;
349  /// Placeholder for the metaclass.  Lots of things refer to the class before
350  /// we've / actually emitted it.  We use this alias as a placeholder, and then
351  /// replace / it with a pointer to the metaclass structure before finally
352  /// emitting the / module.
353  llvm::GlobalAlias *MetaClassPtrAlias;
354  /// All of the classes that have been generated for this compilation units.
355  std::vector<llvm::Constant*> Classes;
356  /// All of the categories that have been generated for this compilation units.
357  std::vector<llvm::Constant*> Categories;
358  /// All of the Objective-C constant strings that have been generated for this
359  /// compilation units.
360  std::vector<llvm::Constant*> ConstantStrings;
361  /// Map from string values to Objective-C constant strings in the output.
362  /// Used to prevent emitting Objective-C strings more than once.  This should
363  /// not be required at all - CodeGenModule should manage this list.
364  llvm::StringMap<llvm::Constant*> ObjCStrings;
365  /// All of the protocols that have been declared.
366  llvm::StringMap<llvm::Constant*> ExistingProtocols;
367  /// For each variant of a selector, we store the type encoding and a
368  /// placeholder value.  For an untyped selector, the type will be the empty
369  /// string.  Selector references are all done via the module's selector table,
370  /// so we create an alias as a placeholder and then replace it with the real
371  /// value later.
372  typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
373  /// Type of the selector map.  This is roughly equivalent to the structure
374  /// used in the GNUstep runtime, which maintains a list of all of the valid
375  /// types for a selector in a table.
376  typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
377    SelectorMap;
378  /// A map from selectors to selector types.  This allows us to emit all
379  /// selectors of the same name and type together.
380  SelectorMap SelectorTable;
381
382  /// Selectors related to memory management.  When compiling in GC mode, we
383  /// omit these.
384  Selector RetainSel, ReleaseSel, AutoreleaseSel;
385  /// Runtime functions used for memory management in GC mode.  Note that clang
386  /// supports code generation for calling these functions, but neither GNU
387  /// runtime actually supports this API properly yet.
388  LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
389    WeakAssignFn, GlobalAssignFn;
390
391  typedef std::pair<std::string, std::string> ClassAliasPair;
392  /// All classes that have aliases set for them.
393  std::vector<ClassAliasPair> ClassAliases;
394
395protected:
396  /// Function used for throwing Objective-C exceptions.
397  LazyRuntimeFunction ExceptionThrowFn;
398  /// Function used for rethrowing exceptions, used at the end of \@finally or
399  /// \@synchronize blocks.
400  LazyRuntimeFunction ExceptionReThrowFn;
401  /// Function called when entering a catch function.  This is required for
402  /// differentiating Objective-C exceptions and foreign exceptions.
403  LazyRuntimeFunction EnterCatchFn;
404  /// Function called when exiting from a catch block.  Used to do exception
405  /// cleanup.
406  LazyRuntimeFunction ExitCatchFn;
407  /// Function called when entering an \@synchronize block.  Acquires the lock.
408  LazyRuntimeFunction SyncEnterFn;
409  /// Function called when exiting an \@synchronize block.  Releases the lock.
410  LazyRuntimeFunction SyncExitFn;
411
412private:
413  /// Function called if fast enumeration detects that the collection is
414  /// modified during the update.
415  LazyRuntimeFunction EnumerationMutationFn;
416  /// Function for implementing synthesized property getters that return an
417  /// object.
418  LazyRuntimeFunction GetPropertyFn;
419  /// Function for implementing synthesized property setters that return an
420  /// object.
421  LazyRuntimeFunction SetPropertyFn;
422  /// Function used for non-object declared property getters.
423  LazyRuntimeFunction GetStructPropertyFn;
424  /// Function used for non-object declared property setters.
425  LazyRuntimeFunction SetStructPropertyFn;
426
427protected:
428  /// The version of the runtime that this class targets.  Must match the
429  /// version in the runtime.
430  int RuntimeVersion;
431  /// The version of the protocol class.  Used to differentiate between ObjC1
432  /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
433  /// components and can not contain declared properties.  We always emit
434  /// Objective-C 2 property structures, but we have to pretend that they're
435  /// Objective-C 1 property structures when targeting the GCC runtime or it
436  /// will abort.
437  const int ProtocolVersion;
438  /// The version of the class ABI.  This value is used in the class structure
439  /// and indicates how various fields should be interpreted.
440  const int ClassABIVersion;
441  /// Generates an instance variable list structure.  This is a structure
442  /// containing a size and an array of structures containing instance variable
443  /// metadata.  This is used purely for introspection in the fragile ABI.  In
444  /// the non-fragile ABI, it's used for instance variable fixup.
445  virtual llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
446                             ArrayRef<llvm::Constant *> IvarTypes,
447                             ArrayRef<llvm::Constant *> IvarOffsets,
448                             ArrayRef<llvm::Constant *> IvarAlign,
449                             ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership);
450
451  /// Generates a method list structure.  This is a structure containing a size
452  /// and an array of structures containing method metadata.
453  ///
454  /// This structure is used by both classes and categories, and contains a next
455  /// pointer allowing them to be chained together in a linked list.
456  llvm::Constant *GenerateMethodList(StringRef ClassName,
457      StringRef CategoryName,
458      ArrayRef<const ObjCMethodDecl*> Methods,
459      bool isClassMethodList);
460
461  /// Emits an empty protocol.  This is used for \@protocol() where no protocol
462  /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
463  /// real protocol.
464  virtual llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName);
465
466  /// Generates a list of property metadata structures.  This follows the same
467  /// pattern as method and instance variable metadata lists.
468  llvm::Constant *GeneratePropertyList(const Decl *Container,
469      const ObjCContainerDecl *OCD,
470      bool isClassProperty=false,
471      bool protocolOptionalProperties=false);
472
473  /// Generates a list of referenced protocols.  Classes, categories, and
474  /// protocols all use this structure.
475  llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
476
477  /// To ensure that all protocols are seen by the runtime, we add a category on
478  /// a class defined in the runtime, declaring no methods, but adopting the
479  /// protocols.  This is a horribly ugly hack, but it allows us to collect all
480  /// of the protocols without changing the ABI.
481  void GenerateProtocolHolderCategory();
482
483  /// Generates a class structure.
484  llvm::Constant *GenerateClassStructure(
485      llvm::Constant *MetaClass,
486      llvm::Constant *SuperClass,
487      unsigned info,
488      const char *Name,
489      llvm::Constant *Version,
490      llvm::Constant *InstanceSize,
491      llvm::Constant *IVars,
492      llvm::Constant *Methods,
493      llvm::Constant *Protocols,
494      llvm::Constant *IvarOffsets,
495      llvm::Constant *Properties,
496      llvm::Constant *StrongIvarBitmap,
497      llvm::Constant *WeakIvarBitmap,
498      bool isMeta=false);
499
500  /// Generates a method list.  This is used by protocols to define the required
501  /// and optional methods.
502  virtual llvm::Constant *GenerateProtocolMethodList(
503      ArrayRef<const ObjCMethodDecl*> Methods);
504  /// Emits optional and required method lists.
505  template<class T>
506  void EmitProtocolMethodList(T &&Methods, llvm::Constant *&Required,
507      llvm::Constant *&Optional) {
508    SmallVector<const ObjCMethodDecl*, 16> RequiredMethods;
509    SmallVector<const ObjCMethodDecl*, 16> OptionalMethods;
510    for (const auto *I : Methods)
511      if (I->isOptional())
512        OptionalMethods.push_back(I);
513      else
514        RequiredMethods.push_back(I);
515    Required = GenerateProtocolMethodList(RequiredMethods);
516    Optional = GenerateProtocolMethodList(OptionalMethods);
517  }
518
519  /// Returns a selector with the specified type encoding.  An empty string is
520  /// used to return an untyped selector (with the types field set to NULL).
521  virtual llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
522                                        const std::string &TypeEncoding);
523
524  /// Returns the name of ivar offset variables.  In the GNUstep v1 ABI, this
525  /// contains the class and ivar names, in the v2 ABI this contains the type
526  /// encoding as well.
527  virtual std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
528                                                const ObjCIvarDecl *Ivar) {
529    const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
530      + '.' + Ivar->getNameAsString();
531    return Name;
532  }
533  /// Returns the variable used to store the offset of an instance variable.
534  llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
535      const ObjCIvarDecl *Ivar);
536  /// Emits a reference to a class.  This allows the linker to object if there
537  /// is no class of the matching name.
538  void EmitClassRef(const std::string &className);
539
540  /// Emits a pointer to the named class
541  virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
542                                     const std::string &Name, bool isWeak);
543
544  /// Looks up the method for sending a message to the specified object.  This
545  /// mechanism differs between the GCC and GNU runtimes, so this method must be
546  /// overridden in subclasses.
547  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
548                                 llvm::Value *&Receiver,
549                                 llvm::Value *cmd,
550                                 llvm::MDNode *node,
551                                 MessageSendInfo &MSI) = 0;
552
553  /// Looks up the method for sending a message to a superclass.  This
554  /// mechanism differs between the GCC and GNU runtimes, so this method must
555  /// be overridden in subclasses.
556  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
557                                      Address ObjCSuper,
558                                      llvm::Value *cmd,
559                                      MessageSendInfo &MSI) = 0;
560
561  /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
562  /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
563  /// bits set to their values, LSB first, while larger ones are stored in a
564  /// structure of this / form:
565  ///
566  /// struct { int32_t length; int32_t values[length]; };
567  ///
568  /// The values in the array are stored in host-endian format, with the least
569  /// significant bit being assumed to come first in the bitfield.  Therefore,
570  /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
571  /// while a bitfield / with the 63rd bit set will be 1<<64.
572  llvm::Constant *MakeBitField(ArrayRef<bool> bits);
573
574public:
575  CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
576      unsigned protocolClassVersion, unsigned classABI=1);
577
578  ConstantAddress GenerateConstantString(const StringLiteral *) override;
579
580  RValue
581  GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
582                      QualType ResultType, Selector Sel,
583                      llvm::Value *Receiver, const CallArgList &CallArgs,
584                      const ObjCInterfaceDecl *Class,
585                      const ObjCMethodDecl *Method) override;
586  RValue
587  GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
588                           QualType ResultType, Selector Sel,
589                           const ObjCInterfaceDecl *Class,
590                           bool isCategoryImpl, llvm::Value *Receiver,
591                           bool IsClassMessage, const CallArgList &CallArgs,
592                           const ObjCMethodDecl *Method) override;
593  llvm::Value *GetClass(CodeGenFunction &CGF,
594                        const ObjCInterfaceDecl *OID) override;
595  llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
596  Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
597  llvm::Value *GetSelector(CodeGenFunction &CGF,
598                           const ObjCMethodDecl *Method) override;
599  virtual llvm::Constant *GetConstantSelector(Selector Sel,
600                                              const std::string &TypeEncoding) {
601    llvm_unreachable("Runtime unable to generate constant selector");
602  }
603  llvm::Constant *GetConstantSelector(const ObjCMethodDecl *M) {
604    return GetConstantSelector(M->getSelector(),
605        CGM.getContext().getObjCEncodingForMethodDecl(M));
606  }
607  llvm::Constant *GetEHType(QualType T) override;
608
609  llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
610                                 const ObjCContainerDecl *CD) override;
611  void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
612                                    const ObjCMethodDecl *OMD,
613                                    const ObjCContainerDecl *CD) override;
614  void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
615  void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
616  void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
617  llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
618                                   const ObjCProtocolDecl *PD) override;
619  void GenerateProtocol(const ObjCProtocolDecl *PD) override;
620
621  virtual llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD);
622
623  llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override {
624    return GenerateProtocolRef(PD);
625  }
626
627  llvm::Function *ModuleInitFunction() override;
628  llvm::FunctionCallee GetPropertyGetFunction() override;
629  llvm::FunctionCallee GetPropertySetFunction() override;
630  llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
631                                                       bool copy) override;
632  llvm::FunctionCallee GetSetStructFunction() override;
633  llvm::FunctionCallee GetGetStructFunction() override;
634  llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
635  llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
636  llvm::FunctionCallee EnumerationMutationFunction() override;
637
638  void EmitTryStmt(CodeGenFunction &CGF,
639                   const ObjCAtTryStmt &S) override;
640  void EmitSynchronizedStmt(CodeGenFunction &CGF,
641                            const ObjCAtSynchronizedStmt &S) override;
642  void EmitThrowStmt(CodeGenFunction &CGF,
643                     const ObjCAtThrowStmt &S,
644                     bool ClearInsertionPoint=true) override;
645  llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
646                                 Address AddrWeakObj) override;
647  void EmitObjCWeakAssign(CodeGenFunction &CGF,
648                          llvm::Value *src, Address dst) override;
649  void EmitObjCGlobalAssign(CodeGenFunction &CGF,
650                            llvm::Value *src, Address dest,
651                            bool threadlocal=false) override;
652  void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
653                          Address dest, llvm::Value *ivarOffset) override;
654  void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
655                                llvm::Value *src, Address dest) override;
656  void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
657                                Address SrcPtr,
658                                llvm::Value *Size) override;
659  LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
660                              llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
661                              unsigned CVRQualifiers) override;
662  llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
663                              const ObjCInterfaceDecl *Interface,
664                              const ObjCIvarDecl *Ivar) override;
665  llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
666  llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
667                                     const CGBlockInfo &blockInfo) override {
668    return NULLPtr;
669  }
670  llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
671                                     const CGBlockInfo &blockInfo) override {
672    return NULLPtr;
673  }
674
675  llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
676    return NULLPtr;
677  }
678};
679
680/// Class representing the legacy GCC Objective-C ABI.  This is the default when
681/// -fobjc-nonfragile-abi is not specified.
682///
683/// The GCC ABI target actually generates code that is approximately compatible
684/// with the new GNUstep runtime ABI, but refrains from using any features that
685/// would not work with the GCC runtime.  For example, clang always generates
686/// the extended form of the class structure, and the extra fields are simply
687/// ignored by GCC libobjc.
688class CGObjCGCC : public CGObjCGNU {
689  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
690  /// method implementation for this message.
691  LazyRuntimeFunction MsgLookupFn;
692  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
693  /// structure describing the receiver and the class, and a selector as
694  /// arguments.  Returns the IMP for the corresponding method.
695  LazyRuntimeFunction MsgLookupSuperFn;
696
697protected:
698  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
699                         llvm::Value *cmd, llvm::MDNode *node,
700                         MessageSendInfo &MSI) override {
701    CGBuilderTy &Builder = CGF.Builder;
702    llvm::Value *args[] = {
703            EnforceType(Builder, Receiver, IdTy),
704            EnforceType(Builder, cmd, SelectorTy) };
705    llvm::CallBase *imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
706    imp->setMetadata(msgSendMDKind, node);
707    return imp;
708  }
709
710  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
711                              llvm::Value *cmd, MessageSendInfo &MSI) override {
712    CGBuilderTy &Builder = CGF.Builder;
713    llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
714        PtrToObjCSuperTy).getPointer(), cmd};
715    return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
716  }
717
718public:
719  CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
720    // IMP objc_msg_lookup(id, SEL);
721    MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
722    // IMP objc_msg_lookup_super(struct objc_super*, SEL);
723    MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
724                          PtrToObjCSuperTy, SelectorTy);
725  }
726};
727
728/// Class used when targeting the new GNUstep runtime ABI.
729class CGObjCGNUstep : public CGObjCGNU {
730    /// The slot lookup function.  Returns a pointer to a cacheable structure
731    /// that contains (among other things) the IMP.
732    LazyRuntimeFunction SlotLookupFn;
733    /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
734    /// a structure describing the receiver and the class, and a selector as
735    /// arguments.  Returns the slot for the corresponding method.  Superclass
736    /// message lookup rarely changes, so this is a good caching opportunity.
737    LazyRuntimeFunction SlotLookupSuperFn;
738    /// Specialised function for setting atomic retain properties
739    LazyRuntimeFunction SetPropertyAtomic;
740    /// Specialised function for setting atomic copy properties
741    LazyRuntimeFunction SetPropertyAtomicCopy;
742    /// Specialised function for setting nonatomic retain properties
743    LazyRuntimeFunction SetPropertyNonAtomic;
744    /// Specialised function for setting nonatomic copy properties
745    LazyRuntimeFunction SetPropertyNonAtomicCopy;
746    /// Function to perform atomic copies of C++ objects with nontrivial copy
747    /// constructors from Objective-C ivars.
748    LazyRuntimeFunction CxxAtomicObjectGetFn;
749    /// Function to perform atomic copies of C++ objects with nontrivial copy
750    /// constructors to Objective-C ivars.
751    LazyRuntimeFunction CxxAtomicObjectSetFn;
752    /// Type of an slot structure pointer.  This is returned by the various
753    /// lookup functions.
754    llvm::Type *SlotTy;
755
756  public:
757    llvm::Constant *GetEHType(QualType T) override;
758
759  protected:
760    llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
761                           llvm::Value *cmd, llvm::MDNode *node,
762                           MessageSendInfo &MSI) override {
763      CGBuilderTy &Builder = CGF.Builder;
764      llvm::FunctionCallee LookupFn = SlotLookupFn;
765
766      // Store the receiver on the stack so that we can reload it later
767      Address ReceiverPtr =
768        CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
769      Builder.CreateStore(Receiver, ReceiverPtr);
770
771      llvm::Value *self;
772
773      if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
774        self = CGF.LoadObjCSelf();
775      } else {
776        self = llvm::ConstantPointerNull::get(IdTy);
777      }
778
779      // The lookup function is guaranteed not to capture the receiver pointer.
780      if (auto *LookupFn2 = dyn_cast<llvm::Function>(LookupFn.getCallee()))
781        LookupFn2->addParamAttr(0, llvm::Attribute::NoCapture);
782
783      llvm::Value *args[] = {
784              EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
785              EnforceType(Builder, cmd, SelectorTy),
786              EnforceType(Builder, self, IdTy) };
787      llvm::CallBase *slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
788      slot->setOnlyReadsMemory();
789      slot->setMetadata(msgSendMDKind, node);
790
791      // Load the imp from the slot
792      llvm::Value *imp = Builder.CreateAlignedLoad(
793          Builder.CreateStructGEP(nullptr, slot, 4), CGF.getPointerAlign());
794
795      // The lookup function may have changed the receiver, so make sure we use
796      // the new one.
797      Receiver = Builder.CreateLoad(ReceiverPtr, true);
798      return imp;
799    }
800
801    llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
802                                llvm::Value *cmd,
803                                MessageSendInfo &MSI) override {
804      CGBuilderTy &Builder = CGF.Builder;
805      llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
806
807      llvm::CallInst *slot =
808        CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
809      slot->setOnlyReadsMemory();
810
811      return Builder.CreateAlignedLoad(Builder.CreateStructGEP(nullptr, slot, 4),
812                                       CGF.getPointerAlign());
813    }
814
815  public:
816    CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 9, 3, 1) {}
817    CGObjCGNUstep(CodeGenModule &Mod, unsigned ABI, unsigned ProtocolABI,
818        unsigned ClassABI) :
819      CGObjCGNU(Mod, ABI, ProtocolABI, ClassABI) {
820      const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
821
822      llvm::StructType *SlotStructTy =
823          llvm::StructType::get(PtrTy, PtrTy, PtrTy, IntTy, IMPTy);
824      SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
825      // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
826      SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
827                        SelectorTy, IdTy);
828      // Slot_t objc_slot_lookup_super(struct objc_super*, SEL);
829      SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
830                             PtrToObjCSuperTy, SelectorTy);
831      // If we're in ObjC++ mode, then we want to make
832      if (usesSEHExceptions) {
833          llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
834          // void objc_exception_rethrow(void)
835          ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy);
836      } else if (CGM.getLangOpts().CPlusPlus) {
837        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
838        // void *__cxa_begin_catch(void *e)
839        EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy);
840        // void __cxa_end_catch(void)
841        ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy);
842        // void _Unwind_Resume_or_Rethrow(void*)
843        ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
844                                PtrTy);
845      } else if (R.getVersion() >= VersionTuple(1, 7)) {
846        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
847        // id objc_begin_catch(void *e)
848        EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy);
849        // void objc_end_catch(void)
850        ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy);
851        // void _Unwind_Resume_or_Rethrow(void*)
852        ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy, PtrTy);
853      }
854      llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
855      SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
856                             SelectorTy, IdTy, PtrDiffTy);
857      SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
858                                 IdTy, SelectorTy, IdTy, PtrDiffTy);
859      SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
860                                IdTy, SelectorTy, IdTy, PtrDiffTy);
861      SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
862                                    VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy);
863      // void objc_setCppObjectAtomic(void *dest, const void *src, void
864      // *helper);
865      CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
866                                PtrTy, PtrTy);
867      // void objc_getCppObjectAtomic(void *dest, const void *src, void
868      // *helper);
869      CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
870                                PtrTy, PtrTy);
871    }
872
873    llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
874      // The optimised functions were added in version 1.7 of the GNUstep
875      // runtime.
876      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
877          VersionTuple(1, 7));
878      return CxxAtomicObjectGetFn;
879    }
880
881    llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
882      // The optimised functions were added in version 1.7 of the GNUstep
883      // runtime.
884      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
885          VersionTuple(1, 7));
886      return CxxAtomicObjectSetFn;
887    }
888
889    llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
890                                                         bool copy) override {
891      // The optimised property functions omit the GC check, and so are not
892      // safe to use in GC mode.  The standard functions are fast in GC mode,
893      // so there is less advantage in using them.
894      assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
895      // The optimised functions were added in version 1.7 of the GNUstep
896      // runtime.
897      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
898          VersionTuple(1, 7));
899
900      if (atomic) {
901        if (copy) return SetPropertyAtomicCopy;
902        return SetPropertyAtomic;
903      }
904
905      return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
906    }
907};
908
909/// GNUstep Objective-C ABI version 2 implementation.
910/// This is the ABI that provides a clean break with the legacy GCC ABI and
911/// cleans up a number of things that were added to work around 1980s linkers.
912class CGObjCGNUstep2 : public CGObjCGNUstep {
913  enum SectionKind
914  {
915    SelectorSection = 0,
916    ClassSection,
917    ClassReferenceSection,
918    CategorySection,
919    ProtocolSection,
920    ProtocolReferenceSection,
921    ClassAliasSection,
922    ConstantStringSection
923  };
924  static const char *const SectionsBaseNames[8];
925  static const char *const PECOFFSectionsBaseNames[8];
926  template<SectionKind K>
927  std::string sectionName() {
928    if (CGM.getTriple().isOSBinFormatCOFF()) {
929      std::string name(PECOFFSectionsBaseNames[K]);
930      name += "$m";
931      return name;
932    }
933    return SectionsBaseNames[K];
934  }
935  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
936  /// structure describing the receiver and the class, and a selector as
937  /// arguments.  Returns the IMP for the corresponding method.
938  LazyRuntimeFunction MsgLookupSuperFn;
939  /// A flag indicating if we've emitted at least one protocol.
940  /// If we haven't, then we need to emit an empty protocol, to ensure that the
941  /// __start__objc_protocols and __stop__objc_protocols sections exist.
942  bool EmittedProtocol = false;
943  /// A flag indicating if we've emitted at least one protocol reference.
944  /// If we haven't, then we need to emit an empty protocol, to ensure that the
945  /// __start__objc_protocol_refs and __stop__objc_protocol_refs sections
946  /// exist.
947  bool EmittedProtocolRef = false;
948  /// A flag indicating if we've emitted at least one class.
949  /// If we haven't, then we need to emit an empty protocol, to ensure that the
950  /// __start__objc_classes and __stop__objc_classes sections / exist.
951  bool EmittedClass = false;
952  /// Generate the name of a symbol for a reference to a class.  Accesses to
953  /// classes should be indirected via this.
954
955  typedef std::pair<std::string, std::pair<llvm::Constant*, int>> EarlyInitPair;
956  std::vector<EarlyInitPair> EarlyInitList;
957
958  std::string SymbolForClassRef(StringRef Name, bool isWeak) {
959    if (isWeak)
960      return (ManglePublicSymbol("OBJC_WEAK_REF_CLASS_") + Name).str();
961    else
962      return (ManglePublicSymbol("OBJC_REF_CLASS_") + Name).str();
963  }
964  /// Generate the name of a class symbol.
965  std::string SymbolForClass(StringRef Name) {
966    return (ManglePublicSymbol("OBJC_CLASS_") + Name).str();
967  }
968  void CallRuntimeFunction(CGBuilderTy &B, StringRef FunctionName,
969      ArrayRef<llvm::Value*> Args) {
970    SmallVector<llvm::Type *,8> Types;
971    for (auto *Arg : Args)
972      Types.push_back(Arg->getType());
973    llvm::FunctionType *FT = llvm::FunctionType::get(B.getVoidTy(), Types,
974        false);
975    llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FT, FunctionName);
976    B.CreateCall(Fn, Args);
977  }
978
979  ConstantAddress GenerateConstantString(const StringLiteral *SL) override {
980
981    auto Str = SL->getString();
982    CharUnits Align = CGM.getPointerAlign();
983
984    // Look for an existing one
985    llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
986    if (old != ObjCStrings.end())
987      return ConstantAddress(old->getValue(), Align);
988
989    bool isNonASCII = SL->containsNonAscii();
990
991    auto LiteralLength = SL->getLength();
992
993    if ((CGM.getTarget().getPointerWidth(0) == 64) &&
994        (LiteralLength < 9) && !isNonASCII) {
995      // Tiny strings are only used on 64-bit platforms.  They store 8 7-bit
996      // ASCII characters in the high 56 bits, followed by a 4-bit length and a
997      // 3-bit tag (which is always 4).
998      uint64_t str = 0;
999      // Fill in the characters
1000      for (unsigned i=0 ; i<LiteralLength ; i++)
1001        str |= ((uint64_t)SL->getCodeUnit(i)) << ((64 - 4 - 3) - (i*7));
1002      // Fill in the length
1003      str |= LiteralLength << 3;
1004      // Set the tag
1005      str |= 4;
1006      auto *ObjCStr = llvm::ConstantExpr::getIntToPtr(
1007          llvm::ConstantInt::get(Int64Ty, str), IdTy);
1008      ObjCStrings[Str] = ObjCStr;
1009      return ConstantAddress(ObjCStr, Align);
1010    }
1011
1012    StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1013
1014    if (StringClass.empty()) StringClass = "NSConstantString";
1015
1016    std::string Sym = SymbolForClass(StringClass);
1017
1018    llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1019
1020    if (!isa) {
1021      isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1022              llvm::GlobalValue::ExternalLinkage, nullptr, Sym);
1023      if (CGM.getTriple().isOSBinFormatCOFF()) {
1024        cast<llvm::GlobalValue>(isa)->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1025      }
1026    } else if (isa->getType() != PtrToIdTy)
1027      isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1028
1029    //  struct
1030    //  {
1031    //    Class isa;
1032    //    uint32_t flags;
1033    //    uint32_t length; // Number of codepoints
1034    //    uint32_t size; // Number of bytes
1035    //    uint32_t hash;
1036    //    const char *data;
1037    //  };
1038
1039    ConstantInitBuilder Builder(CGM);
1040    auto Fields = Builder.beginStruct();
1041    if (!CGM.getTriple().isOSBinFormatCOFF()) {
1042      Fields.add(isa);
1043    } else {
1044      Fields.addNullPointer(PtrTy);
1045    }
1046    // For now, all non-ASCII strings are represented as UTF-16.  As such, the
1047    // number of bytes is simply double the number of UTF-16 codepoints.  In
1048    // ASCII strings, the number of bytes is equal to the number of non-ASCII
1049    // codepoints.
1050    if (isNonASCII) {
1051      unsigned NumU8CodeUnits = Str.size();
1052      // A UTF-16 representation of a unicode string contains at most the same
1053      // number of code units as a UTF-8 representation.  Allocate that much
1054      // space, plus one for the final null character.
1055      SmallVector<llvm::UTF16, 128> ToBuf(NumU8CodeUnits + 1);
1056      const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)Str.data();
1057      llvm::UTF16 *ToPtr = &ToBuf[0];
1058      (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumU8CodeUnits,
1059          &ToPtr, ToPtr + NumU8CodeUnits, llvm::strictConversion);
1060      uint32_t StringLength = ToPtr - &ToBuf[0];
1061      // Add null terminator
1062      *ToPtr = 0;
1063      // Flags: 2 indicates UTF-16 encoding
1064      Fields.addInt(Int32Ty, 2);
1065      // Number of UTF-16 codepoints
1066      Fields.addInt(Int32Ty, StringLength);
1067      // Number of bytes
1068      Fields.addInt(Int32Ty, StringLength * 2);
1069      // Hash.  Not currently initialised by the compiler.
1070      Fields.addInt(Int32Ty, 0);
1071      // pointer to the data string.
1072      auto Arr = llvm::makeArrayRef(&ToBuf[0], ToPtr+1);
1073      auto *C = llvm::ConstantDataArray::get(VMContext, Arr);
1074      auto *Buffer = new llvm::GlobalVariable(TheModule, C->getType(),
1075          /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str");
1076      Buffer->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1077      Fields.add(Buffer);
1078    } else {
1079      // Flags: 0 indicates ASCII encoding
1080      Fields.addInt(Int32Ty, 0);
1081      // Number of UTF-16 codepoints, each ASCII byte is a UTF-16 codepoint
1082      Fields.addInt(Int32Ty, Str.size());
1083      // Number of bytes
1084      Fields.addInt(Int32Ty, Str.size());
1085      // Hash.  Not currently initialised by the compiler.
1086      Fields.addInt(Int32Ty, 0);
1087      // Data pointer
1088      Fields.add(MakeConstantString(Str));
1089    }
1090    std::string StringName;
1091    bool isNamed = !isNonASCII;
1092    if (isNamed) {
1093      StringName = ".objc_str_";
1094      for (int i=0,e=Str.size() ; i<e ; ++i) {
1095        unsigned char c = Str[i];
1096        if (isalnum(c))
1097          StringName += c;
1098        else if (c == ' ')
1099          StringName += '_';
1100        else {
1101          isNamed = false;
1102          break;
1103        }
1104      }
1105    }
1106    auto *ObjCStrGV =
1107      Fields.finishAndCreateGlobal(
1108          isNamed ? StringRef(StringName) : ".objc_string",
1109          Align, false, isNamed ? llvm::GlobalValue::LinkOnceODRLinkage
1110                                : llvm::GlobalValue::PrivateLinkage);
1111    ObjCStrGV->setSection(sectionName<ConstantStringSection>());
1112    if (isNamed) {
1113      ObjCStrGV->setComdat(TheModule.getOrInsertComdat(StringName));
1114      ObjCStrGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1115    }
1116    if (CGM.getTriple().isOSBinFormatCOFF()) {
1117      std::pair<llvm::Constant*, int> v{ObjCStrGV, 0};
1118      EarlyInitList.emplace_back(Sym, v);
1119    }
1120    llvm::Constant *ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStrGV, IdTy);
1121    ObjCStrings[Str] = ObjCStr;
1122    ConstantStrings.push_back(ObjCStr);
1123    return ConstantAddress(ObjCStr, Align);
1124  }
1125
1126  void PushProperty(ConstantArrayBuilder &PropertiesArray,
1127            const ObjCPropertyDecl *property,
1128            const Decl *OCD,
1129            bool isSynthesized=true, bool
1130            isDynamic=true) override {
1131    // struct objc_property
1132    // {
1133    //   const char *name;
1134    //   const char *attributes;
1135    //   const char *type;
1136    //   SEL getter;
1137    //   SEL setter;
1138    // };
1139    auto Fields = PropertiesArray.beginStruct(PropertyMetadataTy);
1140    ASTContext &Context = CGM.getContext();
1141    Fields.add(MakeConstantString(property->getNameAsString()));
1142    std::string TypeStr =
1143      CGM.getContext().getObjCEncodingForPropertyDecl(property, OCD);
1144    Fields.add(MakeConstantString(TypeStr));
1145    std::string typeStr;
1146    Context.getObjCEncodingForType(property->getType(), typeStr);
1147    Fields.add(MakeConstantString(typeStr));
1148    auto addPropertyMethod = [&](const ObjCMethodDecl *accessor) {
1149      if (accessor) {
1150        std::string TypeStr = Context.getObjCEncodingForMethodDecl(accessor);
1151        Fields.add(GetConstantSelector(accessor->getSelector(), TypeStr));
1152      } else {
1153        Fields.add(NULLPtr);
1154      }
1155    };
1156    addPropertyMethod(property->getGetterMethodDecl());
1157    addPropertyMethod(property->getSetterMethodDecl());
1158    Fields.finishAndAddTo(PropertiesArray);
1159  }
1160
1161  llvm::Constant *
1162  GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) override {
1163    // struct objc_protocol_method_description
1164    // {
1165    //   SEL selector;
1166    //   const char *types;
1167    // };
1168    llvm::StructType *ObjCMethodDescTy =
1169      llvm::StructType::get(CGM.getLLVMContext(),
1170          { PtrToInt8Ty, PtrToInt8Ty });
1171    ASTContext &Context = CGM.getContext();
1172    ConstantInitBuilder Builder(CGM);
1173    // struct objc_protocol_method_description_list
1174    // {
1175    //   int count;
1176    //   int size;
1177    //   struct objc_protocol_method_description methods[];
1178    // };
1179    auto MethodList = Builder.beginStruct();
1180    // int count;
1181    MethodList.addInt(IntTy, Methods.size());
1182    // int size; // sizeof(struct objc_method_description)
1183    llvm::DataLayout td(&TheModule);
1184    MethodList.addInt(IntTy, td.getTypeSizeInBits(ObjCMethodDescTy) /
1185        CGM.getContext().getCharWidth());
1186    // struct objc_method_description[]
1187    auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
1188    for (auto *M : Methods) {
1189      auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
1190      Method.add(CGObjCGNU::GetConstantSelector(M));
1191      Method.add(GetTypeString(Context.getObjCEncodingForMethodDecl(M, true)));
1192      Method.finishAndAddTo(MethodArray);
1193    }
1194    MethodArray.finishAndAddTo(MethodList);
1195    return MethodList.finishAndCreateGlobal(".objc_protocol_method_list",
1196                                            CGM.getPointerAlign());
1197  }
1198  llvm::Constant *GenerateCategoryProtocolList(const ObjCCategoryDecl *OCD)
1199    override {
1200    SmallVector<llvm::Constant*, 16> Protocols;
1201    for (const auto *PI : OCD->getReferencedProtocols())
1202      Protocols.push_back(
1203          llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1204            ProtocolPtrTy));
1205    return GenerateProtocolList(Protocols);
1206  }
1207
1208  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
1209                              llvm::Value *cmd, MessageSendInfo &MSI) override {
1210    // Don't access the slot unless we're trying to cache the result.
1211    CGBuilderTy &Builder = CGF.Builder;
1212    llvm::Value *lookupArgs[] = {CGObjCGNU::EnforceType(Builder, ObjCSuper,
1213        PtrToObjCSuperTy).getPointer(), cmd};
1214    return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
1215  }
1216
1217  llvm::GlobalVariable *GetClassVar(StringRef Name, bool isWeak=false) {
1218    std::string SymbolName = SymbolForClassRef(Name, isWeak);
1219    auto *ClassSymbol = TheModule.getNamedGlobal(SymbolName);
1220    if (ClassSymbol)
1221      return ClassSymbol;
1222    ClassSymbol = new llvm::GlobalVariable(TheModule,
1223        IdTy, false, llvm::GlobalValue::ExternalLinkage,
1224        nullptr, SymbolName);
1225    // If this is a weak symbol, then we are creating a valid definition for
1226    // the symbol, pointing to a weak definition of the real class pointer.  If
1227    // this is not a weak reference, then we are expecting another compilation
1228    // unit to provide the real indirection symbol.
1229    if (isWeak)
1230      ClassSymbol->setInitializer(new llvm::GlobalVariable(TheModule,
1231          Int8Ty, false, llvm::GlobalValue::ExternalWeakLinkage,
1232          nullptr, SymbolForClass(Name)));
1233    else {
1234      if (CGM.getTriple().isOSBinFormatCOFF()) {
1235        IdentifierInfo &II = CGM.getContext().Idents.get(Name);
1236        TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
1237        DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
1238
1239        const ObjCInterfaceDecl *OID = nullptr;
1240        for (const auto &Result : DC->lookup(&II))
1241          if ((OID = dyn_cast<ObjCInterfaceDecl>(Result)))
1242            break;
1243
1244        // The first Interface we find may be a @class,
1245        // which should only be treated as the source of
1246        // truth in the absence of a true declaration.
1247        assert(OID && "Failed to find ObjCInterfaceDecl");
1248        const ObjCInterfaceDecl *OIDDef = OID->getDefinition();
1249        if (OIDDef != nullptr)
1250          OID = OIDDef;
1251
1252        auto Storage = llvm::GlobalValue::DefaultStorageClass;
1253        if (OID->hasAttr<DLLImportAttr>())
1254          Storage = llvm::GlobalValue::DLLImportStorageClass;
1255        else if (OID->hasAttr<DLLExportAttr>())
1256          Storage = llvm::GlobalValue::DLLExportStorageClass;
1257
1258        cast<llvm::GlobalValue>(ClassSymbol)->setDLLStorageClass(Storage);
1259      }
1260    }
1261    assert(ClassSymbol->getName() == SymbolName);
1262    return ClassSymbol;
1263  }
1264  llvm::Value *GetClassNamed(CodeGenFunction &CGF,
1265                             const std::string &Name,
1266                             bool isWeak) override {
1267    return CGF.Builder.CreateLoad(Address(GetClassVar(Name, isWeak),
1268          CGM.getPointerAlign()));
1269  }
1270  int32_t FlagsForOwnership(Qualifiers::ObjCLifetime Ownership) {
1271    // typedef enum {
1272    //   ownership_invalid = 0,
1273    //   ownership_strong  = 1,
1274    //   ownership_weak    = 2,
1275    //   ownership_unsafe  = 3
1276    // } ivar_ownership;
1277    int Flag;
1278    switch (Ownership) {
1279      case Qualifiers::OCL_Strong:
1280          Flag = 1;
1281          break;
1282      case Qualifiers::OCL_Weak:
1283          Flag = 2;
1284          break;
1285      case Qualifiers::OCL_ExplicitNone:
1286          Flag = 3;
1287          break;
1288      case Qualifiers::OCL_None:
1289      case Qualifiers::OCL_Autoreleasing:
1290        assert(Ownership != Qualifiers::OCL_Autoreleasing);
1291        Flag = 0;
1292    }
1293    return Flag;
1294  }
1295  llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1296                   ArrayRef<llvm::Constant *> IvarTypes,
1297                   ArrayRef<llvm::Constant *> IvarOffsets,
1298                   ArrayRef<llvm::Constant *> IvarAlign,
1299                   ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) override {
1300    llvm_unreachable("Method should not be called!");
1301  }
1302
1303  llvm::Constant *GenerateEmptyProtocol(StringRef ProtocolName) override {
1304    std::string Name = SymbolForProtocol(ProtocolName);
1305    auto *GV = TheModule.getGlobalVariable(Name);
1306    if (!GV) {
1307      // Emit a placeholder symbol.
1308      GV = new llvm::GlobalVariable(TheModule, ProtocolTy, false,
1309          llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1310      GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1311    }
1312    return llvm::ConstantExpr::getBitCast(GV, ProtocolPtrTy);
1313  }
1314
1315  /// Existing protocol references.
1316  llvm::StringMap<llvm::Constant*> ExistingProtocolRefs;
1317
1318  llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1319                                   const ObjCProtocolDecl *PD) override {
1320    auto Name = PD->getNameAsString();
1321    auto *&Ref = ExistingProtocolRefs[Name];
1322    if (!Ref) {
1323      auto *&Protocol = ExistingProtocols[Name];
1324      if (!Protocol)
1325        Protocol = GenerateProtocolRef(PD);
1326      std::string RefName = SymbolForProtocolRef(Name);
1327      assert(!TheModule.getGlobalVariable(RefName));
1328      // Emit a reference symbol.
1329      auto GV = new llvm::GlobalVariable(TheModule, ProtocolPtrTy,
1330          false, llvm::GlobalValue::LinkOnceODRLinkage,
1331          llvm::ConstantExpr::getBitCast(Protocol, ProtocolPtrTy), RefName);
1332      GV->setComdat(TheModule.getOrInsertComdat(RefName));
1333      GV->setSection(sectionName<ProtocolReferenceSection>());
1334      GV->setAlignment(CGM.getPointerAlign().getAsAlign());
1335      Ref = GV;
1336    }
1337    EmittedProtocolRef = true;
1338    return CGF.Builder.CreateAlignedLoad(Ref, CGM.getPointerAlign());
1339  }
1340
1341  llvm::Constant *GenerateProtocolList(ArrayRef<llvm::Constant*> Protocols) {
1342    llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(ProtocolPtrTy,
1343        Protocols.size());
1344    llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1345        Protocols);
1346    ConstantInitBuilder builder(CGM);
1347    auto ProtocolBuilder = builder.beginStruct();
1348    ProtocolBuilder.addNullPointer(PtrTy);
1349    ProtocolBuilder.addInt(SizeTy, Protocols.size());
1350    ProtocolBuilder.add(ProtocolArray);
1351    return ProtocolBuilder.finishAndCreateGlobal(".objc_protocol_list",
1352        CGM.getPointerAlign(), false, llvm::GlobalValue::InternalLinkage);
1353  }
1354
1355  void GenerateProtocol(const ObjCProtocolDecl *PD) override {
1356    // Do nothing - we only emit referenced protocols.
1357  }
1358  llvm::Constant *GenerateProtocolRef(const ObjCProtocolDecl *PD) override {
1359    std::string ProtocolName = PD->getNameAsString();
1360    auto *&Protocol = ExistingProtocols[ProtocolName];
1361    if (Protocol)
1362      return Protocol;
1363
1364    EmittedProtocol = true;
1365
1366    auto SymName = SymbolForProtocol(ProtocolName);
1367    auto *OldGV = TheModule.getGlobalVariable(SymName);
1368
1369    // Use the protocol definition, if there is one.
1370    if (const ObjCProtocolDecl *Def = PD->getDefinition())
1371      PD = Def;
1372    else {
1373      // If there is no definition, then create an external linkage symbol and
1374      // hope that someone else fills it in for us (and fail to link if they
1375      // don't).
1376      assert(!OldGV);
1377      Protocol = new llvm::GlobalVariable(TheModule, ProtocolTy,
1378        /*isConstant*/false,
1379        llvm::GlobalValue::ExternalLinkage, nullptr, SymName);
1380      return Protocol;
1381    }
1382
1383    SmallVector<llvm::Constant*, 16> Protocols;
1384    for (const auto *PI : PD->protocols())
1385      Protocols.push_back(
1386          llvm::ConstantExpr::getBitCast(GenerateProtocolRef(PI),
1387            ProtocolPtrTy));
1388    llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1389
1390    // Collect information about methods
1391    llvm::Constant *InstanceMethodList, *OptionalInstanceMethodList;
1392    llvm::Constant *ClassMethodList, *OptionalClassMethodList;
1393    EmitProtocolMethodList(PD->instance_methods(), InstanceMethodList,
1394        OptionalInstanceMethodList);
1395    EmitProtocolMethodList(PD->class_methods(), ClassMethodList,
1396        OptionalClassMethodList);
1397
1398    // The isa pointer must be set to a magic number so the runtime knows it's
1399    // the correct layout.
1400    ConstantInitBuilder builder(CGM);
1401    auto ProtocolBuilder = builder.beginStruct();
1402    ProtocolBuilder.add(llvm::ConstantExpr::getIntToPtr(
1403          llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1404    ProtocolBuilder.add(MakeConstantString(ProtocolName));
1405    ProtocolBuilder.add(ProtocolList);
1406    ProtocolBuilder.add(InstanceMethodList);
1407    ProtocolBuilder.add(ClassMethodList);
1408    ProtocolBuilder.add(OptionalInstanceMethodList);
1409    ProtocolBuilder.add(OptionalClassMethodList);
1410    // Required instance properties
1411    ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, false));
1412    // Optional instance properties
1413    ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, false, true));
1414    // Required class properties
1415    ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, false));
1416    // Optional class properties
1417    ProtocolBuilder.add(GeneratePropertyList(nullptr, PD, true, true));
1418
1419    auto *GV = ProtocolBuilder.finishAndCreateGlobal(SymName,
1420        CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1421    GV->setSection(sectionName<ProtocolSection>());
1422    GV->setComdat(TheModule.getOrInsertComdat(SymName));
1423    if (OldGV) {
1424      OldGV->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GV,
1425            OldGV->getType()));
1426      OldGV->removeFromParent();
1427      GV->setName(SymName);
1428    }
1429    Protocol = GV;
1430    return GV;
1431  }
1432  llvm::Constant *EnforceType(llvm::Constant *Val, llvm::Type *Ty) {
1433    if (Val->getType() == Ty)
1434      return Val;
1435    return llvm::ConstantExpr::getBitCast(Val, Ty);
1436  }
1437  llvm::Value *GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
1438                                const std::string &TypeEncoding) override {
1439    return GetConstantSelector(Sel, TypeEncoding);
1440  }
1441  llvm::Constant  *GetTypeString(llvm::StringRef TypeEncoding) {
1442    if (TypeEncoding.empty())
1443      return NULLPtr;
1444    std::string MangledTypes = std::string(TypeEncoding);
1445    std::replace(MangledTypes.begin(), MangledTypes.end(),
1446      '@', '\1');
1447    std::string TypesVarName = ".objc_sel_types_" + MangledTypes;
1448    auto *TypesGlobal = TheModule.getGlobalVariable(TypesVarName);
1449    if (!TypesGlobal) {
1450      llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
1451          TypeEncoding);
1452      auto *GV = new llvm::GlobalVariable(TheModule, Init->getType(),
1453          true, llvm::GlobalValue::LinkOnceODRLinkage, Init, TypesVarName);
1454      GV->setComdat(TheModule.getOrInsertComdat(TypesVarName));
1455      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1456      TypesGlobal = GV;
1457    }
1458    return llvm::ConstantExpr::getGetElementPtr(TypesGlobal->getValueType(),
1459        TypesGlobal, Zeros);
1460  }
1461  llvm::Constant *GetConstantSelector(Selector Sel,
1462                                      const std::string &TypeEncoding) override {
1463    // @ is used as a special character in symbol names (used for symbol
1464    // versioning), so mangle the name to not include it.  Replace it with a
1465    // character that is not a valid type encoding character (and, being
1466    // non-printable, never will be!)
1467    std::string MangledTypes = TypeEncoding;
1468    std::replace(MangledTypes.begin(), MangledTypes.end(),
1469      '@', '\1');
1470    auto SelVarName = (StringRef(".objc_selector_") + Sel.getAsString() + "_" +
1471      MangledTypes).str();
1472    if (auto *GV = TheModule.getNamedGlobal(SelVarName))
1473      return EnforceType(GV, SelectorTy);
1474    ConstantInitBuilder builder(CGM);
1475    auto SelBuilder = builder.beginStruct();
1476    SelBuilder.add(ExportUniqueString(Sel.getAsString(), ".objc_sel_name_",
1477          true));
1478    SelBuilder.add(GetTypeString(TypeEncoding));
1479    auto *GV = SelBuilder.finishAndCreateGlobal(SelVarName,
1480        CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1481    GV->setComdat(TheModule.getOrInsertComdat(SelVarName));
1482    GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1483    GV->setSection(sectionName<SelectorSection>());
1484    auto *SelVal = EnforceType(GV, SelectorTy);
1485    return SelVal;
1486  }
1487  llvm::StructType *emptyStruct = nullptr;
1488
1489  /// Return pointers to the start and end of a section.  On ELF platforms, we
1490  /// use the __start_ and __stop_ symbols that GNU-compatible linkers will set
1491  /// to the start and end of section names, as long as those section names are
1492  /// valid identifiers and the symbols are referenced but not defined.  On
1493  /// Windows, we use the fact that MSVC-compatible linkers will lexically sort
1494  /// by subsections and place everything that we want to reference in a middle
1495  /// subsection and then insert zero-sized symbols in subsections a and z.
1496  std::pair<llvm::Constant*,llvm::Constant*>
1497  GetSectionBounds(StringRef Section) {
1498    if (CGM.getTriple().isOSBinFormatCOFF()) {
1499      if (emptyStruct == nullptr) {
1500        emptyStruct = llvm::StructType::create(VMContext, ".objc_section_sentinel");
1501        emptyStruct->setBody({}, /*isPacked*/true);
1502      }
1503      auto ZeroInit = llvm::Constant::getNullValue(emptyStruct);
1504      auto Sym = [&](StringRef Prefix, StringRef SecSuffix) {
1505        auto *Sym = new llvm::GlobalVariable(TheModule, emptyStruct,
1506            /*isConstant*/false,
1507            llvm::GlobalValue::LinkOnceODRLinkage, ZeroInit, Prefix +
1508            Section);
1509        Sym->setVisibility(llvm::GlobalValue::HiddenVisibility);
1510        Sym->setSection((Section + SecSuffix).str());
1511        Sym->setComdat(TheModule.getOrInsertComdat((Prefix +
1512            Section).str()));
1513        Sym->setAlignment(CGM.getPointerAlign().getAsAlign());
1514        return Sym;
1515      };
1516      return { Sym("__start_", "$a"), Sym("__stop", "$z") };
1517    }
1518    auto *Start = new llvm::GlobalVariable(TheModule, PtrTy,
1519        /*isConstant*/false,
1520        llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__start_") +
1521        Section);
1522    Start->setVisibility(llvm::GlobalValue::HiddenVisibility);
1523    auto *Stop = new llvm::GlobalVariable(TheModule, PtrTy,
1524        /*isConstant*/false,
1525        llvm::GlobalValue::ExternalLinkage, nullptr, StringRef("__stop_") +
1526        Section);
1527    Stop->setVisibility(llvm::GlobalValue::HiddenVisibility);
1528    return { Start, Stop };
1529  }
1530  CatchTypeInfo getCatchAllTypeInfo() override {
1531    return CGM.getCXXABI().getCatchAllTypeInfo();
1532  }
1533  llvm::Function *ModuleInitFunction() override {
1534    llvm::Function *LoadFunction = llvm::Function::Create(
1535      llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
1536      llvm::GlobalValue::LinkOnceODRLinkage, ".objcv2_load_function",
1537      &TheModule);
1538    LoadFunction->setVisibility(llvm::GlobalValue::HiddenVisibility);
1539    LoadFunction->setComdat(TheModule.getOrInsertComdat(".objcv2_load_function"));
1540
1541    llvm::BasicBlock *EntryBB =
1542        llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
1543    CGBuilderTy B(CGM, VMContext);
1544    B.SetInsertPoint(EntryBB);
1545    ConstantInitBuilder builder(CGM);
1546    auto InitStructBuilder = builder.beginStruct();
1547    InitStructBuilder.addInt(Int64Ty, 0);
1548    auto &sectionVec = CGM.getTriple().isOSBinFormatCOFF() ? PECOFFSectionsBaseNames : SectionsBaseNames;
1549    for (auto *s : sectionVec) {
1550      auto bounds = GetSectionBounds(s);
1551      InitStructBuilder.add(bounds.first);
1552      InitStructBuilder.add(bounds.second);
1553    }
1554    auto *InitStruct = InitStructBuilder.finishAndCreateGlobal(".objc_init",
1555        CGM.getPointerAlign(), false, llvm::GlobalValue::LinkOnceODRLinkage);
1556    InitStruct->setVisibility(llvm::GlobalValue::HiddenVisibility);
1557    InitStruct->setComdat(TheModule.getOrInsertComdat(".objc_init"));
1558
1559    CallRuntimeFunction(B, "__objc_load", {InitStruct});;
1560    B.CreateRetVoid();
1561    // Make sure that the optimisers don't delete this function.
1562    CGM.addCompilerUsedGlobal(LoadFunction);
1563    // FIXME: Currently ELF only!
1564    // We have to do this by hand, rather than with @llvm.ctors, so that the
1565    // linker can remove the duplicate invocations.
1566    auto *InitVar = new llvm::GlobalVariable(TheModule, LoadFunction->getType(),
1567        /*isConstant*/false, llvm::GlobalValue::LinkOnceAnyLinkage,
1568        LoadFunction, ".objc_ctor");
1569    // Check that this hasn't been renamed.  This shouldn't happen, because
1570    // this function should be called precisely once.
1571    assert(InitVar->getName() == ".objc_ctor");
1572    // In Windows, initialisers are sorted by the suffix.  XCL is for library
1573    // initialisers, which run before user initialisers.  We are running
1574    // Objective-C loads at the end of library load.  This means +load methods
1575    // will run before any other static constructors, but that static
1576    // constructors can see a fully initialised Objective-C state.
1577    if (CGM.getTriple().isOSBinFormatCOFF())
1578        InitVar->setSection(".CRT$XCLz");
1579    else
1580    {
1581      if (CGM.getCodeGenOpts().UseInitArray)
1582        InitVar->setSection(".init_array");
1583      else
1584        InitVar->setSection(".ctors");
1585    }
1586    InitVar->setVisibility(llvm::GlobalValue::HiddenVisibility);
1587    InitVar->setComdat(TheModule.getOrInsertComdat(".objc_ctor"));
1588    CGM.addUsedGlobal(InitVar);
1589    for (auto *C : Categories) {
1590      auto *Cat = cast<llvm::GlobalVariable>(C->stripPointerCasts());
1591      Cat->setSection(sectionName<CategorySection>());
1592      CGM.addUsedGlobal(Cat);
1593    }
1594    auto createNullGlobal = [&](StringRef Name, ArrayRef<llvm::Constant*> Init,
1595        StringRef Section) {
1596      auto nullBuilder = builder.beginStruct();
1597      for (auto *F : Init)
1598        nullBuilder.add(F);
1599      auto GV = nullBuilder.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
1600          false, llvm::GlobalValue::LinkOnceODRLinkage);
1601      GV->setSection(Section);
1602      GV->setComdat(TheModule.getOrInsertComdat(Name));
1603      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
1604      CGM.addUsedGlobal(GV);
1605      return GV;
1606    };
1607    for (auto clsAlias : ClassAliases)
1608      createNullGlobal(std::string(".objc_class_alias") +
1609          clsAlias.second, { MakeConstantString(clsAlias.second),
1610          GetClassVar(clsAlias.first) }, sectionName<ClassAliasSection>());
1611    // On ELF platforms, add a null value for each special section so that we
1612    // can always guarantee that the _start and _stop symbols will exist and be
1613    // meaningful.  This is not required on COFF platforms, where our start and
1614    // stop symbols will create the section.
1615    if (!CGM.getTriple().isOSBinFormatCOFF()) {
1616      createNullGlobal(".objc_null_selector", {NULLPtr, NULLPtr},
1617          sectionName<SelectorSection>());
1618      if (Categories.empty())
1619        createNullGlobal(".objc_null_category", {NULLPtr, NULLPtr,
1620                      NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr},
1621            sectionName<CategorySection>());
1622      if (!EmittedClass) {
1623        createNullGlobal(".objc_null_cls_init_ref", NULLPtr,
1624            sectionName<ClassSection>());
1625        createNullGlobal(".objc_null_class_ref", { NULLPtr, NULLPtr },
1626            sectionName<ClassReferenceSection>());
1627      }
1628      if (!EmittedProtocol)
1629        createNullGlobal(".objc_null_protocol", {NULLPtr, NULLPtr, NULLPtr,
1630            NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr, NULLPtr,
1631            NULLPtr}, sectionName<ProtocolSection>());
1632      if (!EmittedProtocolRef)
1633        createNullGlobal(".objc_null_protocol_ref", {NULLPtr},
1634            sectionName<ProtocolReferenceSection>());
1635      if (ClassAliases.empty())
1636        createNullGlobal(".objc_null_class_alias", { NULLPtr, NULLPtr },
1637            sectionName<ClassAliasSection>());
1638      if (ConstantStrings.empty()) {
1639        auto i32Zero = llvm::ConstantInt::get(Int32Ty, 0);
1640        createNullGlobal(".objc_null_constant_string", { NULLPtr, i32Zero,
1641            i32Zero, i32Zero, i32Zero, NULLPtr },
1642            sectionName<ConstantStringSection>());
1643      }
1644    }
1645    ConstantStrings.clear();
1646    Categories.clear();
1647    Classes.clear();
1648
1649    if (EarlyInitList.size() > 0) {
1650      auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1651            {}), llvm::GlobalValue::InternalLinkage, ".objc_early_init",
1652          &CGM.getModule());
1653      llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1654            Init));
1655      for (const auto &lateInit : EarlyInitList) {
1656        auto *global = TheModule.getGlobalVariable(lateInit.first);
1657        if (global) {
1658          b.CreateAlignedStore(
1659              global,
1660              b.CreateStructGEP(lateInit.second.first, lateInit.second.second),
1661              CGM.getPointerAlign().getAsAlign());
1662        }
1663      }
1664      b.CreateRetVoid();
1665      // We can't use the normal LLVM global initialisation array, because we
1666      // need to specify that this runs early in library initialisation.
1667      auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1668          /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1669          Init, ".objc_early_init_ptr");
1670      InitVar->setSection(".CRT$XCLb");
1671      CGM.addUsedGlobal(InitVar);
1672    }
1673    return nullptr;
1674  }
1675  /// In the v2 ABI, ivar offset variables use the type encoding in their name
1676  /// to trigger linker failures if the types don't match.
1677  std::string GetIVarOffsetVariableName(const ObjCInterfaceDecl *ID,
1678                                        const ObjCIvarDecl *Ivar) override {
1679    std::string TypeEncoding;
1680    CGM.getContext().getObjCEncodingForType(Ivar->getType(), TypeEncoding);
1681    // Prevent the @ from being interpreted as a symbol version.
1682    std::replace(TypeEncoding.begin(), TypeEncoding.end(),
1683      '@', '\1');
1684    const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
1685      + '.' + Ivar->getNameAsString() + '.' + TypeEncoding;
1686    return Name;
1687  }
1688  llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
1689                              const ObjCInterfaceDecl *Interface,
1690                              const ObjCIvarDecl *Ivar) override {
1691    const std::string Name = GetIVarOffsetVariableName(Ivar->getContainingInterface(), Ivar);
1692    llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
1693    if (!IvarOffsetPointer)
1694      IvarOffsetPointer = new llvm::GlobalVariable(TheModule, IntTy, false,
1695              llvm::GlobalValue::ExternalLinkage, nullptr, Name);
1696    CharUnits Align = CGM.getIntAlign();
1697    llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(IvarOffsetPointer, Align);
1698    if (Offset->getType() != PtrDiffTy)
1699      Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
1700    return Offset;
1701  }
1702  void GenerateClass(const ObjCImplementationDecl *OID) override {
1703    ASTContext &Context = CGM.getContext();
1704    bool IsCOFF = CGM.getTriple().isOSBinFormatCOFF();
1705
1706    // Get the class name
1707    ObjCInterfaceDecl *classDecl =
1708        const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
1709    std::string className = classDecl->getNameAsString();
1710    auto *classNameConstant = MakeConstantString(className);
1711
1712    ConstantInitBuilder builder(CGM);
1713    auto metaclassFields = builder.beginStruct();
1714    // struct objc_class *isa;
1715    metaclassFields.addNullPointer(PtrTy);
1716    // struct objc_class *super_class;
1717    metaclassFields.addNullPointer(PtrTy);
1718    // const char *name;
1719    metaclassFields.add(classNameConstant);
1720    // long version;
1721    metaclassFields.addInt(LongTy, 0);
1722    // unsigned long info;
1723    // objc_class_flag_meta
1724    metaclassFields.addInt(LongTy, 1);
1725    // long instance_size;
1726    // Setting this to zero is consistent with the older ABI, but it might be
1727    // more sensible to set this to sizeof(struct objc_class)
1728    metaclassFields.addInt(LongTy, 0);
1729    // struct objc_ivar_list *ivars;
1730    metaclassFields.addNullPointer(PtrTy);
1731    // struct objc_method_list *methods
1732    // FIXME: Almost identical code is copied and pasted below for the
1733    // class, but refactoring it cleanly requires C++14 generic lambdas.
1734    if (OID->classmeth_begin() == OID->classmeth_end())
1735      metaclassFields.addNullPointer(PtrTy);
1736    else {
1737      SmallVector<ObjCMethodDecl*, 16> ClassMethods;
1738      ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
1739          OID->classmeth_end());
1740      metaclassFields.addBitCast(
1741              GenerateMethodList(className, "", ClassMethods, true),
1742              PtrTy);
1743    }
1744    // void *dtable;
1745    metaclassFields.addNullPointer(PtrTy);
1746    // IMP cxx_construct;
1747    metaclassFields.addNullPointer(PtrTy);
1748    // IMP cxx_destruct;
1749    metaclassFields.addNullPointer(PtrTy);
1750    // struct objc_class *subclass_list
1751    metaclassFields.addNullPointer(PtrTy);
1752    // struct objc_class *sibling_class
1753    metaclassFields.addNullPointer(PtrTy);
1754    // struct objc_protocol_list *protocols;
1755    metaclassFields.addNullPointer(PtrTy);
1756    // struct reference_list *extra_data;
1757    metaclassFields.addNullPointer(PtrTy);
1758    // long abi_version;
1759    metaclassFields.addInt(LongTy, 0);
1760    // struct objc_property_list *properties
1761    metaclassFields.add(GeneratePropertyList(OID, classDecl, /*isClassProperty*/true));
1762
1763    auto *metaclass = metaclassFields.finishAndCreateGlobal(
1764        ManglePublicSymbol("OBJC_METACLASS_") + className,
1765        CGM.getPointerAlign());
1766
1767    auto classFields = builder.beginStruct();
1768    // struct objc_class *isa;
1769    classFields.add(metaclass);
1770    // struct objc_class *super_class;
1771    // Get the superclass name.
1772    const ObjCInterfaceDecl * SuperClassDecl =
1773      OID->getClassInterface()->getSuperClass();
1774    llvm::Constant *SuperClass = nullptr;
1775    if (SuperClassDecl) {
1776      auto SuperClassName = SymbolForClass(SuperClassDecl->getNameAsString());
1777      SuperClass = TheModule.getNamedGlobal(SuperClassName);
1778      if (!SuperClass)
1779      {
1780        SuperClass = new llvm::GlobalVariable(TheModule, PtrTy, false,
1781            llvm::GlobalValue::ExternalLinkage, nullptr, SuperClassName);
1782        if (IsCOFF) {
1783          auto Storage = llvm::GlobalValue::DefaultStorageClass;
1784          if (SuperClassDecl->hasAttr<DLLImportAttr>())
1785            Storage = llvm::GlobalValue::DLLImportStorageClass;
1786          else if (SuperClassDecl->hasAttr<DLLExportAttr>())
1787            Storage = llvm::GlobalValue::DLLExportStorageClass;
1788
1789          cast<llvm::GlobalValue>(SuperClass)->setDLLStorageClass(Storage);
1790        }
1791      }
1792      if (!IsCOFF)
1793        classFields.add(llvm::ConstantExpr::getBitCast(SuperClass, PtrTy));
1794      else
1795        classFields.addNullPointer(PtrTy);
1796    } else
1797      classFields.addNullPointer(PtrTy);
1798    // const char *name;
1799    classFields.add(classNameConstant);
1800    // long version;
1801    classFields.addInt(LongTy, 0);
1802    // unsigned long info;
1803    // !objc_class_flag_meta
1804    classFields.addInt(LongTy, 0);
1805    // long instance_size;
1806    int superInstanceSize = !SuperClassDecl ? 0 :
1807      Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
1808    // Instance size is negative for classes that have not yet had their ivar
1809    // layout calculated.
1810    classFields.addInt(LongTy,
1811      0 - (Context.getASTObjCImplementationLayout(OID).getSize().getQuantity() -
1812      superInstanceSize));
1813
1814    if (classDecl->all_declared_ivar_begin() == nullptr)
1815      classFields.addNullPointer(PtrTy);
1816    else {
1817      int ivar_count = 0;
1818      for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1819           IVD = IVD->getNextIvar()) ivar_count++;
1820      llvm::DataLayout td(&TheModule);
1821      // struct objc_ivar_list *ivars;
1822      ConstantInitBuilder b(CGM);
1823      auto ivarListBuilder = b.beginStruct();
1824      // int count;
1825      ivarListBuilder.addInt(IntTy, ivar_count);
1826      // size_t size;
1827      llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1828        PtrToInt8Ty,
1829        PtrToInt8Ty,
1830        PtrToInt8Ty,
1831        Int32Ty,
1832        Int32Ty);
1833      ivarListBuilder.addInt(SizeTy, td.getTypeSizeInBits(ObjCIvarTy) /
1834          CGM.getContext().getCharWidth());
1835      // struct objc_ivar ivars[]
1836      auto ivarArrayBuilder = ivarListBuilder.beginArray();
1837      for (const ObjCIvarDecl *IVD = classDecl->all_declared_ivar_begin(); IVD;
1838           IVD = IVD->getNextIvar()) {
1839        auto ivarTy = IVD->getType();
1840        auto ivarBuilder = ivarArrayBuilder.beginStruct();
1841        // const char *name;
1842        ivarBuilder.add(MakeConstantString(IVD->getNameAsString()));
1843        // const char *type;
1844        std::string TypeStr;
1845        //Context.getObjCEncodingForType(ivarTy, TypeStr, IVD, true);
1846        Context.getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, ivarTy, TypeStr, true);
1847        ivarBuilder.add(MakeConstantString(TypeStr));
1848        // int *offset;
1849        uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
1850        uint64_t Offset = BaseOffset - superInstanceSize;
1851        llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
1852        std::string OffsetName = GetIVarOffsetVariableName(classDecl, IVD);
1853        llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
1854        if (OffsetVar)
1855          OffsetVar->setInitializer(OffsetValue);
1856        else
1857          OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
1858            false, llvm::GlobalValue::ExternalLinkage,
1859            OffsetValue, OffsetName);
1860        auto ivarVisibility =
1861            (IVD->getAccessControl() == ObjCIvarDecl::Private ||
1862             IVD->getAccessControl() == ObjCIvarDecl::Package ||
1863             classDecl->getVisibility() == HiddenVisibility) ?
1864                    llvm::GlobalValue::HiddenVisibility :
1865                    llvm::GlobalValue::DefaultVisibility;
1866        OffsetVar->setVisibility(ivarVisibility);
1867        ivarBuilder.add(OffsetVar);
1868        // Ivar size
1869        ivarBuilder.addInt(Int32Ty,
1870            CGM.getContext().getTypeSizeInChars(ivarTy).getQuantity());
1871        // Alignment will be stored as a base-2 log of the alignment.
1872        unsigned align =
1873            llvm::Log2_32(Context.getTypeAlignInChars(ivarTy).getQuantity());
1874        // Objects that require more than 2^64-byte alignment should be impossible!
1875        assert(align < 64);
1876        // uint32_t flags;
1877        // Bits 0-1 are ownership.
1878        // Bit 2 indicates an extended type encoding
1879        // Bits 3-8 contain log2(aligment)
1880        ivarBuilder.addInt(Int32Ty,
1881            (align << 3) | (1<<2) |
1882            FlagsForOwnership(ivarTy.getQualifiers().getObjCLifetime()));
1883        ivarBuilder.finishAndAddTo(ivarArrayBuilder);
1884      }
1885      ivarArrayBuilder.finishAndAddTo(ivarListBuilder);
1886      auto ivarList = ivarListBuilder.finishAndCreateGlobal(".objc_ivar_list",
1887          CGM.getPointerAlign(), /*constant*/ false,
1888          llvm::GlobalValue::PrivateLinkage);
1889      classFields.add(ivarList);
1890    }
1891    // struct objc_method_list *methods
1892    SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
1893    InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
1894        OID->instmeth_end());
1895    for (auto *propImpl : OID->property_impls())
1896      if (propImpl->getPropertyImplementation() ==
1897          ObjCPropertyImplDecl::Synthesize) {
1898        auto addIfExists = [&](const ObjCMethodDecl *OMD) {
1899          if (OMD && OMD->hasBody())
1900            InstanceMethods.push_back(OMD);
1901        };
1902        addIfExists(propImpl->getGetterMethodDecl());
1903        addIfExists(propImpl->getSetterMethodDecl());
1904      }
1905
1906    if (InstanceMethods.size() == 0)
1907      classFields.addNullPointer(PtrTy);
1908    else
1909      classFields.addBitCast(
1910              GenerateMethodList(className, "", InstanceMethods, false),
1911              PtrTy);
1912    // void *dtable;
1913    classFields.addNullPointer(PtrTy);
1914    // IMP cxx_construct;
1915    classFields.addNullPointer(PtrTy);
1916    // IMP cxx_destruct;
1917    classFields.addNullPointer(PtrTy);
1918    // struct objc_class *subclass_list
1919    classFields.addNullPointer(PtrTy);
1920    // struct objc_class *sibling_class
1921    classFields.addNullPointer(PtrTy);
1922    // struct objc_protocol_list *protocols;
1923    SmallVector<llvm::Constant*, 16> Protocols;
1924    for (const auto *I : classDecl->protocols())
1925      Protocols.push_back(
1926          llvm::ConstantExpr::getBitCast(GenerateProtocolRef(I),
1927            ProtocolPtrTy));
1928    if (Protocols.empty())
1929      classFields.addNullPointer(PtrTy);
1930    else
1931      classFields.add(GenerateProtocolList(Protocols));
1932    // struct reference_list *extra_data;
1933    classFields.addNullPointer(PtrTy);
1934    // long abi_version;
1935    classFields.addInt(LongTy, 0);
1936    // struct objc_property_list *properties
1937    classFields.add(GeneratePropertyList(OID, classDecl));
1938
1939    auto *classStruct =
1940      classFields.finishAndCreateGlobal(SymbolForClass(className),
1941        CGM.getPointerAlign(), false, llvm::GlobalValue::ExternalLinkage);
1942
1943    auto *classRefSymbol = GetClassVar(className);
1944    classRefSymbol->setSection(sectionName<ClassReferenceSection>());
1945    classRefSymbol->setInitializer(llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1946
1947    if (IsCOFF) {
1948      // we can't import a class struct.
1949      if (OID->getClassInterface()->hasAttr<DLLExportAttr>()) {
1950        cast<llvm::GlobalValue>(classStruct)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1951        cast<llvm::GlobalValue>(classRefSymbol)->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1952      }
1953
1954      if (SuperClass) {
1955        std::pair<llvm::Constant*, int> v{classStruct, 1};
1956        EarlyInitList.emplace_back(std::string(SuperClass->getName()),
1957                                   std::move(v));
1958      }
1959
1960    }
1961
1962
1963    // Resolve the class aliases, if they exist.
1964    // FIXME: Class pointer aliases shouldn't exist!
1965    if (ClassPtrAlias) {
1966      ClassPtrAlias->replaceAllUsesWith(
1967          llvm::ConstantExpr::getBitCast(classStruct, IdTy));
1968      ClassPtrAlias->eraseFromParent();
1969      ClassPtrAlias = nullptr;
1970    }
1971    if (auto Placeholder =
1972        TheModule.getNamedGlobal(SymbolForClass(className)))
1973      if (Placeholder != classStruct) {
1974        Placeholder->replaceAllUsesWith(
1975            llvm::ConstantExpr::getBitCast(classStruct, Placeholder->getType()));
1976        Placeholder->eraseFromParent();
1977        classStruct->setName(SymbolForClass(className));
1978      }
1979    if (MetaClassPtrAlias) {
1980      MetaClassPtrAlias->replaceAllUsesWith(
1981          llvm::ConstantExpr::getBitCast(metaclass, IdTy));
1982      MetaClassPtrAlias->eraseFromParent();
1983      MetaClassPtrAlias = nullptr;
1984    }
1985    assert(classStruct->getName() == SymbolForClass(className));
1986
1987    auto classInitRef = new llvm::GlobalVariable(TheModule,
1988        classStruct->getType(), false, llvm::GlobalValue::ExternalLinkage,
1989        classStruct, ManglePublicSymbol("OBJC_INIT_CLASS_") + className);
1990    classInitRef->setSection(sectionName<ClassSection>());
1991    CGM.addUsedGlobal(classInitRef);
1992
1993    EmittedClass = true;
1994  }
1995  public:
1996    CGObjCGNUstep2(CodeGenModule &Mod) : CGObjCGNUstep(Mod, 10, 4, 2) {
1997      MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
1998                            PtrToObjCSuperTy, SelectorTy);
1999      // struct objc_property
2000      // {
2001      //   const char *name;
2002      //   const char *attributes;
2003      //   const char *type;
2004      //   SEL getter;
2005      //   SEL setter;
2006      // }
2007      PropertyMetadataTy =
2008        llvm::StructType::get(CGM.getLLVMContext(),
2009            { PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty });
2010    }
2011
2012};
2013
2014const char *const CGObjCGNUstep2::SectionsBaseNames[8] =
2015{
2016"__objc_selectors",
2017"__objc_classes",
2018"__objc_class_refs",
2019"__objc_cats",
2020"__objc_protocols",
2021"__objc_protocol_refs",
2022"__objc_class_aliases",
2023"__objc_constant_string"
2024};
2025
2026const char *const CGObjCGNUstep2::PECOFFSectionsBaseNames[8] =
2027{
2028".objcrt$SEL",
2029".objcrt$CLS",
2030".objcrt$CLR",
2031".objcrt$CAT",
2032".objcrt$PCL",
2033".objcrt$PCR",
2034".objcrt$CAL",
2035".objcrt$STR"
2036};
2037
2038/// Support for the ObjFW runtime.
2039class CGObjCObjFW: public CGObjCGNU {
2040protected:
2041  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
2042  /// method implementation for this message.
2043  LazyRuntimeFunction MsgLookupFn;
2044  /// stret lookup function.  While this does not seem to make sense at the
2045  /// first look, this is required to call the correct forwarding function.
2046  LazyRuntimeFunction MsgLookupFnSRet;
2047  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
2048  /// structure describing the receiver and the class, and a selector as
2049  /// arguments.  Returns the IMP for the corresponding method.
2050  LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
2051
2052  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
2053                         llvm::Value *cmd, llvm::MDNode *node,
2054                         MessageSendInfo &MSI) override {
2055    CGBuilderTy &Builder = CGF.Builder;
2056    llvm::Value *args[] = {
2057            EnforceType(Builder, Receiver, IdTy),
2058            EnforceType(Builder, cmd, SelectorTy) };
2059
2060    llvm::CallBase *imp;
2061    if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2062      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
2063    else
2064      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
2065
2066    imp->setMetadata(msgSendMDKind, node);
2067    return imp;
2068  }
2069
2070  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
2071                              llvm::Value *cmd, MessageSendInfo &MSI) override {
2072    CGBuilderTy &Builder = CGF.Builder;
2073    llvm::Value *lookupArgs[] = {
2074        EnforceType(Builder, ObjCSuper.getPointer(), PtrToObjCSuperTy), cmd,
2075    };
2076
2077    if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
2078      return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
2079    else
2080      return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
2081  }
2082
2083  llvm::Value *GetClassNamed(CodeGenFunction &CGF, const std::string &Name,
2084                             bool isWeak) override {
2085    if (isWeak)
2086      return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
2087
2088    EmitClassRef(Name);
2089    std::string SymbolName = "_OBJC_CLASS_" + Name;
2090    llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
2091    if (!ClassSymbol)
2092      ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2093                                             llvm::GlobalValue::ExternalLinkage,
2094                                             nullptr, SymbolName);
2095    return ClassSymbol;
2096  }
2097
2098public:
2099  CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
2100    // IMP objc_msg_lookup(id, SEL);
2101    MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy);
2102    MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
2103                         SelectorTy);
2104    // IMP objc_msg_lookup_super(struct objc_super*, SEL);
2105    MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
2106                          PtrToObjCSuperTy, SelectorTy);
2107    MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
2108                              PtrToObjCSuperTy, SelectorTy);
2109  }
2110};
2111} // end anonymous namespace
2112
2113/// Emits a reference to a dummy variable which is emitted with each class.
2114/// This ensures that a linker error will be generated when trying to link
2115/// together modules where a referenced class is not defined.
2116void CGObjCGNU::EmitClassRef(const std::string &className) {
2117  std::string symbolRef = "__objc_class_ref_" + className;
2118  // Don't emit two copies of the same symbol
2119  if (TheModule.getGlobalVariable(symbolRef))
2120    return;
2121  std::string symbolName = "__objc_class_name_" + className;
2122  llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
2123  if (!ClassSymbol) {
2124    ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
2125                                           llvm::GlobalValue::ExternalLinkage,
2126                                           nullptr, symbolName);
2127  }
2128  new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
2129    llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
2130}
2131
2132CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
2133                     unsigned protocolClassVersion, unsigned classABI)
2134  : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
2135    VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
2136    MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
2137    ProtocolVersion(protocolClassVersion), ClassABIVersion(classABI) {
2138
2139  msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
2140  usesSEHExceptions =
2141      cgm.getContext().getTargetInfo().getTriple().isWindowsMSVCEnvironment();
2142
2143  CodeGenTypes &Types = CGM.getTypes();
2144  IntTy = cast<llvm::IntegerType>(
2145      Types.ConvertType(CGM.getContext().IntTy));
2146  LongTy = cast<llvm::IntegerType>(
2147      Types.ConvertType(CGM.getContext().LongTy));
2148  SizeTy = cast<llvm::IntegerType>(
2149      Types.ConvertType(CGM.getContext().getSizeType()));
2150  PtrDiffTy = cast<llvm::IntegerType>(
2151      Types.ConvertType(CGM.getContext().getPointerDiffType()));
2152  BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
2153
2154  Int8Ty = llvm::Type::getInt8Ty(VMContext);
2155  // C string type.  Used in lots of places.
2156  PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
2157  ProtocolPtrTy = llvm::PointerType::getUnqual(
2158      Types.ConvertType(CGM.getContext().getObjCProtoType()));
2159
2160  Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
2161  Zeros[1] = Zeros[0];
2162  NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2163  // Get the selector Type.
2164  QualType selTy = CGM.getContext().getObjCSelType();
2165  if (QualType() == selTy) {
2166    SelectorTy = PtrToInt8Ty;
2167  } else {
2168    SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
2169  }
2170
2171  PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
2172  PtrTy = PtrToInt8Ty;
2173
2174  Int32Ty = llvm::Type::getInt32Ty(VMContext);
2175  Int64Ty = llvm::Type::getInt64Ty(VMContext);
2176
2177  IntPtrTy =
2178      CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
2179
2180  // Object type
2181  QualType UnqualIdTy = CGM.getContext().getObjCIdType();
2182  ASTIdTy = CanQualType();
2183  if (UnqualIdTy != QualType()) {
2184    ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
2185    IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2186  } else {
2187    IdTy = PtrToInt8Ty;
2188  }
2189  PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
2190  ProtocolTy = llvm::StructType::get(IdTy,
2191      PtrToInt8Ty, // name
2192      PtrToInt8Ty, // protocols
2193      PtrToInt8Ty, // instance methods
2194      PtrToInt8Ty, // class methods
2195      PtrToInt8Ty, // optional instance methods
2196      PtrToInt8Ty, // optional class methods
2197      PtrToInt8Ty, // properties
2198      PtrToInt8Ty);// optional properties
2199
2200  // struct objc_property_gsv1
2201  // {
2202  //   const char *name;
2203  //   char attributes;
2204  //   char attributes2;
2205  //   char unused1;
2206  //   char unused2;
2207  //   const char *getter_name;
2208  //   const char *getter_types;
2209  //   const char *setter_name;
2210  //   const char *setter_types;
2211  // }
2212  PropertyMetadataTy = llvm::StructType::get(CGM.getLLVMContext(), {
2213      PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty, PtrToInt8Ty,
2214      PtrToInt8Ty, PtrToInt8Ty });
2215
2216  ObjCSuperTy = llvm::StructType::get(IdTy, IdTy);
2217  PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
2218
2219  llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
2220
2221  // void objc_exception_throw(id);
2222  ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2223  ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy);
2224  // int objc_sync_enter(id);
2225  SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy);
2226  // int objc_sync_exit(id);
2227  SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy);
2228
2229  // void objc_enumerationMutation (id)
2230  EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy, IdTy);
2231
2232  // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
2233  GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
2234                     PtrDiffTy, BoolTy);
2235  // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
2236  SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
2237                     PtrDiffTy, IdTy, BoolTy, BoolTy);
2238  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2239  GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
2240                           PtrDiffTy, BoolTy, BoolTy);
2241  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
2242  SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
2243                           PtrDiffTy, BoolTy, BoolTy);
2244
2245  // IMP type
2246  llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
2247  IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
2248              true));
2249
2250  const LangOptions &Opts = CGM.getLangOpts();
2251  if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
2252    RuntimeVersion = 10;
2253
2254  // Don't bother initialising the GC stuff unless we're compiling in GC mode
2255  if (Opts.getGC() != LangOptions::NonGC) {
2256    // This is a bit of an hack.  We should sort this out by having a proper
2257    // CGObjCGNUstep subclass for GC, but we may want to really support the old
2258    // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
2259    // Get selectors needed in GC mode
2260    RetainSel = GetNullarySelector("retain", CGM.getContext());
2261    ReleaseSel = GetNullarySelector("release", CGM.getContext());
2262    AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
2263
2264    // Get functions needed in GC mode
2265
2266    // id objc_assign_ivar(id, id, ptrdiff_t);
2267    IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy);
2268    // id objc_assign_strongCast (id, id*)
2269    StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
2270                            PtrToIdTy);
2271    // id objc_assign_global(id, id*);
2272    GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy);
2273    // id objc_assign_weak(id, id*);
2274    WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy);
2275    // id objc_read_weak(id*);
2276    WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy);
2277    // void *objc_memmove_collectable(void*, void *, size_t);
2278    MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
2279                   SizeTy);
2280  }
2281}
2282
2283llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
2284                                      const std::string &Name, bool isWeak) {
2285  llvm::Constant *ClassName = MakeConstantString(Name);
2286  // With the incompatible ABI, this will need to be replaced with a direct
2287  // reference to the class symbol.  For the compatible nonfragile ABI we are
2288  // still performing this lookup at run time but emitting the symbol for the
2289  // class externally so that we can make the switch later.
2290  //
2291  // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
2292  // with memoized versions or with static references if it's safe to do so.
2293  if (!isWeak)
2294    EmitClassRef(Name);
2295
2296  llvm::FunctionCallee ClassLookupFn = CGM.CreateRuntimeFunction(
2297      llvm::FunctionType::get(IdTy, PtrToInt8Ty, true), "objc_lookup_class");
2298  return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
2299}
2300
2301// This has to perform the lookup every time, since posing and related
2302// techniques can modify the name -> class mapping.
2303llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
2304                                 const ObjCInterfaceDecl *OID) {
2305  auto *Value =
2306      GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
2307  if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value))
2308    CGM.setGVProperties(ClassSymbol, OID);
2309  return Value;
2310}
2311
2312llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
2313  auto *Value  = GetClassNamed(CGF, "NSAutoreleasePool", false);
2314  if (CGM.getTriple().isOSBinFormatCOFF()) {
2315    if (auto *ClassSymbol = dyn_cast<llvm::GlobalVariable>(Value)) {
2316      IdentifierInfo &II = CGF.CGM.getContext().Idents.get("NSAutoreleasePool");
2317      TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2318      DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2319
2320      const VarDecl *VD = nullptr;
2321      for (const auto &Result : DC->lookup(&II))
2322        if ((VD = dyn_cast<VarDecl>(Result)))
2323          break;
2324
2325      CGM.setGVProperties(ClassSymbol, VD);
2326    }
2327  }
2328  return Value;
2329}
2330
2331llvm::Value *CGObjCGNU::GetTypedSelector(CodeGenFunction &CGF, Selector Sel,
2332                                         const std::string &TypeEncoding) {
2333  SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
2334  llvm::GlobalAlias *SelValue = nullptr;
2335
2336  for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2337      e = Types.end() ; i!=e ; i++) {
2338    if (i->first == TypeEncoding) {
2339      SelValue = i->second;
2340      break;
2341    }
2342  }
2343  if (!SelValue) {
2344    SelValue = llvm::GlobalAlias::create(
2345        SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
2346        ".objc_selector_" + Sel.getAsString(), &TheModule);
2347    Types.emplace_back(TypeEncoding, SelValue);
2348  }
2349
2350  return SelValue;
2351}
2352
2353Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
2354  llvm::Value *SelValue = GetSelector(CGF, Sel);
2355
2356  // Store it to a temporary.  Does this satisfy the semantics of
2357  // GetAddrOfSelector?  Hopefully.
2358  Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
2359                                     CGF.getPointerAlign());
2360  CGF.Builder.CreateStore(SelValue, tmp);
2361  return tmp;
2362}
2363
2364llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
2365  return GetTypedSelector(CGF, Sel, std::string());
2366}
2367
2368llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
2369                                    const ObjCMethodDecl *Method) {
2370  std::string SelTypes = CGM.getContext().getObjCEncodingForMethodDecl(Method);
2371  return GetTypedSelector(CGF, Method->getSelector(), SelTypes);
2372}
2373
2374llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
2375  if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
2376    // With the old ABI, there was only one kind of catchall, which broke
2377    // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
2378    // a pointer indicating object catchalls, and NULL to indicate real
2379    // catchalls
2380    if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2381      return MakeConstantString("@id");
2382    } else {
2383      return nullptr;
2384    }
2385  }
2386
2387  // All other types should be Objective-C interface pointer types.
2388  const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
2389  assert(OPT && "Invalid @catch type.");
2390  const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
2391  assert(IDecl && "Invalid @catch type.");
2392  return MakeConstantString(IDecl->getIdentifier()->getName());
2393}
2394
2395llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
2396  if (usesSEHExceptions)
2397    return CGM.getCXXABI().getAddrOfRTTIDescriptor(T);
2398
2399  if (!CGM.getLangOpts().CPlusPlus)
2400    return CGObjCGNU::GetEHType(T);
2401
2402  // For Objective-C++, we want to provide the ability to catch both C++ and
2403  // Objective-C objects in the same function.
2404
2405  // There's a particular fixed type info for 'id'.
2406  if (T->isObjCIdType() ||
2407      T->isObjCQualifiedIdType()) {
2408    llvm::Constant *IDEHType =
2409      CGM.getModule().getGlobalVariable("__objc_id_type_info");
2410    if (!IDEHType)
2411      IDEHType =
2412        new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
2413                                 false,
2414                                 llvm::GlobalValue::ExternalLinkage,
2415                                 nullptr, "__objc_id_type_info");
2416    return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
2417  }
2418
2419  const ObjCObjectPointerType *PT =
2420    T->getAs<ObjCObjectPointerType>();
2421  assert(PT && "Invalid @catch type.");
2422  const ObjCInterfaceType *IT = PT->getInterfaceType();
2423  assert(IT && "Invalid @catch type.");
2424  std::string className =
2425      std::string(IT->getDecl()->getIdentifier()->getName());
2426
2427  std::string typeinfoName = "__objc_eh_typeinfo_" + className;
2428
2429  // Return the existing typeinfo if it exists
2430  llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
2431  if (typeinfo)
2432    return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
2433
2434  // Otherwise create it.
2435
2436  // vtable for gnustep::libobjc::__objc_class_type_info
2437  // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
2438  // platform's name mangling.
2439  const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
2440  auto *Vtable = TheModule.getGlobalVariable(vtableName);
2441  if (!Vtable) {
2442    Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
2443                                      llvm::GlobalValue::ExternalLinkage,
2444                                      nullptr, vtableName);
2445  }
2446  llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
2447  auto *BVtable = llvm::ConstantExpr::getBitCast(
2448      llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
2449      PtrToInt8Ty);
2450
2451  llvm::Constant *typeName =
2452    ExportUniqueString(className, "__objc_eh_typename_");
2453
2454  ConstantInitBuilder builder(CGM);
2455  auto fields = builder.beginStruct();
2456  fields.add(BVtable);
2457  fields.add(typeName);
2458  llvm::Constant *TI =
2459    fields.finishAndCreateGlobal("__objc_eh_typeinfo_" + className,
2460                                 CGM.getPointerAlign(),
2461                                 /*constant*/ false,
2462                                 llvm::GlobalValue::LinkOnceODRLinkage);
2463  return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
2464}
2465
2466/// Generate an NSConstantString object.
2467ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
2468
2469  std::string Str = SL->getString().str();
2470  CharUnits Align = CGM.getPointerAlign();
2471
2472  // Look for an existing one
2473  llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
2474  if (old != ObjCStrings.end())
2475    return ConstantAddress(old->getValue(), Align);
2476
2477  StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2478
2479  if (StringClass.empty()) StringClass = "NSConstantString";
2480
2481  std::string Sym = "_OBJC_CLASS_";
2482  Sym += StringClass;
2483
2484  llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
2485
2486  if (!isa)
2487    isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
2488            llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
2489  else if (isa->getType() != PtrToIdTy)
2490    isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
2491
2492  ConstantInitBuilder Builder(CGM);
2493  auto Fields = Builder.beginStruct();
2494  Fields.add(isa);
2495  Fields.add(MakeConstantString(Str));
2496  Fields.addInt(IntTy, Str.size());
2497  llvm::Constant *ObjCStr =
2498    Fields.finishAndCreateGlobal(".objc_str", Align);
2499  ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
2500  ObjCStrings[Str] = ObjCStr;
2501  ConstantStrings.push_back(ObjCStr);
2502  return ConstantAddress(ObjCStr, Align);
2503}
2504
2505///Generates a message send where the super is the receiver.  This is a message
2506///send to self with special delivery semantics indicating which class's method
2507///should be called.
2508RValue
2509CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
2510                                    ReturnValueSlot Return,
2511                                    QualType ResultType,
2512                                    Selector Sel,
2513                                    const ObjCInterfaceDecl *Class,
2514                                    bool isCategoryImpl,
2515                                    llvm::Value *Receiver,
2516                                    bool IsClassMessage,
2517                                    const CallArgList &CallArgs,
2518                                    const ObjCMethodDecl *Method) {
2519  CGBuilderTy &Builder = CGF.Builder;
2520  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2521    if (Sel == RetainSel || Sel == AutoreleaseSel) {
2522      return RValue::get(EnforceType(Builder, Receiver,
2523                  CGM.getTypes().ConvertType(ResultType)));
2524    }
2525    if (Sel == ReleaseSel) {
2526      return RValue::get(nullptr);
2527    }
2528  }
2529
2530  llvm::Value *cmd = GetSelector(CGF, Sel);
2531  CallArgList ActualArgs;
2532
2533  ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
2534  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2535  ActualArgs.addFrom(CallArgs);
2536
2537  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2538
2539  llvm::Value *ReceiverClass = nullptr;
2540  bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2541  if (isV2ABI) {
2542    ReceiverClass = GetClassNamed(CGF,
2543        Class->getSuperClass()->getNameAsString(), /*isWeak*/false);
2544    if (IsClassMessage)  {
2545      // Load the isa pointer of the superclass is this is a class method.
2546      ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2547                                            llvm::PointerType::getUnqual(IdTy));
2548      ReceiverClass =
2549        Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
2550    }
2551    ReceiverClass = EnforceType(Builder, ReceiverClass, IdTy);
2552  } else {
2553    if (isCategoryImpl) {
2554      llvm::FunctionCallee classLookupFunction = nullptr;
2555      if (IsClassMessage)  {
2556        classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2557              IdTy, PtrTy, true), "objc_get_meta_class");
2558      } else {
2559        classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
2560              IdTy, PtrTy, true), "objc_get_class");
2561      }
2562      ReceiverClass = Builder.CreateCall(classLookupFunction,
2563          MakeConstantString(Class->getNameAsString()));
2564    } else {
2565      // Set up global aliases for the metaclass or class pointer if they do not
2566      // already exist.  These will are forward-references which will be set to
2567      // pointers to the class and metaclass structure created for the runtime
2568      // load function.  To send a message to super, we look up the value of the
2569      // super_class pointer from either the class or metaclass structure.
2570      if (IsClassMessage)  {
2571        if (!MetaClassPtrAlias) {
2572          MetaClassPtrAlias = llvm::GlobalAlias::create(
2573              IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2574              ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
2575        }
2576        ReceiverClass = MetaClassPtrAlias;
2577      } else {
2578        if (!ClassPtrAlias) {
2579          ClassPtrAlias = llvm::GlobalAlias::create(
2580              IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
2581              ".objc_class_ref" + Class->getNameAsString(), &TheModule);
2582        }
2583        ReceiverClass = ClassPtrAlias;
2584      }
2585    }
2586    // Cast the pointer to a simplified version of the class structure
2587    llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy);
2588    ReceiverClass = Builder.CreateBitCast(ReceiverClass,
2589                                          llvm::PointerType::getUnqual(CastTy));
2590    // Get the superclass pointer
2591    ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
2592    // Load the superclass pointer
2593    ReceiverClass =
2594      Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
2595  }
2596  // Construct the structure used to look up the IMP
2597  llvm::StructType *ObjCSuperTy =
2598      llvm::StructType::get(Receiver->getType(), IdTy);
2599
2600  Address ObjCSuper = CGF.CreateTempAlloca(ObjCSuperTy,
2601                              CGF.getPointerAlign());
2602
2603  Builder.CreateStore(Receiver, Builder.CreateStructGEP(ObjCSuper, 0));
2604  Builder.CreateStore(ReceiverClass, Builder.CreateStructGEP(ObjCSuper, 1));
2605
2606  ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
2607
2608  // Get the IMP
2609  llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
2610  imp = EnforceType(Builder, imp, MSI.MessengerType);
2611
2612  llvm::Metadata *impMD[] = {
2613      llvm::MDString::get(VMContext, Sel.getAsString()),
2614      llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
2615      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2616          llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
2617  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2618
2619  CGCallee callee(CGCalleeInfo(), imp);
2620
2621  llvm::CallBase *call;
2622  RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2623  call->setMetadata(msgSendMDKind, node);
2624  return msgRet;
2625}
2626
2627/// Generate code for a message send expression.
2628RValue
2629CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
2630                               ReturnValueSlot Return,
2631                               QualType ResultType,
2632                               Selector Sel,
2633                               llvm::Value *Receiver,
2634                               const CallArgList &CallArgs,
2635                               const ObjCInterfaceDecl *Class,
2636                               const ObjCMethodDecl *Method) {
2637  CGBuilderTy &Builder = CGF.Builder;
2638
2639  // Strip out message sends to retain / release in GC mode
2640  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
2641    if (Sel == RetainSel || Sel == AutoreleaseSel) {
2642      return RValue::get(EnforceType(Builder, Receiver,
2643                  CGM.getTypes().ConvertType(ResultType)));
2644    }
2645    if (Sel == ReleaseSel) {
2646      return RValue::get(nullptr);
2647    }
2648  }
2649
2650  // If the return type is something that goes in an integer register, the
2651  // runtime will handle 0 returns.  For other cases, we fill in the 0 value
2652  // ourselves.
2653  //
2654  // The language spec says the result of this kind of message send is
2655  // undefined, but lots of people seem to have forgotten to read that
2656  // paragraph and insist on sending messages to nil that have structure
2657  // returns.  With GCC, this generates a random return value (whatever happens
2658  // to be on the stack / in those registers at the time) on most platforms,
2659  // and generates an illegal instruction trap on SPARC.  With LLVM it corrupts
2660  // the stack.
2661  bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
2662      ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
2663
2664  llvm::BasicBlock *startBB = nullptr;
2665  llvm::BasicBlock *messageBB = nullptr;
2666  llvm::BasicBlock *continueBB = nullptr;
2667
2668  if (!isPointerSizedReturn) {
2669    startBB = Builder.GetInsertBlock();
2670    messageBB = CGF.createBasicBlock("msgSend");
2671    continueBB = CGF.createBasicBlock("continue");
2672
2673    llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
2674            llvm::Constant::getNullValue(Receiver->getType()));
2675    Builder.CreateCondBr(isNil, continueBB, messageBB);
2676    CGF.EmitBlock(messageBB);
2677  }
2678
2679  IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
2680  llvm::Value *cmd;
2681  if (Method)
2682    cmd = GetSelector(CGF, Method);
2683  else
2684    cmd = GetSelector(CGF, Sel);
2685  cmd = EnforceType(Builder, cmd, SelectorTy);
2686  Receiver = EnforceType(Builder, Receiver, IdTy);
2687
2688  llvm::Metadata *impMD[] = {
2689      llvm::MDString::get(VMContext, Sel.getAsString()),
2690      llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
2691      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2692          llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
2693  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
2694
2695  CallArgList ActualArgs;
2696  ActualArgs.add(RValue::get(Receiver), ASTIdTy);
2697  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
2698  ActualArgs.addFrom(CallArgs);
2699
2700  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
2701
2702  // Get the IMP to call
2703  llvm::Value *imp;
2704
2705  // If we have non-legacy dispatch specified, we try using the objc_msgSend()
2706  // functions.  These are not supported on all platforms (or all runtimes on a
2707  // given platform), so we
2708  switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
2709    case CodeGenOptions::Legacy:
2710      imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
2711      break;
2712    case CodeGenOptions::Mixed:
2713    case CodeGenOptions::NonLegacy:
2714      if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2715        imp =
2716            CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2717                                      "objc_msgSend_fpret")
2718                .getCallee();
2719      } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
2720        // The actual types here don't matter - we're going to bitcast the
2721        // function anyway
2722        imp =
2723            CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
2724                                      "objc_msgSend_stret")
2725                .getCallee();
2726      } else {
2727        imp = CGM.CreateRuntimeFunction(
2728                     llvm::FunctionType::get(IdTy, IdTy, true), "objc_msgSend")
2729                  .getCallee();
2730      }
2731  }
2732
2733  // Reset the receiver in case the lookup modified it
2734  ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy);
2735
2736  imp = EnforceType(Builder, imp, MSI.MessengerType);
2737
2738  llvm::CallBase *call;
2739  CGCallee callee(CGCalleeInfo(), imp);
2740  RValue msgRet = CGF.EmitCall(MSI.CallInfo, callee, Return, ActualArgs, &call);
2741  call->setMetadata(msgSendMDKind, node);
2742
2743
2744  if (!isPointerSizedReturn) {
2745    messageBB = CGF.Builder.GetInsertBlock();
2746    CGF.Builder.CreateBr(continueBB);
2747    CGF.EmitBlock(continueBB);
2748    if (msgRet.isScalar()) {
2749      llvm::Value *v = msgRet.getScalarVal();
2750      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
2751      phi->addIncoming(v, messageBB);
2752      phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
2753      msgRet = RValue::get(phi);
2754    } else if (msgRet.isAggregate()) {
2755      Address v = msgRet.getAggregateAddress();
2756      llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2);
2757      llvm::Type *RetTy = v.getElementType();
2758      Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null");
2759      CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy));
2760      phi->addIncoming(v.getPointer(), messageBB);
2761      phi->addIncoming(NullVal.getPointer(), startBB);
2762      msgRet = RValue::getAggregate(Address(phi, v.getAlignment()));
2763    } else /* isComplex() */ {
2764      std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
2765      llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
2766      phi->addIncoming(v.first, messageBB);
2767      phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
2768          startBB);
2769      llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
2770      phi2->addIncoming(v.second, messageBB);
2771      phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
2772          startBB);
2773      msgRet = RValue::getComplex(phi, phi2);
2774    }
2775  }
2776  return msgRet;
2777}
2778
2779/// Generates a MethodList.  Used in construction of a objc_class and
2780/// objc_category structures.
2781llvm::Constant *CGObjCGNU::
2782GenerateMethodList(StringRef ClassName,
2783                   StringRef CategoryName,
2784                   ArrayRef<const ObjCMethodDecl*> Methods,
2785                   bool isClassMethodList) {
2786  if (Methods.empty())
2787    return NULLPtr;
2788
2789  ConstantInitBuilder Builder(CGM);
2790
2791  auto MethodList = Builder.beginStruct();
2792  MethodList.addNullPointer(CGM.Int8PtrTy);
2793  MethodList.addInt(Int32Ty, Methods.size());
2794
2795  // Get the method structure type.
2796  llvm::StructType *ObjCMethodTy =
2797    llvm::StructType::get(CGM.getLLVMContext(), {
2798      PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2799      PtrToInt8Ty, // Method types
2800      IMPTy        // Method pointer
2801    });
2802  bool isV2ABI = isRuntime(ObjCRuntime::GNUstep, 2);
2803  if (isV2ABI) {
2804    // size_t size;
2805    llvm::DataLayout td(&TheModule);
2806    MethodList.addInt(SizeTy, td.getTypeSizeInBits(ObjCMethodTy) /
2807        CGM.getContext().getCharWidth());
2808    ObjCMethodTy =
2809      llvm::StructType::get(CGM.getLLVMContext(), {
2810        IMPTy,       // Method pointer
2811        PtrToInt8Ty, // Selector
2812        PtrToInt8Ty  // Extended type encoding
2813      });
2814  } else {
2815    ObjCMethodTy =
2816      llvm::StructType::get(CGM.getLLVMContext(), {
2817        PtrToInt8Ty, // Really a selector, but the runtime creates it us.
2818        PtrToInt8Ty, // Method types
2819        IMPTy        // Method pointer
2820      });
2821  }
2822  auto MethodArray = MethodList.beginArray();
2823  ASTContext &Context = CGM.getContext();
2824  for (const auto *OMD : Methods) {
2825    llvm::Constant *FnPtr =
2826      TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
2827                                                OMD->getSelector(),
2828                                                isClassMethodList));
2829    assert(FnPtr && "Can't generate metadata for method that doesn't exist");
2830    auto Method = MethodArray.beginStruct(ObjCMethodTy);
2831    if (isV2ABI) {
2832      Method.addBitCast(FnPtr, IMPTy);
2833      Method.add(GetConstantSelector(OMD->getSelector(),
2834          Context.getObjCEncodingForMethodDecl(OMD)));
2835      Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD, true)));
2836    } else {
2837      Method.add(MakeConstantString(OMD->getSelector().getAsString()));
2838      Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(OMD)));
2839      Method.addBitCast(FnPtr, IMPTy);
2840    }
2841    Method.finishAndAddTo(MethodArray);
2842  }
2843  MethodArray.finishAndAddTo(MethodList);
2844
2845  // Create an instance of the structure
2846  return MethodList.finishAndCreateGlobal(".objc_method_list",
2847                                          CGM.getPointerAlign());
2848}
2849
2850/// Generates an IvarList.  Used in construction of a objc_class.
2851llvm::Constant *CGObjCGNU::
2852GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
2853                 ArrayRef<llvm::Constant *> IvarTypes,
2854                 ArrayRef<llvm::Constant *> IvarOffsets,
2855                 ArrayRef<llvm::Constant *> IvarAlign,
2856                 ArrayRef<Qualifiers::ObjCLifetime> IvarOwnership) {
2857  if (IvarNames.empty())
2858    return NULLPtr;
2859
2860  ConstantInitBuilder Builder(CGM);
2861
2862  // Structure containing array count followed by array.
2863  auto IvarList = Builder.beginStruct();
2864  IvarList.addInt(IntTy, (int)IvarNames.size());
2865
2866  // Get the ivar structure type.
2867  llvm::StructType *ObjCIvarTy =
2868      llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, IntTy);
2869
2870  // Array of ivar structures.
2871  auto Ivars = IvarList.beginArray(ObjCIvarTy);
2872  for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
2873    auto Ivar = Ivars.beginStruct(ObjCIvarTy);
2874    Ivar.add(IvarNames[i]);
2875    Ivar.add(IvarTypes[i]);
2876    Ivar.add(IvarOffsets[i]);
2877    Ivar.finishAndAddTo(Ivars);
2878  }
2879  Ivars.finishAndAddTo(IvarList);
2880
2881  // Create an instance of the structure
2882  return IvarList.finishAndCreateGlobal(".objc_ivar_list",
2883                                        CGM.getPointerAlign());
2884}
2885
2886/// Generate a class structure
2887llvm::Constant *CGObjCGNU::GenerateClassStructure(
2888    llvm::Constant *MetaClass,
2889    llvm::Constant *SuperClass,
2890    unsigned info,
2891    const char *Name,
2892    llvm::Constant *Version,
2893    llvm::Constant *InstanceSize,
2894    llvm::Constant *IVars,
2895    llvm::Constant *Methods,
2896    llvm::Constant *Protocols,
2897    llvm::Constant *IvarOffsets,
2898    llvm::Constant *Properties,
2899    llvm::Constant *StrongIvarBitmap,
2900    llvm::Constant *WeakIvarBitmap,
2901    bool isMeta) {
2902  // Set up the class structure
2903  // Note:  Several of these are char*s when they should be ids.  This is
2904  // because the runtime performs this translation on load.
2905  //
2906  // Fields marked New ABI are part of the GNUstep runtime.  We emit them
2907  // anyway; the classes will still work with the GNU runtime, they will just
2908  // be ignored.
2909  llvm::StructType *ClassTy = llvm::StructType::get(
2910      PtrToInt8Ty,        // isa
2911      PtrToInt8Ty,        // super_class
2912      PtrToInt8Ty,        // name
2913      LongTy,             // version
2914      LongTy,             // info
2915      LongTy,             // instance_size
2916      IVars->getType(),   // ivars
2917      Methods->getType(), // methods
2918      // These are all filled in by the runtime, so we pretend
2919      PtrTy, // dtable
2920      PtrTy, // subclass_list
2921      PtrTy, // sibling_class
2922      PtrTy, // protocols
2923      PtrTy, // gc_object_type
2924      // New ABI:
2925      LongTy,                 // abi_version
2926      IvarOffsets->getType(), // ivar_offsets
2927      Properties->getType(),  // properties
2928      IntPtrTy,               // strong_pointers
2929      IntPtrTy                // weak_pointers
2930      );
2931
2932  ConstantInitBuilder Builder(CGM);
2933  auto Elements = Builder.beginStruct(ClassTy);
2934
2935  // Fill in the structure
2936
2937  // isa
2938  Elements.addBitCast(MetaClass, PtrToInt8Ty);
2939  // super_class
2940  Elements.add(SuperClass);
2941  // name
2942  Elements.add(MakeConstantString(Name, ".class_name"));
2943  // version
2944  Elements.addInt(LongTy, 0);
2945  // info
2946  Elements.addInt(LongTy, info);
2947  // instance_size
2948  if (isMeta) {
2949    llvm::DataLayout td(&TheModule);
2950    Elements.addInt(LongTy,
2951                    td.getTypeSizeInBits(ClassTy) /
2952                      CGM.getContext().getCharWidth());
2953  } else
2954    Elements.add(InstanceSize);
2955  // ivars
2956  Elements.add(IVars);
2957  // methods
2958  Elements.add(Methods);
2959  // These are all filled in by the runtime, so we pretend
2960  // dtable
2961  Elements.add(NULLPtr);
2962  // subclass_list
2963  Elements.add(NULLPtr);
2964  // sibling_class
2965  Elements.add(NULLPtr);
2966  // protocols
2967  Elements.addBitCast(Protocols, PtrTy);
2968  // gc_object_type
2969  Elements.add(NULLPtr);
2970  // abi_version
2971  Elements.addInt(LongTy, ClassABIVersion);
2972  // ivar_offsets
2973  Elements.add(IvarOffsets);
2974  // properties
2975  Elements.add(Properties);
2976  // strong_pointers
2977  Elements.add(StrongIvarBitmap);
2978  // weak_pointers
2979  Elements.add(WeakIvarBitmap);
2980  // Create an instance of the structure
2981  // This is now an externally visible symbol, so that we can speed up class
2982  // messages in the next ABI.  We may already have some weak references to
2983  // this, so check and fix them properly.
2984  std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
2985          std::string(Name));
2986  llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
2987  llvm::Constant *Class =
2988    Elements.finishAndCreateGlobal(ClassSym, CGM.getPointerAlign(), false,
2989                                   llvm::GlobalValue::ExternalLinkage);
2990  if (ClassRef) {
2991    ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
2992                  ClassRef->getType()));
2993    ClassRef->removeFromParent();
2994    Class->setName(ClassSym);
2995  }
2996  return Class;
2997}
2998
2999llvm::Constant *CGObjCGNU::
3000GenerateProtocolMethodList(ArrayRef<const ObjCMethodDecl*> Methods) {
3001  // Get the method structure type.
3002  llvm::StructType *ObjCMethodDescTy =
3003    llvm::StructType::get(CGM.getLLVMContext(), { PtrToInt8Ty, PtrToInt8Ty });
3004  ASTContext &Context = CGM.getContext();
3005  ConstantInitBuilder Builder(CGM);
3006  auto MethodList = Builder.beginStruct();
3007  MethodList.addInt(IntTy, Methods.size());
3008  auto MethodArray = MethodList.beginArray(ObjCMethodDescTy);
3009  for (auto *M : Methods) {
3010    auto Method = MethodArray.beginStruct(ObjCMethodDescTy);
3011    Method.add(MakeConstantString(M->getSelector().getAsString()));
3012    Method.add(MakeConstantString(Context.getObjCEncodingForMethodDecl(M)));
3013    Method.finishAndAddTo(MethodArray);
3014  }
3015  MethodArray.finishAndAddTo(MethodList);
3016  return MethodList.finishAndCreateGlobal(".objc_method_list",
3017                                          CGM.getPointerAlign());
3018}
3019
3020// Create the protocol list structure used in classes, categories and so on
3021llvm::Constant *
3022CGObjCGNU::GenerateProtocolList(ArrayRef<std::string> Protocols) {
3023
3024  ConstantInitBuilder Builder(CGM);
3025  auto ProtocolList = Builder.beginStruct();
3026  ProtocolList.add(NULLPtr);
3027  ProtocolList.addInt(LongTy, Protocols.size());
3028
3029  auto Elements = ProtocolList.beginArray(PtrToInt8Ty);
3030  for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
3031      iter != endIter ; iter++) {
3032    llvm::Constant *protocol = nullptr;
3033    llvm::StringMap<llvm::Constant*>::iterator value =
3034      ExistingProtocols.find(*iter);
3035    if (value == ExistingProtocols.end()) {
3036      protocol = GenerateEmptyProtocol(*iter);
3037    } else {
3038      protocol = value->getValue();
3039    }
3040    Elements.addBitCast(protocol, PtrToInt8Ty);
3041  }
3042  Elements.finishAndAddTo(ProtocolList);
3043  return ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3044                                            CGM.getPointerAlign());
3045}
3046
3047llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
3048                                            const ObjCProtocolDecl *PD) {
3049  auto protocol = GenerateProtocolRef(PD);
3050  llvm::Type *T =
3051      CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
3052  return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
3053}
3054
3055llvm::Constant *CGObjCGNU::GenerateProtocolRef(const ObjCProtocolDecl *PD) {
3056  llvm::Constant *&protocol = ExistingProtocols[PD->getNameAsString()];
3057  if (!protocol)
3058    GenerateProtocol(PD);
3059  assert(protocol && "Unknown protocol");
3060  return protocol;
3061}
3062
3063llvm::Constant *
3064CGObjCGNU::GenerateEmptyProtocol(StringRef ProtocolName) {
3065  llvm::Constant *ProtocolList = GenerateProtocolList({});
3066  llvm::Constant *MethodList = GenerateProtocolMethodList({});
3067  MethodList = llvm::ConstantExpr::getBitCast(MethodList, PtrToInt8Ty);
3068  // Protocols are objects containing lists of the methods implemented and
3069  // protocols adopted.
3070  ConstantInitBuilder Builder(CGM);
3071  auto Elements = Builder.beginStruct();
3072
3073  // The isa pointer must be set to a magic number so the runtime knows it's
3074  // the correct layout.
3075  Elements.add(llvm::ConstantExpr::getIntToPtr(
3076          llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3077
3078  Elements.add(MakeConstantString(ProtocolName, ".objc_protocol_name"));
3079  Elements.add(ProtocolList); /* .protocol_list */
3080  Elements.add(MethodList);   /* .instance_methods */
3081  Elements.add(MethodList);   /* .class_methods */
3082  Elements.add(MethodList);   /* .optional_instance_methods */
3083  Elements.add(MethodList);   /* .optional_class_methods */
3084  Elements.add(NULLPtr);      /* .properties */
3085  Elements.add(NULLPtr);      /* .optional_properties */
3086  return Elements.finishAndCreateGlobal(SymbolForProtocol(ProtocolName),
3087                                        CGM.getPointerAlign());
3088}
3089
3090void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
3091  std::string ProtocolName = PD->getNameAsString();
3092
3093  // Use the protocol definition, if there is one.
3094  if (const ObjCProtocolDecl *Def = PD->getDefinition())
3095    PD = Def;
3096
3097  SmallVector<std::string, 16> Protocols;
3098  for (const auto *PI : PD->protocols())
3099    Protocols.push_back(PI->getNameAsString());
3100  SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3101  SmallVector<const ObjCMethodDecl*, 16> OptionalInstanceMethods;
3102  for (const auto *I : PD->instance_methods())
3103    if (I->isOptional())
3104      OptionalInstanceMethods.push_back(I);
3105    else
3106      InstanceMethods.push_back(I);
3107  // Collect information about class methods:
3108  SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3109  SmallVector<const ObjCMethodDecl*, 16> OptionalClassMethods;
3110  for (const auto *I : PD->class_methods())
3111    if (I->isOptional())
3112      OptionalClassMethods.push_back(I);
3113    else
3114      ClassMethods.push_back(I);
3115
3116  llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
3117  llvm::Constant *InstanceMethodList =
3118    GenerateProtocolMethodList(InstanceMethods);
3119  llvm::Constant *ClassMethodList =
3120    GenerateProtocolMethodList(ClassMethods);
3121  llvm::Constant *OptionalInstanceMethodList =
3122    GenerateProtocolMethodList(OptionalInstanceMethods);
3123  llvm::Constant *OptionalClassMethodList =
3124    GenerateProtocolMethodList(OptionalClassMethods);
3125
3126  // Property metadata: name, attributes, isSynthesized, setter name, setter
3127  // types, getter name, getter types.
3128  // The isSynthesized value is always set to 0 in a protocol.  It exists to
3129  // simplify the runtime library by allowing it to use the same data
3130  // structures for protocol metadata everywhere.
3131
3132  llvm::Constant *PropertyList =
3133    GeneratePropertyList(nullptr, PD, false, false);
3134  llvm::Constant *OptionalPropertyList =
3135    GeneratePropertyList(nullptr, PD, false, true);
3136
3137  // Protocols are objects containing lists of the methods implemented and
3138  // protocols adopted.
3139  // The isa pointer must be set to a magic number so the runtime knows it's
3140  // the correct layout.
3141  ConstantInitBuilder Builder(CGM);
3142  auto Elements = Builder.beginStruct();
3143  Elements.add(
3144      llvm::ConstantExpr::getIntToPtr(
3145          llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
3146  Elements.add(MakeConstantString(ProtocolName));
3147  Elements.add(ProtocolList);
3148  Elements.add(InstanceMethodList);
3149  Elements.add(ClassMethodList);
3150  Elements.add(OptionalInstanceMethodList);
3151  Elements.add(OptionalClassMethodList);
3152  Elements.add(PropertyList);
3153  Elements.add(OptionalPropertyList);
3154  ExistingProtocols[ProtocolName] =
3155    llvm::ConstantExpr::getBitCast(
3156      Elements.finishAndCreateGlobal(".objc_protocol", CGM.getPointerAlign()),
3157      IdTy);
3158}
3159void CGObjCGNU::GenerateProtocolHolderCategory() {
3160  // Collect information about instance methods
3161
3162  ConstantInitBuilder Builder(CGM);
3163  auto Elements = Builder.beginStruct();
3164
3165  const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
3166  const std::string CategoryName = "AnotherHack";
3167  Elements.add(MakeConstantString(CategoryName));
3168  Elements.add(MakeConstantString(ClassName));
3169  // Instance method list
3170  Elements.addBitCast(GenerateMethodList(
3171          ClassName, CategoryName, {}, false), PtrTy);
3172  // Class method list
3173  Elements.addBitCast(GenerateMethodList(
3174          ClassName, CategoryName, {}, true), PtrTy);
3175
3176  // Protocol list
3177  ConstantInitBuilder ProtocolListBuilder(CGM);
3178  auto ProtocolList = ProtocolListBuilder.beginStruct();
3179  ProtocolList.add(NULLPtr);
3180  ProtocolList.addInt(LongTy, ExistingProtocols.size());
3181  auto ProtocolElements = ProtocolList.beginArray(PtrTy);
3182  for (auto iter = ExistingProtocols.begin(), endIter = ExistingProtocols.end();
3183       iter != endIter ; iter++) {
3184    ProtocolElements.addBitCast(iter->getValue(), PtrTy);
3185  }
3186  ProtocolElements.finishAndAddTo(ProtocolList);
3187  Elements.addBitCast(
3188                   ProtocolList.finishAndCreateGlobal(".objc_protocol_list",
3189                                                      CGM.getPointerAlign()),
3190                   PtrTy);
3191  Categories.push_back(llvm::ConstantExpr::getBitCast(
3192        Elements.finishAndCreateGlobal("", CGM.getPointerAlign()),
3193        PtrTy));
3194}
3195
3196/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
3197/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
3198/// bits set to their values, LSB first, while larger ones are stored in a
3199/// structure of this / form:
3200///
3201/// struct { int32_t length; int32_t values[length]; };
3202///
3203/// The values in the array are stored in host-endian format, with the least
3204/// significant bit being assumed to come first in the bitfield.  Therefore, a
3205/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
3206/// bitfield / with the 63rd bit set will be 1<<64.
3207llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
3208  int bitCount = bits.size();
3209  int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
3210  if (bitCount < ptrBits) {
3211    uint64_t val = 1;
3212    for (int i=0 ; i<bitCount ; ++i) {
3213      if (bits[i]) val |= 1ULL<<(i+1);
3214    }
3215    return llvm::ConstantInt::get(IntPtrTy, val);
3216  }
3217  SmallVector<llvm::Constant *, 8> values;
3218  int v=0;
3219  while (v < bitCount) {
3220    int32_t word = 0;
3221    for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
3222      if (bits[v]) word |= 1<<i;
3223      v++;
3224    }
3225    values.push_back(llvm::ConstantInt::get(Int32Ty, word));
3226  }
3227
3228  ConstantInitBuilder builder(CGM);
3229  auto fields = builder.beginStruct();
3230  fields.addInt(Int32Ty, values.size());
3231  auto array = fields.beginArray();
3232  for (auto v : values) array.add(v);
3233  array.finishAndAddTo(fields);
3234
3235  llvm::Constant *GS =
3236    fields.finishAndCreateGlobal("", CharUnits::fromQuantity(4));
3237  llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
3238  return ptr;
3239}
3240
3241llvm::Constant *CGObjCGNU::GenerateCategoryProtocolList(const
3242    ObjCCategoryDecl *OCD) {
3243  SmallVector<std::string, 16> Protocols;
3244  for (const auto *PD : OCD->getReferencedProtocols())
3245    Protocols.push_back(PD->getNameAsString());
3246  return GenerateProtocolList(Protocols);
3247}
3248
3249void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3250  const ObjCInterfaceDecl *Class = OCD->getClassInterface();
3251  std::string ClassName = Class->getNameAsString();
3252  std::string CategoryName = OCD->getNameAsString();
3253
3254  // Collect the names of referenced protocols
3255  const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
3256
3257  ConstantInitBuilder Builder(CGM);
3258  auto Elements = Builder.beginStruct();
3259  Elements.add(MakeConstantString(CategoryName));
3260  Elements.add(MakeConstantString(ClassName));
3261  // Instance method list
3262  SmallVector<ObjCMethodDecl*, 16> InstanceMethods;
3263  InstanceMethods.insert(InstanceMethods.begin(), OCD->instmeth_begin(),
3264      OCD->instmeth_end());
3265  Elements.addBitCast(
3266          GenerateMethodList(ClassName, CategoryName, InstanceMethods, false),
3267          PtrTy);
3268  // Class method list
3269
3270  SmallVector<ObjCMethodDecl*, 16> ClassMethods;
3271  ClassMethods.insert(ClassMethods.begin(), OCD->classmeth_begin(),
3272      OCD->classmeth_end());
3273  Elements.addBitCast(
3274          GenerateMethodList(ClassName, CategoryName, ClassMethods, true),
3275          PtrTy);
3276  // Protocol list
3277  Elements.addBitCast(GenerateCategoryProtocolList(CatDecl), PtrTy);
3278  if (isRuntime(ObjCRuntime::GNUstep, 2)) {
3279    const ObjCCategoryDecl *Category =
3280      Class->FindCategoryDeclaration(OCD->getIdentifier());
3281    if (Category) {
3282      // Instance properties
3283      Elements.addBitCast(GeneratePropertyList(OCD, Category, false), PtrTy);
3284      // Class properties
3285      Elements.addBitCast(GeneratePropertyList(OCD, Category, true), PtrTy);
3286    } else {
3287      Elements.addNullPointer(PtrTy);
3288      Elements.addNullPointer(PtrTy);
3289    }
3290  }
3291
3292  Categories.push_back(llvm::ConstantExpr::getBitCast(
3293        Elements.finishAndCreateGlobal(
3294          std::string(".objc_category_")+ClassName+CategoryName,
3295          CGM.getPointerAlign()),
3296        PtrTy));
3297}
3298
3299llvm::Constant *CGObjCGNU::GeneratePropertyList(const Decl *Container,
3300    const ObjCContainerDecl *OCD,
3301    bool isClassProperty,
3302    bool protocolOptionalProperties) {
3303
3304  SmallVector<const ObjCPropertyDecl *, 16> Properties;
3305  llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3306  bool isProtocol = isa<ObjCProtocolDecl>(OCD);
3307  ASTContext &Context = CGM.getContext();
3308
3309  std::function<void(const ObjCProtocolDecl *Proto)> collectProtocolProperties
3310    = [&](const ObjCProtocolDecl *Proto) {
3311      for (const auto *P : Proto->protocols())
3312        collectProtocolProperties(P);
3313      for (const auto *PD : Proto->properties()) {
3314        if (isClassProperty != PD->isClassProperty())
3315          continue;
3316        // Skip any properties that are declared in protocols that this class
3317        // conforms to but are not actually implemented by this class.
3318        if (!isProtocol && !Context.getObjCPropertyImplDeclForPropertyDecl(PD, Container))
3319          continue;
3320        if (!PropertySet.insert(PD->getIdentifier()).second)
3321          continue;
3322        Properties.push_back(PD);
3323      }
3324    };
3325
3326  if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3327    for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3328      for (auto *PD : ClassExt->properties()) {
3329        if (isClassProperty != PD->isClassProperty())
3330          continue;
3331        PropertySet.insert(PD->getIdentifier());
3332        Properties.push_back(PD);
3333      }
3334
3335  for (const auto *PD : OCD->properties()) {
3336    if (isClassProperty != PD->isClassProperty())
3337      continue;
3338    // If we're generating a list for a protocol, skip optional / required ones
3339    // when generating the other list.
3340    if (isProtocol && (protocolOptionalProperties != PD->isOptional()))
3341      continue;
3342    // Don't emit duplicate metadata for properties that were already in a
3343    // class extension.
3344    if (!PropertySet.insert(PD->getIdentifier()).second)
3345      continue;
3346
3347    Properties.push_back(PD);
3348  }
3349
3350  if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3351    for (const auto *P : OID->all_referenced_protocols())
3352      collectProtocolProperties(P);
3353  else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(OCD))
3354    for (const auto *P : CD->protocols())
3355      collectProtocolProperties(P);
3356
3357  auto numProperties = Properties.size();
3358
3359  if (numProperties == 0)
3360    return NULLPtr;
3361
3362  ConstantInitBuilder builder(CGM);
3363  auto propertyList = builder.beginStruct();
3364  auto properties = PushPropertyListHeader(propertyList, numProperties);
3365
3366  // Add all of the property methods need adding to the method list and to the
3367  // property metadata list.
3368  for (auto *property : Properties) {
3369    bool isSynthesized = false;
3370    bool isDynamic = false;
3371    if (!isProtocol) {
3372      auto *propertyImpl = Context.getObjCPropertyImplDeclForPropertyDecl(property, Container);
3373      if (propertyImpl) {
3374        isSynthesized = (propertyImpl->getPropertyImplementation() ==
3375            ObjCPropertyImplDecl::Synthesize);
3376        isDynamic = (propertyImpl->getPropertyImplementation() ==
3377            ObjCPropertyImplDecl::Dynamic);
3378      }
3379    }
3380    PushProperty(properties, property, Container, isSynthesized, isDynamic);
3381  }
3382  properties.finishAndAddTo(propertyList);
3383
3384  return propertyList.finishAndCreateGlobal(".objc_property_list",
3385                                            CGM.getPointerAlign());
3386}
3387
3388void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
3389  // Get the class declaration for which the alias is specified.
3390  ObjCInterfaceDecl *ClassDecl =
3391    const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
3392  ClassAliases.emplace_back(ClassDecl->getNameAsString(),
3393                            OAD->getNameAsString());
3394}
3395
3396void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
3397  ASTContext &Context = CGM.getContext();
3398
3399  // Get the superclass name.
3400  const ObjCInterfaceDecl * SuperClassDecl =
3401    OID->getClassInterface()->getSuperClass();
3402  std::string SuperClassName;
3403  if (SuperClassDecl) {
3404    SuperClassName = SuperClassDecl->getNameAsString();
3405    EmitClassRef(SuperClassName);
3406  }
3407
3408  // Get the class name
3409  ObjCInterfaceDecl *ClassDecl =
3410      const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
3411  std::string ClassName = ClassDecl->getNameAsString();
3412
3413  // Emit the symbol that is used to generate linker errors if this class is
3414  // referenced in other modules but not declared.
3415  std::string classSymbolName = "__objc_class_name_" + ClassName;
3416  if (auto *symbol = TheModule.getGlobalVariable(classSymbolName)) {
3417    symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
3418  } else {
3419    new llvm::GlobalVariable(TheModule, LongTy, false,
3420                             llvm::GlobalValue::ExternalLinkage,
3421                             llvm::ConstantInt::get(LongTy, 0),
3422                             classSymbolName);
3423  }
3424
3425  // Get the size of instances.
3426  int instanceSize =
3427    Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
3428
3429  // Collect information about instance variables.
3430  SmallVector<llvm::Constant*, 16> IvarNames;
3431  SmallVector<llvm::Constant*, 16> IvarTypes;
3432  SmallVector<llvm::Constant*, 16> IvarOffsets;
3433  SmallVector<llvm::Constant*, 16> IvarAligns;
3434  SmallVector<Qualifiers::ObjCLifetime, 16> IvarOwnership;
3435
3436  ConstantInitBuilder IvarOffsetBuilder(CGM);
3437  auto IvarOffsetValues = IvarOffsetBuilder.beginArray(PtrToIntTy);
3438  SmallVector<bool, 16> WeakIvars;
3439  SmallVector<bool, 16> StrongIvars;
3440
3441  int superInstanceSize = !SuperClassDecl ? 0 :
3442    Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
3443  // For non-fragile ivars, set the instance size to 0 - {the size of just this
3444  // class}.  The runtime will then set this to the correct value on load.
3445  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3446    instanceSize = 0 - (instanceSize - superInstanceSize);
3447  }
3448
3449  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3450       IVD = IVD->getNextIvar()) {
3451      // Store the name
3452      IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
3453      // Get the type encoding for this ivar
3454      std::string TypeStr;
3455      Context.getObjCEncodingForType(IVD->getType(), TypeStr, IVD);
3456      IvarTypes.push_back(MakeConstantString(TypeStr));
3457      IvarAligns.push_back(llvm::ConstantInt::get(IntTy,
3458            Context.getTypeSize(IVD->getType())));
3459      // Get the offset
3460      uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
3461      uint64_t Offset = BaseOffset;
3462      if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
3463        Offset = BaseOffset - superInstanceSize;
3464      }
3465      llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
3466      // Create the direct offset value
3467      std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
3468          IVD->getNameAsString();
3469
3470      llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
3471      if (OffsetVar) {
3472        OffsetVar->setInitializer(OffsetValue);
3473        // If this is the real definition, change its linkage type so that
3474        // different modules will use this one, rather than their private
3475        // copy.
3476        OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
3477      } else
3478        OffsetVar = new llvm::GlobalVariable(TheModule, Int32Ty,
3479          false, llvm::GlobalValue::ExternalLinkage,
3480          OffsetValue, OffsetName);
3481      IvarOffsets.push_back(OffsetValue);
3482      IvarOffsetValues.add(OffsetVar);
3483      Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
3484      IvarOwnership.push_back(lt);
3485      switch (lt) {
3486        case Qualifiers::OCL_Strong:
3487          StrongIvars.push_back(true);
3488          WeakIvars.push_back(false);
3489          break;
3490        case Qualifiers::OCL_Weak:
3491          StrongIvars.push_back(false);
3492          WeakIvars.push_back(true);
3493          break;
3494        default:
3495          StrongIvars.push_back(false);
3496          WeakIvars.push_back(false);
3497      }
3498  }
3499  llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
3500  llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
3501  llvm::GlobalVariable *IvarOffsetArray =
3502    IvarOffsetValues.finishAndCreateGlobal(".ivar.offsets",
3503                                           CGM.getPointerAlign());
3504
3505  // Collect information about instance methods
3506  SmallVector<const ObjCMethodDecl*, 16> InstanceMethods;
3507  InstanceMethods.insert(InstanceMethods.begin(), OID->instmeth_begin(),
3508      OID->instmeth_end());
3509
3510  SmallVector<const ObjCMethodDecl*, 16> ClassMethods;
3511  ClassMethods.insert(ClassMethods.begin(), OID->classmeth_begin(),
3512      OID->classmeth_end());
3513
3514  llvm::Constant *Properties = GeneratePropertyList(OID, ClassDecl);
3515
3516  // Collect the names of referenced protocols
3517  SmallVector<std::string, 16> Protocols;
3518  for (const auto *I : ClassDecl->protocols())
3519    Protocols.push_back(I->getNameAsString());
3520
3521  // Get the superclass pointer.
3522  llvm::Constant *SuperClass;
3523  if (!SuperClassName.empty()) {
3524    SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
3525  } else {
3526    SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
3527  }
3528  // Empty vector used to construct empty method lists
3529  SmallVector<llvm::Constant*, 1>  empty;
3530  // Generate the method and instance variable lists
3531  llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
3532      InstanceMethods, false);
3533  llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
3534      ClassMethods, true);
3535  llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
3536      IvarOffsets, IvarAligns, IvarOwnership);
3537  // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
3538  // we emit a symbol containing the offset for each ivar in the class.  This
3539  // allows code compiled for the non-Fragile ABI to inherit from code compiled
3540  // for the legacy ABI, without causing problems.  The converse is also
3541  // possible, but causes all ivar accesses to be fragile.
3542
3543  // Offset pointer for getting at the correct field in the ivar list when
3544  // setting up the alias.  These are: The base address for the global, the
3545  // ivar array (second field), the ivar in this list (set for each ivar), and
3546  // the offset (third field in ivar structure)
3547  llvm::Type *IndexTy = Int32Ty;
3548  llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
3549      llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 2 : 1), nullptr,
3550      llvm::ConstantInt::get(IndexTy, ClassABIVersion > 1 ? 3 : 2) };
3551
3552  unsigned ivarIndex = 0;
3553  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
3554       IVD = IVD->getNextIvar()) {
3555      const std::string Name = GetIVarOffsetVariableName(ClassDecl, IVD);
3556      offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
3557      // Get the correct ivar field
3558      llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
3559          cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
3560          offsetPointerIndexes);
3561      // Get the existing variable, if one exists.
3562      llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
3563      if (offset) {
3564        offset->setInitializer(offsetValue);
3565        // If this is the real definition, change its linkage type so that
3566        // different modules will use this one, rather than their private
3567        // copy.
3568        offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
3569      } else
3570        // Add a new alias if there isn't one already.
3571        new llvm::GlobalVariable(TheModule, offsetValue->getType(),
3572                false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
3573      ++ivarIndex;
3574  }
3575  llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
3576
3577  //Generate metaclass for class methods
3578  llvm::Constant *MetaClassStruct = GenerateClassStructure(
3579      NULLPtr, NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0],
3580      NULLPtr, ClassMethodList, NULLPtr, NULLPtr,
3581      GeneratePropertyList(OID, ClassDecl, true), ZeroPtr, ZeroPtr, true);
3582  CGM.setGVProperties(cast<llvm::GlobalValue>(MetaClassStruct),
3583                      OID->getClassInterface());
3584
3585  // Generate the class structure
3586  llvm::Constant *ClassStruct = GenerateClassStructure(
3587      MetaClassStruct, SuperClass, 0x11L, ClassName.c_str(), nullptr,
3588      llvm::ConstantInt::get(LongTy, instanceSize), IvarList, MethodList,
3589      GenerateProtocolList(Protocols), IvarOffsetArray, Properties,
3590      StrongIvarBitmap, WeakIvarBitmap);
3591  CGM.setGVProperties(cast<llvm::GlobalValue>(ClassStruct),
3592                      OID->getClassInterface());
3593
3594  // Resolve the class aliases, if they exist.
3595  if (ClassPtrAlias) {
3596    ClassPtrAlias->replaceAllUsesWith(
3597        llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
3598    ClassPtrAlias->eraseFromParent();
3599    ClassPtrAlias = nullptr;
3600  }
3601  if (MetaClassPtrAlias) {
3602    MetaClassPtrAlias->replaceAllUsesWith(
3603        llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
3604    MetaClassPtrAlias->eraseFromParent();
3605    MetaClassPtrAlias = nullptr;
3606  }
3607
3608  // Add class structure to list to be added to the symtab later
3609  ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
3610  Classes.push_back(ClassStruct);
3611}
3612
3613llvm::Function *CGObjCGNU::ModuleInitFunction() {
3614  // Only emit an ObjC load function if no Objective-C stuff has been called
3615  if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
3616      ExistingProtocols.empty() && SelectorTable.empty())
3617    return nullptr;
3618
3619  // Add all referenced protocols to a category.
3620  GenerateProtocolHolderCategory();
3621
3622  llvm::StructType *selStructTy =
3623    dyn_cast<llvm::StructType>(SelectorTy->getElementType());
3624  llvm::Type *selStructPtrTy = SelectorTy;
3625  if (!selStructTy) {
3626    selStructTy = llvm::StructType::get(CGM.getLLVMContext(),
3627                                        { PtrToInt8Ty, PtrToInt8Ty });
3628    selStructPtrTy = llvm::PointerType::getUnqual(selStructTy);
3629  }
3630
3631  // Generate statics list:
3632  llvm::Constant *statics = NULLPtr;
3633  if (!ConstantStrings.empty()) {
3634    llvm::GlobalVariable *fileStatics = [&] {
3635      ConstantInitBuilder builder(CGM);
3636      auto staticsStruct = builder.beginStruct();
3637
3638      StringRef stringClass = CGM.getLangOpts().ObjCConstantStringClass;
3639      if (stringClass.empty()) stringClass = "NXConstantString";
3640      staticsStruct.add(MakeConstantString(stringClass,
3641                                           ".objc_static_class_name"));
3642
3643      auto array = staticsStruct.beginArray();
3644      array.addAll(ConstantStrings);
3645      array.add(NULLPtr);
3646      array.finishAndAddTo(staticsStruct);
3647
3648      return staticsStruct.finishAndCreateGlobal(".objc_statics",
3649                                                 CGM.getPointerAlign());
3650    }();
3651
3652    ConstantInitBuilder builder(CGM);
3653    auto allStaticsArray = builder.beginArray(fileStatics->getType());
3654    allStaticsArray.add(fileStatics);
3655    allStaticsArray.addNullPointer(fileStatics->getType());
3656
3657    statics = allStaticsArray.finishAndCreateGlobal(".objc_statics_ptr",
3658                                                    CGM.getPointerAlign());
3659    statics = llvm::ConstantExpr::getBitCast(statics, PtrTy);
3660  }
3661
3662  // Array of classes, categories, and constant objects.
3663
3664  SmallVector<llvm::GlobalAlias*, 16> selectorAliases;
3665  unsigned selectorCount;
3666
3667  // Pointer to an array of selectors used in this module.
3668  llvm::GlobalVariable *selectorList = [&] {
3669    ConstantInitBuilder builder(CGM);
3670    auto selectors = builder.beginArray(selStructTy);
3671    auto &table = SelectorTable; // MSVC workaround
3672    std::vector<Selector> allSelectors;
3673    for (auto &entry : table)
3674      allSelectors.push_back(entry.first);
3675    llvm::sort(allSelectors);
3676
3677    for (auto &untypedSel : allSelectors) {
3678      std::string selNameStr = untypedSel.getAsString();
3679      llvm::Constant *selName = ExportUniqueString(selNameStr, ".objc_sel_name");
3680
3681      for (TypedSelector &sel : table[untypedSel]) {
3682        llvm::Constant *selectorTypeEncoding = NULLPtr;
3683        if (!sel.first.empty())
3684          selectorTypeEncoding =
3685            MakeConstantString(sel.first, ".objc_sel_types");
3686
3687        auto selStruct = selectors.beginStruct(selStructTy);
3688        selStruct.add(selName);
3689        selStruct.add(selectorTypeEncoding);
3690        selStruct.finishAndAddTo(selectors);
3691
3692        // Store the selector alias for later replacement
3693        selectorAliases.push_back(sel.second);
3694      }
3695    }
3696
3697    // Remember the number of entries in the selector table.
3698    selectorCount = selectors.size();
3699
3700    // NULL-terminate the selector list.  This should not actually be required,
3701    // because the selector list has a length field.  Unfortunately, the GCC
3702    // runtime decides to ignore the length field and expects a NULL terminator,
3703    // and GCC cooperates with this by always setting the length to 0.
3704    auto selStruct = selectors.beginStruct(selStructTy);
3705    selStruct.add(NULLPtr);
3706    selStruct.add(NULLPtr);
3707    selStruct.finishAndAddTo(selectors);
3708
3709    return selectors.finishAndCreateGlobal(".objc_selector_list",
3710                                           CGM.getPointerAlign());
3711  }();
3712
3713  // Now that all of the static selectors exist, create pointers to them.
3714  for (unsigned i = 0; i < selectorCount; ++i) {
3715    llvm::Constant *idxs[] = {
3716      Zeros[0],
3717      llvm::ConstantInt::get(Int32Ty, i)
3718    };
3719    // FIXME: We're generating redundant loads and stores here!
3720    llvm::Constant *selPtr = llvm::ConstantExpr::getGetElementPtr(
3721        selectorList->getValueType(), selectorList, idxs);
3722    // If selectors are defined as an opaque type, cast the pointer to this
3723    // type.
3724    selPtr = llvm::ConstantExpr::getBitCast(selPtr, SelectorTy);
3725    selectorAliases[i]->replaceAllUsesWith(selPtr);
3726    selectorAliases[i]->eraseFromParent();
3727  }
3728
3729  llvm::GlobalVariable *symtab = [&] {
3730    ConstantInitBuilder builder(CGM);
3731    auto symtab = builder.beginStruct();
3732
3733    // Number of static selectors
3734    symtab.addInt(LongTy, selectorCount);
3735
3736    symtab.addBitCast(selectorList, selStructPtrTy);
3737
3738    // Number of classes defined.
3739    symtab.addInt(CGM.Int16Ty, Classes.size());
3740    // Number of categories defined
3741    symtab.addInt(CGM.Int16Ty, Categories.size());
3742
3743    // Create an array of classes, then categories, then static object instances
3744    auto classList = symtab.beginArray(PtrToInt8Ty);
3745    classList.addAll(Classes);
3746    classList.addAll(Categories);
3747    //  NULL-terminated list of static object instances (mainly constant strings)
3748    classList.add(statics);
3749    classList.add(NULLPtr);
3750    classList.finishAndAddTo(symtab);
3751
3752    // Construct the symbol table.
3753    return symtab.finishAndCreateGlobal("", CGM.getPointerAlign());
3754  }();
3755
3756  // The symbol table is contained in a module which has some version-checking
3757  // constants
3758  llvm::Constant *module = [&] {
3759    llvm::Type *moduleEltTys[] = {
3760      LongTy, LongTy, PtrToInt8Ty, symtab->getType(), IntTy
3761    };
3762    llvm::StructType *moduleTy =
3763      llvm::StructType::get(CGM.getLLVMContext(),
3764         makeArrayRef(moduleEltTys).drop_back(unsigned(RuntimeVersion < 10)));
3765
3766    ConstantInitBuilder builder(CGM);
3767    auto module = builder.beginStruct(moduleTy);
3768    // Runtime version, used for ABI compatibility checking.
3769    module.addInt(LongTy, RuntimeVersion);
3770    // sizeof(ModuleTy)
3771    module.addInt(LongTy, CGM.getDataLayout().getTypeStoreSize(moduleTy));
3772
3773    // The path to the source file where this module was declared
3774    SourceManager &SM = CGM.getContext().getSourceManager();
3775    const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
3776    std::string path =
3777      (Twine(mainFile->getDir()->getName()) + "/" + mainFile->getName()).str();
3778    module.add(MakeConstantString(path, ".objc_source_file_name"));
3779    module.add(symtab);
3780
3781    if (RuntimeVersion >= 10) {
3782      switch (CGM.getLangOpts().getGC()) {
3783      case LangOptions::GCOnly:
3784        module.addInt(IntTy, 2);
3785        break;
3786      case LangOptions::NonGC:
3787        if (CGM.getLangOpts().ObjCAutoRefCount)
3788          module.addInt(IntTy, 1);
3789        else
3790          module.addInt(IntTy, 0);
3791        break;
3792      case LangOptions::HybridGC:
3793        module.addInt(IntTy, 1);
3794        break;
3795      }
3796    }
3797
3798    return module.finishAndCreateGlobal("", CGM.getPointerAlign());
3799  }();
3800
3801  // Create the load function calling the runtime entry point with the module
3802  // structure
3803  llvm::Function * LoadFunction = llvm::Function::Create(
3804      llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
3805      llvm::GlobalValue::InternalLinkage, ".objc_load_function",
3806      &TheModule);
3807  llvm::BasicBlock *EntryBB =
3808      llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
3809  CGBuilderTy Builder(CGM, VMContext);
3810  Builder.SetInsertPoint(EntryBB);
3811
3812  llvm::FunctionType *FT =
3813    llvm::FunctionType::get(Builder.getVoidTy(), module->getType(), true);
3814  llvm::FunctionCallee Register =
3815      CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
3816  Builder.CreateCall(Register, module);
3817
3818  if (!ClassAliases.empty()) {
3819    llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
3820    llvm::FunctionType *RegisterAliasTy =
3821      llvm::FunctionType::get(Builder.getVoidTy(),
3822                              ArgTypes, false);
3823    llvm::Function *RegisterAlias = llvm::Function::Create(
3824      RegisterAliasTy,
3825      llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
3826      &TheModule);
3827    llvm::BasicBlock *AliasBB =
3828      llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
3829    llvm::BasicBlock *NoAliasBB =
3830      llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
3831
3832    // Branch based on whether the runtime provided class_registerAlias_np()
3833    llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
3834            llvm::Constant::getNullValue(RegisterAlias->getType()));
3835    Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
3836
3837    // The true branch (has alias registration function):
3838    Builder.SetInsertPoint(AliasBB);
3839    // Emit alias registration calls:
3840    for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
3841       iter != ClassAliases.end(); ++iter) {
3842       llvm::Constant *TheClass =
3843          TheModule.getGlobalVariable("_OBJC_CLASS_" + iter->first, true);
3844       if (TheClass) {
3845         TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
3846         Builder.CreateCall(RegisterAlias,
3847                            {TheClass, MakeConstantString(iter->second)});
3848       }
3849    }
3850    // Jump to end:
3851    Builder.CreateBr(NoAliasBB);
3852
3853    // Missing alias registration function, just return from the function:
3854    Builder.SetInsertPoint(NoAliasBB);
3855  }
3856  Builder.CreateRetVoid();
3857
3858  return LoadFunction;
3859}
3860
3861llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
3862                                          const ObjCContainerDecl *CD) {
3863  const ObjCCategoryImplDecl *OCD =
3864    dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
3865  StringRef CategoryName = OCD ? OCD->getName() : "";
3866  StringRef ClassName = CD->getName();
3867  Selector MethodName = OMD->getSelector();
3868  bool isClassMethod = !OMD->isInstanceMethod();
3869
3870  CodeGenTypes &Types = CGM.getTypes();
3871  llvm::FunctionType *MethodTy =
3872    Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
3873  std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
3874      MethodName, isClassMethod);
3875
3876  llvm::Function *Method
3877    = llvm::Function::Create(MethodTy,
3878                             llvm::GlobalValue::InternalLinkage,
3879                             FunctionName,
3880                             &TheModule);
3881  return Method;
3882}
3883
3884void CGObjCGNU::GenerateDirectMethodPrologue(CodeGenFunction &CGF,
3885                                             llvm::Function *Fn,
3886                                             const ObjCMethodDecl *OMD,
3887                                             const ObjCContainerDecl *CD) {
3888  // GNU runtime doesn't support direct calls at this time
3889}
3890
3891llvm::FunctionCallee CGObjCGNU::GetPropertyGetFunction() {
3892  return GetPropertyFn;
3893}
3894
3895llvm::FunctionCallee CGObjCGNU::GetPropertySetFunction() {
3896  return SetPropertyFn;
3897}
3898
3899llvm::FunctionCallee CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
3900                                                                bool copy) {
3901  return nullptr;
3902}
3903
3904llvm::FunctionCallee CGObjCGNU::GetGetStructFunction() {
3905  return GetStructPropertyFn;
3906}
3907
3908llvm::FunctionCallee CGObjCGNU::GetSetStructFunction() {
3909  return SetStructPropertyFn;
3910}
3911
3912llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectGetFunction() {
3913  return nullptr;
3914}
3915
3916llvm::FunctionCallee CGObjCGNU::GetCppAtomicObjectSetFunction() {
3917  return nullptr;
3918}
3919
3920llvm::FunctionCallee CGObjCGNU::EnumerationMutationFunction() {
3921  return EnumerationMutationFn;
3922}
3923
3924void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
3925                                     const ObjCAtSynchronizedStmt &S) {
3926  EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
3927}
3928
3929
3930void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
3931                            const ObjCAtTryStmt &S) {
3932  // Unlike the Apple non-fragile runtimes, which also uses
3933  // unwind-based zero cost exceptions, the GNU Objective C runtime's
3934  // EH support isn't a veneer over C++ EH.  Instead, exception
3935  // objects are created by objc_exception_throw and destroyed by
3936  // the personality function; this avoids the need for bracketing
3937  // catch handlers with calls to __blah_begin_catch/__blah_end_catch
3938  // (or even _Unwind_DeleteException), but probably doesn't
3939  // interoperate very well with foreign exceptions.
3940  //
3941  // In Objective-C++ mode, we actually emit something equivalent to the C++
3942  // exception handler.
3943  EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
3944}
3945
3946void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
3947                              const ObjCAtThrowStmt &S,
3948                              bool ClearInsertionPoint) {
3949  llvm::Value *ExceptionAsObject;
3950  bool isRethrow = false;
3951
3952  if (const Expr *ThrowExpr = S.getThrowExpr()) {
3953    llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
3954    ExceptionAsObject = Exception;
3955  } else {
3956    assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
3957           "Unexpected rethrow outside @catch block.");
3958    ExceptionAsObject = CGF.ObjCEHValueStack.back();
3959    isRethrow = true;
3960  }
3961  if (isRethrow && usesSEHExceptions) {
3962    // For SEH, ExceptionAsObject may be undef, because the catch handler is
3963    // not passed it for catchalls and so it is not visible to the catch
3964    // funclet.  The real thrown object will still be live on the stack at this
3965    // point and will be rethrown.  If we are explicitly rethrowing the object
3966    // that was passed into the `@catch` block, then this code path is not
3967    // reached and we will instead call `objc_exception_throw` with an explicit
3968    // argument.
3969    llvm::CallBase *Throw = CGF.EmitRuntimeCallOrInvoke(ExceptionReThrowFn);
3970    Throw->setDoesNotReturn();
3971  }
3972  else {
3973    ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
3974    llvm::CallBase *Throw =
3975        CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
3976    Throw->setDoesNotReturn();
3977  }
3978  CGF.Builder.CreateUnreachable();
3979  if (ClearInsertionPoint)
3980    CGF.Builder.ClearInsertionPoint();
3981}
3982
3983llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
3984                                          Address AddrWeakObj) {
3985  CGBuilderTy &B = CGF.Builder;
3986  AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
3987  return B.CreateCall(WeakReadFn, AddrWeakObj.getPointer());
3988}
3989
3990void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
3991                                   llvm::Value *src, Address dst) {
3992  CGBuilderTy &B = CGF.Builder;
3993  src = EnforceType(B, src, IdTy);
3994  dst = EnforceType(B, dst, PtrToIdTy);
3995  B.CreateCall(WeakAssignFn, {src, dst.getPointer()});
3996}
3997
3998void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
3999                                     llvm::Value *src, Address dst,
4000                                     bool threadlocal) {
4001  CGBuilderTy &B = CGF.Builder;
4002  src = EnforceType(B, src, IdTy);
4003  dst = EnforceType(B, dst, PtrToIdTy);
4004  // FIXME. Add threadloca assign API
4005  assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
4006  B.CreateCall(GlobalAssignFn, {src, dst.getPointer()});
4007}
4008
4009void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
4010                                   llvm::Value *src, Address dst,
4011                                   llvm::Value *ivarOffset) {
4012  CGBuilderTy &B = CGF.Builder;
4013  src = EnforceType(B, src, IdTy);
4014  dst = EnforceType(B, dst, IdTy);
4015  B.CreateCall(IvarAssignFn, {src, dst.getPointer(), ivarOffset});
4016}
4017
4018void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
4019                                         llvm::Value *src, Address dst) {
4020  CGBuilderTy &B = CGF.Builder;
4021  src = EnforceType(B, src, IdTy);
4022  dst = EnforceType(B, dst, PtrToIdTy);
4023  B.CreateCall(StrongCastAssignFn, {src, dst.getPointer()});
4024}
4025
4026void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
4027                                         Address DestPtr,
4028                                         Address SrcPtr,
4029                                         llvm::Value *Size) {
4030  CGBuilderTy &B = CGF.Builder;
4031  DestPtr = EnforceType(B, DestPtr, PtrTy);
4032  SrcPtr = EnforceType(B, SrcPtr, PtrTy);
4033
4034  B.CreateCall(MemMoveFn, {DestPtr.getPointer(), SrcPtr.getPointer(), Size});
4035}
4036
4037llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
4038                              const ObjCInterfaceDecl *ID,
4039                              const ObjCIvarDecl *Ivar) {
4040  const std::string Name = GetIVarOffsetVariableName(ID, Ivar);
4041  // Emit the variable and initialize it with what we think the correct value
4042  // is.  This allows code compiled with non-fragile ivars to work correctly
4043  // when linked against code which isn't (most of the time).
4044  llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
4045  if (!IvarOffsetPointer)
4046    IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
4047            llvm::Type::getInt32PtrTy(VMContext), false,
4048            llvm::GlobalValue::ExternalLinkage, nullptr, Name);
4049  return IvarOffsetPointer;
4050}
4051
4052LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
4053                                       QualType ObjectTy,
4054                                       llvm::Value *BaseValue,
4055                                       const ObjCIvarDecl *Ivar,
4056                                       unsigned CVRQualifiers) {
4057  const ObjCInterfaceDecl *ID =
4058    ObjectTy->castAs<ObjCObjectType>()->getInterface();
4059  return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
4060                                  EmitIvarOffset(CGF, ID, Ivar));
4061}
4062
4063static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
4064                                                  const ObjCInterfaceDecl *OID,
4065                                                  const ObjCIvarDecl *OIVD) {
4066  for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
4067       next = next->getNextIvar()) {
4068    if (OIVD == next)
4069      return OID;
4070  }
4071
4072  // Otherwise check in the super class.
4073  if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
4074    return FindIvarInterface(Context, Super, OIVD);
4075
4076  return nullptr;
4077}
4078
4079llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
4080                         const ObjCInterfaceDecl *Interface,
4081                         const ObjCIvarDecl *Ivar) {
4082  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
4083    Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
4084
4085    // The MSVC linker cannot have a single global defined as LinkOnceAnyLinkage
4086    // and ExternalLinkage, so create a reference to the ivar global and rely on
4087    // the definition being created as part of GenerateClass.
4088    if (RuntimeVersion < 10 ||
4089        CGF.CGM.getTarget().getTriple().isKnownWindowsMSVCEnvironment())
4090      return CGF.Builder.CreateZExtOrBitCast(
4091          CGF.Builder.CreateAlignedLoad(
4092              Int32Ty, CGF.Builder.CreateAlignedLoad(
4093                           ObjCIvarOffsetVariable(Interface, Ivar),
4094                           CGF.getPointerAlign(), "ivar"),
4095              CharUnits::fromQuantity(4)),
4096          PtrDiffTy);
4097    std::string name = "__objc_ivar_offset_value_" +
4098      Interface->getNameAsString() +"." + Ivar->getNameAsString();
4099    CharUnits Align = CGM.getIntAlign();
4100    llvm::Value *Offset = TheModule.getGlobalVariable(name);
4101    if (!Offset) {
4102      auto GV = new llvm::GlobalVariable(TheModule, IntTy,
4103          false, llvm::GlobalValue::LinkOnceAnyLinkage,
4104          llvm::Constant::getNullValue(IntTy), name);
4105      GV->setAlignment(Align.getAsAlign());
4106      Offset = GV;
4107    }
4108    Offset = CGF.Builder.CreateAlignedLoad(Offset, Align);
4109    if (Offset->getType() != PtrDiffTy)
4110      Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
4111    return Offset;
4112  }
4113  uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
4114  return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
4115}
4116
4117CGObjCRuntime *
4118clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
4119  auto Runtime = CGM.getLangOpts().ObjCRuntime;
4120  switch (Runtime.getKind()) {
4121  case ObjCRuntime::GNUstep:
4122    if (Runtime.getVersion() >= VersionTuple(2, 0))
4123      return new CGObjCGNUstep2(CGM);
4124    return new CGObjCGNUstep(CGM);
4125
4126  case ObjCRuntime::GCC:
4127    return new CGObjCGCC(CGM);
4128
4129  case ObjCRuntime::ObjFW:
4130    return new CGObjCObjFW(CGM);
4131
4132  case ObjCRuntime::FragileMacOSX:
4133  case ObjCRuntime::MacOSX:
4134  case ObjCRuntime::iOS:
4135  case ObjCRuntime::WatchOS:
4136    llvm_unreachable("these runtimes are not GNU runtimes");
4137  }
4138  llvm_unreachable("bad runtime");
4139}
4140