1//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Aggregate Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCXXABI.h"
14#include "CGObjCRuntime.h"
15#include "CodeGenFunction.h"
16#include "CodeGenModule.h"
17#include "ConstantEmitter.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/StmtVisitor.h"
24#include "llvm/IR/Constants.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/GlobalVariable.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/Intrinsics.h"
29using namespace clang;
30using namespace CodeGen;
31
32//===----------------------------------------------------------------------===//
33//                        Aggregate Expression Emitter
34//===----------------------------------------------------------------------===//
35
36namespace  {
37class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
38  CodeGenFunction &CGF;
39  CGBuilderTy &Builder;
40  AggValueSlot Dest;
41  bool IsResultUnused;
42
43  AggValueSlot EnsureSlot(QualType T) {
44    if (!Dest.isIgnored()) return Dest;
45    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
46  }
47  void EnsureDest(QualType T) {
48    if (!Dest.isIgnored()) return;
49    Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
50  }
51
52  // Calls `Fn` with a valid return value slot, potentially creating a temporary
53  // to do so. If a temporary is created, an appropriate copy into `Dest` will
54  // be emitted, as will lifetime markers.
55  //
56  // The given function should take a ReturnValueSlot, and return an RValue that
57  // points to said slot.
58  void withReturnValueSlot(const Expr *E,
59                           llvm::function_ref<RValue(ReturnValueSlot)> Fn);
60
61public:
62  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
63    : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64    IsResultUnused(IsResultUnused) { }
65
66  //===--------------------------------------------------------------------===//
67  //                               Utilities
68  //===--------------------------------------------------------------------===//
69
70  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
71  /// represents a value lvalue, this method emits the address of the lvalue,
72  /// then loads the result into DestPtr.
73  void EmitAggLoadOfLValue(const Expr *E);
74
75  enum ExprValueKind {
76    EVK_RValue,
77    EVK_NonRValue
78  };
79
80  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
81  /// SrcIsRValue is true if source comes from an RValue.
82  void EmitFinalDestCopy(QualType type, const LValue &src,
83                         ExprValueKind SrcValueKind = EVK_NonRValue);
84  void EmitFinalDestCopy(QualType type, RValue src);
85  void EmitCopy(QualType type, const AggValueSlot &dest,
86                const AggValueSlot &src);
87
88  void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
89
90  void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
91                     QualType ArrayQTy, InitListExpr *E);
92
93  AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
94    if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
95      return AggValueSlot::NeedsGCBarriers;
96    return AggValueSlot::DoesNotNeedGCBarriers;
97  }
98
99  bool TypeRequiresGCollection(QualType T);
100
101  //===--------------------------------------------------------------------===//
102  //                            Visitor Methods
103  //===--------------------------------------------------------------------===//
104
105  void Visit(Expr *E) {
106    ApplyDebugLocation DL(CGF, E);
107    StmtVisitor<AggExprEmitter>::Visit(E);
108  }
109
110  void VisitStmt(Stmt *S) {
111    CGF.ErrorUnsupported(S, "aggregate expression");
112  }
113  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
114  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115    Visit(GE->getResultExpr());
116  }
117  void VisitCoawaitExpr(CoawaitExpr *E) {
118    CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
119  }
120  void VisitCoyieldExpr(CoyieldExpr *E) {
121    CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
122  }
123  void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
124  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
125  void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
126    return Visit(E->getReplacement());
127  }
128
129  void VisitConstantExpr(ConstantExpr *E) {
130    if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
131      CGF.EmitAggregateStore(Result, Dest.getAddress(),
132                             E->getType().isVolatileQualified());
133      return;
134    }
135    return Visit(E->getSubExpr());
136  }
137
138  // l-values.
139  void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
140  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
141  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
142  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
143  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
144  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
145    EmitAggLoadOfLValue(E);
146  }
147  void VisitPredefinedExpr(const PredefinedExpr *E) {
148    EmitAggLoadOfLValue(E);
149  }
150
151  // Operators.
152  void VisitCastExpr(CastExpr *E);
153  void VisitCallExpr(const CallExpr *E);
154  void VisitStmtExpr(const StmtExpr *E);
155  void VisitBinaryOperator(const BinaryOperator *BO);
156  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
157  void VisitBinAssign(const BinaryOperator *E);
158  void VisitBinComma(const BinaryOperator *E);
159  void VisitBinCmp(const BinaryOperator *E);
160  void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
161    Visit(E->getSemanticForm());
162  }
163
164  void VisitObjCMessageExpr(ObjCMessageExpr *E);
165  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
166    EmitAggLoadOfLValue(E);
167  }
168
169  void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
170  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
171  void VisitChooseExpr(const ChooseExpr *CE);
172  void VisitInitListExpr(InitListExpr *E);
173  void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
174                              llvm::Value *outerBegin = nullptr);
175  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
176  void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
177  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
178    CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
179    Visit(DAE->getExpr());
180  }
181  void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
182    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
183    Visit(DIE->getExpr());
184  }
185  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
186  void VisitCXXConstructExpr(const CXXConstructExpr *E);
187  void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
188  void VisitLambdaExpr(LambdaExpr *E);
189  void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
190  void VisitExprWithCleanups(ExprWithCleanups *E);
191  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
192  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
193  void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
194  void VisitOpaqueValueExpr(OpaqueValueExpr *E);
195
196  void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
197    if (E->isGLValue()) {
198      LValue LV = CGF.EmitPseudoObjectLValue(E);
199      return EmitFinalDestCopy(E->getType(), LV);
200    }
201
202    CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
203  }
204
205  void VisitVAArgExpr(VAArgExpr *E);
206
207  void EmitInitializationToLValue(Expr *E, LValue Address);
208  void EmitNullInitializationToLValue(LValue Address);
209  //  case Expr::ChooseExprClass:
210  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
211  void VisitAtomicExpr(AtomicExpr *E) {
212    RValue Res = CGF.EmitAtomicExpr(E);
213    EmitFinalDestCopy(E->getType(), Res);
214  }
215};
216}  // end anonymous namespace.
217
218//===----------------------------------------------------------------------===//
219//                                Utilities
220//===----------------------------------------------------------------------===//
221
222/// EmitAggLoadOfLValue - Given an expression with aggregate type that
223/// represents a value lvalue, this method emits the address of the lvalue,
224/// then loads the result into DestPtr.
225void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
226  LValue LV = CGF.EmitLValue(E);
227
228  // If the type of the l-value is atomic, then do an atomic load.
229  if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
230    CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
231    return;
232  }
233
234  EmitFinalDestCopy(E->getType(), LV);
235}
236
237/// True if the given aggregate type requires special GC API calls.
238bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
239  // Only record types have members that might require garbage collection.
240  const RecordType *RecordTy = T->getAs<RecordType>();
241  if (!RecordTy) return false;
242
243  // Don't mess with non-trivial C++ types.
244  RecordDecl *Record = RecordTy->getDecl();
245  if (isa<CXXRecordDecl>(Record) &&
246      (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
247       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
248    return false;
249
250  // Check whether the type has an object member.
251  return Record->hasObjectMember();
252}
253
254void AggExprEmitter::withReturnValueSlot(
255    const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
256  QualType RetTy = E->getType();
257  bool RequiresDestruction =
258      !Dest.isExternallyDestructed() &&
259      RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
260
261  // If it makes no observable difference, save a memcpy + temporary.
262  //
263  // We need to always provide our own temporary if destruction is required.
264  // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
265  // its lifetime before we have the chance to emit a proper destructor call.
266  bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
267                 (RequiresDestruction && !Dest.getAddress().isValid());
268
269  Address RetAddr = Address::invalid();
270  Address RetAllocaAddr = Address::invalid();
271
272  EHScopeStack::stable_iterator LifetimeEndBlock;
273  llvm::Value *LifetimeSizePtr = nullptr;
274  llvm::IntrinsicInst *LifetimeStartInst = nullptr;
275  if (!UseTemp) {
276    RetAddr = Dest.getAddress();
277  } else {
278    RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
279    uint64_t Size =
280        CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
281    LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
282    if (LifetimeSizePtr) {
283      LifetimeStartInst =
284          cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
285      assert(LifetimeStartInst->getIntrinsicID() ==
286                 llvm::Intrinsic::lifetime_start &&
287             "Last insertion wasn't a lifetime.start?");
288
289      CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
290          NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
291      LifetimeEndBlock = CGF.EHStack.stable_begin();
292    }
293  }
294
295  RValue Src =
296      EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused,
297                               Dest.isExternallyDestructed()));
298
299  if (!UseTemp)
300    return;
301
302  assert(Dest.getPointer() != Src.getAggregatePointer());
303  EmitFinalDestCopy(E->getType(), Src);
304
305  if (!RequiresDestruction && LifetimeStartInst) {
306    // If there's no dtor to run, the copy was the last use of our temporary.
307    // Since we're not guaranteed to be in an ExprWithCleanups, clean up
308    // eagerly.
309    CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
310    CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
311  }
312}
313
314/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
315void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
316  assert(src.isAggregate() && "value must be aggregate value!");
317  LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
318  EmitFinalDestCopy(type, srcLV, EVK_RValue);
319}
320
321/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
322void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
323                                       ExprValueKind SrcValueKind) {
324  // If Dest is ignored, then we're evaluating an aggregate expression
325  // in a context that doesn't care about the result.  Note that loads
326  // from volatile l-values force the existence of a non-ignored
327  // destination.
328  if (Dest.isIgnored())
329    return;
330
331  // Copy non-trivial C structs here.
332  LValue DstLV = CGF.MakeAddrLValue(
333      Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
334
335  if (SrcValueKind == EVK_RValue) {
336    if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
337      if (Dest.isPotentiallyAliased())
338        CGF.callCStructMoveAssignmentOperator(DstLV, src);
339      else
340        CGF.callCStructMoveConstructor(DstLV, src);
341      return;
342    }
343  } else {
344    if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
345      if (Dest.isPotentiallyAliased())
346        CGF.callCStructCopyAssignmentOperator(DstLV, src);
347      else
348        CGF.callCStructCopyConstructor(DstLV, src);
349      return;
350    }
351  }
352
353  AggValueSlot srcAgg = AggValueSlot::forLValue(
354      src, CGF, AggValueSlot::IsDestructed, needsGC(type),
355      AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
356  EmitCopy(type, Dest, srcAgg);
357}
358
359/// Perform a copy from the source into the destination.
360///
361/// \param type - the type of the aggregate being copied; qualifiers are
362///   ignored
363void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
364                              const AggValueSlot &src) {
365  if (dest.requiresGCollection()) {
366    CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
367    llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
368    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
369                                                      dest.getAddress(),
370                                                      src.getAddress(),
371                                                      size);
372    return;
373  }
374
375  // If the result of the assignment is used, copy the LHS there also.
376  // It's volatile if either side is.  Use the minimum alignment of
377  // the two sides.
378  LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
379  LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
380  CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
381                        dest.isVolatile() || src.isVolatile());
382}
383
384/// Emit the initializer for a std::initializer_list initialized with a
385/// real initializer list.
386void
387AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
388  // Emit an array containing the elements.  The array is externally destructed
389  // if the std::initializer_list object is.
390  ASTContext &Ctx = CGF.getContext();
391  LValue Array = CGF.EmitLValue(E->getSubExpr());
392  assert(Array.isSimple() && "initializer_list array not a simple lvalue");
393  Address ArrayPtr = Array.getAddress(CGF);
394
395  const ConstantArrayType *ArrayType =
396      Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
397  assert(ArrayType && "std::initializer_list constructed from non-array");
398
399  // FIXME: Perform the checks on the field types in SemaInit.
400  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
401  RecordDecl::field_iterator Field = Record->field_begin();
402  if (Field == Record->field_end()) {
403    CGF.ErrorUnsupported(E, "weird std::initializer_list");
404    return;
405  }
406
407  // Start pointer.
408  if (!Field->getType()->isPointerType() ||
409      !Ctx.hasSameType(Field->getType()->getPointeeType(),
410                       ArrayType->getElementType())) {
411    CGF.ErrorUnsupported(E, "weird std::initializer_list");
412    return;
413  }
414
415  AggValueSlot Dest = EnsureSlot(E->getType());
416  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
417  LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
418  llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
419  llvm::Value *IdxStart[] = { Zero, Zero };
420  llvm::Value *ArrayStart =
421      Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
422  CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
423  ++Field;
424
425  if (Field == Record->field_end()) {
426    CGF.ErrorUnsupported(E, "weird std::initializer_list");
427    return;
428  }
429
430  llvm::Value *Size = Builder.getInt(ArrayType->getSize());
431  LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
432  if (Field->getType()->isPointerType() &&
433      Ctx.hasSameType(Field->getType()->getPointeeType(),
434                      ArrayType->getElementType())) {
435    // End pointer.
436    llvm::Value *IdxEnd[] = { Zero, Size };
437    llvm::Value *ArrayEnd =
438        Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
439    CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
440  } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
441    // Length.
442    CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
443  } else {
444    CGF.ErrorUnsupported(E, "weird std::initializer_list");
445    return;
446  }
447}
448
449/// Determine if E is a trivial array filler, that is, one that is
450/// equivalent to zero-initialization.
451static bool isTrivialFiller(Expr *E) {
452  if (!E)
453    return true;
454
455  if (isa<ImplicitValueInitExpr>(E))
456    return true;
457
458  if (auto *ILE = dyn_cast<InitListExpr>(E)) {
459    if (ILE->getNumInits())
460      return false;
461    return isTrivialFiller(ILE->getArrayFiller());
462  }
463
464  if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
465    return Cons->getConstructor()->isDefaultConstructor() &&
466           Cons->getConstructor()->isTrivial();
467
468  // FIXME: Are there other cases where we can avoid emitting an initializer?
469  return false;
470}
471
472/// Emit initialization of an array from an initializer list.
473void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
474                                   QualType ArrayQTy, InitListExpr *E) {
475  uint64_t NumInitElements = E->getNumInits();
476
477  uint64_t NumArrayElements = AType->getNumElements();
478  assert(NumInitElements <= NumArrayElements);
479
480  QualType elementType =
481      CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
482
483  // DestPtr is an array*.  Construct an elementType* by drilling
484  // down a level.
485  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
486  llvm::Value *indices[] = { zero, zero };
487  llvm::Value *begin =
488    Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
489
490  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
491  CharUnits elementAlign =
492    DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
493
494  // Consider initializing the array by copying from a global. For this to be
495  // more efficient than per-element initialization, the size of the elements
496  // with explicit initializers should be large enough.
497  if (NumInitElements * elementSize.getQuantity() > 16 &&
498      elementType.isTriviallyCopyableType(CGF.getContext())) {
499    CodeGen::CodeGenModule &CGM = CGF.CGM;
500    ConstantEmitter Emitter(CGF);
501    LangAS AS = ArrayQTy.getAddressSpace();
502    if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
503      auto GV = new llvm::GlobalVariable(
504          CGM.getModule(), C->getType(),
505          CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
506          llvm::GlobalValue::PrivateLinkage, C, "constinit",
507          /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
508          CGM.getContext().getTargetAddressSpace(AS));
509      Emitter.finalize(GV);
510      CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
511      GV->setAlignment(Align.getAsAlign());
512      EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
513      return;
514    }
515  }
516
517  // Exception safety requires us to destroy all the
518  // already-constructed members if an initializer throws.
519  // For that, we'll need an EH cleanup.
520  QualType::DestructionKind dtorKind = elementType.isDestructedType();
521  Address endOfInit = Address::invalid();
522  EHScopeStack::stable_iterator cleanup;
523  llvm::Instruction *cleanupDominator = nullptr;
524  if (CGF.needsEHCleanup(dtorKind)) {
525    // In principle we could tell the cleanup where we are more
526    // directly, but the control flow can get so varied here that it
527    // would actually be quite complex.  Therefore we go through an
528    // alloca.
529    endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
530                                     "arrayinit.endOfInit");
531    cleanupDominator = Builder.CreateStore(begin, endOfInit);
532    CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
533                                         elementAlign,
534                                         CGF.getDestroyer(dtorKind));
535    cleanup = CGF.EHStack.stable_begin();
536
537  // Otherwise, remember that we didn't need a cleanup.
538  } else {
539    dtorKind = QualType::DK_none;
540  }
541
542  llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
543
544  // The 'current element to initialize'.  The invariants on this
545  // variable are complicated.  Essentially, after each iteration of
546  // the loop, it points to the last initialized element, except
547  // that it points to the beginning of the array before any
548  // elements have been initialized.
549  llvm::Value *element = begin;
550
551  // Emit the explicit initializers.
552  for (uint64_t i = 0; i != NumInitElements; ++i) {
553    // Advance to the next element.
554    if (i > 0) {
555      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
556
557      // Tell the cleanup that it needs to destroy up to this
558      // element.  TODO: some of these stores can be trivially
559      // observed to be unnecessary.
560      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
561    }
562
563    LValue elementLV =
564      CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
565    EmitInitializationToLValue(E->getInit(i), elementLV);
566  }
567
568  // Check whether there's a non-trivial array-fill expression.
569  Expr *filler = E->getArrayFiller();
570  bool hasTrivialFiller = isTrivialFiller(filler);
571
572  // Any remaining elements need to be zero-initialized, possibly
573  // using the filler expression.  We can skip this if the we're
574  // emitting to zeroed memory.
575  if (NumInitElements != NumArrayElements &&
576      !(Dest.isZeroed() && hasTrivialFiller &&
577        CGF.getTypes().isZeroInitializable(elementType))) {
578
579    // Use an actual loop.  This is basically
580    //   do { *array++ = filler; } while (array != end);
581
582    // Advance to the start of the rest of the array.
583    if (NumInitElements) {
584      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
585      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
586    }
587
588    // Compute the end of the array.
589    llvm::Value *end = Builder.CreateInBoundsGEP(begin,
590                      llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
591                                                 "arrayinit.end");
592
593    llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
594    llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
595
596    // Jump into the body.
597    CGF.EmitBlock(bodyBB);
598    llvm::PHINode *currentElement =
599      Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
600    currentElement->addIncoming(element, entryBB);
601
602    // Emit the actual filler expression.
603    {
604      // C++1z [class.temporary]p5:
605      //   when a default constructor is called to initialize an element of
606      //   an array with no corresponding initializer [...] the destruction of
607      //   every temporary created in a default argument is sequenced before
608      //   the construction of the next array element, if any
609      CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
610      LValue elementLV =
611        CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
612      if (filler)
613        EmitInitializationToLValue(filler, elementLV);
614      else
615        EmitNullInitializationToLValue(elementLV);
616    }
617
618    // Move on to the next element.
619    llvm::Value *nextElement =
620      Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
621
622    // Tell the EH cleanup that we finished with the last element.
623    if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
624
625    // Leave the loop if we're done.
626    llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
627                                             "arrayinit.done");
628    llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
629    Builder.CreateCondBr(done, endBB, bodyBB);
630    currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
631
632    CGF.EmitBlock(endBB);
633  }
634
635  // Leave the partial-array cleanup if we entered one.
636  if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
637}
638
639//===----------------------------------------------------------------------===//
640//                            Visitor Methods
641//===----------------------------------------------------------------------===//
642
643void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
644  Visit(E->getSubExpr());
645}
646
647void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
648  // If this is a unique OVE, just visit its source expression.
649  if (e->isUnique())
650    Visit(e->getSourceExpr());
651  else
652    EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
653}
654
655void
656AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
657  if (Dest.isPotentiallyAliased() &&
658      E->getType().isPODType(CGF.getContext())) {
659    // For a POD type, just emit a load of the lvalue + a copy, because our
660    // compound literal might alias the destination.
661    EmitAggLoadOfLValue(E);
662    return;
663  }
664
665  AggValueSlot Slot = EnsureSlot(E->getType());
666
667  // Block-scope compound literals are destroyed at the end of the enclosing
668  // scope in C.
669  bool Destruct =
670      !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed();
671  if (Destruct)
672    Slot.setExternallyDestructed();
673
674  CGF.EmitAggExpr(E->getInitializer(), Slot);
675
676  if (Destruct)
677    if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
678      CGF.pushLifetimeExtendedDestroy(
679          CGF.getCleanupKind(DtorKind), Slot.getAddress(), E->getType(),
680          CGF.getDestroyer(DtorKind), DtorKind & EHCleanup);
681}
682
683/// Attempt to look through various unimportant expressions to find a
684/// cast of the given kind.
685static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) {
686  op = op->IgnoreParenNoopCasts(ctx);
687  if (auto castE = dyn_cast<CastExpr>(op)) {
688    if (castE->getCastKind() == kind)
689      return castE->getSubExpr();
690  }
691  return nullptr;
692}
693
694void AggExprEmitter::VisitCastExpr(CastExpr *E) {
695  if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
696    CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
697  switch (E->getCastKind()) {
698  case CK_Dynamic: {
699    // FIXME: Can this actually happen? We have no test coverage for it.
700    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
701    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
702                                      CodeGenFunction::TCK_Load);
703    // FIXME: Do we also need to handle property references here?
704    if (LV.isSimple())
705      CGF.EmitDynamicCast(LV.getAddress(CGF), cast<CXXDynamicCastExpr>(E));
706    else
707      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
708
709    if (!Dest.isIgnored())
710      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
711    break;
712  }
713
714  case CK_ToUnion: {
715    // Evaluate even if the destination is ignored.
716    if (Dest.isIgnored()) {
717      CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
718                      /*ignoreResult=*/true);
719      break;
720    }
721
722    // GCC union extension
723    QualType Ty = E->getSubExpr()->getType();
724    Address CastPtr =
725      Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
726    EmitInitializationToLValue(E->getSubExpr(),
727                               CGF.MakeAddrLValue(CastPtr, Ty));
728    break;
729  }
730
731  case CK_LValueToRValueBitCast: {
732    if (Dest.isIgnored()) {
733      CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
734                      /*ignoreResult=*/true);
735      break;
736    }
737
738    LValue SourceLV = CGF.EmitLValue(E->getSubExpr());
739    Address SourceAddress =
740        Builder.CreateElementBitCast(SourceLV.getAddress(CGF), CGF.Int8Ty);
741    Address DestAddress =
742        Builder.CreateElementBitCast(Dest.getAddress(), CGF.Int8Ty);
743    llvm::Value *SizeVal = llvm::ConstantInt::get(
744        CGF.SizeTy,
745        CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity());
746    Builder.CreateMemCpy(DestAddress, SourceAddress, SizeVal);
747    break;
748  }
749
750  case CK_DerivedToBase:
751  case CK_BaseToDerived:
752  case CK_UncheckedDerivedToBase: {
753    llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
754                "should have been unpacked before we got here");
755  }
756
757  case CK_NonAtomicToAtomic:
758  case CK_AtomicToNonAtomic: {
759    bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
760
761    // Determine the atomic and value types.
762    QualType atomicType = E->getSubExpr()->getType();
763    QualType valueType = E->getType();
764    if (isToAtomic) std::swap(atomicType, valueType);
765
766    assert(atomicType->isAtomicType());
767    assert(CGF.getContext().hasSameUnqualifiedType(valueType,
768                          atomicType->castAs<AtomicType>()->getValueType()));
769
770    // Just recurse normally if we're ignoring the result or the
771    // atomic type doesn't change representation.
772    if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
773      return Visit(E->getSubExpr());
774    }
775
776    CastKind peepholeTarget =
777      (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
778
779    // These two cases are reverses of each other; try to peephole them.
780    if (Expr *op =
781            findPeephole(E->getSubExpr(), peepholeTarget, CGF.getContext())) {
782      assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
783                                                     E->getType()) &&
784           "peephole significantly changed types?");
785      return Visit(op);
786    }
787
788    // If we're converting an r-value of non-atomic type to an r-value
789    // of atomic type, just emit directly into the relevant sub-object.
790    if (isToAtomic) {
791      AggValueSlot valueDest = Dest;
792      if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
793        // Zero-initialize.  (Strictly speaking, we only need to initialize
794        // the padding at the end, but this is simpler.)
795        if (!Dest.isZeroed())
796          CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
797
798        // Build a GEP to refer to the subobject.
799        Address valueAddr =
800            CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0);
801        valueDest = AggValueSlot::forAddr(valueAddr,
802                                          valueDest.getQualifiers(),
803                                          valueDest.isExternallyDestructed(),
804                                          valueDest.requiresGCollection(),
805                                          valueDest.isPotentiallyAliased(),
806                                          AggValueSlot::DoesNotOverlap,
807                                          AggValueSlot::IsZeroed);
808      }
809
810      CGF.EmitAggExpr(E->getSubExpr(), valueDest);
811      return;
812    }
813
814    // Otherwise, we're converting an atomic type to a non-atomic type.
815    // Make an atomic temporary, emit into that, and then copy the value out.
816    AggValueSlot atomicSlot =
817      CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
818    CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
819
820    Address valueAddr = Builder.CreateStructGEP(atomicSlot.getAddress(), 0);
821    RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
822    return EmitFinalDestCopy(valueType, rvalue);
823  }
824  case CK_AddressSpaceConversion:
825     return Visit(E->getSubExpr());
826
827  case CK_LValueToRValue:
828    // If we're loading from a volatile type, force the destination
829    // into existence.
830    if (E->getSubExpr()->getType().isVolatileQualified()) {
831      bool Destruct =
832          !Dest.isExternallyDestructed() &&
833          E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct;
834      if (Destruct)
835        Dest.setExternallyDestructed();
836      EnsureDest(E->getType());
837      Visit(E->getSubExpr());
838
839      if (Destruct)
840        CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(),
841                        E->getType());
842
843      return;
844    }
845
846    LLVM_FALLTHROUGH;
847
848
849  case CK_NoOp:
850  case CK_UserDefinedConversion:
851  case CK_ConstructorConversion:
852    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
853                                                   E->getType()) &&
854           "Implicit cast types must be compatible");
855    Visit(E->getSubExpr());
856    break;
857
858  case CK_LValueBitCast:
859    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
860
861  case CK_Dependent:
862  case CK_BitCast:
863  case CK_ArrayToPointerDecay:
864  case CK_FunctionToPointerDecay:
865  case CK_NullToPointer:
866  case CK_NullToMemberPointer:
867  case CK_BaseToDerivedMemberPointer:
868  case CK_DerivedToBaseMemberPointer:
869  case CK_MemberPointerToBoolean:
870  case CK_ReinterpretMemberPointer:
871  case CK_IntegralToPointer:
872  case CK_PointerToIntegral:
873  case CK_PointerToBoolean:
874  case CK_ToVoid:
875  case CK_VectorSplat:
876  case CK_IntegralCast:
877  case CK_BooleanToSignedIntegral:
878  case CK_IntegralToBoolean:
879  case CK_IntegralToFloating:
880  case CK_FloatingToIntegral:
881  case CK_FloatingToBoolean:
882  case CK_FloatingCast:
883  case CK_CPointerToObjCPointerCast:
884  case CK_BlockPointerToObjCPointerCast:
885  case CK_AnyPointerToBlockPointerCast:
886  case CK_ObjCObjectLValueCast:
887  case CK_FloatingRealToComplex:
888  case CK_FloatingComplexToReal:
889  case CK_FloatingComplexToBoolean:
890  case CK_FloatingComplexCast:
891  case CK_FloatingComplexToIntegralComplex:
892  case CK_IntegralRealToComplex:
893  case CK_IntegralComplexToReal:
894  case CK_IntegralComplexToBoolean:
895  case CK_IntegralComplexCast:
896  case CK_IntegralComplexToFloatingComplex:
897  case CK_ARCProduceObject:
898  case CK_ARCConsumeObject:
899  case CK_ARCReclaimReturnedObject:
900  case CK_ARCExtendBlockObject:
901  case CK_CopyAndAutoreleaseBlockObject:
902  case CK_BuiltinFnToFnPtr:
903  case CK_ZeroToOCLOpaqueType:
904
905  case CK_IntToOCLSampler:
906  case CK_FixedPointCast:
907  case CK_FixedPointToBoolean:
908  case CK_FixedPointToIntegral:
909  case CK_IntegralToFixedPoint:
910    llvm_unreachable("cast kind invalid for aggregate types");
911  }
912}
913
914void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
915  if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
916    EmitAggLoadOfLValue(E);
917    return;
918  }
919
920  withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
921    return CGF.EmitCallExpr(E, Slot);
922  });
923}
924
925void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
926  withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
927    return CGF.EmitObjCMessageExpr(E, Slot);
928  });
929}
930
931void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
932  CGF.EmitIgnoredExpr(E->getLHS());
933  Visit(E->getRHS());
934}
935
936void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
937  CodeGenFunction::StmtExprEvaluation eval(CGF);
938  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
939}
940
941enum CompareKind {
942  CK_Less,
943  CK_Greater,
944  CK_Equal,
945};
946
947static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
948                                const BinaryOperator *E, llvm::Value *LHS,
949                                llvm::Value *RHS, CompareKind Kind,
950                                const char *NameSuffix = "") {
951  QualType ArgTy = E->getLHS()->getType();
952  if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
953    ArgTy = CT->getElementType();
954
955  if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
956    assert(Kind == CK_Equal &&
957           "member pointers may only be compared for equality");
958    return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
959        CGF, LHS, RHS, MPT, /*IsInequality*/ false);
960  }
961
962  // Compute the comparison instructions for the specified comparison kind.
963  struct CmpInstInfo {
964    const char *Name;
965    llvm::CmpInst::Predicate FCmp;
966    llvm::CmpInst::Predicate SCmp;
967    llvm::CmpInst::Predicate UCmp;
968  };
969  CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
970    using FI = llvm::FCmpInst;
971    using II = llvm::ICmpInst;
972    switch (Kind) {
973    case CK_Less:
974      return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
975    case CK_Greater:
976      return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
977    case CK_Equal:
978      return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
979    }
980    llvm_unreachable("Unrecognised CompareKind enum");
981  }();
982
983  if (ArgTy->hasFloatingRepresentation())
984    return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
985                              llvm::Twine(InstInfo.Name) + NameSuffix);
986  if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
987    auto Inst =
988        ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
989    return Builder.CreateICmp(Inst, LHS, RHS,
990                              llvm::Twine(InstInfo.Name) + NameSuffix);
991  }
992
993  llvm_unreachable("unsupported aggregate binary expression should have "
994                   "already been handled");
995}
996
997void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
998  using llvm::BasicBlock;
999  using llvm::PHINode;
1000  using llvm::Value;
1001  assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
1002                                      E->getRHS()->getType()));
1003  const ComparisonCategoryInfo &CmpInfo =
1004      CGF.getContext().CompCategories.getInfoForType(E->getType());
1005  assert(CmpInfo.Record->isTriviallyCopyable() &&
1006         "cannot copy non-trivially copyable aggregate");
1007
1008  QualType ArgTy = E->getLHS()->getType();
1009
1010  if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
1011      !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
1012      !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
1013    return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
1014  }
1015  bool IsComplex = ArgTy->isAnyComplexType();
1016
1017  // Evaluate the operands to the expression and extract their values.
1018  auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
1019    RValue RV = CGF.EmitAnyExpr(E);
1020    if (RV.isScalar())
1021      return {RV.getScalarVal(), nullptr};
1022    if (RV.isAggregate())
1023      return {RV.getAggregatePointer(), nullptr};
1024    assert(RV.isComplex());
1025    return RV.getComplexVal();
1026  };
1027  auto LHSValues = EmitOperand(E->getLHS()),
1028       RHSValues = EmitOperand(E->getRHS());
1029
1030  auto EmitCmp = [&](CompareKind K) {
1031    Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
1032                             K, IsComplex ? ".r" : "");
1033    if (!IsComplex)
1034      return Cmp;
1035    assert(K == CompareKind::CK_Equal);
1036    Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
1037                                 RHSValues.second, K, ".i");
1038    return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
1039  };
1040  auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
1041    return Builder.getInt(VInfo->getIntValue());
1042  };
1043
1044  Value *Select;
1045  if (ArgTy->isNullPtrType()) {
1046    Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1047  } else if (!CmpInfo.isPartial()) {
1048    Value *SelectOne =
1049        Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1050                             EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1051    Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1052                                  EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1053                                  SelectOne, "sel.eq");
1054  } else {
1055    Value *SelectEq = Builder.CreateSelect(
1056        EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1057        EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1058    Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1059                                           EmitCmpRes(CmpInfo.getGreater()),
1060                                           SelectEq, "sel.gt");
1061    Select = Builder.CreateSelect(
1062        EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1063  }
1064  // Create the return value in the destination slot.
1065  EnsureDest(E->getType());
1066  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1067
1068  // Emit the address of the first (and only) field in the comparison category
1069  // type, and initialize it from the constant integer value selected above.
1070  LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1071      DestLV, *CmpInfo.Record->field_begin());
1072  CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1073
1074  // All done! The result is in the Dest slot.
1075}
1076
1077void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1078  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1079    VisitPointerToDataMemberBinaryOperator(E);
1080  else
1081    CGF.ErrorUnsupported(E, "aggregate binary expression");
1082}
1083
1084void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1085                                                    const BinaryOperator *E) {
1086  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1087  EmitFinalDestCopy(E->getType(), LV);
1088}
1089
1090/// Is the value of the given expression possibly a reference to or
1091/// into a __block variable?
1092static bool isBlockVarRef(const Expr *E) {
1093  // Make sure we look through parens.
1094  E = E->IgnoreParens();
1095
1096  // Check for a direct reference to a __block variable.
1097  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1098    const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1099    return (var && var->hasAttr<BlocksAttr>());
1100  }
1101
1102  // More complicated stuff.
1103
1104  // Binary operators.
1105  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1106    // For an assignment or pointer-to-member operation, just care
1107    // about the LHS.
1108    if (op->isAssignmentOp() || op->isPtrMemOp())
1109      return isBlockVarRef(op->getLHS());
1110
1111    // For a comma, just care about the RHS.
1112    if (op->getOpcode() == BO_Comma)
1113      return isBlockVarRef(op->getRHS());
1114
1115    // FIXME: pointer arithmetic?
1116    return false;
1117
1118  // Check both sides of a conditional operator.
1119  } else if (const AbstractConditionalOperator *op
1120               = dyn_cast<AbstractConditionalOperator>(E)) {
1121    return isBlockVarRef(op->getTrueExpr())
1122        || isBlockVarRef(op->getFalseExpr());
1123
1124  // OVEs are required to support BinaryConditionalOperators.
1125  } else if (const OpaqueValueExpr *op
1126               = dyn_cast<OpaqueValueExpr>(E)) {
1127    if (const Expr *src = op->getSourceExpr())
1128      return isBlockVarRef(src);
1129
1130  // Casts are necessary to get things like (*(int*)&var) = foo().
1131  // We don't really care about the kind of cast here, except
1132  // we don't want to look through l2r casts, because it's okay
1133  // to get the *value* in a __block variable.
1134  } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1135    if (cast->getCastKind() == CK_LValueToRValue)
1136      return false;
1137    return isBlockVarRef(cast->getSubExpr());
1138
1139  // Handle unary operators.  Again, just aggressively look through
1140  // it, ignoring the operation.
1141  } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1142    return isBlockVarRef(uop->getSubExpr());
1143
1144  // Look into the base of a field access.
1145  } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1146    return isBlockVarRef(mem->getBase());
1147
1148  // Look into the base of a subscript.
1149  } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1150    return isBlockVarRef(sub->getBase());
1151  }
1152
1153  return false;
1154}
1155
1156void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1157  // For an assignment to work, the value on the right has
1158  // to be compatible with the value on the left.
1159  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1160                                                 E->getRHS()->getType())
1161         && "Invalid assignment");
1162
1163  // If the LHS might be a __block variable, and the RHS can
1164  // potentially cause a block copy, we need to evaluate the RHS first
1165  // so that the assignment goes the right place.
1166  // This is pretty semantically fragile.
1167  if (isBlockVarRef(E->getLHS()) &&
1168      E->getRHS()->HasSideEffects(CGF.getContext())) {
1169    // Ensure that we have a destination, and evaluate the RHS into that.
1170    EnsureDest(E->getRHS()->getType());
1171    Visit(E->getRHS());
1172
1173    // Now emit the LHS and copy into it.
1174    LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1175
1176    // That copy is an atomic copy if the LHS is atomic.
1177    if (LHS.getType()->isAtomicType() ||
1178        CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1179      CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1180      return;
1181    }
1182
1183    EmitCopy(E->getLHS()->getType(),
1184             AggValueSlot::forLValue(LHS, CGF, AggValueSlot::IsDestructed,
1185                                     needsGC(E->getLHS()->getType()),
1186                                     AggValueSlot::IsAliased,
1187                                     AggValueSlot::MayOverlap),
1188             Dest);
1189    return;
1190  }
1191
1192  LValue LHS = CGF.EmitLValue(E->getLHS());
1193
1194  // If we have an atomic type, evaluate into the destination and then
1195  // do an atomic copy.
1196  if (LHS.getType()->isAtomicType() ||
1197      CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1198    EnsureDest(E->getRHS()->getType());
1199    Visit(E->getRHS());
1200    CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1201    return;
1202  }
1203
1204  // Codegen the RHS so that it stores directly into the LHS.
1205  AggValueSlot LHSSlot = AggValueSlot::forLValue(
1206      LHS, CGF, AggValueSlot::IsDestructed, needsGC(E->getLHS()->getType()),
1207      AggValueSlot::IsAliased, AggValueSlot::MayOverlap);
1208  // A non-volatile aggregate destination might have volatile member.
1209  if (!LHSSlot.isVolatile() &&
1210      CGF.hasVolatileMember(E->getLHS()->getType()))
1211    LHSSlot.setVolatile(true);
1212
1213  CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1214
1215  // Copy into the destination if the assignment isn't ignored.
1216  EmitFinalDestCopy(E->getType(), LHS);
1217}
1218
1219void AggExprEmitter::
1220VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1221  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1222  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1223  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1224
1225  // Bind the common expression if necessary.
1226  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1227
1228  CodeGenFunction::ConditionalEvaluation eval(CGF);
1229  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1230                           CGF.getProfileCount(E));
1231
1232  // Save whether the destination's lifetime is externally managed.
1233  bool isExternallyDestructed = Dest.isExternallyDestructed();
1234
1235  eval.begin(CGF);
1236  CGF.EmitBlock(LHSBlock);
1237  CGF.incrementProfileCounter(E);
1238  Visit(E->getTrueExpr());
1239  eval.end(CGF);
1240
1241  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1242  CGF.Builder.CreateBr(ContBlock);
1243
1244  // If the result of an agg expression is unused, then the emission
1245  // of the LHS might need to create a destination slot.  That's fine
1246  // with us, and we can safely emit the RHS into the same slot, but
1247  // we shouldn't claim that it's already being destructed.
1248  Dest.setExternallyDestructed(isExternallyDestructed);
1249
1250  eval.begin(CGF);
1251  CGF.EmitBlock(RHSBlock);
1252  Visit(E->getFalseExpr());
1253  eval.end(CGF);
1254
1255  CGF.EmitBlock(ContBlock);
1256}
1257
1258void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1259  Visit(CE->getChosenSubExpr());
1260}
1261
1262void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1263  Address ArgValue = Address::invalid();
1264  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1265
1266  // If EmitVAArg fails, emit an error.
1267  if (!ArgPtr.isValid()) {
1268    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1269    return;
1270  }
1271
1272  EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1273}
1274
1275void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1276  // Ensure that we have a slot, but if we already do, remember
1277  // whether it was externally destructed.
1278  bool wasExternallyDestructed = Dest.isExternallyDestructed();
1279  EnsureDest(E->getType());
1280
1281  // We're going to push a destructor if there isn't already one.
1282  Dest.setExternallyDestructed();
1283
1284  Visit(E->getSubExpr());
1285
1286  // Push that destructor we promised.
1287  if (!wasExternallyDestructed)
1288    CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1289}
1290
1291void
1292AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1293  AggValueSlot Slot = EnsureSlot(E->getType());
1294  CGF.EmitCXXConstructExpr(E, Slot);
1295}
1296
1297void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1298    const CXXInheritedCtorInitExpr *E) {
1299  AggValueSlot Slot = EnsureSlot(E->getType());
1300  CGF.EmitInheritedCXXConstructorCall(
1301      E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1302      E->inheritedFromVBase(), E);
1303}
1304
1305void
1306AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1307  AggValueSlot Slot = EnsureSlot(E->getType());
1308  LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType());
1309
1310  // We'll need to enter cleanup scopes in case any of the element
1311  // initializers throws an exception.
1312  SmallVector<EHScopeStack::stable_iterator, 16> Cleanups;
1313  llvm::Instruction *CleanupDominator = nullptr;
1314
1315  CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1316  for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1317                                               e = E->capture_init_end();
1318       i != e; ++i, ++CurField) {
1319    // Emit initialization
1320    LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1321    if (CurField->hasCapturedVLAType()) {
1322      CGF.EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
1323      continue;
1324    }
1325
1326    EmitInitializationToLValue(*i, LV);
1327
1328    // Push a destructor if necessary.
1329    if (QualType::DestructionKind DtorKind =
1330            CurField->getType().isDestructedType()) {
1331      assert(LV.isSimple());
1332      if (CGF.needsEHCleanup(DtorKind)) {
1333        if (!CleanupDominator)
1334          CleanupDominator = CGF.Builder.CreateAlignedLoad(
1335              CGF.Int8Ty,
1336              llvm::Constant::getNullValue(CGF.Int8PtrTy),
1337              CharUnits::One()); // placeholder
1338
1339        CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(),
1340                        CGF.getDestroyer(DtorKind), false);
1341        Cleanups.push_back(CGF.EHStack.stable_begin());
1342      }
1343    }
1344  }
1345
1346  // Deactivate all the partial cleanups in reverse order, which
1347  // generally means popping them.
1348  for (unsigned i = Cleanups.size(); i != 0; --i)
1349    CGF.DeactivateCleanupBlock(Cleanups[i-1], CleanupDominator);
1350
1351  // Destroy the placeholder if we made one.
1352  if (CleanupDominator)
1353    CleanupDominator->eraseFromParent();
1354}
1355
1356void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1357  CodeGenFunction::RunCleanupsScope cleanups(CGF);
1358  Visit(E->getSubExpr());
1359}
1360
1361void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1362  QualType T = E->getType();
1363  AggValueSlot Slot = EnsureSlot(T);
1364  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1365}
1366
1367void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1368  QualType T = E->getType();
1369  AggValueSlot Slot = EnsureSlot(T);
1370  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1371}
1372
1373/// isSimpleZero - If emitting this value will obviously just cause a store of
1374/// zero to memory, return true.  This can return false if uncertain, so it just
1375/// handles simple cases.
1376static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1377  E = E->IgnoreParens();
1378
1379  // 0
1380  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1381    return IL->getValue() == 0;
1382  // +0.0
1383  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1384    return FL->getValue().isPosZero();
1385  // int()
1386  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1387      CGF.getTypes().isZeroInitializable(E->getType()))
1388    return true;
1389  // (int*)0 - Null pointer expressions.
1390  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1391    return ICE->getCastKind() == CK_NullToPointer &&
1392           CGF.getTypes().isPointerZeroInitializable(E->getType()) &&
1393           !E->HasSideEffects(CGF.getContext());
1394  // '\0'
1395  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1396    return CL->getValue() == 0;
1397
1398  // Otherwise, hard case: conservatively return false.
1399  return false;
1400}
1401
1402
1403void
1404AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1405  QualType type = LV.getType();
1406  // FIXME: Ignore result?
1407  // FIXME: Are initializers affected by volatile?
1408  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1409    // Storing "i32 0" to a zero'd memory location is a noop.
1410    return;
1411  } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1412    return EmitNullInitializationToLValue(LV);
1413  } else if (isa<NoInitExpr>(E)) {
1414    // Do nothing.
1415    return;
1416  } else if (type->isReferenceType()) {
1417    RValue RV = CGF.EmitReferenceBindingToExpr(E);
1418    return CGF.EmitStoreThroughLValue(RV, LV);
1419  }
1420
1421  switch (CGF.getEvaluationKind(type)) {
1422  case TEK_Complex:
1423    CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1424    return;
1425  case TEK_Aggregate:
1426    CGF.EmitAggExpr(
1427        E, AggValueSlot::forLValue(LV, CGF, AggValueSlot::IsDestructed,
1428                                   AggValueSlot::DoesNotNeedGCBarriers,
1429                                   AggValueSlot::IsNotAliased,
1430                                   AggValueSlot::MayOverlap, Dest.isZeroed()));
1431    return;
1432  case TEK_Scalar:
1433    if (LV.isSimple()) {
1434      CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1435    } else {
1436      CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1437    }
1438    return;
1439  }
1440  llvm_unreachable("bad evaluation kind");
1441}
1442
1443void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1444  QualType type = lv.getType();
1445
1446  // If the destination slot is already zeroed out before the aggregate is
1447  // copied into it, we don't have to emit any zeros here.
1448  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1449    return;
1450
1451  if (CGF.hasScalarEvaluationKind(type)) {
1452    // For non-aggregates, we can store the appropriate null constant.
1453    llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1454    // Note that the following is not equivalent to
1455    // EmitStoreThroughBitfieldLValue for ARC types.
1456    if (lv.isBitField()) {
1457      CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1458    } else {
1459      assert(lv.isSimple());
1460      CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1461    }
1462  } else {
1463    // There's a potential optimization opportunity in combining
1464    // memsets; that would be easy for arrays, but relatively
1465    // difficult for structures with the current code.
1466    CGF.EmitNullInitialization(lv.getAddress(CGF), lv.getType());
1467  }
1468}
1469
1470void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1471#if 0
1472  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1473  // (Length of globals? Chunks of zeroed-out space?).
1474  //
1475  // If we can, prefer a copy from a global; this is a lot less code for long
1476  // globals, and it's easier for the current optimizers to analyze.
1477  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1478    llvm::GlobalVariable* GV =
1479    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1480                             llvm::GlobalValue::InternalLinkage, C, "");
1481    EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1482    return;
1483  }
1484#endif
1485  if (E->hadArrayRangeDesignator())
1486    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1487
1488  if (E->isTransparent())
1489    return Visit(E->getInit(0));
1490
1491  AggValueSlot Dest = EnsureSlot(E->getType());
1492
1493  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1494
1495  // Handle initialization of an array.
1496  if (E->getType()->isArrayType()) {
1497    auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1498    EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1499    return;
1500  }
1501
1502  assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1503
1504  // Do struct initialization; this code just sets each individual member
1505  // to the approprate value.  This makes bitfield support automatic;
1506  // the disadvantage is that the generated code is more difficult for
1507  // the optimizer, especially with bitfields.
1508  unsigned NumInitElements = E->getNumInits();
1509  RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1510
1511  // We'll need to enter cleanup scopes in case any of the element
1512  // initializers throws an exception.
1513  SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1514  llvm::Instruction *cleanupDominator = nullptr;
1515  auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) {
1516    cleanups.push_back(cleanup);
1517    if (!cleanupDominator) // create placeholder once needed
1518      cleanupDominator = CGF.Builder.CreateAlignedLoad(
1519          CGF.Int8Ty, llvm::Constant::getNullValue(CGF.Int8PtrTy),
1520          CharUnits::One());
1521  };
1522
1523  unsigned curInitIndex = 0;
1524
1525  // Emit initialization of base classes.
1526  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1527    assert(E->getNumInits() >= CXXRD->getNumBases() &&
1528           "missing initializer for base class");
1529    for (auto &Base : CXXRD->bases()) {
1530      assert(!Base.isVirtual() && "should not see vbases here");
1531      auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1532      Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1533          Dest.getAddress(), CXXRD, BaseRD,
1534          /*isBaseVirtual*/ false);
1535      AggValueSlot AggSlot = AggValueSlot::forAddr(
1536          V, Qualifiers(),
1537          AggValueSlot::IsDestructed,
1538          AggValueSlot::DoesNotNeedGCBarriers,
1539          AggValueSlot::IsNotAliased,
1540          CGF.getOverlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1541      CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1542
1543      if (QualType::DestructionKind dtorKind =
1544              Base.getType().isDestructedType()) {
1545        CGF.pushDestroy(dtorKind, V, Base.getType());
1546        addCleanup(CGF.EHStack.stable_begin());
1547      }
1548    }
1549  }
1550
1551  // Prepare a 'this' for CXXDefaultInitExprs.
1552  CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1553
1554  if (record->isUnion()) {
1555    // Only initialize one field of a union. The field itself is
1556    // specified by the initializer list.
1557    if (!E->getInitializedFieldInUnion()) {
1558      // Empty union; we have nothing to do.
1559
1560#ifndef NDEBUG
1561      // Make sure that it's really an empty and not a failure of
1562      // semantic analysis.
1563      for (const auto *Field : record->fields())
1564        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1565#endif
1566      return;
1567    }
1568
1569    // FIXME: volatility
1570    FieldDecl *Field = E->getInitializedFieldInUnion();
1571
1572    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1573    if (NumInitElements) {
1574      // Store the initializer into the field
1575      EmitInitializationToLValue(E->getInit(0), FieldLoc);
1576    } else {
1577      // Default-initialize to null.
1578      EmitNullInitializationToLValue(FieldLoc);
1579    }
1580
1581    return;
1582  }
1583
1584  // Here we iterate over the fields; this makes it simpler to both
1585  // default-initialize fields and skip over unnamed fields.
1586  for (const auto *field : record->fields()) {
1587    // We're done once we hit the flexible array member.
1588    if (field->getType()->isIncompleteArrayType())
1589      break;
1590
1591    // Always skip anonymous bitfields.
1592    if (field->isUnnamedBitfield())
1593      continue;
1594
1595    // We're done if we reach the end of the explicit initializers, we
1596    // have a zeroed object, and the rest of the fields are
1597    // zero-initializable.
1598    if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1599        CGF.getTypes().isZeroInitializable(E->getType()))
1600      break;
1601
1602
1603    LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1604    // We never generate write-barries for initialized fields.
1605    LV.setNonGC(true);
1606
1607    if (curInitIndex < NumInitElements) {
1608      // Store the initializer into the field.
1609      EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1610    } else {
1611      // We're out of initializers; default-initialize to null
1612      EmitNullInitializationToLValue(LV);
1613    }
1614
1615    // Push a destructor if necessary.
1616    // FIXME: if we have an array of structures, all explicitly
1617    // initialized, we can end up pushing a linear number of cleanups.
1618    bool pushedCleanup = false;
1619    if (QualType::DestructionKind dtorKind
1620          = field->getType().isDestructedType()) {
1621      assert(LV.isSimple());
1622      if (CGF.needsEHCleanup(dtorKind)) {
1623        CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(),
1624                        CGF.getDestroyer(dtorKind), false);
1625        addCleanup(CGF.EHStack.stable_begin());
1626        pushedCleanup = true;
1627      }
1628    }
1629
1630    // If the GEP didn't get used because of a dead zero init or something
1631    // else, clean it up for -O0 builds and general tidiness.
1632    if (!pushedCleanup && LV.isSimple())
1633      if (llvm::GetElementPtrInst *GEP =
1634              dyn_cast<llvm::GetElementPtrInst>(LV.getPointer(CGF)))
1635        if (GEP->use_empty())
1636          GEP->eraseFromParent();
1637  }
1638
1639  // Deactivate all the partial cleanups in reverse order, which
1640  // generally means popping them.
1641  assert((cleanupDominator || cleanups.empty()) &&
1642         "Missing cleanupDominator before deactivating cleanup blocks");
1643  for (unsigned i = cleanups.size(); i != 0; --i)
1644    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1645
1646  // Destroy the placeholder if we made one.
1647  if (cleanupDominator)
1648    cleanupDominator->eraseFromParent();
1649}
1650
1651void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1652                                            llvm::Value *outerBegin) {
1653  // Emit the common subexpression.
1654  CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1655
1656  Address destPtr = EnsureSlot(E->getType()).getAddress();
1657  uint64_t numElements = E->getArraySize().getZExtValue();
1658
1659  if (!numElements)
1660    return;
1661
1662  // destPtr is an array*. Construct an elementType* by drilling down a level.
1663  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1664  llvm::Value *indices[] = {zero, zero};
1665  llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1666                                                 "arrayinit.begin");
1667
1668  // Prepare to special-case multidimensional array initialization: we avoid
1669  // emitting multiple destructor loops in that case.
1670  if (!outerBegin)
1671    outerBegin = begin;
1672  ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1673
1674  QualType elementType =
1675      CGF.getContext().getAsArrayType(E->getType())->getElementType();
1676  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1677  CharUnits elementAlign =
1678      destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1679
1680  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1681  llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1682
1683  // Jump into the body.
1684  CGF.EmitBlock(bodyBB);
1685  llvm::PHINode *index =
1686      Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1687  index->addIncoming(zero, entryBB);
1688  llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1689
1690  // Prepare for a cleanup.
1691  QualType::DestructionKind dtorKind = elementType.isDestructedType();
1692  EHScopeStack::stable_iterator cleanup;
1693  if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1694    if (outerBegin->getType() != element->getType())
1695      outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1696    CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1697                                       elementAlign,
1698                                       CGF.getDestroyer(dtorKind));
1699    cleanup = CGF.EHStack.stable_begin();
1700  } else {
1701    dtorKind = QualType::DK_none;
1702  }
1703
1704  // Emit the actual filler expression.
1705  {
1706    // Temporaries created in an array initialization loop are destroyed
1707    // at the end of each iteration.
1708    CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1709    CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1710    LValue elementLV =
1711        CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1712
1713    if (InnerLoop) {
1714      // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1715      auto elementSlot = AggValueSlot::forLValue(
1716          elementLV, CGF, AggValueSlot::IsDestructed,
1717          AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
1718          AggValueSlot::DoesNotOverlap);
1719      AggExprEmitter(CGF, elementSlot, false)
1720          .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1721    } else
1722      EmitInitializationToLValue(E->getSubExpr(), elementLV);
1723  }
1724
1725  // Move on to the next element.
1726  llvm::Value *nextIndex = Builder.CreateNUWAdd(
1727      index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1728  index->addIncoming(nextIndex, Builder.GetInsertBlock());
1729
1730  // Leave the loop if we're done.
1731  llvm::Value *done = Builder.CreateICmpEQ(
1732      nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1733      "arrayinit.done");
1734  llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1735  Builder.CreateCondBr(done, endBB, bodyBB);
1736
1737  CGF.EmitBlock(endBB);
1738
1739  // Leave the partial-array cleanup if we entered one.
1740  if (dtorKind)
1741    CGF.DeactivateCleanupBlock(cleanup, index);
1742}
1743
1744void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1745  AggValueSlot Dest = EnsureSlot(E->getType());
1746
1747  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1748  EmitInitializationToLValue(E->getBase(), DestLV);
1749  VisitInitListExpr(E->getUpdater());
1750}
1751
1752//===----------------------------------------------------------------------===//
1753//                        Entry Points into this File
1754//===----------------------------------------------------------------------===//
1755
1756/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1757/// non-zero bytes that will be stored when outputting the initializer for the
1758/// specified initializer expression.
1759static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1760  E = E->IgnoreParens();
1761
1762  // 0 and 0.0 won't require any non-zero stores!
1763  if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1764
1765  // If this is an initlist expr, sum up the size of sizes of the (present)
1766  // elements.  If this is something weird, assume the whole thing is non-zero.
1767  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1768  while (ILE && ILE->isTransparent())
1769    ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1770  if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1771    return CGF.getContext().getTypeSizeInChars(E->getType());
1772
1773  // InitListExprs for structs have to be handled carefully.  If there are
1774  // reference members, we need to consider the size of the reference, not the
1775  // referencee.  InitListExprs for unions and arrays can't have references.
1776  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1777    if (!RT->isUnionType()) {
1778      RecordDecl *SD = RT->getDecl();
1779      CharUnits NumNonZeroBytes = CharUnits::Zero();
1780
1781      unsigned ILEElement = 0;
1782      if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1783        while (ILEElement != CXXRD->getNumBases())
1784          NumNonZeroBytes +=
1785              GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1786      for (const auto *Field : SD->fields()) {
1787        // We're done once we hit the flexible array member or run out of
1788        // InitListExpr elements.
1789        if (Field->getType()->isIncompleteArrayType() ||
1790            ILEElement == ILE->getNumInits())
1791          break;
1792        if (Field->isUnnamedBitfield())
1793          continue;
1794
1795        const Expr *E = ILE->getInit(ILEElement++);
1796
1797        // Reference values are always non-null and have the width of a pointer.
1798        if (Field->getType()->isReferenceType())
1799          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1800              CGF.getTarget().getPointerWidth(0));
1801        else
1802          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1803      }
1804
1805      return NumNonZeroBytes;
1806    }
1807  }
1808
1809
1810  CharUnits NumNonZeroBytes = CharUnits::Zero();
1811  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1812    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1813  return NumNonZeroBytes;
1814}
1815
1816/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1817/// zeros in it, emit a memset and avoid storing the individual zeros.
1818///
1819static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1820                                     CodeGenFunction &CGF) {
1821  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1822  // volatile stores.
1823  if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1824    return;
1825
1826  // C++ objects with a user-declared constructor don't need zero'ing.
1827  if (CGF.getLangOpts().CPlusPlus)
1828    if (const RecordType *RT = CGF.getContext()
1829                       .getBaseElementType(E->getType())->getAs<RecordType>()) {
1830      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1831      if (RD->hasUserDeclaredConstructor())
1832        return;
1833    }
1834
1835  // If the type is 16-bytes or smaller, prefer individual stores over memset.
1836  CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1837  if (Size <= CharUnits::fromQuantity(16))
1838    return;
1839
1840  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1841  // we prefer to emit memset + individual stores for the rest.
1842  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1843  if (NumNonZeroBytes*4 > Size)
1844    return;
1845
1846  // Okay, it seems like a good idea to use an initial memset, emit the call.
1847  llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1848
1849  Address Loc = Slot.getAddress();
1850  Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1851  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1852
1853  // Tell the AggExprEmitter that the slot is known zero.
1854  Slot.setZeroed();
1855}
1856
1857
1858
1859
1860/// EmitAggExpr - Emit the computation of the specified expression of aggregate
1861/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1862/// the value of the aggregate expression is not needed.  If VolatileDest is
1863/// true, DestPtr cannot be 0.
1864void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1865  assert(E && hasAggregateEvaluationKind(E->getType()) &&
1866         "Invalid aggregate expression to emit");
1867  assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1868         "slot has bits but no address");
1869
1870  // Optimize the slot if possible.
1871  CheckAggExprForMemSetUse(Slot, E, *this);
1872
1873  AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1874}
1875
1876LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1877  assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1878  Address Temp = CreateMemTemp(E->getType());
1879  LValue LV = MakeAddrLValue(Temp, E->getType());
1880  EmitAggExpr(E, AggValueSlot::forLValue(
1881                     LV, *this, AggValueSlot::IsNotDestructed,
1882                     AggValueSlot::DoesNotNeedGCBarriers,
1883                     AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap));
1884  return LV;
1885}
1886
1887AggValueSlot::Overlap_t
1888CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) {
1889  if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType())
1890    return AggValueSlot::DoesNotOverlap;
1891
1892  // If the field lies entirely within the enclosing class's nvsize, its tail
1893  // padding cannot overlap any already-initialized object. (The only subobjects
1894  // with greater addresses that might already be initialized are vbases.)
1895  const RecordDecl *ClassRD = FD->getParent();
1896  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(ClassRD);
1897  if (Layout.getFieldOffset(FD->getFieldIndex()) +
1898          getContext().getTypeSize(FD->getType()) <=
1899      (uint64_t)getContext().toBits(Layout.getNonVirtualSize()))
1900    return AggValueSlot::DoesNotOverlap;
1901
1902  // The tail padding may contain values we need to preserve.
1903  return AggValueSlot::MayOverlap;
1904}
1905
1906AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit(
1907    const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1908  // If the most-derived object is a field declared with [[no_unique_address]],
1909  // the tail padding of any virtual base could be reused for other subobjects
1910  // of that field's class.
1911  if (IsVirtual)
1912    return AggValueSlot::MayOverlap;
1913
1914  // If the base class is laid out entirely within the nvsize of the derived
1915  // class, its tail padding cannot yet be initialized, so we can issue
1916  // stores at the full width of the base class.
1917  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1918  if (Layout.getBaseClassOffset(BaseRD) +
1919          getContext().getASTRecordLayout(BaseRD).getSize() <=
1920      Layout.getNonVirtualSize())
1921    return AggValueSlot::DoesNotOverlap;
1922
1923  // The tail padding may contain values we need to preserve.
1924  return AggValueSlot::MayOverlap;
1925}
1926
1927void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1928                                        AggValueSlot::Overlap_t MayOverlap,
1929                                        bool isVolatile) {
1930  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1931
1932  Address DestPtr = Dest.getAddress(*this);
1933  Address SrcPtr = Src.getAddress(*this);
1934
1935  if (getLangOpts().CPlusPlus) {
1936    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1937      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1938      assert((Record->hasTrivialCopyConstructor() ||
1939              Record->hasTrivialCopyAssignment() ||
1940              Record->hasTrivialMoveConstructor() ||
1941              Record->hasTrivialMoveAssignment() ||
1942              Record->isUnion()) &&
1943             "Trying to aggregate-copy a type without a trivial copy/move "
1944             "constructor or assignment operator");
1945      // Ignore empty classes in C++.
1946      if (Record->isEmpty())
1947        return;
1948    }
1949  }
1950
1951  if (getLangOpts().CUDAIsDevice) {
1952    if (Ty->isCUDADeviceBuiltinSurfaceType()) {
1953      if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(*this, Dest,
1954                                                                  Src))
1955        return;
1956    } else if (Ty->isCUDADeviceBuiltinTextureType()) {
1957      if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(*this, Dest,
1958                                                                  Src))
1959        return;
1960    }
1961  }
1962
1963  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1964  // C99 6.5.16.1p3, which states "If the value being stored in an object is
1965  // read from another object that overlaps in anyway the storage of the first
1966  // object, then the overlap shall be exact and the two objects shall have
1967  // qualified or unqualified versions of a compatible type."
1968  //
1969  // memcpy is not defined if the source and destination pointers are exactly
1970  // equal, but other compilers do this optimization, and almost every memcpy
1971  // implementation handles this case safely.  If there is a libc that does not
1972  // safely handle this, we can add a target hook.
1973
1974  // Get data size info for this aggregate. Don't copy the tail padding if this
1975  // might be a potentially-overlapping subobject, since the tail padding might
1976  // be occupied by a different object. Otherwise, copying it is fine.
1977  std::pair<CharUnits, CharUnits> TypeInfo;
1978  if (MayOverlap)
1979    TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1980  else
1981    TypeInfo = getContext().getTypeInfoInChars(Ty);
1982
1983  llvm::Value *SizeVal = nullptr;
1984  if (TypeInfo.first.isZero()) {
1985    // But note that getTypeInfo returns 0 for a VLA.
1986    if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1987            getContext().getAsArrayType(Ty))) {
1988      QualType BaseEltTy;
1989      SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1990      TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1991      assert(!TypeInfo.first.isZero());
1992      SizeVal = Builder.CreateNUWMul(
1993          SizeVal,
1994          llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1995    }
1996  }
1997  if (!SizeVal) {
1998    SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1999  }
2000
2001  // FIXME: If we have a volatile struct, the optimizer can remove what might
2002  // appear to be `extra' memory ops:
2003  //
2004  // volatile struct { int i; } a, b;
2005  //
2006  // int main() {
2007  //   a = b;
2008  //   a = b;
2009  // }
2010  //
2011  // we need to use a different call here.  We use isVolatile to indicate when
2012  // either the source or the destination is volatile.
2013
2014  DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
2015  SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
2016
2017  // Don't do any of the memmove_collectable tests if GC isn't set.
2018  if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
2019    // fall through
2020  } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
2021    RecordDecl *Record = RecordTy->getDecl();
2022    if (Record->hasObjectMember()) {
2023      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2024                                                    SizeVal);
2025      return;
2026    }
2027  } else if (Ty->isArrayType()) {
2028    QualType BaseType = getContext().getBaseElementType(Ty);
2029    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
2030      if (RecordTy->getDecl()->hasObjectMember()) {
2031        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
2032                                                      SizeVal);
2033        return;
2034      }
2035    }
2036  }
2037
2038  auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
2039
2040  // Determine the metadata to describe the position of any padding in this
2041  // memcpy, as well as the TBAA tags for the members of the struct, in case
2042  // the optimizer wishes to expand it in to scalar memory operations.
2043  if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
2044    Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
2045
2046  if (CGM.getCodeGenOpts().NewStructPathTBAA) {
2047    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
2048        Dest.getTBAAInfo(), Src.getTBAAInfo());
2049    CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
2050  }
2051}
2052