1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implements C++ name mangling according to the Itanium C++ ABI,
10// which is used in GCC 3.2 and newer (and many compilers that are
11// ABI-compatible with GCC):
12//
13//   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclOpenMP.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprConcepts.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/ExprObjC.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/ABI.h"
31#include "clang/Basic/Module.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37
38using namespace clang;
39
40namespace {
41
42/// Retrieve the declaration context that should be used when mangling the given
43/// declaration.
44static const DeclContext *getEffectiveDeclContext(const Decl *D) {
45  // The ABI assumes that lambda closure types that occur within
46  // default arguments live in the context of the function. However, due to
47  // the way in which Clang parses and creates function declarations, this is
48  // not the case: the lambda closure type ends up living in the context
49  // where the function itself resides, because the function declaration itself
50  // had not yet been created. Fix the context here.
51  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
52    if (RD->isLambda())
53      if (ParmVarDecl *ContextParam
54            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
55        return ContextParam->getDeclContext();
56  }
57
58  // Perform the same check for block literals.
59  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
60    if (ParmVarDecl *ContextParam
61          = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
62      return ContextParam->getDeclContext();
63  }
64
65  const DeclContext *DC = D->getDeclContext();
66  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
67      isa<OMPDeclareMapperDecl>(DC)) {
68    return getEffectiveDeclContext(cast<Decl>(DC));
69  }
70
71  if (const auto *VD = dyn_cast<VarDecl>(D))
72    if (VD->isExternC())
73      return VD->getASTContext().getTranslationUnitDecl();
74
75  if (const auto *FD = dyn_cast<FunctionDecl>(D))
76    if (FD->isExternC())
77      return FD->getASTContext().getTranslationUnitDecl();
78
79  return DC->getRedeclContext();
80}
81
82static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
83  return getEffectiveDeclContext(cast<Decl>(DC));
84}
85
86static bool isLocalContainerContext(const DeclContext *DC) {
87  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
88}
89
90static const RecordDecl *GetLocalClassDecl(const Decl *D) {
91  const DeclContext *DC = getEffectiveDeclContext(D);
92  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
93    if (isLocalContainerContext(DC))
94      return dyn_cast<RecordDecl>(D);
95    D = cast<Decl>(DC);
96    DC = getEffectiveDeclContext(D);
97  }
98  return nullptr;
99}
100
101static const FunctionDecl *getStructor(const FunctionDecl *fn) {
102  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
103    return ftd->getTemplatedDecl();
104
105  return fn;
106}
107
108static const NamedDecl *getStructor(const NamedDecl *decl) {
109  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
110  return (fn ? getStructor(fn) : decl);
111}
112
113static bool isLambda(const NamedDecl *ND) {
114  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
115  if (!Record)
116    return false;
117
118  return Record->isLambda();
119}
120
121static const unsigned UnknownArity = ~0U;
122
123class ItaniumMangleContextImpl : public ItaniumMangleContext {
124  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
125  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
126  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
127
128public:
129  explicit ItaniumMangleContextImpl(ASTContext &Context,
130                                    DiagnosticsEngine &Diags,
131                                    bool IsUniqueNameMangler)
132      : ItaniumMangleContext(Context, Diags, IsUniqueNameMangler) {}
133
134  /// @name Mangler Entry Points
135  /// @{
136
137  bool shouldMangleCXXName(const NamedDecl *D) override;
138  bool shouldMangleStringLiteral(const StringLiteral *) override {
139    return false;
140  }
141  void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
142  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
143                   raw_ostream &) override;
144  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145                          const ThisAdjustment &ThisAdjustment,
146                          raw_ostream &) override;
147  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
148                                raw_ostream &) override;
149  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
150  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
151  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
152                           const CXXRecordDecl *Type, raw_ostream &) override;
153  void mangleCXXRTTI(QualType T, raw_ostream &) override;
154  void mangleCXXRTTIName(QualType T, raw_ostream &) override;
155  void mangleTypeName(QualType T, raw_ostream &) override;
156
157  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
158  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
159  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
160  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
161  void mangleDynamicAtExitDestructor(const VarDecl *D,
162                                     raw_ostream &Out) override;
163  void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
164  void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
165                                 raw_ostream &Out) override;
166  void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
167                             raw_ostream &Out) override;
168  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
169  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
170                                       raw_ostream &) override;
171
172  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
173
174  void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
175
176  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
177    // Lambda closure types are already numbered.
178    if (isLambda(ND))
179      return false;
180
181    // Anonymous tags are already numbered.
182    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
183      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
184        return false;
185    }
186
187    // Use the canonical number for externally visible decls.
188    if (ND->isExternallyVisible()) {
189      unsigned discriminator = getASTContext().getManglingNumber(ND);
190      if (discriminator == 1)
191        return false;
192      disc = discriminator - 2;
193      return true;
194    }
195
196    // Make up a reasonable number for internal decls.
197    unsigned &discriminator = Uniquifier[ND];
198    if (!discriminator) {
199      const DeclContext *DC = getEffectiveDeclContext(ND);
200      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
201    }
202    if (discriminator == 1)
203      return false;
204    disc = discriminator-2;
205    return true;
206  }
207  /// @}
208};
209
210/// Manage the mangling of a single name.
211class CXXNameMangler {
212  ItaniumMangleContextImpl &Context;
213  raw_ostream &Out;
214  bool NullOut = false;
215  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
216  /// This mode is used when mangler creates another mangler recursively to
217  /// calculate ABI tags for the function return value or the variable type.
218  /// Also it is required to avoid infinite recursion in some cases.
219  bool DisableDerivedAbiTags = false;
220
221  /// The "structor" is the top-level declaration being mangled, if
222  /// that's not a template specialization; otherwise it's the pattern
223  /// for that specialization.
224  const NamedDecl *Structor;
225  unsigned StructorType;
226
227  /// The next substitution sequence number.
228  unsigned SeqID;
229
230  class FunctionTypeDepthState {
231    unsigned Bits;
232
233    enum { InResultTypeMask = 1 };
234
235  public:
236    FunctionTypeDepthState() : Bits(0) {}
237
238    /// The number of function types we're inside.
239    unsigned getDepth() const {
240      return Bits >> 1;
241    }
242
243    /// True if we're in the return type of the innermost function type.
244    bool isInResultType() const {
245      return Bits & InResultTypeMask;
246    }
247
248    FunctionTypeDepthState push() {
249      FunctionTypeDepthState tmp = *this;
250      Bits = (Bits & ~InResultTypeMask) + 2;
251      return tmp;
252    }
253
254    void enterResultType() {
255      Bits |= InResultTypeMask;
256    }
257
258    void leaveResultType() {
259      Bits &= ~InResultTypeMask;
260    }
261
262    void pop(FunctionTypeDepthState saved) {
263      assert(getDepth() == saved.getDepth() + 1);
264      Bits = saved.Bits;
265    }
266
267  } FunctionTypeDepth;
268
269  // abi_tag is a gcc attribute, taking one or more strings called "tags".
270  // The goal is to annotate against which version of a library an object was
271  // built and to be able to provide backwards compatibility ("dual abi").
272  // For more information see docs/ItaniumMangleAbiTags.rst.
273  typedef SmallVector<StringRef, 4> AbiTagList;
274
275  // State to gather all implicit and explicit tags used in a mangled name.
276  // Must always have an instance of this while emitting any name to keep
277  // track.
278  class AbiTagState final {
279  public:
280    explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
281      Parent = LinkHead;
282      LinkHead = this;
283    }
284
285    // No copy, no move.
286    AbiTagState(const AbiTagState &) = delete;
287    AbiTagState &operator=(const AbiTagState &) = delete;
288
289    ~AbiTagState() { pop(); }
290
291    void write(raw_ostream &Out, const NamedDecl *ND,
292               const AbiTagList *AdditionalAbiTags) {
293      ND = cast<NamedDecl>(ND->getCanonicalDecl());
294      if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
295        assert(
296            !AdditionalAbiTags &&
297            "only function and variables need a list of additional abi tags");
298        if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
299          if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
300            UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
301                               AbiTag->tags().end());
302          }
303          // Don't emit abi tags for namespaces.
304          return;
305        }
306      }
307
308      AbiTagList TagList;
309      if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
310        UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
311                           AbiTag->tags().end());
312        TagList.insert(TagList.end(), AbiTag->tags().begin(),
313                       AbiTag->tags().end());
314      }
315
316      if (AdditionalAbiTags) {
317        UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
318                           AdditionalAbiTags->end());
319        TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
320                       AdditionalAbiTags->end());
321      }
322
323      llvm::sort(TagList);
324      TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
325
326      writeSortedUniqueAbiTags(Out, TagList);
327    }
328
329    const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
330    void setUsedAbiTags(const AbiTagList &AbiTags) {
331      UsedAbiTags = AbiTags;
332    }
333
334    const AbiTagList &getEmittedAbiTags() const {
335      return EmittedAbiTags;
336    }
337
338    const AbiTagList &getSortedUniqueUsedAbiTags() {
339      llvm::sort(UsedAbiTags);
340      UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
341                        UsedAbiTags.end());
342      return UsedAbiTags;
343    }
344
345  private:
346    //! All abi tags used implicitly or explicitly.
347    AbiTagList UsedAbiTags;
348    //! All explicit abi tags (i.e. not from namespace).
349    AbiTagList EmittedAbiTags;
350
351    AbiTagState *&LinkHead;
352    AbiTagState *Parent = nullptr;
353
354    void pop() {
355      assert(LinkHead == this &&
356             "abi tag link head must point to us on destruction");
357      if (Parent) {
358        Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
359                                   UsedAbiTags.begin(), UsedAbiTags.end());
360        Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
361                                      EmittedAbiTags.begin(),
362                                      EmittedAbiTags.end());
363      }
364      LinkHead = Parent;
365    }
366
367    void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
368      for (const auto &Tag : AbiTags) {
369        EmittedAbiTags.push_back(Tag);
370        Out << "B";
371        Out << Tag.size();
372        Out << Tag;
373      }
374    }
375  };
376
377  AbiTagState *AbiTags = nullptr;
378  AbiTagState AbiTagsRoot;
379
380  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
381  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
382
383  ASTContext &getASTContext() const { return Context.getASTContext(); }
384
385public:
386  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
387                 const NamedDecl *D = nullptr, bool NullOut_ = false)
388    : Context(C), Out(Out_), NullOut(NullOut_),  Structor(getStructor(D)),
389      StructorType(0), SeqID(0), AbiTagsRoot(AbiTags) {
390    // These can't be mangled without a ctor type or dtor type.
391    assert(!D || (!isa<CXXDestructorDecl>(D) &&
392                  !isa<CXXConstructorDecl>(D)));
393  }
394  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
395                 const CXXConstructorDecl *D, CXXCtorType Type)
396    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
397      SeqID(0), AbiTagsRoot(AbiTags) { }
398  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
399                 const CXXDestructorDecl *D, CXXDtorType Type)
400    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
401      SeqID(0), AbiTagsRoot(AbiTags) { }
402
403  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
404      : Context(Outer.Context), Out(Out_), NullOut(false),
405        Structor(Outer.Structor), StructorType(Outer.StructorType),
406        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
407        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
408
409  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
410      : Context(Outer.Context), Out(Out_), NullOut(true),
411        Structor(Outer.Structor), StructorType(Outer.StructorType),
412        SeqID(Outer.SeqID), FunctionTypeDepth(Outer.FunctionTypeDepth),
413        AbiTagsRoot(AbiTags), Substitutions(Outer.Substitutions) {}
414
415  raw_ostream &getStream() { return Out; }
416
417  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
418  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
419
420  void mangle(GlobalDecl GD);
421  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
422  void mangleNumber(const llvm::APSInt &I);
423  void mangleNumber(int64_t Number);
424  void mangleFloat(const llvm::APFloat &F);
425  void mangleFunctionEncoding(GlobalDecl GD);
426  void mangleSeqID(unsigned SeqID);
427  void mangleName(GlobalDecl GD);
428  void mangleType(QualType T);
429  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
430  void mangleLambdaSig(const CXXRecordDecl *Lambda);
431
432private:
433
434  bool mangleSubstitution(const NamedDecl *ND);
435  bool mangleSubstitution(QualType T);
436  bool mangleSubstitution(TemplateName Template);
437  bool mangleSubstitution(uintptr_t Ptr);
438
439  void mangleExistingSubstitution(TemplateName name);
440
441  bool mangleStandardSubstitution(const NamedDecl *ND);
442
443  void addSubstitution(const NamedDecl *ND) {
444    ND = cast<NamedDecl>(ND->getCanonicalDecl());
445
446    addSubstitution(reinterpret_cast<uintptr_t>(ND));
447  }
448  void addSubstitution(QualType T);
449  void addSubstitution(TemplateName Template);
450  void addSubstitution(uintptr_t Ptr);
451  // Destructive copy substitutions from other mangler.
452  void extendSubstitutions(CXXNameMangler* Other);
453
454  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
455                              bool recursive = false);
456  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
457                            DeclarationName name,
458                            const TemplateArgumentLoc *TemplateArgs,
459                            unsigned NumTemplateArgs,
460                            unsigned KnownArity = UnknownArity);
461
462  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
463
464  void mangleNameWithAbiTags(GlobalDecl GD,
465                             const AbiTagList *AdditionalAbiTags);
466  void mangleModuleName(const Module *M);
467  void mangleModuleNamePrefix(StringRef Name);
468  void mangleTemplateName(const TemplateDecl *TD,
469                          const TemplateArgument *TemplateArgs,
470                          unsigned NumTemplateArgs);
471  void mangleUnqualifiedName(GlobalDecl GD,
472                             const AbiTagList *AdditionalAbiTags) {
473    mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), UnknownArity,
474                          AdditionalAbiTags);
475  }
476  void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
477                             unsigned KnownArity,
478                             const AbiTagList *AdditionalAbiTags);
479  void mangleUnscopedName(GlobalDecl GD,
480                          const AbiTagList *AdditionalAbiTags);
481  void mangleUnscopedTemplateName(GlobalDecl GD,
482                                  const AbiTagList *AdditionalAbiTags);
483  void mangleUnscopedTemplateName(TemplateName,
484                                  const AbiTagList *AdditionalAbiTags);
485  void mangleSourceName(const IdentifierInfo *II);
486  void mangleRegCallName(const IdentifierInfo *II);
487  void mangleDeviceStubName(const IdentifierInfo *II);
488  void mangleSourceNameWithAbiTags(
489      const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
490  void mangleLocalName(GlobalDecl GD,
491                       const AbiTagList *AdditionalAbiTags);
492  void mangleBlockForPrefix(const BlockDecl *Block);
493  void mangleUnqualifiedBlock(const BlockDecl *Block);
494  void mangleTemplateParamDecl(const NamedDecl *Decl);
495  void mangleLambda(const CXXRecordDecl *Lambda);
496  void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
497                        const AbiTagList *AdditionalAbiTags,
498                        bool NoFunction=false);
499  void mangleNestedName(const TemplateDecl *TD,
500                        const TemplateArgument *TemplateArgs,
501                        unsigned NumTemplateArgs);
502  void manglePrefix(NestedNameSpecifier *qualifier);
503  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
504  void manglePrefix(QualType type);
505  void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
506  void mangleTemplatePrefix(TemplateName Template);
507  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
508                                      StringRef Prefix = "");
509  void mangleOperatorName(DeclarationName Name, unsigned Arity);
510  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
511  void mangleVendorQualifier(StringRef qualifier);
512  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
513  void mangleRefQualifier(RefQualifierKind RefQualifier);
514
515  void mangleObjCMethodName(const ObjCMethodDecl *MD);
516
517  // Declare manglers for every type class.
518#define ABSTRACT_TYPE(CLASS, PARENT)
519#define NON_CANONICAL_TYPE(CLASS, PARENT)
520#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
521#include "clang/AST/TypeNodes.inc"
522
523  void mangleType(const TagType*);
524  void mangleType(TemplateName);
525  static StringRef getCallingConvQualifierName(CallingConv CC);
526  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
527  void mangleExtFunctionInfo(const FunctionType *T);
528  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
529                              const FunctionDecl *FD = nullptr);
530  void mangleNeonVectorType(const VectorType *T);
531  void mangleNeonVectorType(const DependentVectorType *T);
532  void mangleAArch64NeonVectorType(const VectorType *T);
533  void mangleAArch64NeonVectorType(const DependentVectorType *T);
534
535  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
536  void mangleMemberExprBase(const Expr *base, bool isArrow);
537  void mangleMemberExpr(const Expr *base, bool isArrow,
538                        NestedNameSpecifier *qualifier,
539                        NamedDecl *firstQualifierLookup,
540                        DeclarationName name,
541                        const TemplateArgumentLoc *TemplateArgs,
542                        unsigned NumTemplateArgs,
543                        unsigned knownArity);
544  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
545  void mangleInitListElements(const InitListExpr *InitList);
546  void mangleDeclRefExpr(const NamedDecl *D);
547  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
548  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
549  void mangleCXXDtorType(CXXDtorType T);
550
551  void mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
552                          unsigned NumTemplateArgs);
553  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
554                          unsigned NumTemplateArgs);
555  void mangleTemplateArgs(const TemplateArgumentList &AL);
556  void mangleTemplateArg(TemplateArgument A);
557
558  void mangleTemplateParameter(unsigned Depth, unsigned Index);
559
560  void mangleFunctionParam(const ParmVarDecl *parm);
561
562  void writeAbiTags(const NamedDecl *ND,
563                    const AbiTagList *AdditionalAbiTags);
564
565  // Returns sorted unique list of ABI tags.
566  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
567  // Returns sorted unique list of ABI tags.
568  AbiTagList makeVariableTypeTags(const VarDecl *VD);
569};
570
571}
572
573bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
574  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
575  if (FD) {
576    LanguageLinkage L = FD->getLanguageLinkage();
577    // Overloadable functions need mangling.
578    if (FD->hasAttr<OverloadableAttr>())
579      return true;
580
581    // "main" is not mangled.
582    if (FD->isMain())
583      return false;
584
585    // The Windows ABI expects that we would never mangle "typical"
586    // user-defined entry points regardless of visibility or freestanding-ness.
587    //
588    // N.B. This is distinct from asking about "main".  "main" has a lot of
589    // special rules associated with it in the standard while these
590    // user-defined entry points are outside of the purview of the standard.
591    // For example, there can be only one definition for "main" in a standards
592    // compliant program; however nothing forbids the existence of wmain and
593    // WinMain in the same translation unit.
594    if (FD->isMSVCRTEntryPoint())
595      return false;
596
597    // C++ functions and those whose names are not a simple identifier need
598    // mangling.
599    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
600      return true;
601
602    // C functions are not mangled.
603    if (L == CLanguageLinkage)
604      return false;
605  }
606
607  // Otherwise, no mangling is done outside C++ mode.
608  if (!getASTContext().getLangOpts().CPlusPlus)
609    return false;
610
611  const VarDecl *VD = dyn_cast<VarDecl>(D);
612  if (VD && !isa<DecompositionDecl>(D)) {
613    // C variables are not mangled.
614    if (VD->isExternC())
615      return false;
616
617    // Variables at global scope with non-internal linkage are not mangled
618    const DeclContext *DC = getEffectiveDeclContext(D);
619    // Check for extern variable declared locally.
620    if (DC->isFunctionOrMethod() && D->hasLinkage())
621      while (!DC->isNamespace() && !DC->isTranslationUnit())
622        DC = getEffectiveParentContext(DC);
623    if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
624        !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
625        !isa<VarTemplateSpecializationDecl>(D))
626      return false;
627  }
628
629  return true;
630}
631
632void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
633                                  const AbiTagList *AdditionalAbiTags) {
634  assert(AbiTags && "require AbiTagState");
635  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
636}
637
638void CXXNameMangler::mangleSourceNameWithAbiTags(
639    const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
640  mangleSourceName(ND->getIdentifier());
641  writeAbiTags(ND, AdditionalAbiTags);
642}
643
644void CXXNameMangler::mangle(GlobalDecl GD) {
645  // <mangled-name> ::= _Z <encoding>
646  //            ::= <data name>
647  //            ::= <special-name>
648  Out << "_Z";
649  if (isa<FunctionDecl>(GD.getDecl()))
650    mangleFunctionEncoding(GD);
651  else if (const VarDecl *VD = dyn_cast<VarDecl>(GD.getDecl()))
652    mangleName(VD);
653  else if (const IndirectFieldDecl *IFD =
654               dyn_cast<IndirectFieldDecl>(GD.getDecl()))
655    mangleName(IFD->getAnonField());
656  else if (const FieldDecl *FD = dyn_cast<FieldDecl>(GD.getDecl()))
657    mangleName(FD);
658  else if (const MSGuidDecl *GuidD = dyn_cast<MSGuidDecl>(GD.getDecl()))
659    mangleName(GuidD);
660  else
661    llvm_unreachable("unexpected kind of global decl");
662}
663
664void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
665  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
666  // <encoding> ::= <function name> <bare-function-type>
667
668  // Don't mangle in the type if this isn't a decl we should typically mangle.
669  if (!Context.shouldMangleDeclName(FD)) {
670    mangleName(GD);
671    return;
672  }
673
674  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
675  if (ReturnTypeAbiTags.empty()) {
676    // There are no tags for return type, the simplest case.
677    mangleName(GD);
678    mangleFunctionEncodingBareType(FD);
679    return;
680  }
681
682  // Mangle function name and encoding to temporary buffer.
683  // We have to output name and encoding to the same mangler to get the same
684  // substitution as it will be in final mangling.
685  SmallString<256> FunctionEncodingBuf;
686  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
687  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
688  // Output name of the function.
689  FunctionEncodingMangler.disableDerivedAbiTags();
690  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
691
692  // Remember length of the function name in the buffer.
693  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
694  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
695
696  // Get tags from return type that are not present in function name or
697  // encoding.
698  const AbiTagList &UsedAbiTags =
699      FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
700  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
701  AdditionalAbiTags.erase(
702      std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
703                          UsedAbiTags.begin(), UsedAbiTags.end(),
704                          AdditionalAbiTags.begin()),
705      AdditionalAbiTags.end());
706
707  // Output name with implicit tags and function encoding from temporary buffer.
708  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
709  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
710
711  // Function encoding could create new substitutions so we have to add
712  // temp mangled substitutions to main mangler.
713  extendSubstitutions(&FunctionEncodingMangler);
714}
715
716void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
717  if (FD->hasAttr<EnableIfAttr>()) {
718    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
719    Out << "Ua9enable_ifI";
720    for (AttrVec::const_iterator I = FD->getAttrs().begin(),
721                                 E = FD->getAttrs().end();
722         I != E; ++I) {
723      EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
724      if (!EIA)
725        continue;
726      Out << 'X';
727      mangleExpression(EIA->getCond());
728      Out << 'E';
729    }
730    Out << 'E';
731    FunctionTypeDepth.pop(Saved);
732  }
733
734  // When mangling an inheriting constructor, the bare function type used is
735  // that of the inherited constructor.
736  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
737    if (auto Inherited = CD->getInheritedConstructor())
738      FD = Inherited.getConstructor();
739
740  // Whether the mangling of a function type includes the return type depends on
741  // the context and the nature of the function. The rules for deciding whether
742  // the return type is included are:
743  //
744  //   1. Template functions (names or types) have return types encoded, with
745  //   the exceptions listed below.
746  //   2. Function types not appearing as part of a function name mangling,
747  //   e.g. parameters, pointer types, etc., have return type encoded, with the
748  //   exceptions listed below.
749  //   3. Non-template function names do not have return types encoded.
750  //
751  // The exceptions mentioned in (1) and (2) above, for which the return type is
752  // never included, are
753  //   1. Constructors.
754  //   2. Destructors.
755  //   3. Conversion operator functions, e.g. operator int.
756  bool MangleReturnType = false;
757  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
758    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
759          isa<CXXConversionDecl>(FD)))
760      MangleReturnType = true;
761
762    // Mangle the type of the primary template.
763    FD = PrimaryTemplate->getTemplatedDecl();
764  }
765
766  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
767                         MangleReturnType, FD);
768}
769
770static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
771  while (isa<LinkageSpecDecl>(DC)) {
772    DC = getEffectiveParentContext(DC);
773  }
774
775  return DC;
776}
777
778/// Return whether a given namespace is the 'std' namespace.
779static bool isStd(const NamespaceDecl *NS) {
780  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
781                                ->isTranslationUnit())
782    return false;
783
784  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
785  return II && II->isStr("std");
786}
787
788// isStdNamespace - Return whether a given decl context is a toplevel 'std'
789// namespace.
790static bool isStdNamespace(const DeclContext *DC) {
791  if (!DC->isNamespace())
792    return false;
793
794  return isStd(cast<NamespaceDecl>(DC));
795}
796
797static const GlobalDecl
798isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
799  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
800  // Check if we have a function template.
801  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
802    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
803      TemplateArgs = FD->getTemplateSpecializationArgs();
804      return GD.getWithDecl(TD);
805    }
806  }
807
808  // Check if we have a class template.
809  if (const ClassTemplateSpecializationDecl *Spec =
810        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
811    TemplateArgs = &Spec->getTemplateArgs();
812    return GD.getWithDecl(Spec->getSpecializedTemplate());
813  }
814
815  // Check if we have a variable template.
816  if (const VarTemplateSpecializationDecl *Spec =
817          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
818    TemplateArgs = &Spec->getTemplateArgs();
819    return GD.getWithDecl(Spec->getSpecializedTemplate());
820  }
821
822  return GlobalDecl();
823}
824
825void CXXNameMangler::mangleName(GlobalDecl GD) {
826  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
827  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
828    // Variables should have implicit tags from its type.
829    AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
830    if (VariableTypeAbiTags.empty()) {
831      // Simple case no variable type tags.
832      mangleNameWithAbiTags(VD, nullptr);
833      return;
834    }
835
836    // Mangle variable name to null stream to collect tags.
837    llvm::raw_null_ostream NullOutStream;
838    CXXNameMangler VariableNameMangler(*this, NullOutStream);
839    VariableNameMangler.disableDerivedAbiTags();
840    VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
841
842    // Get tags from variable type that are not present in its name.
843    const AbiTagList &UsedAbiTags =
844        VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
845    AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
846    AdditionalAbiTags.erase(
847        std::set_difference(VariableTypeAbiTags.begin(),
848                            VariableTypeAbiTags.end(), UsedAbiTags.begin(),
849                            UsedAbiTags.end(), AdditionalAbiTags.begin()),
850        AdditionalAbiTags.end());
851
852    // Output name with implicit tags.
853    mangleNameWithAbiTags(VD, &AdditionalAbiTags);
854  } else {
855    mangleNameWithAbiTags(GD, nullptr);
856  }
857}
858
859void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
860                                           const AbiTagList *AdditionalAbiTags) {
861  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
862  //  <name> ::= [<module-name>] <nested-name>
863  //         ::= [<module-name>] <unscoped-name>
864  //         ::= [<module-name>] <unscoped-template-name> <template-args>
865  //         ::= <local-name>
866  //
867  const DeclContext *DC = getEffectiveDeclContext(ND);
868
869  // If this is an extern variable declared locally, the relevant DeclContext
870  // is that of the containing namespace, or the translation unit.
871  // FIXME: This is a hack; extern variables declared locally should have
872  // a proper semantic declaration context!
873  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
874    while (!DC->isNamespace() && !DC->isTranslationUnit())
875      DC = getEffectiveParentContext(DC);
876  else if (GetLocalClassDecl(ND)) {
877    mangleLocalName(GD, AdditionalAbiTags);
878    return;
879  }
880
881  DC = IgnoreLinkageSpecDecls(DC);
882
883  if (isLocalContainerContext(DC)) {
884    mangleLocalName(GD, AdditionalAbiTags);
885    return;
886  }
887
888  // Do not mangle the owning module for an external linkage declaration.
889  // This enables backwards-compatibility with non-modular code, and is
890  // a valid choice since conflicts are not permitted by C++ Modules TS
891  // [basic.def.odr]/6.2.
892  if (!ND->hasExternalFormalLinkage())
893    if (Module *M = ND->getOwningModuleForLinkage())
894      mangleModuleName(M);
895
896  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
897    // Check if we have a template.
898    const TemplateArgumentList *TemplateArgs = nullptr;
899    if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
900      mangleUnscopedTemplateName(TD, AdditionalAbiTags);
901      mangleTemplateArgs(*TemplateArgs);
902      return;
903    }
904
905    mangleUnscopedName(GD, AdditionalAbiTags);
906    return;
907  }
908
909  mangleNestedName(GD, DC, AdditionalAbiTags);
910}
911
912void CXXNameMangler::mangleModuleName(const Module *M) {
913  // Implement the C++ Modules TS name mangling proposal; see
914  //     https://gcc.gnu.org/wiki/cxx-modules?action=AttachFile
915  //
916  //   <module-name> ::= W <unscoped-name>+ E
917  //                 ::= W <module-subst> <unscoped-name>* E
918  Out << 'W';
919  mangleModuleNamePrefix(M->Name);
920  Out << 'E';
921}
922
923void CXXNameMangler::mangleModuleNamePrefix(StringRef Name) {
924  //  <module-subst> ::= _ <seq-id>          # 0 < seq-id < 10
925  //                 ::= W <seq-id - 10> _   # otherwise
926  auto It = ModuleSubstitutions.find(Name);
927  if (It != ModuleSubstitutions.end()) {
928    if (It->second < 10)
929      Out << '_' << static_cast<char>('0' + It->second);
930    else
931      Out << 'W' << (It->second - 10) << '_';
932    return;
933  }
934
935  // FIXME: Preserve hierarchy in module names rather than flattening
936  // them to strings; use Module*s as substitution keys.
937  auto Parts = Name.rsplit('.');
938  if (Parts.second.empty())
939    Parts.second = Parts.first;
940  else
941    mangleModuleNamePrefix(Parts.first);
942
943  Out << Parts.second.size() << Parts.second;
944  ModuleSubstitutions.insert({Name, ModuleSubstitutions.size()});
945}
946
947void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
948                                        const TemplateArgument *TemplateArgs,
949                                        unsigned NumTemplateArgs) {
950  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
951
952  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
953    mangleUnscopedTemplateName(TD, nullptr);
954    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
955  } else {
956    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
957  }
958}
959
960void CXXNameMangler::mangleUnscopedName(GlobalDecl GD,
961                                        const AbiTagList *AdditionalAbiTags) {
962  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
963  //  <unscoped-name> ::= <unqualified-name>
964  //                  ::= St <unqualified-name>   # ::std::
965
966  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
967    Out << "St";
968
969  mangleUnqualifiedName(GD, AdditionalAbiTags);
970}
971
972void CXXNameMangler::mangleUnscopedTemplateName(
973    GlobalDecl GD, const AbiTagList *AdditionalAbiTags) {
974  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
975  //     <unscoped-template-name> ::= <unscoped-name>
976  //                              ::= <substitution>
977  if (mangleSubstitution(ND))
978    return;
979
980  // <template-template-param> ::= <template-param>
981  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
982    assert(!AdditionalAbiTags &&
983           "template template param cannot have abi tags");
984    mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
985  } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
986    mangleUnscopedName(GD, AdditionalAbiTags);
987  } else {
988    mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), AdditionalAbiTags);
989  }
990
991  addSubstitution(ND);
992}
993
994void CXXNameMangler::mangleUnscopedTemplateName(
995    TemplateName Template, const AbiTagList *AdditionalAbiTags) {
996  //     <unscoped-template-name> ::= <unscoped-name>
997  //                              ::= <substitution>
998  if (TemplateDecl *TD = Template.getAsTemplateDecl())
999    return mangleUnscopedTemplateName(TD, AdditionalAbiTags);
1000
1001  if (mangleSubstitution(Template))
1002    return;
1003
1004  assert(!AdditionalAbiTags &&
1005         "dependent template name cannot have abi tags");
1006
1007  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1008  assert(Dependent && "Not a dependent template name?");
1009  if (const IdentifierInfo *Id = Dependent->getIdentifier())
1010    mangleSourceName(Id);
1011  else
1012    mangleOperatorName(Dependent->getOperator(), UnknownArity);
1013
1014  addSubstitution(Template);
1015}
1016
1017void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1018  // ABI:
1019  //   Floating-point literals are encoded using a fixed-length
1020  //   lowercase hexadecimal string corresponding to the internal
1021  //   representation (IEEE on Itanium), high-order bytes first,
1022  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1023  //   on Itanium.
1024  // The 'without leading zeroes' thing seems to be an editorial
1025  // mistake; see the discussion on cxx-abi-dev beginning on
1026  // 2012-01-16.
1027
1028  // Our requirements here are just barely weird enough to justify
1029  // using a custom algorithm instead of post-processing APInt::toString().
1030
1031  llvm::APInt valueBits = f.bitcastToAPInt();
1032  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1033  assert(numCharacters != 0);
1034
1035  // Allocate a buffer of the right number of characters.
1036  SmallVector<char, 20> buffer(numCharacters);
1037
1038  // Fill the buffer left-to-right.
1039  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1040    // The bit-index of the next hex digit.
1041    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1042
1043    // Project out 4 bits starting at 'digitIndex'.
1044    uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1045    hexDigit >>= (digitBitIndex % 64);
1046    hexDigit &= 0xF;
1047
1048    // Map that over to a lowercase hex digit.
1049    static const char charForHex[16] = {
1050      '0', '1', '2', '3', '4', '5', '6', '7',
1051      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1052    };
1053    buffer[stringIndex] = charForHex[hexDigit];
1054  }
1055
1056  Out.write(buffer.data(), numCharacters);
1057}
1058
1059void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1060  if (Value.isSigned() && Value.isNegative()) {
1061    Out << 'n';
1062    Value.abs().print(Out, /*signed*/ false);
1063  } else {
1064    Value.print(Out, /*signed*/ false);
1065  }
1066}
1067
1068void CXXNameMangler::mangleNumber(int64_t Number) {
1069  //  <number> ::= [n] <non-negative decimal integer>
1070  if (Number < 0) {
1071    Out << 'n';
1072    Number = -Number;
1073  }
1074
1075  Out << Number;
1076}
1077
1078void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1079  //  <call-offset>  ::= h <nv-offset> _
1080  //                 ::= v <v-offset> _
1081  //  <nv-offset>    ::= <offset number>        # non-virtual base override
1082  //  <v-offset>     ::= <offset number> _ <virtual offset number>
1083  //                      # virtual base override, with vcall offset
1084  if (!Virtual) {
1085    Out << 'h';
1086    mangleNumber(NonVirtual);
1087    Out << '_';
1088    return;
1089  }
1090
1091  Out << 'v';
1092  mangleNumber(NonVirtual);
1093  Out << '_';
1094  mangleNumber(Virtual);
1095  Out << '_';
1096}
1097
1098void CXXNameMangler::manglePrefix(QualType type) {
1099  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1100    if (!mangleSubstitution(QualType(TST, 0))) {
1101      mangleTemplatePrefix(TST->getTemplateName());
1102
1103      // FIXME: GCC does not appear to mangle the template arguments when
1104      // the template in question is a dependent template name. Should we
1105      // emulate that badness?
1106      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1107      addSubstitution(QualType(TST, 0));
1108    }
1109  } else if (const auto *DTST =
1110                 type->getAs<DependentTemplateSpecializationType>()) {
1111    if (!mangleSubstitution(QualType(DTST, 0))) {
1112      TemplateName Template = getASTContext().getDependentTemplateName(
1113          DTST->getQualifier(), DTST->getIdentifier());
1114      mangleTemplatePrefix(Template);
1115
1116      // FIXME: GCC does not appear to mangle the template arguments when
1117      // the template in question is a dependent template name. Should we
1118      // emulate that badness?
1119      mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1120      addSubstitution(QualType(DTST, 0));
1121    }
1122  } else {
1123    // We use the QualType mangle type variant here because it handles
1124    // substitutions.
1125    mangleType(type);
1126  }
1127}
1128
1129/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1130///
1131/// \param recursive - true if this is being called recursively,
1132///   i.e. if there is more prefix "to the right".
1133void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1134                                            bool recursive) {
1135
1136  // x, ::x
1137  // <unresolved-name> ::= [gs] <base-unresolved-name>
1138
1139  // T::x / decltype(p)::x
1140  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1141
1142  // T::N::x /decltype(p)::N::x
1143  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1144  //                       <base-unresolved-name>
1145
1146  // A::x, N::y, A<T>::z; "gs" means leading "::"
1147  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1148  //                       <base-unresolved-name>
1149
1150  switch (qualifier->getKind()) {
1151  case NestedNameSpecifier::Global:
1152    Out << "gs";
1153
1154    // We want an 'sr' unless this is the entire NNS.
1155    if (recursive)
1156      Out << "sr";
1157
1158    // We never want an 'E' here.
1159    return;
1160
1161  case NestedNameSpecifier::Super:
1162    llvm_unreachable("Can't mangle __super specifier");
1163
1164  case NestedNameSpecifier::Namespace:
1165    if (qualifier->getPrefix())
1166      mangleUnresolvedPrefix(qualifier->getPrefix(),
1167                             /*recursive*/ true);
1168    else
1169      Out << "sr";
1170    mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1171    break;
1172  case NestedNameSpecifier::NamespaceAlias:
1173    if (qualifier->getPrefix())
1174      mangleUnresolvedPrefix(qualifier->getPrefix(),
1175                             /*recursive*/ true);
1176    else
1177      Out << "sr";
1178    mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1179    break;
1180
1181  case NestedNameSpecifier::TypeSpec:
1182  case NestedNameSpecifier::TypeSpecWithTemplate: {
1183    const Type *type = qualifier->getAsType();
1184
1185    // We only want to use an unresolved-type encoding if this is one of:
1186    //   - a decltype
1187    //   - a template type parameter
1188    //   - a template template parameter with arguments
1189    // In all of these cases, we should have no prefix.
1190    if (qualifier->getPrefix()) {
1191      mangleUnresolvedPrefix(qualifier->getPrefix(),
1192                             /*recursive*/ true);
1193    } else {
1194      // Otherwise, all the cases want this.
1195      Out << "sr";
1196    }
1197
1198    if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1199      return;
1200
1201    break;
1202  }
1203
1204  case NestedNameSpecifier::Identifier:
1205    // Member expressions can have these without prefixes.
1206    if (qualifier->getPrefix())
1207      mangleUnresolvedPrefix(qualifier->getPrefix(),
1208                             /*recursive*/ true);
1209    else
1210      Out << "sr";
1211
1212    mangleSourceName(qualifier->getAsIdentifier());
1213    // An Identifier has no type information, so we can't emit abi tags for it.
1214    break;
1215  }
1216
1217  // If this was the innermost part of the NNS, and we fell out to
1218  // here, append an 'E'.
1219  if (!recursive)
1220    Out << 'E';
1221}
1222
1223/// Mangle an unresolved-name, which is generally used for names which
1224/// weren't resolved to specific entities.
1225void CXXNameMangler::mangleUnresolvedName(
1226    NestedNameSpecifier *qualifier, DeclarationName name,
1227    const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1228    unsigned knownArity) {
1229  if (qualifier) mangleUnresolvedPrefix(qualifier);
1230  switch (name.getNameKind()) {
1231    // <base-unresolved-name> ::= <simple-id>
1232    case DeclarationName::Identifier:
1233      mangleSourceName(name.getAsIdentifierInfo());
1234      break;
1235    // <base-unresolved-name> ::= dn <destructor-name>
1236    case DeclarationName::CXXDestructorName:
1237      Out << "dn";
1238      mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1239      break;
1240    // <base-unresolved-name> ::= on <operator-name>
1241    case DeclarationName::CXXConversionFunctionName:
1242    case DeclarationName::CXXLiteralOperatorName:
1243    case DeclarationName::CXXOperatorName:
1244      Out << "on";
1245      mangleOperatorName(name, knownArity);
1246      break;
1247    case DeclarationName::CXXConstructorName:
1248      llvm_unreachable("Can't mangle a constructor name!");
1249    case DeclarationName::CXXUsingDirective:
1250      llvm_unreachable("Can't mangle a using directive name!");
1251    case DeclarationName::CXXDeductionGuideName:
1252      llvm_unreachable("Can't mangle a deduction guide name!");
1253    case DeclarationName::ObjCMultiArgSelector:
1254    case DeclarationName::ObjCOneArgSelector:
1255    case DeclarationName::ObjCZeroArgSelector:
1256      llvm_unreachable("Can't mangle Objective-C selector names here!");
1257  }
1258
1259  // The <simple-id> and on <operator-name> productions end in an optional
1260  // <template-args>.
1261  if (TemplateArgs)
1262    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1263}
1264
1265void CXXNameMangler::mangleUnqualifiedName(GlobalDecl GD,
1266                                           DeclarationName Name,
1267                                           unsigned KnownArity,
1268                                           const AbiTagList *AdditionalAbiTags) {
1269  const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1270  unsigned Arity = KnownArity;
1271  //  <unqualified-name> ::= <operator-name>
1272  //                     ::= <ctor-dtor-name>
1273  //                     ::= <source-name>
1274  switch (Name.getNameKind()) {
1275  case DeclarationName::Identifier: {
1276    const IdentifierInfo *II = Name.getAsIdentifierInfo();
1277
1278    // We mangle decomposition declarations as the names of their bindings.
1279    if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1280      // FIXME: Non-standard mangling for decomposition declarations:
1281      //
1282      //  <unqualified-name> ::= DC <source-name>* E
1283      //
1284      // These can never be referenced across translation units, so we do
1285      // not need a cross-vendor mangling for anything other than demanglers.
1286      // Proposed on cxx-abi-dev on 2016-08-12
1287      Out << "DC";
1288      for (auto *BD : DD->bindings())
1289        mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1290      Out << 'E';
1291      writeAbiTags(ND, AdditionalAbiTags);
1292      break;
1293    }
1294
1295    if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1296      // We follow MSVC in mangling GUID declarations as if they were variables
1297      // with a particular reserved name. Continue the pretense here.
1298      SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1299      llvm::raw_svector_ostream GUIDOS(GUID);
1300      Context.mangleMSGuidDecl(GD, GUIDOS);
1301      Out << GUID.size() << GUID;
1302      break;
1303    }
1304
1305    if (II) {
1306      // Match GCC's naming convention for internal linkage symbols, for
1307      // symbols that are not actually visible outside of this TU. GCC
1308      // distinguishes between internal and external linkage symbols in
1309      // its mangling, to support cases like this that were valid C++ prior
1310      // to DR426:
1311      //
1312      //   void test() { extern void foo(); }
1313      //   static void foo();
1314      //
1315      // Don't bother with the L marker for names in anonymous namespaces; the
1316      // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1317      // matches GCC anyway, because GCC does not treat anonymous namespaces as
1318      // implying internal linkage.
1319      if (ND && ND->getFormalLinkage() == InternalLinkage &&
1320          !ND->isExternallyVisible() &&
1321          getEffectiveDeclContext(ND)->isFileContext() &&
1322          !ND->isInAnonymousNamespace())
1323        Out << 'L';
1324
1325      auto *FD = dyn_cast<FunctionDecl>(ND);
1326      bool IsRegCall = FD &&
1327                       FD->getType()->castAs<FunctionType>()->getCallConv() ==
1328                           clang::CC_X86RegCall;
1329      bool IsDeviceStub =
1330          FD && FD->hasAttr<CUDAGlobalAttr>() &&
1331          GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1332      if (IsDeviceStub)
1333        mangleDeviceStubName(II);
1334      else if (IsRegCall)
1335        mangleRegCallName(II);
1336      else
1337        mangleSourceName(II);
1338
1339      writeAbiTags(ND, AdditionalAbiTags);
1340      break;
1341    }
1342
1343    // Otherwise, an anonymous entity.  We must have a declaration.
1344    assert(ND && "mangling empty name without declaration");
1345
1346    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1347      if (NS->isAnonymousNamespace()) {
1348        // This is how gcc mangles these names.
1349        Out << "12_GLOBAL__N_1";
1350        break;
1351      }
1352    }
1353
1354    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1355      // We must have an anonymous union or struct declaration.
1356      const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1357
1358      // Itanium C++ ABI 5.1.2:
1359      //
1360      //   For the purposes of mangling, the name of an anonymous union is
1361      //   considered to be the name of the first named data member found by a
1362      //   pre-order, depth-first, declaration-order walk of the data members of
1363      //   the anonymous union. If there is no such data member (i.e., if all of
1364      //   the data members in the union are unnamed), then there is no way for
1365      //   a program to refer to the anonymous union, and there is therefore no
1366      //   need to mangle its name.
1367      assert(RD->isAnonymousStructOrUnion()
1368             && "Expected anonymous struct or union!");
1369      const FieldDecl *FD = RD->findFirstNamedDataMember();
1370
1371      // It's actually possible for various reasons for us to get here
1372      // with an empty anonymous struct / union.  Fortunately, it
1373      // doesn't really matter what name we generate.
1374      if (!FD) break;
1375      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1376
1377      mangleSourceName(FD->getIdentifier());
1378      // Not emitting abi tags: internal name anyway.
1379      break;
1380    }
1381
1382    // Class extensions have no name as a category, and it's possible
1383    // for them to be the semantic parent of certain declarations
1384    // (primarily, tag decls defined within declarations).  Such
1385    // declarations will always have internal linkage, so the name
1386    // doesn't really matter, but we shouldn't crash on them.  For
1387    // safety, just handle all ObjC containers here.
1388    if (isa<ObjCContainerDecl>(ND))
1389      break;
1390
1391    // We must have an anonymous struct.
1392    const TagDecl *TD = cast<TagDecl>(ND);
1393    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1394      assert(TD->getDeclContext() == D->getDeclContext() &&
1395             "Typedef should not be in another decl context!");
1396      assert(D->getDeclName().getAsIdentifierInfo() &&
1397             "Typedef was not named!");
1398      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1399      assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1400      // Explicit abi tags are still possible; take from underlying type, not
1401      // from typedef.
1402      writeAbiTags(TD, nullptr);
1403      break;
1404    }
1405
1406    // <unnamed-type-name> ::= <closure-type-name>
1407    //
1408    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1409    // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1410    //     # Parameter types or 'v' for 'void'.
1411    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1412      if (Record->isLambda() && (Record->getLambdaManglingNumber() ||
1413                                 Context.isUniqueNameMangler())) {
1414        assert(!AdditionalAbiTags &&
1415               "Lambda type cannot have additional abi tags");
1416        mangleLambda(Record);
1417        break;
1418      }
1419    }
1420
1421    if (TD->isExternallyVisible()) {
1422      unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1423      Out << "Ut";
1424      if (UnnamedMangle > 1)
1425        Out << UnnamedMangle - 2;
1426      Out << '_';
1427      writeAbiTags(TD, AdditionalAbiTags);
1428      break;
1429    }
1430
1431    // Get a unique id for the anonymous struct. If it is not a real output
1432    // ID doesn't matter so use fake one.
1433    unsigned AnonStructId = NullOut ? 0 : Context.getAnonymousStructId(TD);
1434
1435    // Mangle it as a source name in the form
1436    // [n] $_<id>
1437    // where n is the length of the string.
1438    SmallString<8> Str;
1439    Str += "$_";
1440    Str += llvm::utostr(AnonStructId);
1441
1442    Out << Str.size();
1443    Out << Str;
1444    break;
1445  }
1446
1447  case DeclarationName::ObjCZeroArgSelector:
1448  case DeclarationName::ObjCOneArgSelector:
1449  case DeclarationName::ObjCMultiArgSelector:
1450    llvm_unreachable("Can't mangle Objective-C selector names here!");
1451
1452  case DeclarationName::CXXConstructorName: {
1453    const CXXRecordDecl *InheritedFrom = nullptr;
1454    const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1455    if (auto Inherited =
1456            cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1457      InheritedFrom = Inherited.getConstructor()->getParent();
1458      InheritedTemplateArgs =
1459          Inherited.getConstructor()->getTemplateSpecializationArgs();
1460    }
1461
1462    if (ND == Structor)
1463      // If the named decl is the C++ constructor we're mangling, use the type
1464      // we were given.
1465      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1466    else
1467      // Otherwise, use the complete constructor name. This is relevant if a
1468      // class with a constructor is declared within a constructor.
1469      mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1470
1471    // FIXME: The template arguments are part of the enclosing prefix or
1472    // nested-name, but it's more convenient to mangle them here.
1473    if (InheritedTemplateArgs)
1474      mangleTemplateArgs(*InheritedTemplateArgs);
1475
1476    writeAbiTags(ND, AdditionalAbiTags);
1477    break;
1478  }
1479
1480  case DeclarationName::CXXDestructorName:
1481    if (ND == Structor)
1482      // If the named decl is the C++ destructor we're mangling, use the type we
1483      // were given.
1484      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1485    else
1486      // Otherwise, use the complete destructor name. This is relevant if a
1487      // class with a destructor is declared within a destructor.
1488      mangleCXXDtorType(Dtor_Complete);
1489    writeAbiTags(ND, AdditionalAbiTags);
1490    break;
1491
1492  case DeclarationName::CXXOperatorName:
1493    if (ND && Arity == UnknownArity) {
1494      Arity = cast<FunctionDecl>(ND)->getNumParams();
1495
1496      // If we have a member function, we need to include the 'this' pointer.
1497      if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1498        if (!MD->isStatic())
1499          Arity++;
1500    }
1501    LLVM_FALLTHROUGH;
1502  case DeclarationName::CXXConversionFunctionName:
1503  case DeclarationName::CXXLiteralOperatorName:
1504    mangleOperatorName(Name, Arity);
1505    writeAbiTags(ND, AdditionalAbiTags);
1506    break;
1507
1508  case DeclarationName::CXXDeductionGuideName:
1509    llvm_unreachable("Can't mangle a deduction guide name!");
1510
1511  case DeclarationName::CXXUsingDirective:
1512    llvm_unreachable("Can't mangle a using directive name!");
1513  }
1514}
1515
1516void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1517  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1518  // <number> ::= [n] <non-negative decimal integer>
1519  // <identifier> ::= <unqualified source code identifier>
1520  Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1521      << II->getName();
1522}
1523
1524void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1525  // <source-name> ::= <positive length number> __device_stub__ <identifier>
1526  // <number> ::= [n] <non-negative decimal integer>
1527  // <identifier> ::= <unqualified source code identifier>
1528  Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1529      << II->getName();
1530}
1531
1532void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1533  // <source-name> ::= <positive length number> <identifier>
1534  // <number> ::= [n] <non-negative decimal integer>
1535  // <identifier> ::= <unqualified source code identifier>
1536  Out << II->getLength() << II->getName();
1537}
1538
1539void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1540                                      const DeclContext *DC,
1541                                      const AbiTagList *AdditionalAbiTags,
1542                                      bool NoFunction) {
1543  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1544  // <nested-name>
1545  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1546  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1547  //       <template-args> E
1548
1549  Out << 'N';
1550  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1551    Qualifiers MethodQuals = Method->getMethodQualifiers();
1552    // We do not consider restrict a distinguishing attribute for overloading
1553    // purposes so we must not mangle it.
1554    MethodQuals.removeRestrict();
1555    mangleQualifiers(MethodQuals);
1556    mangleRefQualifier(Method->getRefQualifier());
1557  }
1558
1559  // Check if we have a template.
1560  const TemplateArgumentList *TemplateArgs = nullptr;
1561  if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1562    mangleTemplatePrefix(TD, NoFunction);
1563    mangleTemplateArgs(*TemplateArgs);
1564  }
1565  else {
1566    manglePrefix(DC, NoFunction);
1567    mangleUnqualifiedName(GD, AdditionalAbiTags);
1568  }
1569
1570  Out << 'E';
1571}
1572void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1573                                      const TemplateArgument *TemplateArgs,
1574                                      unsigned NumTemplateArgs) {
1575  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1576
1577  Out << 'N';
1578
1579  mangleTemplatePrefix(TD);
1580  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1581
1582  Out << 'E';
1583}
1584
1585static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1586  GlobalDecl GD;
1587  // The Itanium spec says:
1588  // For entities in constructors and destructors, the mangling of the
1589  // complete object constructor or destructor is used as the base function
1590  // name, i.e. the C1 or D1 version.
1591  if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1592    GD = GlobalDecl(CD, Ctor_Complete);
1593  else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1594    GD = GlobalDecl(DD, Dtor_Complete);
1595  else
1596    GD = GlobalDecl(cast<FunctionDecl>(DC));
1597  return GD;
1598}
1599
1600void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1601                                     const AbiTagList *AdditionalAbiTags) {
1602  const Decl *D = GD.getDecl();
1603  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1604  //              := Z <function encoding> E s [<discriminator>]
1605  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1606  //                 _ <entity name>
1607  // <discriminator> := _ <non-negative number>
1608  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1609  const RecordDecl *RD = GetLocalClassDecl(D);
1610  const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1611
1612  Out << 'Z';
1613
1614  {
1615    AbiTagState LocalAbiTags(AbiTags);
1616
1617    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1618      mangleObjCMethodName(MD);
1619    else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1620      mangleBlockForPrefix(BD);
1621    else
1622      mangleFunctionEncoding(getParentOfLocalEntity(DC));
1623
1624    // Implicit ABI tags (from namespace) are not available in the following
1625    // entity; reset to actually emitted tags, which are available.
1626    LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1627  }
1628
1629  Out << 'E';
1630
1631  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1632  // be a bug that is fixed in trunk.
1633
1634  if (RD) {
1635    // The parameter number is omitted for the last parameter, 0 for the
1636    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1637    // <entity name> will of course contain a <closure-type-name>: Its
1638    // numbering will be local to the particular argument in which it appears
1639    // -- other default arguments do not affect its encoding.
1640    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1641    if (CXXRD && CXXRD->isLambda()) {
1642      if (const ParmVarDecl *Parm
1643              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1644        if (const FunctionDecl *Func
1645              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1646          Out << 'd';
1647          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1648          if (Num > 1)
1649            mangleNumber(Num - 2);
1650          Out << '_';
1651        }
1652      }
1653    }
1654
1655    // Mangle the name relative to the closest enclosing function.
1656    // equality ok because RD derived from ND above
1657    if (D == RD)  {
1658      mangleUnqualifiedName(RD, AdditionalAbiTags);
1659    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1660      manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1661      assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1662      mangleUnqualifiedBlock(BD);
1663    } else {
1664      const NamedDecl *ND = cast<NamedDecl>(D);
1665      mangleNestedName(GD, getEffectiveDeclContext(ND), AdditionalAbiTags,
1666                       true /*NoFunction*/);
1667    }
1668  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1669    // Mangle a block in a default parameter; see above explanation for
1670    // lambdas.
1671    if (const ParmVarDecl *Parm
1672            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1673      if (const FunctionDecl *Func
1674            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1675        Out << 'd';
1676        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1677        if (Num > 1)
1678          mangleNumber(Num - 2);
1679        Out << '_';
1680      }
1681    }
1682
1683    assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1684    mangleUnqualifiedBlock(BD);
1685  } else {
1686    mangleUnqualifiedName(GD, AdditionalAbiTags);
1687  }
1688
1689  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1690    unsigned disc;
1691    if (Context.getNextDiscriminator(ND, disc)) {
1692      if (disc < 10)
1693        Out << '_' << disc;
1694      else
1695        Out << "__" << disc << '_';
1696    }
1697  }
1698}
1699
1700void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1701  if (GetLocalClassDecl(Block)) {
1702    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1703    return;
1704  }
1705  const DeclContext *DC = getEffectiveDeclContext(Block);
1706  if (isLocalContainerContext(DC)) {
1707    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1708    return;
1709  }
1710  manglePrefix(getEffectiveDeclContext(Block));
1711  mangleUnqualifiedBlock(Block);
1712}
1713
1714void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1715  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1716    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1717        Context->getDeclContext()->isRecord()) {
1718      const auto *ND = cast<NamedDecl>(Context);
1719      if (ND->getIdentifier()) {
1720        mangleSourceNameWithAbiTags(ND);
1721        Out << 'M';
1722      }
1723    }
1724  }
1725
1726  // If we have a block mangling number, use it.
1727  unsigned Number = Block->getBlockManglingNumber();
1728  // Otherwise, just make up a number. It doesn't matter what it is because
1729  // the symbol in question isn't externally visible.
1730  if (!Number)
1731    Number = Context.getBlockId(Block, false);
1732  else {
1733    // Stored mangling numbers are 1-based.
1734    --Number;
1735  }
1736  Out << "Ub";
1737  if (Number > 0)
1738    Out << Number - 1;
1739  Out << '_';
1740}
1741
1742// <template-param-decl>
1743//   ::= Ty                              # template type parameter
1744//   ::= Tn <type>                       # template non-type parameter
1745//   ::= Tt <template-param-decl>* E     # template template parameter
1746//   ::= Tp <template-param-decl>        # template parameter pack
1747void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
1748  if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
1749    if (Ty->isParameterPack())
1750      Out << "Tp";
1751    Out << "Ty";
1752  } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
1753    if (Tn->isExpandedParameterPack()) {
1754      for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
1755        Out << "Tn";
1756        mangleType(Tn->getExpansionType(I));
1757      }
1758    } else {
1759      QualType T = Tn->getType();
1760      if (Tn->isParameterPack()) {
1761        Out << "Tp";
1762        if (auto *PackExpansion = T->getAs<PackExpansionType>())
1763          T = PackExpansion->getPattern();
1764      }
1765      Out << "Tn";
1766      mangleType(T);
1767    }
1768  } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
1769    if (Tt->isExpandedParameterPack()) {
1770      for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
1771           ++I) {
1772        Out << "Tt";
1773        for (auto *Param : *Tt->getExpansionTemplateParameters(I))
1774          mangleTemplateParamDecl(Param);
1775        Out << "E";
1776      }
1777    } else {
1778      if (Tt->isParameterPack())
1779        Out << "Tp";
1780      Out << "Tt";
1781      for (auto *Param : *Tt->getTemplateParameters())
1782        mangleTemplateParamDecl(Param);
1783      Out << "E";
1784    }
1785  }
1786}
1787
1788// Handles the __builtin_unique_stable_name feature for lambdas.  Instead of the
1789// ordinal of the lambda in its mangling, this does line/column to uniquely and
1790// reliably identify the lambda.  Additionally, macro expansions are expressed
1791// as well to prevent macros causing duplicates.
1792static void mangleUniqueNameLambda(CXXNameMangler &Mangler, SourceManager &SM,
1793                                   raw_ostream &Out,
1794                                   const CXXRecordDecl *Lambda) {
1795  SourceLocation Loc = Lambda->getLocation();
1796
1797  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1798  Mangler.mangleNumber(PLoc.getLine());
1799  Out << "_";
1800  Mangler.mangleNumber(PLoc.getColumn());
1801
1802  while(Loc.isMacroID()) {
1803    SourceLocation SLToPrint = Loc;
1804    if (SM.isMacroArgExpansion(Loc))
1805      SLToPrint = SM.getImmediateExpansionRange(Loc).getBegin();
1806
1807    PLoc = SM.getPresumedLoc(SM.getSpellingLoc(SLToPrint));
1808    Out << "m";
1809    Mangler.mangleNumber(PLoc.getLine());
1810    Out << "_";
1811    Mangler.mangleNumber(PLoc.getColumn());
1812
1813    Loc = SM.getImmediateMacroCallerLoc(Loc);
1814    if (Loc.isFileID())
1815      Loc = SM.getImmediateMacroCallerLoc(SLToPrint);
1816  }
1817}
1818
1819void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1820  // If the context of a closure type is an initializer for a class member
1821  // (static or nonstatic), it is encoded in a qualified name with a final
1822  // <prefix> of the form:
1823  //
1824  //   <data-member-prefix> := <member source-name> M
1825  //
1826  // Technically, the data-member-prefix is part of the <prefix>. However,
1827  // since a closure type will always be mangled with a prefix, it's easier
1828  // to emit that last part of the prefix here.
1829  if (Decl *Context = Lambda->getLambdaContextDecl()) {
1830    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1831        !isa<ParmVarDecl>(Context)) {
1832      // FIXME: 'inline auto [a, b] = []{ return ... };' does not get a
1833      // reasonable mangling here.
1834      if (const IdentifierInfo *Name
1835            = cast<NamedDecl>(Context)->getIdentifier()) {
1836        mangleSourceName(Name);
1837        const TemplateArgumentList *TemplateArgs = nullptr;
1838        if (isTemplate(cast<NamedDecl>(Context), TemplateArgs))
1839          mangleTemplateArgs(*TemplateArgs);
1840        Out << 'M';
1841      }
1842    }
1843  }
1844
1845  Out << "Ul";
1846  mangleLambdaSig(Lambda);
1847  Out << "E";
1848
1849  if (Context.isUniqueNameMangler()) {
1850    mangleUniqueNameLambda(
1851        *this, Context.getASTContext().getSourceManager(), Out, Lambda);
1852    return;
1853  }
1854
1855  // The number is omitted for the first closure type with a given
1856  // <lambda-sig> in a given context; it is n-2 for the nth closure type
1857  // (in lexical order) with that same <lambda-sig> and context.
1858  //
1859  // The AST keeps track of the number for us.
1860  unsigned Number = Lambda->getLambdaManglingNumber();
1861  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1862  if (Number > 1)
1863    mangleNumber(Number - 2);
1864  Out << '_';
1865}
1866
1867void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
1868  for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
1869    mangleTemplateParamDecl(D);
1870  auto *Proto =
1871      Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
1872  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
1873                         Lambda->getLambdaStaticInvoker());
1874}
1875
1876void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1877  switch (qualifier->getKind()) {
1878  case NestedNameSpecifier::Global:
1879    // nothing
1880    return;
1881
1882  case NestedNameSpecifier::Super:
1883    llvm_unreachable("Can't mangle __super specifier");
1884
1885  case NestedNameSpecifier::Namespace:
1886    mangleName(qualifier->getAsNamespace());
1887    return;
1888
1889  case NestedNameSpecifier::NamespaceAlias:
1890    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1891    return;
1892
1893  case NestedNameSpecifier::TypeSpec:
1894  case NestedNameSpecifier::TypeSpecWithTemplate:
1895    manglePrefix(QualType(qualifier->getAsType(), 0));
1896    return;
1897
1898  case NestedNameSpecifier::Identifier:
1899    // Member expressions can have these without prefixes, but that
1900    // should end up in mangleUnresolvedPrefix instead.
1901    assert(qualifier->getPrefix());
1902    manglePrefix(qualifier->getPrefix());
1903
1904    mangleSourceName(qualifier->getAsIdentifier());
1905    return;
1906  }
1907
1908  llvm_unreachable("unexpected nested name specifier");
1909}
1910
1911void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1912  //  <prefix> ::= <prefix> <unqualified-name>
1913  //           ::= <template-prefix> <template-args>
1914  //           ::= <template-param>
1915  //           ::= # empty
1916  //           ::= <substitution>
1917
1918  DC = IgnoreLinkageSpecDecls(DC);
1919
1920  if (DC->isTranslationUnit())
1921    return;
1922
1923  if (NoFunction && isLocalContainerContext(DC))
1924    return;
1925
1926  assert(!isLocalContainerContext(DC));
1927
1928  const NamedDecl *ND = cast<NamedDecl>(DC);
1929  if (mangleSubstitution(ND))
1930    return;
1931
1932  // Check if we have a template.
1933  const TemplateArgumentList *TemplateArgs = nullptr;
1934  if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
1935    mangleTemplatePrefix(TD);
1936    mangleTemplateArgs(*TemplateArgs);
1937  } else {
1938    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1939    mangleUnqualifiedName(ND, nullptr);
1940  }
1941
1942  addSubstitution(ND);
1943}
1944
1945void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1946  // <template-prefix> ::= <prefix> <template unqualified-name>
1947  //                   ::= <template-param>
1948  //                   ::= <substitution>
1949  if (TemplateDecl *TD = Template.getAsTemplateDecl())
1950    return mangleTemplatePrefix(TD);
1951
1952  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1953    manglePrefix(Qualified->getQualifier());
1954
1955  if (OverloadedTemplateStorage *Overloaded
1956                                      = Template.getAsOverloadedTemplate()) {
1957    mangleUnqualifiedName(GlobalDecl(), (*Overloaded->begin())->getDeclName(),
1958                          UnknownArity, nullptr);
1959    return;
1960  }
1961
1962  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1963  assert(Dependent && "Unknown template name kind?");
1964  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1965    manglePrefix(Qualifier);
1966  mangleUnscopedTemplateName(Template, /* AdditionalAbiTags */ nullptr);
1967}
1968
1969void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
1970                                          bool NoFunction) {
1971  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1972  // <template-prefix> ::= <prefix> <template unqualified-name>
1973  //                   ::= <template-param>
1974  //                   ::= <substitution>
1975  // <template-template-param> ::= <template-param>
1976  //                               <substitution>
1977
1978  if (mangleSubstitution(ND))
1979    return;
1980
1981  // <template-template-param> ::= <template-param>
1982  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1983    mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1984  } else {
1985    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1986    if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
1987      mangleUnqualifiedName(GD, nullptr);
1988    else
1989      mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), nullptr);
1990  }
1991
1992  addSubstitution(ND);
1993}
1994
1995/// Mangles a template name under the production <type>.  Required for
1996/// template template arguments.
1997///   <type> ::= <class-enum-type>
1998///          ::= <template-param>
1999///          ::= <substitution>
2000void CXXNameMangler::mangleType(TemplateName TN) {
2001  if (mangleSubstitution(TN))
2002    return;
2003
2004  TemplateDecl *TD = nullptr;
2005
2006  switch (TN.getKind()) {
2007  case TemplateName::QualifiedTemplate:
2008    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
2009    goto HaveDecl;
2010
2011  case TemplateName::Template:
2012    TD = TN.getAsTemplateDecl();
2013    goto HaveDecl;
2014
2015  HaveDecl:
2016    if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2017      mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2018    else
2019      mangleName(TD);
2020    break;
2021
2022  case TemplateName::OverloadedTemplate:
2023  case TemplateName::AssumedTemplate:
2024    llvm_unreachable("can't mangle an overloaded template name as a <type>");
2025
2026  case TemplateName::DependentTemplate: {
2027    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2028    assert(Dependent->isIdentifier());
2029
2030    // <class-enum-type> ::= <name>
2031    // <name> ::= <nested-name>
2032    mangleUnresolvedPrefix(Dependent->getQualifier());
2033    mangleSourceName(Dependent->getIdentifier());
2034    break;
2035  }
2036
2037  case TemplateName::SubstTemplateTemplateParm: {
2038    // Substituted template parameters are mangled as the substituted
2039    // template.  This will check for the substitution twice, which is
2040    // fine, but we have to return early so that we don't try to *add*
2041    // the substitution twice.
2042    SubstTemplateTemplateParmStorage *subst
2043      = TN.getAsSubstTemplateTemplateParm();
2044    mangleType(subst->getReplacement());
2045    return;
2046  }
2047
2048  case TemplateName::SubstTemplateTemplateParmPack: {
2049    // FIXME: not clear how to mangle this!
2050    // template <template <class> class T...> class A {
2051    //   template <template <class> class U...> void foo(B<T,U> x...);
2052    // };
2053    Out << "_SUBSTPACK_";
2054    break;
2055  }
2056  }
2057
2058  addSubstitution(TN);
2059}
2060
2061bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2062                                                    StringRef Prefix) {
2063  // Only certain other types are valid as prefixes;  enumerate them.
2064  switch (Ty->getTypeClass()) {
2065  case Type::Builtin:
2066  case Type::Complex:
2067  case Type::Adjusted:
2068  case Type::Decayed:
2069  case Type::Pointer:
2070  case Type::BlockPointer:
2071  case Type::LValueReference:
2072  case Type::RValueReference:
2073  case Type::MemberPointer:
2074  case Type::ConstantArray:
2075  case Type::IncompleteArray:
2076  case Type::VariableArray:
2077  case Type::DependentSizedArray:
2078  case Type::DependentAddressSpace:
2079  case Type::DependentVector:
2080  case Type::DependentSizedExtVector:
2081  case Type::Vector:
2082  case Type::ExtVector:
2083  case Type::ConstantMatrix:
2084  case Type::DependentSizedMatrix:
2085  case Type::FunctionProto:
2086  case Type::FunctionNoProto:
2087  case Type::Paren:
2088  case Type::Attributed:
2089  case Type::Auto:
2090  case Type::DeducedTemplateSpecialization:
2091  case Type::PackExpansion:
2092  case Type::ObjCObject:
2093  case Type::ObjCInterface:
2094  case Type::ObjCObjectPointer:
2095  case Type::ObjCTypeParam:
2096  case Type::Atomic:
2097  case Type::Pipe:
2098  case Type::MacroQualified:
2099  case Type::ExtInt:
2100  case Type::DependentExtInt:
2101    llvm_unreachable("type is illegal as a nested name specifier");
2102
2103  case Type::SubstTemplateTypeParmPack:
2104    // FIXME: not clear how to mangle this!
2105    // template <class T...> class A {
2106    //   template <class U...> void foo(decltype(T::foo(U())) x...);
2107    // };
2108    Out << "_SUBSTPACK_";
2109    break;
2110
2111  // <unresolved-type> ::= <template-param>
2112  //                   ::= <decltype>
2113  //                   ::= <template-template-param> <template-args>
2114  // (this last is not official yet)
2115  case Type::TypeOfExpr:
2116  case Type::TypeOf:
2117  case Type::Decltype:
2118  case Type::TemplateTypeParm:
2119  case Type::UnaryTransform:
2120  case Type::SubstTemplateTypeParm:
2121  unresolvedType:
2122    // Some callers want a prefix before the mangled type.
2123    Out << Prefix;
2124
2125    // This seems to do everything we want.  It's not really
2126    // sanctioned for a substituted template parameter, though.
2127    mangleType(Ty);
2128
2129    // We never want to print 'E' directly after an unresolved-type,
2130    // so we return directly.
2131    return true;
2132
2133  case Type::Typedef:
2134    mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2135    break;
2136
2137  case Type::UnresolvedUsing:
2138    mangleSourceNameWithAbiTags(
2139        cast<UnresolvedUsingType>(Ty)->getDecl());
2140    break;
2141
2142  case Type::Enum:
2143  case Type::Record:
2144    mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2145    break;
2146
2147  case Type::TemplateSpecialization: {
2148    const TemplateSpecializationType *TST =
2149        cast<TemplateSpecializationType>(Ty);
2150    TemplateName TN = TST->getTemplateName();
2151    switch (TN.getKind()) {
2152    case TemplateName::Template:
2153    case TemplateName::QualifiedTemplate: {
2154      TemplateDecl *TD = TN.getAsTemplateDecl();
2155
2156      // If the base is a template template parameter, this is an
2157      // unresolved type.
2158      assert(TD && "no template for template specialization type");
2159      if (isa<TemplateTemplateParmDecl>(TD))
2160        goto unresolvedType;
2161
2162      mangleSourceNameWithAbiTags(TD);
2163      break;
2164    }
2165
2166    case TemplateName::OverloadedTemplate:
2167    case TemplateName::AssumedTemplate:
2168    case TemplateName::DependentTemplate:
2169      llvm_unreachable("invalid base for a template specialization type");
2170
2171    case TemplateName::SubstTemplateTemplateParm: {
2172      SubstTemplateTemplateParmStorage *subst =
2173          TN.getAsSubstTemplateTemplateParm();
2174      mangleExistingSubstitution(subst->getReplacement());
2175      break;
2176    }
2177
2178    case TemplateName::SubstTemplateTemplateParmPack: {
2179      // FIXME: not clear how to mangle this!
2180      // template <template <class U> class T...> class A {
2181      //   template <class U...> void foo(decltype(T<U>::foo) x...);
2182      // };
2183      Out << "_SUBSTPACK_";
2184      break;
2185    }
2186    }
2187
2188    mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
2189    break;
2190  }
2191
2192  case Type::InjectedClassName:
2193    mangleSourceNameWithAbiTags(
2194        cast<InjectedClassNameType>(Ty)->getDecl());
2195    break;
2196
2197  case Type::DependentName:
2198    mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2199    break;
2200
2201  case Type::DependentTemplateSpecialization: {
2202    const DependentTemplateSpecializationType *DTST =
2203        cast<DependentTemplateSpecializationType>(Ty);
2204    mangleSourceName(DTST->getIdentifier());
2205    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
2206    break;
2207  }
2208
2209  case Type::Elaborated:
2210    return mangleUnresolvedTypeOrSimpleId(
2211        cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2212  }
2213
2214  return false;
2215}
2216
2217void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2218  switch (Name.getNameKind()) {
2219  case DeclarationName::CXXConstructorName:
2220  case DeclarationName::CXXDestructorName:
2221  case DeclarationName::CXXDeductionGuideName:
2222  case DeclarationName::CXXUsingDirective:
2223  case DeclarationName::Identifier:
2224  case DeclarationName::ObjCMultiArgSelector:
2225  case DeclarationName::ObjCOneArgSelector:
2226  case DeclarationName::ObjCZeroArgSelector:
2227    llvm_unreachable("Not an operator name");
2228
2229  case DeclarationName::CXXConversionFunctionName:
2230    // <operator-name> ::= cv <type>    # (cast)
2231    Out << "cv";
2232    mangleType(Name.getCXXNameType());
2233    break;
2234
2235  case DeclarationName::CXXLiteralOperatorName:
2236    Out << "li";
2237    mangleSourceName(Name.getCXXLiteralIdentifier());
2238    return;
2239
2240  case DeclarationName::CXXOperatorName:
2241    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2242    break;
2243  }
2244}
2245
2246void
2247CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2248  switch (OO) {
2249  // <operator-name> ::= nw     # new
2250  case OO_New: Out << "nw"; break;
2251  //              ::= na        # new[]
2252  case OO_Array_New: Out << "na"; break;
2253  //              ::= dl        # delete
2254  case OO_Delete: Out << "dl"; break;
2255  //              ::= da        # delete[]
2256  case OO_Array_Delete: Out << "da"; break;
2257  //              ::= ps        # + (unary)
2258  //              ::= pl        # + (binary or unknown)
2259  case OO_Plus:
2260    Out << (Arity == 1? "ps" : "pl"); break;
2261  //              ::= ng        # - (unary)
2262  //              ::= mi        # - (binary or unknown)
2263  case OO_Minus:
2264    Out << (Arity == 1? "ng" : "mi"); break;
2265  //              ::= ad        # & (unary)
2266  //              ::= an        # & (binary or unknown)
2267  case OO_Amp:
2268    Out << (Arity == 1? "ad" : "an"); break;
2269  //              ::= de        # * (unary)
2270  //              ::= ml        # * (binary or unknown)
2271  case OO_Star:
2272    // Use binary when unknown.
2273    Out << (Arity == 1? "de" : "ml"); break;
2274  //              ::= co        # ~
2275  case OO_Tilde: Out << "co"; break;
2276  //              ::= dv        # /
2277  case OO_Slash: Out << "dv"; break;
2278  //              ::= rm        # %
2279  case OO_Percent: Out << "rm"; break;
2280  //              ::= or        # |
2281  case OO_Pipe: Out << "or"; break;
2282  //              ::= eo        # ^
2283  case OO_Caret: Out << "eo"; break;
2284  //              ::= aS        # =
2285  case OO_Equal: Out << "aS"; break;
2286  //              ::= pL        # +=
2287  case OO_PlusEqual: Out << "pL"; break;
2288  //              ::= mI        # -=
2289  case OO_MinusEqual: Out << "mI"; break;
2290  //              ::= mL        # *=
2291  case OO_StarEqual: Out << "mL"; break;
2292  //              ::= dV        # /=
2293  case OO_SlashEqual: Out << "dV"; break;
2294  //              ::= rM        # %=
2295  case OO_PercentEqual: Out << "rM"; break;
2296  //              ::= aN        # &=
2297  case OO_AmpEqual: Out << "aN"; break;
2298  //              ::= oR        # |=
2299  case OO_PipeEqual: Out << "oR"; break;
2300  //              ::= eO        # ^=
2301  case OO_CaretEqual: Out << "eO"; break;
2302  //              ::= ls        # <<
2303  case OO_LessLess: Out << "ls"; break;
2304  //              ::= rs        # >>
2305  case OO_GreaterGreater: Out << "rs"; break;
2306  //              ::= lS        # <<=
2307  case OO_LessLessEqual: Out << "lS"; break;
2308  //              ::= rS        # >>=
2309  case OO_GreaterGreaterEqual: Out << "rS"; break;
2310  //              ::= eq        # ==
2311  case OO_EqualEqual: Out << "eq"; break;
2312  //              ::= ne        # !=
2313  case OO_ExclaimEqual: Out << "ne"; break;
2314  //              ::= lt        # <
2315  case OO_Less: Out << "lt"; break;
2316  //              ::= gt        # >
2317  case OO_Greater: Out << "gt"; break;
2318  //              ::= le        # <=
2319  case OO_LessEqual: Out << "le"; break;
2320  //              ::= ge        # >=
2321  case OO_GreaterEqual: Out << "ge"; break;
2322  //              ::= nt        # !
2323  case OO_Exclaim: Out << "nt"; break;
2324  //              ::= aa        # &&
2325  case OO_AmpAmp: Out << "aa"; break;
2326  //              ::= oo        # ||
2327  case OO_PipePipe: Out << "oo"; break;
2328  //              ::= pp        # ++
2329  case OO_PlusPlus: Out << "pp"; break;
2330  //              ::= mm        # --
2331  case OO_MinusMinus: Out << "mm"; break;
2332  //              ::= cm        # ,
2333  case OO_Comma: Out << "cm"; break;
2334  //              ::= pm        # ->*
2335  case OO_ArrowStar: Out << "pm"; break;
2336  //              ::= pt        # ->
2337  case OO_Arrow: Out << "pt"; break;
2338  //              ::= cl        # ()
2339  case OO_Call: Out << "cl"; break;
2340  //              ::= ix        # []
2341  case OO_Subscript: Out << "ix"; break;
2342
2343  //              ::= qu        # ?
2344  // The conditional operator can't be overloaded, but we still handle it when
2345  // mangling expressions.
2346  case OO_Conditional: Out << "qu"; break;
2347  // Proposal on cxx-abi-dev, 2015-10-21.
2348  //              ::= aw        # co_await
2349  case OO_Coawait: Out << "aw"; break;
2350  // Proposed in cxx-abi github issue 43.
2351  //              ::= ss        # <=>
2352  case OO_Spaceship: Out << "ss"; break;
2353
2354  case OO_None:
2355  case NUM_OVERLOADED_OPERATORS:
2356    llvm_unreachable("Not an overloaded operator");
2357  }
2358}
2359
2360void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2361  // Vendor qualifiers come first and if they are order-insensitive they must
2362  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2363
2364  // <type> ::= U <addrspace-expr>
2365  if (DAST) {
2366    Out << "U2ASI";
2367    mangleExpression(DAST->getAddrSpaceExpr());
2368    Out << "E";
2369  }
2370
2371  // Address space qualifiers start with an ordinary letter.
2372  if (Quals.hasAddressSpace()) {
2373    // Address space extension:
2374    //
2375    //   <type> ::= U <target-addrspace>
2376    //   <type> ::= U <OpenCL-addrspace>
2377    //   <type> ::= U <CUDA-addrspace>
2378
2379    SmallString<64> ASString;
2380    LangAS AS = Quals.getAddressSpace();
2381
2382    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2383      //  <target-addrspace> ::= "AS" <address-space-number>
2384      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2385      if (TargetAS != 0)
2386        ASString = "AS" + llvm::utostr(TargetAS);
2387    } else {
2388      switch (AS) {
2389      default: llvm_unreachable("Not a language specific address space");
2390      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2391      //                                "private"| "generic" ]
2392      case LangAS::opencl_global:   ASString = "CLglobal";   break;
2393      case LangAS::opencl_local:    ASString = "CLlocal";    break;
2394      case LangAS::opencl_constant: ASString = "CLconstant"; break;
2395      case LangAS::opencl_private:  ASString = "CLprivate";  break;
2396      case LangAS::opencl_generic:  ASString = "CLgeneric";  break;
2397      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2398      case LangAS::cuda_device:     ASString = "CUdevice";   break;
2399      case LangAS::cuda_constant:   ASString = "CUconstant"; break;
2400      case LangAS::cuda_shared:     ASString = "CUshared";   break;
2401      //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2402      case LangAS::ptr32_sptr:
2403        ASString = "ptr32_sptr";
2404        break;
2405      case LangAS::ptr32_uptr:
2406        ASString = "ptr32_uptr";
2407        break;
2408      case LangAS::ptr64:
2409        ASString = "ptr64";
2410        break;
2411      }
2412    }
2413    if (!ASString.empty())
2414      mangleVendorQualifier(ASString);
2415  }
2416
2417  // The ARC ownership qualifiers start with underscores.
2418  // Objective-C ARC Extension:
2419  //
2420  //   <type> ::= U "__strong"
2421  //   <type> ::= U "__weak"
2422  //   <type> ::= U "__autoreleasing"
2423  //
2424  // Note: we emit __weak first to preserve the order as
2425  // required by the Itanium ABI.
2426  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2427    mangleVendorQualifier("__weak");
2428
2429  // __unaligned (from -fms-extensions)
2430  if (Quals.hasUnaligned())
2431    mangleVendorQualifier("__unaligned");
2432
2433  // Remaining ARC ownership qualifiers.
2434  switch (Quals.getObjCLifetime()) {
2435  case Qualifiers::OCL_None:
2436    break;
2437
2438  case Qualifiers::OCL_Weak:
2439    // Do nothing as we already handled this case above.
2440    break;
2441
2442  case Qualifiers::OCL_Strong:
2443    mangleVendorQualifier("__strong");
2444    break;
2445
2446  case Qualifiers::OCL_Autoreleasing:
2447    mangleVendorQualifier("__autoreleasing");
2448    break;
2449
2450  case Qualifiers::OCL_ExplicitNone:
2451    // The __unsafe_unretained qualifier is *not* mangled, so that
2452    // __unsafe_unretained types in ARC produce the same manglings as the
2453    // equivalent (but, naturally, unqualified) types in non-ARC, providing
2454    // better ABI compatibility.
2455    //
2456    // It's safe to do this because unqualified 'id' won't show up
2457    // in any type signatures that need to be mangled.
2458    break;
2459  }
2460
2461  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2462  if (Quals.hasRestrict())
2463    Out << 'r';
2464  if (Quals.hasVolatile())
2465    Out << 'V';
2466  if (Quals.hasConst())
2467    Out << 'K';
2468}
2469
2470void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2471  Out << 'U' << name.size() << name;
2472}
2473
2474void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2475  // <ref-qualifier> ::= R                # lvalue reference
2476  //                 ::= O                # rvalue-reference
2477  switch (RefQualifier) {
2478  case RQ_None:
2479    break;
2480
2481  case RQ_LValue:
2482    Out << 'R';
2483    break;
2484
2485  case RQ_RValue:
2486    Out << 'O';
2487    break;
2488  }
2489}
2490
2491void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2492  Context.mangleObjCMethodName(MD, Out);
2493}
2494
2495static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2496                                ASTContext &Ctx) {
2497  if (Quals)
2498    return true;
2499  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2500    return true;
2501  if (Ty->isOpenCLSpecificType())
2502    return true;
2503  if (Ty->isBuiltinType())
2504    return false;
2505  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2506  // substitution candidates.
2507  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2508      isa<AutoType>(Ty))
2509    return false;
2510  return true;
2511}
2512
2513void CXXNameMangler::mangleType(QualType T) {
2514  // If our type is instantiation-dependent but not dependent, we mangle
2515  // it as it was written in the source, removing any top-level sugar.
2516  // Otherwise, use the canonical type.
2517  //
2518  // FIXME: This is an approximation of the instantiation-dependent name
2519  // mangling rules, since we should really be using the type as written and
2520  // augmented via semantic analysis (i.e., with implicit conversions and
2521  // default template arguments) for any instantiation-dependent type.
2522  // Unfortunately, that requires several changes to our AST:
2523  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2524  //     uniqued, so that we can handle substitutions properly
2525  //   - Default template arguments will need to be represented in the
2526  //     TemplateSpecializationType, since they need to be mangled even though
2527  //     they aren't written.
2528  //   - Conversions on non-type template arguments need to be expressed, since
2529  //     they can affect the mangling of sizeof/alignof.
2530  //
2531  // FIXME: This is wrong when mapping to the canonical type for a dependent
2532  // type discards instantiation-dependent portions of the type, such as for:
2533  //
2534  //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2535  //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2536  //
2537  // It's also wrong in the opposite direction when instantiation-dependent,
2538  // canonically-equivalent types differ in some irrelevant portion of inner
2539  // type sugar. In such cases, we fail to form correct substitutions, eg:
2540  //
2541  //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2542  //
2543  // We should instead canonicalize the non-instantiation-dependent parts,
2544  // regardless of whether the type as a whole is dependent or instantiation
2545  // dependent.
2546  if (!T->isInstantiationDependentType() || T->isDependentType())
2547    T = T.getCanonicalType();
2548  else {
2549    // Desugar any types that are purely sugar.
2550    do {
2551      // Don't desugar through template specialization types that aren't
2552      // type aliases. We need to mangle the template arguments as written.
2553      if (const TemplateSpecializationType *TST
2554                                      = dyn_cast<TemplateSpecializationType>(T))
2555        if (!TST->isTypeAlias())
2556          break;
2557
2558      QualType Desugared
2559        = T.getSingleStepDesugaredType(Context.getASTContext());
2560      if (Desugared == T)
2561        break;
2562
2563      T = Desugared;
2564    } while (true);
2565  }
2566  SplitQualType split = T.split();
2567  Qualifiers quals = split.Quals;
2568  const Type *ty = split.Ty;
2569
2570  bool isSubstitutable =
2571    isTypeSubstitutable(quals, ty, Context.getASTContext());
2572  if (isSubstitutable && mangleSubstitution(T))
2573    return;
2574
2575  // If we're mangling a qualified array type, push the qualifiers to
2576  // the element type.
2577  if (quals && isa<ArrayType>(T)) {
2578    ty = Context.getASTContext().getAsArrayType(T);
2579    quals = Qualifiers();
2580
2581    // Note that we don't update T: we want to add the
2582    // substitution at the original type.
2583  }
2584
2585  if (quals || ty->isDependentAddressSpaceType()) {
2586    if (const DependentAddressSpaceType *DAST =
2587        dyn_cast<DependentAddressSpaceType>(ty)) {
2588      SplitQualType splitDAST = DAST->getPointeeType().split();
2589      mangleQualifiers(splitDAST.Quals, DAST);
2590      mangleType(QualType(splitDAST.Ty, 0));
2591    } else {
2592      mangleQualifiers(quals);
2593
2594      // Recurse:  even if the qualified type isn't yet substitutable,
2595      // the unqualified type might be.
2596      mangleType(QualType(ty, 0));
2597    }
2598  } else {
2599    switch (ty->getTypeClass()) {
2600#define ABSTRACT_TYPE(CLASS, PARENT)
2601#define NON_CANONICAL_TYPE(CLASS, PARENT) \
2602    case Type::CLASS: \
2603      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
2604      return;
2605#define TYPE(CLASS, PARENT) \
2606    case Type::CLASS: \
2607      mangleType(static_cast<const CLASS##Type*>(ty)); \
2608      break;
2609#include "clang/AST/TypeNodes.inc"
2610    }
2611  }
2612
2613  // Add the substitution.
2614  if (isSubstitutable)
2615    addSubstitution(T);
2616}
2617
2618void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
2619  if (!mangleStandardSubstitution(ND))
2620    mangleName(ND);
2621}
2622
2623void CXXNameMangler::mangleType(const BuiltinType *T) {
2624  //  <type>         ::= <builtin-type>
2625  //  <builtin-type> ::= v  # void
2626  //                 ::= w  # wchar_t
2627  //                 ::= b  # bool
2628  //                 ::= c  # char
2629  //                 ::= a  # signed char
2630  //                 ::= h  # unsigned char
2631  //                 ::= s  # short
2632  //                 ::= t  # unsigned short
2633  //                 ::= i  # int
2634  //                 ::= j  # unsigned int
2635  //                 ::= l  # long
2636  //                 ::= m  # unsigned long
2637  //                 ::= x  # long long, __int64
2638  //                 ::= y  # unsigned long long, __int64
2639  //                 ::= n  # __int128
2640  //                 ::= o  # unsigned __int128
2641  //                 ::= f  # float
2642  //                 ::= d  # double
2643  //                 ::= e  # long double, __float80
2644  //                 ::= g  # __float128
2645  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
2646  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
2647  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
2648  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
2649  //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
2650  //                 ::= Di # char32_t
2651  //                 ::= Ds # char16_t
2652  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
2653  //                 ::= u <source-name>    # vendor extended type
2654  std::string type_name;
2655  switch (T->getKind()) {
2656  case BuiltinType::Void:
2657    Out << 'v';
2658    break;
2659  case BuiltinType::Bool:
2660    Out << 'b';
2661    break;
2662  case BuiltinType::Char_U:
2663  case BuiltinType::Char_S:
2664    Out << 'c';
2665    break;
2666  case BuiltinType::UChar:
2667    Out << 'h';
2668    break;
2669  case BuiltinType::UShort:
2670    Out << 't';
2671    break;
2672  case BuiltinType::UInt:
2673    Out << 'j';
2674    break;
2675  case BuiltinType::ULong:
2676    Out << 'm';
2677    break;
2678  case BuiltinType::ULongLong:
2679    Out << 'y';
2680    break;
2681  case BuiltinType::UInt128:
2682    Out << 'o';
2683    break;
2684  case BuiltinType::SChar:
2685    Out << 'a';
2686    break;
2687  case BuiltinType::WChar_S:
2688  case BuiltinType::WChar_U:
2689    Out << 'w';
2690    break;
2691  case BuiltinType::Char8:
2692    Out << "Du";
2693    break;
2694  case BuiltinType::Char16:
2695    Out << "Ds";
2696    break;
2697  case BuiltinType::Char32:
2698    Out << "Di";
2699    break;
2700  case BuiltinType::Short:
2701    Out << 's';
2702    break;
2703  case BuiltinType::Int:
2704    Out << 'i';
2705    break;
2706  case BuiltinType::Long:
2707    Out << 'l';
2708    break;
2709  case BuiltinType::LongLong:
2710    Out << 'x';
2711    break;
2712  case BuiltinType::Int128:
2713    Out << 'n';
2714    break;
2715  case BuiltinType::Float16:
2716    Out << "DF16_";
2717    break;
2718  case BuiltinType::ShortAccum:
2719  case BuiltinType::Accum:
2720  case BuiltinType::LongAccum:
2721  case BuiltinType::UShortAccum:
2722  case BuiltinType::UAccum:
2723  case BuiltinType::ULongAccum:
2724  case BuiltinType::ShortFract:
2725  case BuiltinType::Fract:
2726  case BuiltinType::LongFract:
2727  case BuiltinType::UShortFract:
2728  case BuiltinType::UFract:
2729  case BuiltinType::ULongFract:
2730  case BuiltinType::SatShortAccum:
2731  case BuiltinType::SatAccum:
2732  case BuiltinType::SatLongAccum:
2733  case BuiltinType::SatUShortAccum:
2734  case BuiltinType::SatUAccum:
2735  case BuiltinType::SatULongAccum:
2736  case BuiltinType::SatShortFract:
2737  case BuiltinType::SatFract:
2738  case BuiltinType::SatLongFract:
2739  case BuiltinType::SatUShortFract:
2740  case BuiltinType::SatUFract:
2741  case BuiltinType::SatULongFract:
2742    llvm_unreachable("Fixed point types are disabled for c++");
2743  case BuiltinType::Half:
2744    Out << "Dh";
2745    break;
2746  case BuiltinType::Float:
2747    Out << 'f';
2748    break;
2749  case BuiltinType::Double:
2750    Out << 'd';
2751    break;
2752  case BuiltinType::LongDouble: {
2753    const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2754                                   getASTContext().getLangOpts().OpenMPIsDevice
2755                               ? getASTContext().getAuxTargetInfo()
2756                               : &getASTContext().getTargetInfo();
2757    Out << TI->getLongDoubleMangling();
2758    break;
2759  }
2760  case BuiltinType::Float128: {
2761    const TargetInfo *TI = getASTContext().getLangOpts().OpenMP &&
2762                                   getASTContext().getLangOpts().OpenMPIsDevice
2763                               ? getASTContext().getAuxTargetInfo()
2764                               : &getASTContext().getTargetInfo();
2765    Out << TI->getFloat128Mangling();
2766    break;
2767  }
2768  case BuiltinType::BFloat16: {
2769    const TargetInfo *TI = &getASTContext().getTargetInfo();
2770    Out << TI->getBFloat16Mangling();
2771    break;
2772  }
2773  case BuiltinType::NullPtr:
2774    Out << "Dn";
2775    break;
2776
2777#define BUILTIN_TYPE(Id, SingletonId)
2778#define PLACEHOLDER_TYPE(Id, SingletonId) \
2779  case BuiltinType::Id:
2780#include "clang/AST/BuiltinTypes.def"
2781  case BuiltinType::Dependent:
2782    if (!NullOut)
2783      llvm_unreachable("mangling a placeholder type");
2784    break;
2785  case BuiltinType::ObjCId:
2786    Out << "11objc_object";
2787    break;
2788  case BuiltinType::ObjCClass:
2789    Out << "10objc_class";
2790    break;
2791  case BuiltinType::ObjCSel:
2792    Out << "13objc_selector";
2793    break;
2794#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2795  case BuiltinType::Id: \
2796    type_name = "ocl_" #ImgType "_" #Suffix; \
2797    Out << type_name.size() << type_name; \
2798    break;
2799#include "clang/Basic/OpenCLImageTypes.def"
2800  case BuiltinType::OCLSampler:
2801    Out << "11ocl_sampler";
2802    break;
2803  case BuiltinType::OCLEvent:
2804    Out << "9ocl_event";
2805    break;
2806  case BuiltinType::OCLClkEvent:
2807    Out << "12ocl_clkevent";
2808    break;
2809  case BuiltinType::OCLQueue:
2810    Out << "9ocl_queue";
2811    break;
2812  case BuiltinType::OCLReserveID:
2813    Out << "13ocl_reserveid";
2814    break;
2815#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2816  case BuiltinType::Id: \
2817    type_name = "ocl_" #ExtType; \
2818    Out << type_name.size() << type_name; \
2819    break;
2820#include "clang/Basic/OpenCLExtensionTypes.def"
2821  // The SVE types are effectively target-specific.  The mangling scheme
2822  // is defined in the appendices to the Procedure Call Standard for the
2823  // Arm Architecture.
2824#define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
2825                        ElBits, IsSigned, IsFP, IsBF)                          \
2826  case BuiltinType::Id:                                                        \
2827    type_name = MangledName;                                                   \
2828    Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2829        << type_name;                                                          \
2830    break;
2831#define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
2832  case BuiltinType::Id:                                                        \
2833    type_name = MangledName;                                                   \
2834    Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
2835        << type_name;                                                          \
2836    break;
2837#include "clang/Basic/AArch64SVEACLETypes.def"
2838  }
2839}
2840
2841StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
2842  switch (CC) {
2843  case CC_C:
2844    return "";
2845
2846  case CC_X86VectorCall:
2847  case CC_X86Pascal:
2848  case CC_X86RegCall:
2849  case CC_AAPCS:
2850  case CC_AAPCS_VFP:
2851  case CC_AArch64VectorCall:
2852  case CC_IntelOclBicc:
2853  case CC_SpirFunction:
2854  case CC_OpenCLKernel:
2855  case CC_PreserveMost:
2856  case CC_PreserveAll:
2857    // FIXME: we should be mangling all of the above.
2858    return "";
2859
2860  case CC_X86ThisCall:
2861    // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
2862    // used explicitly. At this point, we don't have that much information in
2863    // the AST, since clang tends to bake the convention into the canonical
2864    // function type. thiscall only rarely used explicitly, so don't mangle it
2865    // for now.
2866    return "";
2867
2868  case CC_X86StdCall:
2869    return "stdcall";
2870  case CC_X86FastCall:
2871    return "fastcall";
2872  case CC_X86_64SysV:
2873    return "sysv_abi";
2874  case CC_Win64:
2875    return "ms_abi";
2876  case CC_Swift:
2877    return "swiftcall";
2878  }
2879  llvm_unreachable("bad calling convention");
2880}
2881
2882void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
2883  // Fast path.
2884  if (T->getExtInfo() == FunctionType::ExtInfo())
2885    return;
2886
2887  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2888  // This will get more complicated in the future if we mangle other
2889  // things here; but for now, since we mangle ns_returns_retained as
2890  // a qualifier on the result type, we can get away with this:
2891  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
2892  if (!CCQualifier.empty())
2893    mangleVendorQualifier(CCQualifier);
2894
2895  // FIXME: regparm
2896  // FIXME: noreturn
2897}
2898
2899void
2900CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
2901  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
2902
2903  // Note that these are *not* substitution candidates.  Demanglers might
2904  // have trouble with this if the parameter type is fully substituted.
2905
2906  switch (PI.getABI()) {
2907  case ParameterABI::Ordinary:
2908    break;
2909
2910  // All of these start with "swift", so they come before "ns_consumed".
2911  case ParameterABI::SwiftContext:
2912  case ParameterABI::SwiftErrorResult:
2913  case ParameterABI::SwiftIndirectResult:
2914    mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
2915    break;
2916  }
2917
2918  if (PI.isConsumed())
2919    mangleVendorQualifier("ns_consumed");
2920
2921  if (PI.isNoEscape())
2922    mangleVendorQualifier("noescape");
2923}
2924
2925// <type>          ::= <function-type>
2926// <function-type> ::= [<CV-qualifiers>] F [Y]
2927//                      <bare-function-type> [<ref-qualifier>] E
2928void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2929  mangleExtFunctionInfo(T);
2930
2931  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2932  // e.g. "const" in "int (A::*)() const".
2933  mangleQualifiers(T->getMethodQuals());
2934
2935  // Mangle instantiation-dependent exception-specification, if present,
2936  // per cxx-abi-dev proposal on 2016-10-11.
2937  if (T->hasInstantiationDependentExceptionSpec()) {
2938    if (isComputedNoexcept(T->getExceptionSpecType())) {
2939      Out << "DO";
2940      mangleExpression(T->getNoexceptExpr());
2941      Out << "E";
2942    } else {
2943      assert(T->getExceptionSpecType() == EST_Dynamic);
2944      Out << "Dw";
2945      for (auto ExceptTy : T->exceptions())
2946        mangleType(ExceptTy);
2947      Out << "E";
2948    }
2949  } else if (T->isNothrow()) {
2950    Out << "Do";
2951  }
2952
2953  Out << 'F';
2954
2955  // FIXME: We don't have enough information in the AST to produce the 'Y'
2956  // encoding for extern "C" function types.
2957  mangleBareFunctionType(T, /*MangleReturnType=*/true);
2958
2959  // Mangle the ref-qualifier, if present.
2960  mangleRefQualifier(T->getRefQualifier());
2961
2962  Out << 'E';
2963}
2964
2965void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2966  // Function types without prototypes can arise when mangling a function type
2967  // within an overloadable function in C. We mangle these as the absence of any
2968  // parameter types (not even an empty parameter list).
2969  Out << 'F';
2970
2971  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2972
2973  FunctionTypeDepth.enterResultType();
2974  mangleType(T->getReturnType());
2975  FunctionTypeDepth.leaveResultType();
2976
2977  FunctionTypeDepth.pop(saved);
2978  Out << 'E';
2979}
2980
2981void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
2982                                            bool MangleReturnType,
2983                                            const FunctionDecl *FD) {
2984  // Record that we're in a function type.  See mangleFunctionParam
2985  // for details on what we're trying to achieve here.
2986  FunctionTypeDepthState saved = FunctionTypeDepth.push();
2987
2988  // <bare-function-type> ::= <signature type>+
2989  if (MangleReturnType) {
2990    FunctionTypeDepth.enterResultType();
2991
2992    // Mangle ns_returns_retained as an order-sensitive qualifier here.
2993    if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
2994      mangleVendorQualifier("ns_returns_retained");
2995
2996    // Mangle the return type without any direct ARC ownership qualifiers.
2997    QualType ReturnTy = Proto->getReturnType();
2998    if (ReturnTy.getObjCLifetime()) {
2999      auto SplitReturnTy = ReturnTy.split();
3000      SplitReturnTy.Quals.removeObjCLifetime();
3001      ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3002    }
3003    mangleType(ReturnTy);
3004
3005    FunctionTypeDepth.leaveResultType();
3006  }
3007
3008  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3009    //   <builtin-type> ::= v   # void
3010    Out << 'v';
3011
3012    FunctionTypeDepth.pop(saved);
3013    return;
3014  }
3015
3016  assert(!FD || FD->getNumParams() == Proto->getNumParams());
3017  for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3018    // Mangle extended parameter info as order-sensitive qualifiers here.
3019    if (Proto->hasExtParameterInfos() && FD == nullptr) {
3020      mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3021    }
3022
3023    // Mangle the type.
3024    QualType ParamTy = Proto->getParamType(I);
3025    mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3026
3027    if (FD) {
3028      if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3029        // Attr can only take 1 character, so we can hardcode the length below.
3030        assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3031        if (Attr->isDynamic())
3032          Out << "U25pass_dynamic_object_size" << Attr->getType();
3033        else
3034          Out << "U17pass_object_size" << Attr->getType();
3035      }
3036    }
3037  }
3038
3039  FunctionTypeDepth.pop(saved);
3040
3041  // <builtin-type>      ::= z  # ellipsis
3042  if (Proto->isVariadic())
3043    Out << 'z';
3044}
3045
3046// <type>            ::= <class-enum-type>
3047// <class-enum-type> ::= <name>
3048void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3049  mangleName(T->getDecl());
3050}
3051
3052// <type>            ::= <class-enum-type>
3053// <class-enum-type> ::= <name>
3054void CXXNameMangler::mangleType(const EnumType *T) {
3055  mangleType(static_cast<const TagType*>(T));
3056}
3057void CXXNameMangler::mangleType(const RecordType *T) {
3058  mangleType(static_cast<const TagType*>(T));
3059}
3060void CXXNameMangler::mangleType(const TagType *T) {
3061  mangleName(T->getDecl());
3062}
3063
3064// <type>       ::= <array-type>
3065// <array-type> ::= A <positive dimension number> _ <element type>
3066//              ::= A [<dimension expression>] _ <element type>
3067void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3068  Out << 'A' << T->getSize() << '_';
3069  mangleType(T->getElementType());
3070}
3071void CXXNameMangler::mangleType(const VariableArrayType *T) {
3072  Out << 'A';
3073  // decayed vla types (size 0) will just be skipped.
3074  if (T->getSizeExpr())
3075    mangleExpression(T->getSizeExpr());
3076  Out << '_';
3077  mangleType(T->getElementType());
3078}
3079void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3080  Out << 'A';
3081  mangleExpression(T->getSizeExpr());
3082  Out << '_';
3083  mangleType(T->getElementType());
3084}
3085void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3086  Out << "A_";
3087  mangleType(T->getElementType());
3088}
3089
3090// <type>                   ::= <pointer-to-member-type>
3091// <pointer-to-member-type> ::= M <class type> <member type>
3092void CXXNameMangler::mangleType(const MemberPointerType *T) {
3093  Out << 'M';
3094  mangleType(QualType(T->getClass(), 0));
3095  QualType PointeeType = T->getPointeeType();
3096  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3097    mangleType(FPT);
3098
3099    // Itanium C++ ABI 5.1.8:
3100    //
3101    //   The type of a non-static member function is considered to be different,
3102    //   for the purposes of substitution, from the type of a namespace-scope or
3103    //   static member function whose type appears similar. The types of two
3104    //   non-static member functions are considered to be different, for the
3105    //   purposes of substitution, if the functions are members of different
3106    //   classes. In other words, for the purposes of substitution, the class of
3107    //   which the function is a member is considered part of the type of
3108    //   function.
3109
3110    // Given that we already substitute member function pointers as a
3111    // whole, the net effect of this rule is just to unconditionally
3112    // suppress substitution on the function type in a member pointer.
3113    // We increment the SeqID here to emulate adding an entry to the
3114    // substitution table.
3115    ++SeqID;
3116  } else
3117    mangleType(PointeeType);
3118}
3119
3120// <type>           ::= <template-param>
3121void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3122  mangleTemplateParameter(T->getDepth(), T->getIndex());
3123}
3124
3125// <type>           ::= <template-param>
3126void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3127  // FIXME: not clear how to mangle this!
3128  // template <class T...> class A {
3129  //   template <class U...> void foo(T(*)(U) x...);
3130  // };
3131  Out << "_SUBSTPACK_";
3132}
3133
3134// <type> ::= P <type>   # pointer-to
3135void CXXNameMangler::mangleType(const PointerType *T) {
3136  Out << 'P';
3137  mangleType(T->getPointeeType());
3138}
3139void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3140  Out << 'P';
3141  mangleType(T->getPointeeType());
3142}
3143
3144// <type> ::= R <type>   # reference-to
3145void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3146  Out << 'R';
3147  mangleType(T->getPointeeType());
3148}
3149
3150// <type> ::= O <type>   # rvalue reference-to (C++0x)
3151void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3152  Out << 'O';
3153  mangleType(T->getPointeeType());
3154}
3155
3156// <type> ::= C <type>   # complex pair (C 2000)
3157void CXXNameMangler::mangleType(const ComplexType *T) {
3158  Out << 'C';
3159  mangleType(T->getElementType());
3160}
3161
3162// ARM's ABI for Neon vector types specifies that they should be mangled as
3163// if they are structs (to match ARM's initial implementation).  The
3164// vector type must be one of the special types predefined by ARM.
3165void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3166  QualType EltType = T->getElementType();
3167  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3168  const char *EltName = nullptr;
3169  if (T->getVectorKind() == VectorType::NeonPolyVector) {
3170    switch (cast<BuiltinType>(EltType)->getKind()) {
3171    case BuiltinType::SChar:
3172    case BuiltinType::UChar:
3173      EltName = "poly8_t";
3174      break;
3175    case BuiltinType::Short:
3176    case BuiltinType::UShort:
3177      EltName = "poly16_t";
3178      break;
3179    case BuiltinType::LongLong:
3180    case BuiltinType::ULongLong:
3181      EltName = "poly64_t";
3182      break;
3183    default: llvm_unreachable("unexpected Neon polynomial vector element type");
3184    }
3185  } else {
3186    switch (cast<BuiltinType>(EltType)->getKind()) {
3187    case BuiltinType::SChar:     EltName = "int8_t"; break;
3188    case BuiltinType::UChar:     EltName = "uint8_t"; break;
3189    case BuiltinType::Short:     EltName = "int16_t"; break;
3190    case BuiltinType::UShort:    EltName = "uint16_t"; break;
3191    case BuiltinType::Int:       EltName = "int32_t"; break;
3192    case BuiltinType::UInt:      EltName = "uint32_t"; break;
3193    case BuiltinType::LongLong:  EltName = "int64_t"; break;
3194    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3195    case BuiltinType::Double:    EltName = "float64_t"; break;
3196    case BuiltinType::Float:     EltName = "float32_t"; break;
3197    case BuiltinType::Half:      EltName = "float16_t"; break;
3198    case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3199    default:
3200      llvm_unreachable("unexpected Neon vector element type");
3201    }
3202  }
3203  const char *BaseName = nullptr;
3204  unsigned BitSize = (T->getNumElements() *
3205                      getASTContext().getTypeSize(EltType));
3206  if (BitSize == 64)
3207    BaseName = "__simd64_";
3208  else {
3209    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3210    BaseName = "__simd128_";
3211  }
3212  Out << strlen(BaseName) + strlen(EltName);
3213  Out << BaseName << EltName;
3214}
3215
3216void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3217  DiagnosticsEngine &Diags = Context.getDiags();
3218  unsigned DiagID = Diags.getCustomDiagID(
3219      DiagnosticsEngine::Error,
3220      "cannot mangle this dependent neon vector type yet");
3221  Diags.Report(T->getAttributeLoc(), DiagID);
3222}
3223
3224static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3225  switch (EltType->getKind()) {
3226  case BuiltinType::SChar:
3227    return "Int8";
3228  case BuiltinType::Short:
3229    return "Int16";
3230  case BuiltinType::Int:
3231    return "Int32";
3232  case BuiltinType::Long:
3233  case BuiltinType::LongLong:
3234    return "Int64";
3235  case BuiltinType::UChar:
3236    return "Uint8";
3237  case BuiltinType::UShort:
3238    return "Uint16";
3239  case BuiltinType::UInt:
3240    return "Uint32";
3241  case BuiltinType::ULong:
3242  case BuiltinType::ULongLong:
3243    return "Uint64";
3244  case BuiltinType::Half:
3245    return "Float16";
3246  case BuiltinType::Float:
3247    return "Float32";
3248  case BuiltinType::Double:
3249    return "Float64";
3250  case BuiltinType::BFloat16:
3251    return "Bfloat16";
3252  default:
3253    llvm_unreachable("Unexpected vector element base type");
3254  }
3255}
3256
3257// AArch64's ABI for Neon vector types specifies that they should be mangled as
3258// the equivalent internal name. The vector type must be one of the special
3259// types predefined by ARM.
3260void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3261  QualType EltType = T->getElementType();
3262  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3263  unsigned BitSize =
3264      (T->getNumElements() * getASTContext().getTypeSize(EltType));
3265  (void)BitSize; // Silence warning.
3266
3267  assert((BitSize == 64 || BitSize == 128) &&
3268         "Neon vector type not 64 or 128 bits");
3269
3270  StringRef EltName;
3271  if (T->getVectorKind() == VectorType::NeonPolyVector) {
3272    switch (cast<BuiltinType>(EltType)->getKind()) {
3273    case BuiltinType::UChar:
3274      EltName = "Poly8";
3275      break;
3276    case BuiltinType::UShort:
3277      EltName = "Poly16";
3278      break;
3279    case BuiltinType::ULong:
3280    case BuiltinType::ULongLong:
3281      EltName = "Poly64";
3282      break;
3283    default:
3284      llvm_unreachable("unexpected Neon polynomial vector element type");
3285    }
3286  } else
3287    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3288
3289  std::string TypeName =
3290      ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3291  Out << TypeName.length() << TypeName;
3292}
3293void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3294  DiagnosticsEngine &Diags = Context.getDiags();
3295  unsigned DiagID = Diags.getCustomDiagID(
3296      DiagnosticsEngine::Error,
3297      "cannot mangle this dependent neon vector type yet");
3298  Diags.Report(T->getAttributeLoc(), DiagID);
3299}
3300
3301// GNU extension: vector types
3302// <type>                  ::= <vector-type>
3303// <vector-type>           ::= Dv <positive dimension number> _
3304//                                    <extended element type>
3305//                         ::= Dv [<dimension expression>] _ <element type>
3306// <extended element type> ::= <element type>
3307//                         ::= p # AltiVec vector pixel
3308//                         ::= b # Altivec vector bool
3309void CXXNameMangler::mangleType(const VectorType *T) {
3310  if ((T->getVectorKind() == VectorType::NeonVector ||
3311       T->getVectorKind() == VectorType::NeonPolyVector)) {
3312    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3313    llvm::Triple::ArchType Arch =
3314        getASTContext().getTargetInfo().getTriple().getArch();
3315    if ((Arch == llvm::Triple::aarch64 ||
3316         Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
3317      mangleAArch64NeonVectorType(T);
3318    else
3319      mangleNeonVectorType(T);
3320    return;
3321  }
3322  Out << "Dv" << T->getNumElements() << '_';
3323  if (T->getVectorKind() == VectorType::AltiVecPixel)
3324    Out << 'p';
3325  else if (T->getVectorKind() == VectorType::AltiVecBool)
3326    Out << 'b';
3327  else
3328    mangleType(T->getElementType());
3329}
3330
3331void CXXNameMangler::mangleType(const DependentVectorType *T) {
3332  if ((T->getVectorKind() == VectorType::NeonVector ||
3333       T->getVectorKind() == VectorType::NeonPolyVector)) {
3334    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
3335    llvm::Triple::ArchType Arch =
3336        getASTContext().getTargetInfo().getTriple().getArch();
3337    if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
3338        !Target.isOSDarwin())
3339      mangleAArch64NeonVectorType(T);
3340    else
3341      mangleNeonVectorType(T);
3342    return;
3343  }
3344
3345  Out << "Dv";
3346  mangleExpression(T->getSizeExpr());
3347  Out << '_';
3348  if (T->getVectorKind() == VectorType::AltiVecPixel)
3349    Out << 'p';
3350  else if (T->getVectorKind() == VectorType::AltiVecBool)
3351    Out << 'b';
3352  else
3353    mangleType(T->getElementType());
3354}
3355
3356void CXXNameMangler::mangleType(const ExtVectorType *T) {
3357  mangleType(static_cast<const VectorType*>(T));
3358}
3359void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
3360  Out << "Dv";
3361  mangleExpression(T->getSizeExpr());
3362  Out << '_';
3363  mangleType(T->getElementType());
3364}
3365
3366void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
3367  // Mangle matrix types using a vendor extended type qualifier:
3368  // U<Len>matrix_type<Rows><Columns><element type>
3369  StringRef VendorQualifier = "matrix_type";
3370  Out << "U" << VendorQualifier.size() << VendorQualifier;
3371  auto &ASTCtx = getASTContext();
3372  unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
3373  llvm::APSInt Rows(BitWidth);
3374  Rows = T->getNumRows();
3375  mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
3376  llvm::APSInt Columns(BitWidth);
3377  Columns = T->getNumColumns();
3378  mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
3379  mangleType(T->getElementType());
3380}
3381
3382void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
3383  // U<Len>matrix_type<row expr><column expr><element type>
3384  StringRef VendorQualifier = "matrix_type";
3385  Out << "U" << VendorQualifier.size() << VendorQualifier;
3386  mangleTemplateArg(T->getRowExpr());
3387  mangleTemplateArg(T->getColumnExpr());
3388  mangleType(T->getElementType());
3389}
3390
3391void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
3392  SplitQualType split = T->getPointeeType().split();
3393  mangleQualifiers(split.Quals, T);
3394  mangleType(QualType(split.Ty, 0));
3395}
3396
3397void CXXNameMangler::mangleType(const PackExpansionType *T) {
3398  // <type>  ::= Dp <type>          # pack expansion (C++0x)
3399  Out << "Dp";
3400  mangleType(T->getPattern());
3401}
3402
3403void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
3404  mangleSourceName(T->getDecl()->getIdentifier());
3405}
3406
3407void CXXNameMangler::mangleType(const ObjCObjectType *T) {
3408  // Treat __kindof as a vendor extended type qualifier.
3409  if (T->isKindOfType())
3410    Out << "U8__kindof";
3411
3412  if (!T->qual_empty()) {
3413    // Mangle protocol qualifiers.
3414    SmallString<64> QualStr;
3415    llvm::raw_svector_ostream QualOS(QualStr);
3416    QualOS << "objcproto";
3417    for (const auto *I : T->quals()) {
3418      StringRef name = I->getName();
3419      QualOS << name.size() << name;
3420    }
3421    Out << 'U' << QualStr.size() << QualStr;
3422  }
3423
3424  mangleType(T->getBaseType());
3425
3426  if (T->isSpecialized()) {
3427    // Mangle type arguments as I <type>+ E
3428    Out << 'I';
3429    for (auto typeArg : T->getTypeArgs())
3430      mangleType(typeArg);
3431    Out << 'E';
3432  }
3433}
3434
3435void CXXNameMangler::mangleType(const BlockPointerType *T) {
3436  Out << "U13block_pointer";
3437  mangleType(T->getPointeeType());
3438}
3439
3440void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
3441  // Mangle injected class name types as if the user had written the
3442  // specialization out fully.  It may not actually be possible to see
3443  // this mangling, though.
3444  mangleType(T->getInjectedSpecializationType());
3445}
3446
3447void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
3448  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
3449    mangleTemplateName(TD, T->getArgs(), T->getNumArgs());
3450  } else {
3451    if (mangleSubstitution(QualType(T, 0)))
3452      return;
3453
3454    mangleTemplatePrefix(T->getTemplateName());
3455
3456    // FIXME: GCC does not appear to mangle the template arguments when
3457    // the template in question is a dependent template name. Should we
3458    // emulate that badness?
3459    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3460    addSubstitution(QualType(T, 0));
3461  }
3462}
3463
3464void CXXNameMangler::mangleType(const DependentNameType *T) {
3465  // Proposal by cxx-abi-dev, 2014-03-26
3466  // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
3467  //                                 # dependent elaborated type specifier using
3468  //                                 # 'typename'
3469  //                   ::= Ts <name> # dependent elaborated type specifier using
3470  //                                 # 'struct' or 'class'
3471  //                   ::= Tu <name> # dependent elaborated type specifier using
3472  //                                 # 'union'
3473  //                   ::= Te <name> # dependent elaborated type specifier using
3474  //                                 # 'enum'
3475  switch (T->getKeyword()) {
3476    case ETK_None:
3477    case ETK_Typename:
3478      break;
3479    case ETK_Struct:
3480    case ETK_Class:
3481    case ETK_Interface:
3482      Out << "Ts";
3483      break;
3484    case ETK_Union:
3485      Out << "Tu";
3486      break;
3487    case ETK_Enum:
3488      Out << "Te";
3489      break;
3490  }
3491  // Typename types are always nested
3492  Out << 'N';
3493  manglePrefix(T->getQualifier());
3494  mangleSourceName(T->getIdentifier());
3495  Out << 'E';
3496}
3497
3498void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
3499  // Dependently-scoped template types are nested if they have a prefix.
3500  Out << 'N';
3501
3502  // TODO: avoid making this TemplateName.
3503  TemplateName Prefix =
3504    getASTContext().getDependentTemplateName(T->getQualifier(),
3505                                             T->getIdentifier());
3506  mangleTemplatePrefix(Prefix);
3507
3508  // FIXME: GCC does not appear to mangle the template arguments when
3509  // the template in question is a dependent template name. Should we
3510  // emulate that badness?
3511  mangleTemplateArgs(T->getArgs(), T->getNumArgs());
3512  Out << 'E';
3513}
3514
3515void CXXNameMangler::mangleType(const TypeOfType *T) {
3516  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3517  // "extension with parameters" mangling.
3518  Out << "u6typeof";
3519}
3520
3521void CXXNameMangler::mangleType(const TypeOfExprType *T) {
3522  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
3523  // "extension with parameters" mangling.
3524  Out << "u6typeof";
3525}
3526
3527void CXXNameMangler::mangleType(const DecltypeType *T) {
3528  Expr *E = T->getUnderlyingExpr();
3529
3530  // type ::= Dt <expression> E  # decltype of an id-expression
3531  //                             #   or class member access
3532  //      ::= DT <expression> E  # decltype of an expression
3533
3534  // This purports to be an exhaustive list of id-expressions and
3535  // class member accesses.  Note that we do not ignore parentheses;
3536  // parentheses change the semantics of decltype for these
3537  // expressions (and cause the mangler to use the other form).
3538  if (isa<DeclRefExpr>(E) ||
3539      isa<MemberExpr>(E) ||
3540      isa<UnresolvedLookupExpr>(E) ||
3541      isa<DependentScopeDeclRefExpr>(E) ||
3542      isa<CXXDependentScopeMemberExpr>(E) ||
3543      isa<UnresolvedMemberExpr>(E))
3544    Out << "Dt";
3545  else
3546    Out << "DT";
3547  mangleExpression(E);
3548  Out << 'E';
3549}
3550
3551void CXXNameMangler::mangleType(const UnaryTransformType *T) {
3552  // If this is dependent, we need to record that. If not, we simply
3553  // mangle it as the underlying type since they are equivalent.
3554  if (T->isDependentType()) {
3555    Out << 'U';
3556
3557    switch (T->getUTTKind()) {
3558      case UnaryTransformType::EnumUnderlyingType:
3559        Out << "3eut";
3560        break;
3561    }
3562  }
3563
3564  mangleType(T->getBaseType());
3565}
3566
3567void CXXNameMangler::mangleType(const AutoType *T) {
3568  assert(T->getDeducedType().isNull() &&
3569         "Deduced AutoType shouldn't be handled here!");
3570  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
3571         "shouldn't need to mangle __auto_type!");
3572  // <builtin-type> ::= Da # auto
3573  //                ::= Dc # decltype(auto)
3574  Out << (T->isDecltypeAuto() ? "Dc" : "Da");
3575}
3576
3577void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
3578  // FIXME: This is not the right mangling. We also need to include a scope
3579  // here in some cases.
3580  QualType D = T->getDeducedType();
3581  if (D.isNull())
3582    mangleUnscopedTemplateName(T->getTemplateName(), nullptr);
3583  else
3584    mangleType(D);
3585}
3586
3587void CXXNameMangler::mangleType(const AtomicType *T) {
3588  // <type> ::= U <source-name> <type>  # vendor extended type qualifier
3589  // (Until there's a standardized mangling...)
3590  Out << "U7_Atomic";
3591  mangleType(T->getValueType());
3592}
3593
3594void CXXNameMangler::mangleType(const PipeType *T) {
3595  // Pipe type mangling rules are described in SPIR 2.0 specification
3596  // A.1 Data types and A.3 Summary of changes
3597  // <type> ::= 8ocl_pipe
3598  Out << "8ocl_pipe";
3599}
3600
3601void CXXNameMangler::mangleType(const ExtIntType *T) {
3602  Out << "U7_ExtInt";
3603  llvm::APSInt BW(32, true);
3604  BW = T->getNumBits();
3605  TemplateArgument TA(Context.getASTContext(), BW, getASTContext().IntTy);
3606  mangleTemplateArgs(&TA, 1);
3607  if (T->isUnsigned())
3608    Out << "j";
3609  else
3610    Out << "i";
3611}
3612
3613void CXXNameMangler::mangleType(const DependentExtIntType *T) {
3614  Out << "U7_ExtInt";
3615  TemplateArgument TA(T->getNumBitsExpr());
3616  mangleTemplateArgs(&TA, 1);
3617  if (T->isUnsigned())
3618    Out << "j";
3619  else
3620    Out << "i";
3621}
3622
3623void CXXNameMangler::mangleIntegerLiteral(QualType T,
3624                                          const llvm::APSInt &Value) {
3625  //  <expr-primary> ::= L <type> <value number> E # integer literal
3626  Out << 'L';
3627
3628  mangleType(T);
3629  if (T->isBooleanType()) {
3630    // Boolean values are encoded as 0/1.
3631    Out << (Value.getBoolValue() ? '1' : '0');
3632  } else {
3633    mangleNumber(Value);
3634  }
3635  Out << 'E';
3636
3637}
3638
3639void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
3640  // Ignore member expressions involving anonymous unions.
3641  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
3642    if (!RT->getDecl()->isAnonymousStructOrUnion())
3643      break;
3644    const auto *ME = dyn_cast<MemberExpr>(Base);
3645    if (!ME)
3646      break;
3647    Base = ME->getBase();
3648    IsArrow = ME->isArrow();
3649  }
3650
3651  if (Base->isImplicitCXXThis()) {
3652    // Note: GCC mangles member expressions to the implicit 'this' as
3653    // *this., whereas we represent them as this->. The Itanium C++ ABI
3654    // does not specify anything here, so we follow GCC.
3655    Out << "dtdefpT";
3656  } else {
3657    Out << (IsArrow ? "pt" : "dt");
3658    mangleExpression(Base);
3659  }
3660}
3661
3662/// Mangles a member expression.
3663void CXXNameMangler::mangleMemberExpr(const Expr *base,
3664                                      bool isArrow,
3665                                      NestedNameSpecifier *qualifier,
3666                                      NamedDecl *firstQualifierLookup,
3667                                      DeclarationName member,
3668                                      const TemplateArgumentLoc *TemplateArgs,
3669                                      unsigned NumTemplateArgs,
3670                                      unsigned arity) {
3671  // <expression> ::= dt <expression> <unresolved-name>
3672  //              ::= pt <expression> <unresolved-name>
3673  if (base)
3674    mangleMemberExprBase(base, isArrow);
3675  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
3676}
3677
3678/// Look at the callee of the given call expression and determine if
3679/// it's a parenthesized id-expression which would have triggered ADL
3680/// otherwise.
3681static bool isParenthesizedADLCallee(const CallExpr *call) {
3682  const Expr *callee = call->getCallee();
3683  const Expr *fn = callee->IgnoreParens();
3684
3685  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
3686  // too, but for those to appear in the callee, it would have to be
3687  // parenthesized.
3688  if (callee == fn) return false;
3689
3690  // Must be an unresolved lookup.
3691  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
3692  if (!lookup) return false;
3693
3694  assert(!lookup->requiresADL());
3695
3696  // Must be an unqualified lookup.
3697  if (lookup->getQualifier()) return false;
3698
3699  // Must not have found a class member.  Note that if one is a class
3700  // member, they're all class members.
3701  if (lookup->getNumDecls() > 0 &&
3702      (*lookup->decls_begin())->isCXXClassMember())
3703    return false;
3704
3705  // Otherwise, ADL would have been triggered.
3706  return true;
3707}
3708
3709void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
3710  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
3711  Out << CastEncoding;
3712  mangleType(ECE->getType());
3713  mangleExpression(ECE->getSubExpr());
3714}
3715
3716void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
3717  if (auto *Syntactic = InitList->getSyntacticForm())
3718    InitList = Syntactic;
3719  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
3720    mangleExpression(InitList->getInit(i));
3721}
3722
3723void CXXNameMangler::mangleDeclRefExpr(const NamedDecl *D) {
3724  switch (D->getKind()) {
3725  default:
3726    //  <expr-primary> ::= L <mangled-name> E # external name
3727    Out << 'L';
3728    mangle(D);
3729    Out << 'E';
3730    break;
3731
3732  case Decl::ParmVar:
3733    mangleFunctionParam(cast<ParmVarDecl>(D));
3734    break;
3735
3736  case Decl::EnumConstant: {
3737    const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3738    mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3739    break;
3740  }
3741
3742  case Decl::NonTypeTemplateParm:
3743    const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3744    mangleTemplateParameter(PD->getDepth(), PD->getIndex());
3745    break;
3746  }
3747}
3748
3749void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
3750  // <expression> ::= <unary operator-name> <expression>
3751  //              ::= <binary operator-name> <expression> <expression>
3752  //              ::= <trinary operator-name> <expression> <expression> <expression>
3753  //              ::= cv <type> expression           # conversion with one argument
3754  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
3755  //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
3756  //              ::= sc <type> <expression>         # static_cast<type> (expression)
3757  //              ::= cc <type> <expression>         # const_cast<type> (expression)
3758  //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
3759  //              ::= st <type>                      # sizeof (a type)
3760  //              ::= at <type>                      # alignof (a type)
3761  //              ::= <template-param>
3762  //              ::= <function-param>
3763  //              ::= sr <type> <unqualified-name>                   # dependent name
3764  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
3765  //              ::= ds <expression> <expression>                   # expr.*expr
3766  //              ::= sZ <template-param>                            # size of a parameter pack
3767  //              ::= sZ <function-param>    # size of a function parameter pack
3768  //              ::= <expr-primary>
3769  // <expr-primary> ::= L <type> <value number> E    # integer literal
3770  //                ::= L <type <value float> E      # floating literal
3771  //                ::= L <mangled-name> E           # external name
3772  //                ::= fpT                          # 'this' expression
3773  QualType ImplicitlyConvertedToType;
3774
3775recurse:
3776  switch (E->getStmtClass()) {
3777  case Expr::NoStmtClass:
3778#define ABSTRACT_STMT(Type)
3779#define EXPR(Type, Base)
3780#define STMT(Type, Base) \
3781  case Expr::Type##Class:
3782#include "clang/AST/StmtNodes.inc"
3783    // fallthrough
3784
3785  // These all can only appear in local or variable-initialization
3786  // contexts and so should never appear in a mangling.
3787  case Expr::AddrLabelExprClass:
3788  case Expr::DesignatedInitUpdateExprClass:
3789  case Expr::ImplicitValueInitExprClass:
3790  case Expr::ArrayInitLoopExprClass:
3791  case Expr::ArrayInitIndexExprClass:
3792  case Expr::NoInitExprClass:
3793  case Expr::ParenListExprClass:
3794  case Expr::LambdaExprClass:
3795  case Expr::MSPropertyRefExprClass:
3796  case Expr::MSPropertySubscriptExprClass:
3797  case Expr::TypoExprClass: // This should no longer exist in the AST by now.
3798  case Expr::RecoveryExprClass:
3799  case Expr::OMPArraySectionExprClass:
3800  case Expr::OMPArrayShapingExprClass:
3801  case Expr::OMPIteratorExprClass:
3802  case Expr::CXXInheritedCtorInitExprClass:
3803    llvm_unreachable("unexpected statement kind");
3804
3805  case Expr::ConstantExprClass:
3806    E = cast<ConstantExpr>(E)->getSubExpr();
3807    goto recurse;
3808
3809  // FIXME: invent manglings for all these.
3810  case Expr::BlockExprClass:
3811  case Expr::ChooseExprClass:
3812  case Expr::CompoundLiteralExprClass:
3813  case Expr::ExtVectorElementExprClass:
3814  case Expr::GenericSelectionExprClass:
3815  case Expr::ObjCEncodeExprClass:
3816  case Expr::ObjCIsaExprClass:
3817  case Expr::ObjCIvarRefExprClass:
3818  case Expr::ObjCMessageExprClass:
3819  case Expr::ObjCPropertyRefExprClass:
3820  case Expr::ObjCProtocolExprClass:
3821  case Expr::ObjCSelectorExprClass:
3822  case Expr::ObjCStringLiteralClass:
3823  case Expr::ObjCBoxedExprClass:
3824  case Expr::ObjCArrayLiteralClass:
3825  case Expr::ObjCDictionaryLiteralClass:
3826  case Expr::ObjCSubscriptRefExprClass:
3827  case Expr::ObjCIndirectCopyRestoreExprClass:
3828  case Expr::ObjCAvailabilityCheckExprClass:
3829  case Expr::OffsetOfExprClass:
3830  case Expr::PredefinedExprClass:
3831  case Expr::ShuffleVectorExprClass:
3832  case Expr::ConvertVectorExprClass:
3833  case Expr::StmtExprClass:
3834  case Expr::TypeTraitExprClass:
3835  case Expr::RequiresExprClass:
3836  case Expr::ArrayTypeTraitExprClass:
3837  case Expr::ExpressionTraitExprClass:
3838  case Expr::VAArgExprClass:
3839  case Expr::CUDAKernelCallExprClass:
3840  case Expr::AsTypeExprClass:
3841  case Expr::PseudoObjectExprClass:
3842  case Expr::AtomicExprClass:
3843  case Expr::SourceLocExprClass:
3844  case Expr::FixedPointLiteralClass:
3845  case Expr::BuiltinBitCastExprClass:
3846  {
3847    if (!NullOut) {
3848      // As bad as this diagnostic is, it's better than crashing.
3849      DiagnosticsEngine &Diags = Context.getDiags();
3850      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3851                                       "cannot yet mangle expression type %0");
3852      Diags.Report(E->getExprLoc(), DiagID)
3853        << E->getStmtClassName() << E->getSourceRange();
3854    }
3855    break;
3856  }
3857
3858  case Expr::CXXUuidofExprClass: {
3859    const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
3860    if (UE->isTypeOperand()) {
3861      QualType UuidT = UE->getTypeOperand(Context.getASTContext());
3862      Out << "u8__uuidoft";
3863      mangleType(UuidT);
3864    } else {
3865      Expr *UuidExp = UE->getExprOperand();
3866      Out << "u8__uuidofz";
3867      mangleExpression(UuidExp, Arity);
3868    }
3869    break;
3870  }
3871
3872  // Even gcc-4.5 doesn't mangle this.
3873  case Expr::BinaryConditionalOperatorClass: {
3874    DiagnosticsEngine &Diags = Context.getDiags();
3875    unsigned DiagID =
3876      Diags.getCustomDiagID(DiagnosticsEngine::Error,
3877                "?: operator with omitted middle operand cannot be mangled");
3878    Diags.Report(E->getExprLoc(), DiagID)
3879      << E->getStmtClassName() << E->getSourceRange();
3880    break;
3881  }
3882
3883  // These are used for internal purposes and cannot be meaningfully mangled.
3884  case Expr::OpaqueValueExprClass:
3885    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
3886
3887  case Expr::InitListExprClass: {
3888    Out << "il";
3889    mangleInitListElements(cast<InitListExpr>(E));
3890    Out << "E";
3891    break;
3892  }
3893
3894  case Expr::DesignatedInitExprClass: {
3895    auto *DIE = cast<DesignatedInitExpr>(E);
3896    for (const auto &Designator : DIE->designators()) {
3897      if (Designator.isFieldDesignator()) {
3898        Out << "di";
3899        mangleSourceName(Designator.getFieldName());
3900      } else if (Designator.isArrayDesignator()) {
3901        Out << "dx";
3902        mangleExpression(DIE->getArrayIndex(Designator));
3903      } else {
3904        assert(Designator.isArrayRangeDesignator() &&
3905               "unknown designator kind");
3906        Out << "dX";
3907        mangleExpression(DIE->getArrayRangeStart(Designator));
3908        mangleExpression(DIE->getArrayRangeEnd(Designator));
3909      }
3910    }
3911    mangleExpression(DIE->getInit());
3912    break;
3913  }
3914
3915  case Expr::CXXDefaultArgExprClass:
3916    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
3917    break;
3918
3919  case Expr::CXXDefaultInitExprClass:
3920    mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
3921    break;
3922
3923  case Expr::CXXStdInitializerListExprClass:
3924    mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
3925    break;
3926
3927  case Expr::SubstNonTypeTemplateParmExprClass:
3928    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
3929                     Arity);
3930    break;
3931
3932  case Expr::UserDefinedLiteralClass:
3933    // We follow g++'s approach of mangling a UDL as a call to the literal
3934    // operator.
3935  case Expr::CXXMemberCallExprClass: // fallthrough
3936  case Expr::CallExprClass: {
3937    const CallExpr *CE = cast<CallExpr>(E);
3938
3939    // <expression> ::= cp <simple-id> <expression>* E
3940    // We use this mangling only when the call would use ADL except
3941    // for being parenthesized.  Per discussion with David
3942    // Vandervoorde, 2011.04.25.
3943    if (isParenthesizedADLCallee(CE)) {
3944      Out << "cp";
3945      // The callee here is a parenthesized UnresolvedLookupExpr with
3946      // no qualifier and should always get mangled as a <simple-id>
3947      // anyway.
3948
3949    // <expression> ::= cl <expression>* E
3950    } else {
3951      Out << "cl";
3952    }
3953
3954    unsigned CallArity = CE->getNumArgs();
3955    for (const Expr *Arg : CE->arguments())
3956      if (isa<PackExpansionExpr>(Arg))
3957        CallArity = UnknownArity;
3958
3959    mangleExpression(CE->getCallee(), CallArity);
3960    for (const Expr *Arg : CE->arguments())
3961      mangleExpression(Arg);
3962    Out << 'E';
3963    break;
3964  }
3965
3966  case Expr::CXXNewExprClass: {
3967    const CXXNewExpr *New = cast<CXXNewExpr>(E);
3968    if (New->isGlobalNew()) Out << "gs";
3969    Out << (New->isArray() ? "na" : "nw");
3970    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
3971           E = New->placement_arg_end(); I != E; ++I)
3972      mangleExpression(*I);
3973    Out << '_';
3974    mangleType(New->getAllocatedType());
3975    if (New->hasInitializer()) {
3976      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
3977        Out << "il";
3978      else
3979        Out << "pi";
3980      const Expr *Init = New->getInitializer();
3981      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
3982        // Directly inline the initializers.
3983        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
3984                                                  E = CCE->arg_end();
3985             I != E; ++I)
3986          mangleExpression(*I);
3987      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
3988        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
3989          mangleExpression(PLE->getExpr(i));
3990      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
3991                 isa<InitListExpr>(Init)) {
3992        // Only take InitListExprs apart for list-initialization.
3993        mangleInitListElements(cast<InitListExpr>(Init));
3994      } else
3995        mangleExpression(Init);
3996    }
3997    Out << 'E';
3998    break;
3999  }
4000
4001  case Expr::CXXPseudoDestructorExprClass: {
4002    const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4003    if (const Expr *Base = PDE->getBase())
4004      mangleMemberExprBase(Base, PDE->isArrow());
4005    NestedNameSpecifier *Qualifier = PDE->getQualifier();
4006    if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4007      if (Qualifier) {
4008        mangleUnresolvedPrefix(Qualifier,
4009                               /*recursive=*/true);
4010        mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4011        Out << 'E';
4012      } else {
4013        Out << "sr";
4014        if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4015          Out << 'E';
4016      }
4017    } else if (Qualifier) {
4018      mangleUnresolvedPrefix(Qualifier);
4019    }
4020    // <base-unresolved-name> ::= dn <destructor-name>
4021    Out << "dn";
4022    QualType DestroyedType = PDE->getDestroyedType();
4023    mangleUnresolvedTypeOrSimpleId(DestroyedType);
4024    break;
4025  }
4026
4027  case Expr::MemberExprClass: {
4028    const MemberExpr *ME = cast<MemberExpr>(E);
4029    mangleMemberExpr(ME->getBase(), ME->isArrow(),
4030                     ME->getQualifier(), nullptr,
4031                     ME->getMemberDecl()->getDeclName(),
4032                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4033                     Arity);
4034    break;
4035  }
4036
4037  case Expr::UnresolvedMemberExprClass: {
4038    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4039    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4040                     ME->isArrow(), ME->getQualifier(), nullptr,
4041                     ME->getMemberName(),
4042                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4043                     Arity);
4044    break;
4045  }
4046
4047  case Expr::CXXDependentScopeMemberExprClass: {
4048    const CXXDependentScopeMemberExpr *ME
4049      = cast<CXXDependentScopeMemberExpr>(E);
4050    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4051                     ME->isArrow(), ME->getQualifier(),
4052                     ME->getFirstQualifierFoundInScope(),
4053                     ME->getMember(),
4054                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4055                     Arity);
4056    break;
4057  }
4058
4059  case Expr::UnresolvedLookupExprClass: {
4060    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
4061    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
4062                         ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
4063                         Arity);
4064    break;
4065  }
4066
4067  case Expr::CXXUnresolvedConstructExprClass: {
4068    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
4069    unsigned N = CE->arg_size();
4070
4071    if (CE->isListInitialization()) {
4072      assert(N == 1 && "unexpected form for list initialization");
4073      auto *IL = cast<InitListExpr>(CE->getArg(0));
4074      Out << "tl";
4075      mangleType(CE->getType());
4076      mangleInitListElements(IL);
4077      Out << "E";
4078      return;
4079    }
4080
4081    Out << "cv";
4082    mangleType(CE->getType());
4083    if (N != 1) Out << '_';
4084    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
4085    if (N != 1) Out << 'E';
4086    break;
4087  }
4088
4089  case Expr::CXXConstructExprClass: {
4090    const auto *CE = cast<CXXConstructExpr>(E);
4091    if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
4092      assert(
4093          CE->getNumArgs() >= 1 &&
4094          (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
4095          "implicit CXXConstructExpr must have one argument");
4096      return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
4097    }
4098    Out << "il";
4099    for (auto *E : CE->arguments())
4100      mangleExpression(E);
4101    Out << "E";
4102    break;
4103  }
4104
4105  case Expr::CXXTemporaryObjectExprClass: {
4106    const auto *CE = cast<CXXTemporaryObjectExpr>(E);
4107    unsigned N = CE->getNumArgs();
4108    bool List = CE->isListInitialization();
4109
4110    if (List)
4111      Out << "tl";
4112    else
4113      Out << "cv";
4114    mangleType(CE->getType());
4115    if (!List && N != 1)
4116      Out << '_';
4117    if (CE->isStdInitListInitialization()) {
4118      // We implicitly created a std::initializer_list<T> for the first argument
4119      // of a constructor of type U in an expression of the form U{a, b, c}.
4120      // Strip all the semantic gunk off the initializer list.
4121      auto *SILE =
4122          cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
4123      auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
4124      mangleInitListElements(ILE);
4125    } else {
4126      for (auto *E : CE->arguments())
4127        mangleExpression(E);
4128    }
4129    if (List || N != 1)
4130      Out << 'E';
4131    break;
4132  }
4133
4134  case Expr::CXXScalarValueInitExprClass:
4135    Out << "cv";
4136    mangleType(E->getType());
4137    Out << "_E";
4138    break;
4139
4140  case Expr::CXXNoexceptExprClass:
4141    Out << "nx";
4142    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
4143    break;
4144
4145  case Expr::UnaryExprOrTypeTraitExprClass: {
4146    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
4147
4148    if (!SAE->isInstantiationDependent()) {
4149      // Itanium C++ ABI:
4150      //   If the operand of a sizeof or alignof operator is not
4151      //   instantiation-dependent it is encoded as an integer literal
4152      //   reflecting the result of the operator.
4153      //
4154      //   If the result of the operator is implicitly converted to a known
4155      //   integer type, that type is used for the literal; otherwise, the type
4156      //   of std::size_t or std::ptrdiff_t is used.
4157      QualType T = (ImplicitlyConvertedToType.isNull() ||
4158                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
4159                                                    : ImplicitlyConvertedToType;
4160      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
4161      mangleIntegerLiteral(T, V);
4162      break;
4163    }
4164
4165    switch(SAE->getKind()) {
4166    case UETT_SizeOf:
4167      Out << 's';
4168      break;
4169    case UETT_PreferredAlignOf:
4170    case UETT_AlignOf:
4171      Out << 'a';
4172      break;
4173    case UETT_VecStep: {
4174      DiagnosticsEngine &Diags = Context.getDiags();
4175      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4176                                     "cannot yet mangle vec_step expression");
4177      Diags.Report(DiagID);
4178      return;
4179    }
4180    case UETT_OpenMPRequiredSimdAlign: {
4181      DiagnosticsEngine &Diags = Context.getDiags();
4182      unsigned DiagID = Diags.getCustomDiagID(
4183          DiagnosticsEngine::Error,
4184          "cannot yet mangle __builtin_omp_required_simd_align expression");
4185      Diags.Report(DiagID);
4186      return;
4187    }
4188    }
4189    if (SAE->isArgumentType()) {
4190      Out << 't';
4191      mangleType(SAE->getArgumentType());
4192    } else {
4193      Out << 'z';
4194      mangleExpression(SAE->getArgumentExpr());
4195    }
4196    break;
4197  }
4198
4199  case Expr::CXXThrowExprClass: {
4200    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
4201    //  <expression> ::= tw <expression>  # throw expression
4202    //               ::= tr               # rethrow
4203    if (TE->getSubExpr()) {
4204      Out << "tw";
4205      mangleExpression(TE->getSubExpr());
4206    } else {
4207      Out << "tr";
4208    }
4209    break;
4210  }
4211
4212  case Expr::CXXTypeidExprClass: {
4213    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
4214    //  <expression> ::= ti <type>        # typeid (type)
4215    //               ::= te <expression>  # typeid (expression)
4216    if (TIE->isTypeOperand()) {
4217      Out << "ti";
4218      mangleType(TIE->getTypeOperand(Context.getASTContext()));
4219    } else {
4220      Out << "te";
4221      mangleExpression(TIE->getExprOperand());
4222    }
4223    break;
4224  }
4225
4226  case Expr::CXXDeleteExprClass: {
4227    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
4228    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
4229    //               ::= [gs] da <expression>  # [::] delete [] expr
4230    if (DE->isGlobalDelete()) Out << "gs";
4231    Out << (DE->isArrayForm() ? "da" : "dl");
4232    mangleExpression(DE->getArgument());
4233    break;
4234  }
4235
4236  case Expr::UnaryOperatorClass: {
4237    const UnaryOperator *UO = cast<UnaryOperator>(E);
4238    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
4239                       /*Arity=*/1);
4240    mangleExpression(UO->getSubExpr());
4241    break;
4242  }
4243
4244  case Expr::ArraySubscriptExprClass: {
4245    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
4246
4247    // Array subscript is treated as a syntactically weird form of
4248    // binary operator.
4249    Out << "ix";
4250    mangleExpression(AE->getLHS());
4251    mangleExpression(AE->getRHS());
4252    break;
4253  }
4254
4255  case Expr::MatrixSubscriptExprClass: {
4256    const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
4257    Out << "ixix";
4258    mangleExpression(ME->getBase());
4259    mangleExpression(ME->getRowIdx());
4260    mangleExpression(ME->getColumnIdx());
4261    break;
4262  }
4263
4264  case Expr::CompoundAssignOperatorClass: // fallthrough
4265  case Expr::BinaryOperatorClass: {
4266    const BinaryOperator *BO = cast<BinaryOperator>(E);
4267    if (BO->getOpcode() == BO_PtrMemD)
4268      Out << "ds";
4269    else
4270      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
4271                         /*Arity=*/2);
4272    mangleExpression(BO->getLHS());
4273    mangleExpression(BO->getRHS());
4274    break;
4275  }
4276
4277  case Expr::CXXRewrittenBinaryOperatorClass: {
4278    // The mangled form represents the original syntax.
4279    CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
4280        cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
4281    mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
4282                       /*Arity=*/2);
4283    mangleExpression(Decomposed.LHS);
4284    mangleExpression(Decomposed.RHS);
4285    break;
4286  }
4287
4288  case Expr::ConditionalOperatorClass: {
4289    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
4290    mangleOperatorName(OO_Conditional, /*Arity=*/3);
4291    mangleExpression(CO->getCond());
4292    mangleExpression(CO->getLHS(), Arity);
4293    mangleExpression(CO->getRHS(), Arity);
4294    break;
4295  }
4296
4297  case Expr::ImplicitCastExprClass: {
4298    ImplicitlyConvertedToType = E->getType();
4299    E = cast<ImplicitCastExpr>(E)->getSubExpr();
4300    goto recurse;
4301  }
4302
4303  case Expr::ObjCBridgedCastExprClass: {
4304    // Mangle ownership casts as a vendor extended operator __bridge,
4305    // __bridge_transfer, or __bridge_retain.
4306    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
4307    Out << "v1U" << Kind.size() << Kind;
4308  }
4309  // Fall through to mangle the cast itself.
4310  LLVM_FALLTHROUGH;
4311
4312  case Expr::CStyleCastExprClass:
4313    mangleCastExpression(E, "cv");
4314    break;
4315
4316  case Expr::CXXFunctionalCastExprClass: {
4317    auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
4318    // FIXME: Add isImplicit to CXXConstructExpr.
4319    if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
4320      if (CCE->getParenOrBraceRange().isInvalid())
4321        Sub = CCE->getArg(0)->IgnoreImplicit();
4322    if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
4323      Sub = StdInitList->getSubExpr()->IgnoreImplicit();
4324    if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
4325      Out << "tl";
4326      mangleType(E->getType());
4327      mangleInitListElements(IL);
4328      Out << "E";
4329    } else {
4330      mangleCastExpression(E, "cv");
4331    }
4332    break;
4333  }
4334
4335  case Expr::CXXStaticCastExprClass:
4336    mangleCastExpression(E, "sc");
4337    break;
4338  case Expr::CXXDynamicCastExprClass:
4339    mangleCastExpression(E, "dc");
4340    break;
4341  case Expr::CXXReinterpretCastExprClass:
4342    mangleCastExpression(E, "rc");
4343    break;
4344  case Expr::CXXConstCastExprClass:
4345    mangleCastExpression(E, "cc");
4346    break;
4347  case Expr::CXXAddrspaceCastExprClass:
4348    mangleCastExpression(E, "ac");
4349    break;
4350
4351  case Expr::CXXOperatorCallExprClass: {
4352    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
4353    unsigned NumArgs = CE->getNumArgs();
4354    // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
4355    // (the enclosing MemberExpr covers the syntactic portion).
4356    if (CE->getOperator() != OO_Arrow)
4357      mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
4358    // Mangle the arguments.
4359    for (unsigned i = 0; i != NumArgs; ++i)
4360      mangleExpression(CE->getArg(i));
4361    break;
4362  }
4363
4364  case Expr::ParenExprClass:
4365    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
4366    break;
4367
4368
4369  case Expr::ConceptSpecializationExprClass: {
4370    //  <expr-primary> ::= L <mangled-name> E # external name
4371    Out << "L_Z";
4372    auto *CSE = cast<ConceptSpecializationExpr>(E);
4373    mangleTemplateName(CSE->getNamedConcept(),
4374                       CSE->getTemplateArguments().data(),
4375                       CSE->getTemplateArguments().size());
4376    Out << 'E';
4377    break;
4378  }
4379
4380  case Expr::DeclRefExprClass:
4381    mangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
4382    break;
4383
4384  case Expr::SubstNonTypeTemplateParmPackExprClass:
4385    // FIXME: not clear how to mangle this!
4386    // template <unsigned N...> class A {
4387    //   template <class U...> void foo(U (&x)[N]...);
4388    // };
4389    Out << "_SUBSTPACK_";
4390    break;
4391
4392  case Expr::FunctionParmPackExprClass: {
4393    // FIXME: not clear how to mangle this!
4394    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
4395    Out << "v110_SUBSTPACK";
4396    mangleDeclRefExpr(FPPE->getParameterPack());
4397    break;
4398  }
4399
4400  case Expr::DependentScopeDeclRefExprClass: {
4401    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
4402    mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
4403                         DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
4404                         Arity);
4405    break;
4406  }
4407
4408  case Expr::CXXBindTemporaryExprClass:
4409    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
4410    break;
4411
4412  case Expr::ExprWithCleanupsClass:
4413    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
4414    break;
4415
4416  case Expr::FloatingLiteralClass: {
4417    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
4418    Out << 'L';
4419    mangleType(FL->getType());
4420    mangleFloat(FL->getValue());
4421    Out << 'E';
4422    break;
4423  }
4424
4425  case Expr::CharacterLiteralClass:
4426    Out << 'L';
4427    mangleType(E->getType());
4428    Out << cast<CharacterLiteral>(E)->getValue();
4429    Out << 'E';
4430    break;
4431
4432  // FIXME. __objc_yes/__objc_no are mangled same as true/false
4433  case Expr::ObjCBoolLiteralExprClass:
4434    Out << "Lb";
4435    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4436    Out << 'E';
4437    break;
4438
4439  case Expr::CXXBoolLiteralExprClass:
4440    Out << "Lb";
4441    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
4442    Out << 'E';
4443    break;
4444
4445  case Expr::IntegerLiteralClass: {
4446    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
4447    if (E->getType()->isSignedIntegerType())
4448      Value.setIsSigned(true);
4449    mangleIntegerLiteral(E->getType(), Value);
4450    break;
4451  }
4452
4453  case Expr::ImaginaryLiteralClass: {
4454    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
4455    // Mangle as if a complex literal.
4456    // Proposal from David Vandevoorde, 2010.06.30.
4457    Out << 'L';
4458    mangleType(E->getType());
4459    if (const FloatingLiteral *Imag =
4460          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
4461      // Mangle a floating-point zero of the appropriate type.
4462      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
4463      Out << '_';
4464      mangleFloat(Imag->getValue());
4465    } else {
4466      Out << "0_";
4467      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
4468      if (IE->getSubExpr()->getType()->isSignedIntegerType())
4469        Value.setIsSigned(true);
4470      mangleNumber(Value);
4471    }
4472    Out << 'E';
4473    break;
4474  }
4475
4476  case Expr::StringLiteralClass: {
4477    // Revised proposal from David Vandervoorde, 2010.07.15.
4478    Out << 'L';
4479    assert(isa<ConstantArrayType>(E->getType()));
4480    mangleType(E->getType());
4481    Out << 'E';
4482    break;
4483  }
4484
4485  case Expr::GNUNullExprClass:
4486    // Mangle as if an integer literal 0.
4487    Out << 'L';
4488    mangleType(E->getType());
4489    Out << "0E";
4490    break;
4491
4492  case Expr::CXXNullPtrLiteralExprClass: {
4493    Out << "LDnE";
4494    break;
4495  }
4496
4497  case Expr::PackExpansionExprClass:
4498    Out << "sp";
4499    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
4500    break;
4501
4502  case Expr::SizeOfPackExprClass: {
4503    auto *SPE = cast<SizeOfPackExpr>(E);
4504    if (SPE->isPartiallySubstituted()) {
4505      Out << "sP";
4506      for (const auto &A : SPE->getPartialArguments())
4507        mangleTemplateArg(A);
4508      Out << "E";
4509      break;
4510    }
4511
4512    Out << "sZ";
4513    const NamedDecl *Pack = SPE->getPack();
4514    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
4515      mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
4516    else if (const NonTypeTemplateParmDecl *NTTP
4517                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
4518      mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
4519    else if (const TemplateTemplateParmDecl *TempTP
4520                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
4521      mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
4522    else
4523      mangleFunctionParam(cast<ParmVarDecl>(Pack));
4524    break;
4525  }
4526
4527  case Expr::MaterializeTemporaryExprClass: {
4528    mangleExpression(cast<MaterializeTemporaryExpr>(E)->getSubExpr());
4529    break;
4530  }
4531
4532  case Expr::CXXFoldExprClass: {
4533    auto *FE = cast<CXXFoldExpr>(E);
4534    if (FE->isLeftFold())
4535      Out << (FE->getInit() ? "fL" : "fl");
4536    else
4537      Out << (FE->getInit() ? "fR" : "fr");
4538
4539    if (FE->getOperator() == BO_PtrMemD)
4540      Out << "ds";
4541    else
4542      mangleOperatorName(
4543          BinaryOperator::getOverloadedOperator(FE->getOperator()),
4544          /*Arity=*/2);
4545
4546    if (FE->getLHS())
4547      mangleExpression(FE->getLHS());
4548    if (FE->getRHS())
4549      mangleExpression(FE->getRHS());
4550    break;
4551  }
4552
4553  case Expr::CXXThisExprClass:
4554    Out << "fpT";
4555    break;
4556
4557  case Expr::CoawaitExprClass:
4558    // FIXME: Propose a non-vendor mangling.
4559    Out << "v18co_await";
4560    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4561    break;
4562
4563  case Expr::DependentCoawaitExprClass:
4564    // FIXME: Propose a non-vendor mangling.
4565    Out << "v18co_await";
4566    mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
4567    break;
4568
4569  case Expr::CoyieldExprClass:
4570    // FIXME: Propose a non-vendor mangling.
4571    Out << "v18co_yield";
4572    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
4573    break;
4574  }
4575}
4576
4577/// Mangle an expression which refers to a parameter variable.
4578///
4579/// <expression>     ::= <function-param>
4580/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
4581/// <function-param> ::= fp <top-level CV-qualifiers>
4582///                      <parameter-2 non-negative number> _ # L == 0, I > 0
4583/// <function-param> ::= fL <L-1 non-negative number>
4584///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
4585/// <function-param> ::= fL <L-1 non-negative number>
4586///                      p <top-level CV-qualifiers>
4587///                      <I-1 non-negative number> _         # L > 0, I > 0
4588///
4589/// L is the nesting depth of the parameter, defined as 1 if the
4590/// parameter comes from the innermost function prototype scope
4591/// enclosing the current context, 2 if from the next enclosing
4592/// function prototype scope, and so on, with one special case: if
4593/// we've processed the full parameter clause for the innermost
4594/// function type, then L is one less.  This definition conveniently
4595/// makes it irrelevant whether a function's result type was written
4596/// trailing or leading, but is otherwise overly complicated; the
4597/// numbering was first designed without considering references to
4598/// parameter in locations other than return types, and then the
4599/// mangling had to be generalized without changing the existing
4600/// manglings.
4601///
4602/// I is the zero-based index of the parameter within its parameter
4603/// declaration clause.  Note that the original ABI document describes
4604/// this using 1-based ordinals.
4605void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
4606  unsigned parmDepth = parm->getFunctionScopeDepth();
4607  unsigned parmIndex = parm->getFunctionScopeIndex();
4608
4609  // Compute 'L'.
4610  // parmDepth does not include the declaring function prototype.
4611  // FunctionTypeDepth does account for that.
4612  assert(parmDepth < FunctionTypeDepth.getDepth());
4613  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
4614  if (FunctionTypeDepth.isInResultType())
4615    nestingDepth--;
4616
4617  if (nestingDepth == 0) {
4618    Out << "fp";
4619  } else {
4620    Out << "fL" << (nestingDepth - 1) << 'p';
4621  }
4622
4623  // Top-level qualifiers.  We don't have to worry about arrays here,
4624  // because parameters declared as arrays should already have been
4625  // transformed to have pointer type. FIXME: apparently these don't
4626  // get mangled if used as an rvalue of a known non-class type?
4627  assert(!parm->getType()->isArrayType()
4628         && "parameter's type is still an array type?");
4629
4630  if (const DependentAddressSpaceType *DAST =
4631      dyn_cast<DependentAddressSpaceType>(parm->getType())) {
4632    mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
4633  } else {
4634    mangleQualifiers(parm->getType().getQualifiers());
4635  }
4636
4637  // Parameter index.
4638  if (parmIndex != 0) {
4639    Out << (parmIndex - 1);
4640  }
4641  Out << '_';
4642}
4643
4644void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
4645                                       const CXXRecordDecl *InheritedFrom) {
4646  // <ctor-dtor-name> ::= C1  # complete object constructor
4647  //                  ::= C2  # base object constructor
4648  //                  ::= CI1 <type> # complete inheriting constructor
4649  //                  ::= CI2 <type> # base inheriting constructor
4650  //
4651  // In addition, C5 is a comdat name with C1 and C2 in it.
4652  Out << 'C';
4653  if (InheritedFrom)
4654    Out << 'I';
4655  switch (T) {
4656  case Ctor_Complete:
4657    Out << '1';
4658    break;
4659  case Ctor_Base:
4660    Out << '2';
4661    break;
4662  case Ctor_Comdat:
4663    Out << '5';
4664    break;
4665  case Ctor_DefaultClosure:
4666  case Ctor_CopyingClosure:
4667    llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
4668  }
4669  if (InheritedFrom)
4670    mangleName(InheritedFrom);
4671}
4672
4673void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
4674  // <ctor-dtor-name> ::= D0  # deleting destructor
4675  //                  ::= D1  # complete object destructor
4676  //                  ::= D2  # base object destructor
4677  //
4678  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
4679  switch (T) {
4680  case Dtor_Deleting:
4681    Out << "D0";
4682    break;
4683  case Dtor_Complete:
4684    Out << "D1";
4685    break;
4686  case Dtor_Base:
4687    Out << "D2";
4688    break;
4689  case Dtor_Comdat:
4690    Out << "D5";
4691    break;
4692  }
4693}
4694
4695void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentLoc *TemplateArgs,
4696                                        unsigned NumTemplateArgs) {
4697  // <template-args> ::= I <template-arg>+ E
4698  Out << 'I';
4699  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4700    mangleTemplateArg(TemplateArgs[i].getArgument());
4701  Out << 'E';
4702}
4703
4704void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
4705  // <template-args> ::= I <template-arg>+ E
4706  Out << 'I';
4707  for (unsigned i = 0, e = AL.size(); i != e; ++i)
4708    mangleTemplateArg(AL[i]);
4709  Out << 'E';
4710}
4711
4712void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
4713                                        unsigned NumTemplateArgs) {
4714  // <template-args> ::= I <template-arg>+ E
4715  Out << 'I';
4716  for (unsigned i = 0; i != NumTemplateArgs; ++i)
4717    mangleTemplateArg(TemplateArgs[i]);
4718  Out << 'E';
4719}
4720
4721void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
4722  // <template-arg> ::= <type>              # type or template
4723  //                ::= X <expression> E    # expression
4724  //                ::= <expr-primary>      # simple expressions
4725  //                ::= J <template-arg>* E # argument pack
4726  if (!A.isInstantiationDependent() || A.isDependent())
4727    A = Context.getASTContext().getCanonicalTemplateArgument(A);
4728
4729  switch (A.getKind()) {
4730  case TemplateArgument::Null:
4731    llvm_unreachable("Cannot mangle NULL template argument");
4732
4733  case TemplateArgument::Type:
4734    mangleType(A.getAsType());
4735    break;
4736  case TemplateArgument::Template:
4737    // This is mangled as <type>.
4738    mangleType(A.getAsTemplate());
4739    break;
4740  case TemplateArgument::TemplateExpansion:
4741    // <type>  ::= Dp <type>          # pack expansion (C++0x)
4742    Out << "Dp";
4743    mangleType(A.getAsTemplateOrTemplatePattern());
4744    break;
4745  case TemplateArgument::Expression: {
4746    // It's possible to end up with a DeclRefExpr here in certain
4747    // dependent cases, in which case we should mangle as a
4748    // declaration.
4749    const Expr *E = A.getAsExpr()->IgnoreParenImpCasts();
4750    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
4751      const ValueDecl *D = DRE->getDecl();
4752      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
4753        Out << 'L';
4754        mangle(D);
4755        Out << 'E';
4756        break;
4757      }
4758    }
4759
4760    Out << 'X';
4761    mangleExpression(E);
4762    Out << 'E';
4763    break;
4764  }
4765  case TemplateArgument::Integral:
4766    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
4767    break;
4768  case TemplateArgument::Declaration: {
4769    //  <expr-primary> ::= L <mangled-name> E # external name
4770    // Clang produces AST's where pointer-to-member-function expressions
4771    // and pointer-to-function expressions are represented as a declaration not
4772    // an expression. We compensate for it here to produce the correct mangling.
4773    ValueDecl *D = A.getAsDecl();
4774    bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
4775    if (compensateMangling) {
4776      Out << 'X';
4777      mangleOperatorName(OO_Amp, 1);
4778    }
4779
4780    Out << 'L';
4781    // References to external entities use the mangled name; if the name would
4782    // not normally be mangled then mangle it as unqualified.
4783    mangle(D);
4784    Out << 'E';
4785
4786    if (compensateMangling)
4787      Out << 'E';
4788
4789    break;
4790  }
4791  case TemplateArgument::NullPtr: {
4792    //  <expr-primary> ::= L <type> 0 E
4793    Out << 'L';
4794    mangleType(A.getNullPtrType());
4795    Out << "0E";
4796    break;
4797  }
4798  case TemplateArgument::Pack: {
4799    //  <template-arg> ::= J <template-arg>* E
4800    Out << 'J';
4801    for (const auto &P : A.pack_elements())
4802      mangleTemplateArg(P);
4803    Out << 'E';
4804  }
4805  }
4806}
4807
4808void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
4809  // <template-param> ::= T_    # first template parameter
4810  //                  ::= T <parameter-2 non-negative number> _
4811  //                  ::= TL <L-1 non-negative number> __
4812  //                  ::= TL <L-1 non-negative number> _
4813  //                         <parameter-2 non-negative number> _
4814  //
4815  // The latter two manglings are from a proposal here:
4816  // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
4817  Out << 'T';
4818  if (Depth != 0)
4819    Out << 'L' << (Depth - 1) << '_';
4820  if (Index != 0)
4821    Out << (Index - 1);
4822  Out << '_';
4823}
4824
4825void CXXNameMangler::mangleSeqID(unsigned SeqID) {
4826  if (SeqID == 1)
4827    Out << '0';
4828  else if (SeqID > 1) {
4829    SeqID--;
4830
4831    // <seq-id> is encoded in base-36, using digits and upper case letters.
4832    char Buffer[7]; // log(2**32) / log(36) ~= 7
4833    MutableArrayRef<char> BufferRef(Buffer);
4834    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
4835
4836    for (; SeqID != 0; SeqID /= 36) {
4837      unsigned C = SeqID % 36;
4838      *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
4839    }
4840
4841    Out.write(I.base(), I - BufferRef.rbegin());
4842  }
4843  Out << '_';
4844}
4845
4846void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
4847  bool result = mangleSubstitution(tname);
4848  assert(result && "no existing substitution for template name");
4849  (void) result;
4850}
4851
4852// <substitution> ::= S <seq-id> _
4853//                ::= S_
4854bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
4855  // Try one of the standard substitutions first.
4856  if (mangleStandardSubstitution(ND))
4857    return true;
4858
4859  ND = cast<NamedDecl>(ND->getCanonicalDecl());
4860  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
4861}
4862
4863/// Determine whether the given type has any qualifiers that are relevant for
4864/// substitutions.
4865static bool hasMangledSubstitutionQualifiers(QualType T) {
4866  Qualifiers Qs = T.getQualifiers();
4867  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
4868}
4869
4870bool CXXNameMangler::mangleSubstitution(QualType T) {
4871  if (!hasMangledSubstitutionQualifiers(T)) {
4872    if (const RecordType *RT = T->getAs<RecordType>())
4873      return mangleSubstitution(RT->getDecl());
4874  }
4875
4876  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
4877
4878  return mangleSubstitution(TypePtr);
4879}
4880
4881bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
4882  if (TemplateDecl *TD = Template.getAsTemplateDecl())
4883    return mangleSubstitution(TD);
4884
4885  Template = Context.getASTContext().getCanonicalTemplateName(Template);
4886  return mangleSubstitution(
4887                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
4888}
4889
4890bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
4891  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
4892  if (I == Substitutions.end())
4893    return false;
4894
4895  unsigned SeqID = I->second;
4896  Out << 'S';
4897  mangleSeqID(SeqID);
4898
4899  return true;
4900}
4901
4902static bool isCharType(QualType T) {
4903  if (T.isNull())
4904    return false;
4905
4906  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
4907    T->isSpecificBuiltinType(BuiltinType::Char_U);
4908}
4909
4910/// Returns whether a given type is a template specialization of a given name
4911/// with a single argument of type char.
4912static bool isCharSpecialization(QualType T, const char *Name) {
4913  if (T.isNull())
4914    return false;
4915
4916  const RecordType *RT = T->getAs<RecordType>();
4917  if (!RT)
4918    return false;
4919
4920  const ClassTemplateSpecializationDecl *SD =
4921    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
4922  if (!SD)
4923    return false;
4924
4925  if (!isStdNamespace(getEffectiveDeclContext(SD)))
4926    return false;
4927
4928  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4929  if (TemplateArgs.size() != 1)
4930    return false;
4931
4932  if (!isCharType(TemplateArgs[0].getAsType()))
4933    return false;
4934
4935  return SD->getIdentifier()->getName() == Name;
4936}
4937
4938template <std::size_t StrLen>
4939static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
4940                                       const char (&Str)[StrLen]) {
4941  if (!SD->getIdentifier()->isStr(Str))
4942    return false;
4943
4944  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4945  if (TemplateArgs.size() != 2)
4946    return false;
4947
4948  if (!isCharType(TemplateArgs[0].getAsType()))
4949    return false;
4950
4951  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
4952    return false;
4953
4954  return true;
4955}
4956
4957bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
4958  // <substitution> ::= St # ::std::
4959  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
4960    if (isStd(NS)) {
4961      Out << "St";
4962      return true;
4963    }
4964  }
4965
4966  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
4967    if (!isStdNamespace(getEffectiveDeclContext(TD)))
4968      return false;
4969
4970    // <substitution> ::= Sa # ::std::allocator
4971    if (TD->getIdentifier()->isStr("allocator")) {
4972      Out << "Sa";
4973      return true;
4974    }
4975
4976    // <<substitution> ::= Sb # ::std::basic_string
4977    if (TD->getIdentifier()->isStr("basic_string")) {
4978      Out << "Sb";
4979      return true;
4980    }
4981  }
4982
4983  if (const ClassTemplateSpecializationDecl *SD =
4984        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
4985    if (!isStdNamespace(getEffectiveDeclContext(SD)))
4986      return false;
4987
4988    //    <substitution> ::= Ss # ::std::basic_string<char,
4989    //                            ::std::char_traits<char>,
4990    //                            ::std::allocator<char> >
4991    if (SD->getIdentifier()->isStr("basic_string")) {
4992      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
4993
4994      if (TemplateArgs.size() != 3)
4995        return false;
4996
4997      if (!isCharType(TemplateArgs[0].getAsType()))
4998        return false;
4999
5000      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
5001        return false;
5002
5003      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
5004        return false;
5005
5006      Out << "Ss";
5007      return true;
5008    }
5009
5010    //    <substitution> ::= Si # ::std::basic_istream<char,
5011    //                            ::std::char_traits<char> >
5012    if (isStreamCharSpecialization(SD, "basic_istream")) {
5013      Out << "Si";
5014      return true;
5015    }
5016
5017    //    <substitution> ::= So # ::std::basic_ostream<char,
5018    //                            ::std::char_traits<char> >
5019    if (isStreamCharSpecialization(SD, "basic_ostream")) {
5020      Out << "So";
5021      return true;
5022    }
5023
5024    //    <substitution> ::= Sd # ::std::basic_iostream<char,
5025    //                            ::std::char_traits<char> >
5026    if (isStreamCharSpecialization(SD, "basic_iostream")) {
5027      Out << "Sd";
5028      return true;
5029    }
5030  }
5031  return false;
5032}
5033
5034void CXXNameMangler::addSubstitution(QualType T) {
5035  if (!hasMangledSubstitutionQualifiers(T)) {
5036    if (const RecordType *RT = T->getAs<RecordType>()) {
5037      addSubstitution(RT->getDecl());
5038      return;
5039    }
5040  }
5041
5042  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
5043  addSubstitution(TypePtr);
5044}
5045
5046void CXXNameMangler::addSubstitution(TemplateName Template) {
5047  if (TemplateDecl *TD = Template.getAsTemplateDecl())
5048    return addSubstitution(TD);
5049
5050  Template = Context.getASTContext().getCanonicalTemplateName(Template);
5051  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
5052}
5053
5054void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
5055  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
5056  Substitutions[Ptr] = SeqID++;
5057}
5058
5059void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
5060  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
5061  if (Other->SeqID > SeqID) {
5062    Substitutions.swap(Other->Substitutions);
5063    SeqID = Other->SeqID;
5064  }
5065}
5066
5067CXXNameMangler::AbiTagList
5068CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
5069  // When derived abi tags are disabled there is no need to make any list.
5070  if (DisableDerivedAbiTags)
5071    return AbiTagList();
5072
5073  llvm::raw_null_ostream NullOutStream;
5074  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
5075  TrackReturnTypeTags.disableDerivedAbiTags();
5076
5077  const FunctionProtoType *Proto =
5078      cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
5079  FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
5080  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
5081  TrackReturnTypeTags.mangleType(Proto->getReturnType());
5082  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
5083  TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
5084
5085  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5086}
5087
5088CXXNameMangler::AbiTagList
5089CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
5090  // When derived abi tags are disabled there is no need to make any list.
5091  if (DisableDerivedAbiTags)
5092    return AbiTagList();
5093
5094  llvm::raw_null_ostream NullOutStream;
5095  CXXNameMangler TrackVariableType(*this, NullOutStream);
5096  TrackVariableType.disableDerivedAbiTags();
5097
5098  TrackVariableType.mangleType(VD->getType());
5099
5100  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
5101}
5102
5103bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
5104                                       const VarDecl *VD) {
5105  llvm::raw_null_ostream NullOutStream;
5106  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
5107  TrackAbiTags.mangle(VD);
5108  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
5109}
5110
5111//
5112
5113/// Mangles the name of the declaration D and emits that name to the given
5114/// output stream.
5115///
5116/// If the declaration D requires a mangled name, this routine will emit that
5117/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
5118/// and this routine will return false. In this case, the caller should just
5119/// emit the identifier of the declaration (\c D->getIdentifier()) as its
5120/// name.
5121void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
5122                                             raw_ostream &Out) {
5123  const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
5124  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
5125          "Invalid mangleName() call, argument is not a variable or function!");
5126
5127  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
5128                                 getASTContext().getSourceManager(),
5129                                 "Mangling declaration");
5130
5131  if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
5132    auto Type = GD.getCtorType();
5133    CXXNameMangler Mangler(*this, Out, CD, Type);
5134    return Mangler.mangle(GlobalDecl(CD, Type));
5135  }
5136
5137  if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
5138    auto Type = GD.getDtorType();
5139    CXXNameMangler Mangler(*this, Out, DD, Type);
5140    return Mangler.mangle(GlobalDecl(DD, Type));
5141  }
5142
5143  CXXNameMangler Mangler(*this, Out, D);
5144  Mangler.mangle(GD);
5145}
5146
5147void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
5148                                                   raw_ostream &Out) {
5149  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
5150  Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
5151}
5152
5153void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
5154                                                   raw_ostream &Out) {
5155  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
5156  Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
5157}
5158
5159void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
5160                                           const ThunkInfo &Thunk,
5161                                           raw_ostream &Out) {
5162  //  <special-name> ::= T <call-offset> <base encoding>
5163  //                      # base is the nominal target function of thunk
5164  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
5165  //                      # base is the nominal target function of thunk
5166  //                      # first call-offset is 'this' adjustment
5167  //                      # second call-offset is result adjustment
5168
5169  assert(!isa<CXXDestructorDecl>(MD) &&
5170         "Use mangleCXXDtor for destructor decls!");
5171  CXXNameMangler Mangler(*this, Out);
5172  Mangler.getStream() << "_ZT";
5173  if (!Thunk.Return.isEmpty())
5174    Mangler.getStream() << 'c';
5175
5176  // Mangle the 'this' pointer adjustment.
5177  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
5178                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
5179
5180  // Mangle the return pointer adjustment if there is one.
5181  if (!Thunk.Return.isEmpty())
5182    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
5183                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
5184
5185  Mangler.mangleFunctionEncoding(MD);
5186}
5187
5188void ItaniumMangleContextImpl::mangleCXXDtorThunk(
5189    const CXXDestructorDecl *DD, CXXDtorType Type,
5190    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
5191  //  <special-name> ::= T <call-offset> <base encoding>
5192  //                      # base is the nominal target function of thunk
5193  CXXNameMangler Mangler(*this, Out, DD, Type);
5194  Mangler.getStream() << "_ZT";
5195
5196  // Mangle the 'this' pointer adjustment.
5197  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
5198                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
5199
5200  Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
5201}
5202
5203/// Returns the mangled name for a guard variable for the passed in VarDecl.
5204void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
5205                                                         raw_ostream &Out) {
5206  //  <special-name> ::= GV <object name>       # Guard variable for one-time
5207  //                                            # initialization
5208  CXXNameMangler Mangler(*this, Out);
5209  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
5210  // be a bug that is fixed in trunk.
5211  Mangler.getStream() << "_ZGV";
5212  Mangler.mangleName(D);
5213}
5214
5215void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
5216                                                        raw_ostream &Out) {
5217  // These symbols are internal in the Itanium ABI, so the names don't matter.
5218  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
5219  // avoid duplicate symbols.
5220  Out << "__cxx_global_var_init";
5221}
5222
5223void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
5224                                                             raw_ostream &Out) {
5225  // Prefix the mangling of D with __dtor_.
5226  CXXNameMangler Mangler(*this, Out);
5227  Mangler.getStream() << "__dtor_";
5228  if (shouldMangleDeclName(D))
5229    Mangler.mangle(D);
5230  else
5231    Mangler.getStream() << D->getName();
5232}
5233
5234void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
5235                                                           raw_ostream &Out) {
5236  // Clang generates these internal-linkage functions as part of its
5237  // implementation of the XL ABI.
5238  CXXNameMangler Mangler(*this, Out);
5239  Mangler.getStream() << "__finalize_";
5240  if (shouldMangleDeclName(D))
5241    Mangler.mangle(D);
5242  else
5243    Mangler.getStream() << D->getName();
5244}
5245
5246void ItaniumMangleContextImpl::mangleSEHFilterExpression(
5247    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5248  CXXNameMangler Mangler(*this, Out);
5249  Mangler.getStream() << "__filt_";
5250  if (shouldMangleDeclName(EnclosingDecl))
5251    Mangler.mangle(EnclosingDecl);
5252  else
5253    Mangler.getStream() << EnclosingDecl->getName();
5254}
5255
5256void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
5257    const NamedDecl *EnclosingDecl, raw_ostream &Out) {
5258  CXXNameMangler Mangler(*this, Out);
5259  Mangler.getStream() << "__fin_";
5260  if (shouldMangleDeclName(EnclosingDecl))
5261    Mangler.mangle(EnclosingDecl);
5262  else
5263    Mangler.getStream() << EnclosingDecl->getName();
5264}
5265
5266void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
5267                                                            raw_ostream &Out) {
5268  //  <special-name> ::= TH <object name>
5269  CXXNameMangler Mangler(*this, Out);
5270  Mangler.getStream() << "_ZTH";
5271  Mangler.mangleName(D);
5272}
5273
5274void
5275ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
5276                                                          raw_ostream &Out) {
5277  //  <special-name> ::= TW <object name>
5278  CXXNameMangler Mangler(*this, Out);
5279  Mangler.getStream() << "_ZTW";
5280  Mangler.mangleName(D);
5281}
5282
5283void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
5284                                                        unsigned ManglingNumber,
5285                                                        raw_ostream &Out) {
5286  // We match the GCC mangling here.
5287  //  <special-name> ::= GR <object name>
5288  CXXNameMangler Mangler(*this, Out);
5289  Mangler.getStream() << "_ZGR";
5290  Mangler.mangleName(D);
5291  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
5292  Mangler.mangleSeqID(ManglingNumber - 1);
5293}
5294
5295void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
5296                                               raw_ostream &Out) {
5297  // <special-name> ::= TV <type>  # virtual table
5298  CXXNameMangler Mangler(*this, Out);
5299  Mangler.getStream() << "_ZTV";
5300  Mangler.mangleNameOrStandardSubstitution(RD);
5301}
5302
5303void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
5304                                            raw_ostream &Out) {
5305  // <special-name> ::= TT <type>  # VTT structure
5306  CXXNameMangler Mangler(*this, Out);
5307  Mangler.getStream() << "_ZTT";
5308  Mangler.mangleNameOrStandardSubstitution(RD);
5309}
5310
5311void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
5312                                                   int64_t Offset,
5313                                                   const CXXRecordDecl *Type,
5314                                                   raw_ostream &Out) {
5315  // <special-name> ::= TC <type> <offset number> _ <base type>
5316  CXXNameMangler Mangler(*this, Out);
5317  Mangler.getStream() << "_ZTC";
5318  Mangler.mangleNameOrStandardSubstitution(RD);
5319  Mangler.getStream() << Offset;
5320  Mangler.getStream() << '_';
5321  Mangler.mangleNameOrStandardSubstitution(Type);
5322}
5323
5324void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
5325  // <special-name> ::= TI <type>  # typeinfo structure
5326  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
5327  CXXNameMangler Mangler(*this, Out);
5328  Mangler.getStream() << "_ZTI";
5329  Mangler.mangleType(Ty);
5330}
5331
5332void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
5333                                                 raw_ostream &Out) {
5334  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
5335  CXXNameMangler Mangler(*this, Out);
5336  Mangler.getStream() << "_ZTS";
5337  Mangler.mangleType(Ty);
5338}
5339
5340void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
5341  mangleCXXRTTIName(Ty, Out);
5342}
5343
5344void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
5345  llvm_unreachable("Can't mangle string literals");
5346}
5347
5348void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
5349                                               raw_ostream &Out) {
5350  CXXNameMangler Mangler(*this, Out);
5351  Mangler.mangleLambdaSig(Lambda);
5352}
5353
5354ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context,
5355                                                   DiagnosticsEngine &Diags,
5356                                                   bool IsUniqueNameMangler) {
5357  return new ItaniumMangleContextImpl(Context, Diags, IsUniqueNameMangler);
5358}
5359